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Abstract 

The purinergic system is composed of purine and pyrimidine transmitters, of the enzymes that 

modulate the interconversion of nucleotides and nucleosides, of the membrane transporters that 

control their extracellular concentrations, and of the many receptor subtypes that are responsible for 

their cellular responses. The components of this system are ubiquitously localized in all tissues and 

organs, and their involvement in several physiological conditions has been clearly demonstrated. 

Moreover, extracellular purine and pyrimidine concentrations raise several folds under pathological 

conditions like tissue damage, ischemia, and inflammation, which suggest that this signaling system 

might contribute both to disease outcome and, possibly, to its tentative resolution. The complexity of 

this system has greatly impaired the clear identification of the mediators and receptors that are 

actually involved in a given pathology, also due to the often opposite roles played by the various 

receptor subtypes. Nevertheless, this knowledge is fundamental for the possible exploitation of these 

molecular entities as targets for the development of new pharmacological approaches. In this review, 

we aim at highlighting what is currently known on the role of the purinergic system in various pain 

conditions and during inflammatory processes. Although some confusion may arise from conflicting 
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results, literature data clearly show that targeting specific purinergic receptors may represent an 

innovative approach to various pain and inflammatory conditions, and that new purine-based drugs 

are now very close to reach the market with these indications. 
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1. Introduction 

The purinergic system represents one of the most complex, but yet partially unexplored 

signaling systems involved in both physiological and pathological conditions. Its intriguing 

complexity is due to several factors: i) purines and pyrimidine are ubiquitous molecules, which are 

involved in many biochemical processes spanning from the synthesis of nucleic acids, 

phosphorylation reactions and energy transfer to neurotransmission and cell-to-cell communication; 

ii) a close interconnection among the different signaling molecules is present, due to complex 

metabolic reactions catalyzed by various intracellular and extracellular enzymes; iii) each molecule 

activates a variety of membrane receptors, often leading to opposite functional effects on target cells 

or to the pleonastic activation of common downstream signaling pathways (see specific sections 

below); iv) extracellular concentrations of purines and pyrimidines are fine-tuned also by the activity 

of specific membrane transporters; v) physiological nanomolar/low micromolar extracellular purine 

and pyrimidine concentrations raise up to the high micromolar/millimolar ranges at sites of tissue 

damage, ischemia and/or under inflammatory conditions (Figures 1 and 2) [1, 2].  

Such a complex organization provides a vast variety of different targets (i.e., receptor 

subtypes, enzymes, membrane transporters) which could be possibly modulated by selective 

pharmacological approaches, but also poses the difficulty of avoiding unwanted side effects and to 

selectively act at the desired site, either at cellular or tissue level. This is one of the main reason why, 

despite its well-known involvement in many pathological conditions, at present very few drugs acting 

on the purinergic system have reached the market [3]. In the last years, joint efforts of 

pharmacologists, biochemists, molecular biologists and pharmaceutical chemists have greatly 

advanced the research on innovative purine- and pyrimidines-based drugs for several diseases. 

In this review, we shall summarize what is currently known on the role of the purinergic 

system in chronic pain and inflammatory conditions, and the possible future directions for the 

development of innovative analgesics and anti-inflammatory agents, with an eye also on non-

conventional and traditional medicine approaches.   

 

2. ROLE OF PURINES IN CHRONIC PAIN 

 

2.1 Extracellular nucleotides in chronic pain 

 

2.1.1 P2X ion-channel receptors and chronic pain 

Pharmaceutical research continues to fail in addressing the increasing need for novel, 

effective, safe, and well-tolerated treatments for chronic pain and related conditions, despite decades 
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of innovation and efforts in understanding the cellular and molecular basis of pain transmission. As 

mentioned in the Introduction, since ATP is abundantly present in all tissues and cells, and it is over-

released in different pathological environments, an increasing number of published papers is now 

pointing out its functional relevance in many disease processes, including pain. Therefore, the 

selective inhibition of ATP-gated cation channels, the P2X receptors (P2XRs, encompassing the 

P2X1,2,3,4,5,6,7R subtypes), has received significant focus from academic and pharmaceutical 

scientists in the search of innovative and effective “druggable” targets for the development of new 

analgesics.  

P2XRs have a widespread tissue distribution. For example, on smooth muscle cells, they 

mediate the fast-excitatory potential that leads to depolarization and tissue contraction. In the central 

nervous system (CNS), P2XR activation allows calcium to enter neurons, thus evoking 

neuromodulatory responses. In primary afferent nerves, P2XRs are critical for the initiation of action 

potentials when they respond to ATP released from sensory cells. In immune cells, activation of P2X 

receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β [4]. Not all P2XR 

subtypes have been found implicated in pain signaling pathways. Here we summarize the current 

knowledge on the most important nucleotide-activated ion channels involved in nociception. 

 

P2X3Rs. Multiple purinergic pathways are involved in the pro-nociceptive actions of ATP. 

However, since their discovery, a fundamental role has been proposed for receptors containing P2X3 

subunits (i.e. homotrimeric P2X3Rs and heterotrimeric P2X2/3Rs) in mediating the primary sensory 

effects of ATP.  

P2X3Rs and P2X2/3Rs are crucially involved in both neuropathic and inflammatory pain [5, 

6], also due to their specific localization on sensory neurons in nociceptive pathways. In fact, P2X3Rs 

and P2X2/3Rs are predominantly localized on small-to-medium diameter C- and Aδ fiber sensory 

neurons within the dorsal root ganglia (DRG) and cranial sensory ganglia, and on their peripheral 

nerve terminals in tissues including the skin, joints, and viscera [7]. P2X3Rs and P2X2/3Rs are also 

present on the central projections of primary sensory neurons within the dorsal horn of the spinal cord 

and in the brainstem, where they play a role in promoting the release of glutamate and substance P 

(SP) at this first sensory synapse [8]. Moreover, P2X3-containing ionotropic receptors are expressed 

in a large portion of unmyelinated and thinly myelinated primary afferent nerves that innervate 

essentially all tissues and organs [9]. ATP is released from many cell types in these receptive fields, 

as well as at the central terminals of activated afferents, and, as mentioned in the Introduction, its 

release is increased under conditions of injury, inflammation and stress. As a co-transmitter, ATP is 

co-released with γ-aminobutyric acid (GABA) by spinal interneurons, thus contributing to the 
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modulation of nociceptive pathways. Moreover, thermal hyperalgesia is mediated by spinal P2X3Rs 

via activation of N-methyl-D-aspartate (NMDA) receptors [10].  

In addition, intrathecal administration of ATP produced long-lasting allodynia via P2X2/3Rs 

[11], and sensitization of P2X3Rs, rather than a change in ATP release, appeared to be responsible 

for the development and maintenance of neuropathic pain and related allodynia [6, 12].  

It has also been postulated that P2X3R-dependent cytosolic phospholipase A2 (cPLA2) 

activity in primary sensory neurons is a key event in neuropathic pain, so that cPLA2 pathway might 

be a potential target for treating this type of pain [13]. Additionally, vascular endothelial growth factor 

(VEGF) is involved in neuropathic pain transmission mediated by P2X2/3Rs expressed by primary 

sensory neurons [14], and endothelin-1-induced hyperalgesia in rats was produced by its action on 

vascular endothelial cells, sensitizing them to release ATP, which in turn acted on P2X3Rs on 

nociceptors [15]. 

Surprisingly, besides the clear role for P2X3Rs and P2X2/3Rs in facilitating pain 

transmission, the intracerebroventricular (i.c.v.) administration of ATP and P2XR agonists produced 

mechanical and thermal antinociception in rats, leading to the hypothesis that supraspinal P2XRs 

might play an inhibitory role in pain transmission [16]. However, from then on, no further evidence 

supported this speculation. 

Concerning P2X3Rs activity in sensory ganglia, it is well known that they are highly 

expressed on trigeminal ganglion (TG) primary afferent neurons, suggesting that they may be targets 

for craniofacial pain therapies [17]. ATP, via P2X3Rs, induced the sensitization of TG nociceptors, 

and this in turn increased the sensitivity to ATP of surrounding satellite glial cells in chronic pain 

conditions [18]. Therefore, it is now widely accepted that ATP has a role in the sensitization of 

primary afferents at both peripheral and central terminals, and, as a consequence, in mechanisms 

underlying migraine headache [19]. From a molecular point of view, upregulation of nociceptive 

P2X3Rs on TG neurons by the migraine mediators calcitonin gene-related peptide (CGRP), nerve 

growth factor (NGF) and bradykinin (BK) has been reported [20-22], and anti-NGF treatment 

suppressed the responses evoked by P2X3R activation in an in vivo mouse model of TG pain [23]. It 

has also been reported that silencing C-terminal Src inhibitory kinase in TG neurons potentiated 

P2X3R responses, thus identifying another potential target for TG pain suppression [24]. Moreover, 

P2X3R activity on mouse TG sensory neurons was enhanced by the familial hemiplegic migraine 

type 1 (FHM-1) calcium channel mutation R192Q [25]; in fact, TG sensory neurons from FHM-1 

knock-in mice exhibited a lower firing threshold and generated more action potentials in response to 

α,β-meATP, acting via P2X3Rs [26]. Therefore, the P2X3R pathway represents a promising 

candidate for the development of innovative antimigraine drug.  
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A very recent study showed that P2X3Rs in TG neurons are also involved in the development 

of chronic pain of the temporomandibular joints (TMJs) and masseter muscles associated with 

placement of an occlusal interference, since the administration of a P2X3R antagonist reversed 

mechanical hyperalgesia [27]. 

Recently, a microarray-based expression genomics study identified DRG-expressed genetic 

contributors to mechanical allodynia. Authors demonstrated that expression levels of the Chrna6 

gene, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), are highly 

correlated to the development of allodynia, since mechanical allodynia associated with neuropathic 

and inflammatory injuries is significantly altered in α6 mutants. Furthermore, they showed that the 

role of Chrna6 in allodynia is at least partially due to direct interaction of α6 nAChRs with P2X2/3Rs 

in DRG nociceptors, confirming the cross-communication among various signaling pathways 

involved in pain transmission [28]. All the above-mentioned evidence supports a therapeutic potential 

for the selective antagonism of P2X3Rs, and many research approaches have been utilized in the 

search of a selective inhibition of this receptor subtype: for example, the distribution of RNA and 

protein for this receptor subunit  has been investigated, gene-targeting methods and novel selective 

antagonists have been administered to preclinical rodent models of pain, the ATP content has been 

analyzed in human pathological fluids and samples, in parallel with the tissue expression of P2X3Rs, 

and studies on the effects of ATP administration to healthy volunteers or to isolated tissue samples 

have been unsertaken [29]. The range of potential therapeutic opportunities covers essentially any 

condition in which a chronic dysregulation and sensitization of sensory neurons has been implicated. 

So far, in vivo studies using selective pharmacological and gene-based tools support the 

hypothesis of a crucial role for P2X3Rs and P2X2/3Rs in chronic pain. TNP-ATP, a trinitrophenyl-

substituted nucleotide (Table 1), is a very potent antagonist at both P2X3Rs and P2X2/3Rs, despite 

its short half-life in vivo [30]. A-317491 (synthesized by Abbott Laboratories), compound RO3 

(synthesized by Roche, Palo Alto) and its derivative AF-353 are effective P2X3R and P2X2/3R 

antagonists. Systemic administration of both TNP-ATP and A-317491 reduced nociception in 

neuropathic pain models, demonstrating that peripheral and spinal P2X3Rs and P2X2/3Rs are 

involved in persistent chronic pain [31]. Moreover, P2X3Rs have been claimed to be useful targets 

for the treatment of pain in chronic prostatitis [32].  

Results with P2X3R antagonists were corroborated by studies in mice lacking P2X3Rs, 

P2X2Rs or both receptor subunits [33], as well as in animals treated with P2X3R selective antisense 

[34] or short interfering RNA (siRNA) [35], which showed comparable results. Antisense 

oligonucleotides prevented the development of mechanical hyperalgesia and reverted hyperalgesia in 
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models of neuropathic (partial sciatic nerve ligation) and inflammatory (i.e., Complete Freund’s 

Adjuvant, CFA,-induced) pain [36].  

Concerning drugs already on the market, cyclooxygenase inhibitors reduced the expression of 

P2X3Rs in rat DRG, and hyperalgesia following chronic constriction injury (CCI) [37]. P2X3R-

mediated signal transduction pathways of peripheral pain resulted to be attenuated by 17β-estradiol 

via estrogen receptor-α and GPR30 receptors [38, 39]. Finally, the anti-epileptic drug Pregabalin is 

also used for the treatment of neuropathic pain, and its action appears to be due to inhibition of P2X3R 

expression in the spinal dorsal horn [40]. 

Taken together, these data highlight P2X3R as the principal actor connecting ATP release 

with chronic neuronal sensitization, with no clear evidence for its involvement in the acute sensation 

of noxious stimuli. Thus, the hypothesis that blocking P2X3Rs and/or P2X2/3Rs has a potential 

therapeutic role in the management of chronic pain conditions is now reasonable [41].  

In this respect, in the last decade, medicinal chemistry has made a breakthrough in proposing 

selective P2X3R and P2X2/3R antagonists with good potency, selectivity and bioavailability to be 

tested in humans, which are currently under development by several pharmaceutical companies. For 

example, the selective P2X3R antagonist AF-219 from Afferent Pharmaceuticals is the first 

compound tested in clinical trials. Phase I clinical studies in healthy volunteers indicated good safety 

and tolerability, and subsequent Phase II studies are currently in progress on chronic cough, joint pain 

and visceral pain [42]. A second compound, AF-130, has recently entered Phase I clinical testing 

(ClinicalTrials.gov Identifier: NCT02652936) and will be next evaluated in a number of pain-related 

conditions. Clinical trials for other P2X3R antagonists are in progress, but unfortunately so far all the 

tested compounds failed in advanced clinical phases, due to significant side effects (see Table 2).  

 

P2X4Rs. Several findings indicate that chronic neuropathic pain leads to the activation of 

spinal microglia, but until recently its causal role in neuropathic pain remained an open question. 

Only by elucidating the role of P2X4Rs, activated microglia has been directly implicated in the 

pathogenesis of chronic pain. In fact, the identification of P2X4Rs in the spinal cord as a requirement 

for neuropathic pain first came from a pharmacological investigation of pain behavior after nerve 

injury using the P2XRs antagonists TNP-ATP and PPADS [43]. Following this initial discovery, a 

number of papers addressed the pro-nociceptive role of spinal microglial P2X4Rs and underlined the 

mechanisms involved in their activation in neuropathic pain conditions [44-46].  

In particular, literature data showed that P2X4R-stimulated microglia released brain-derived 

neurotrophic factor (BDNF) as a crucial signaling factor to lamina I neurons, causing a collapse of 

their transmembrane anion gradient with subsequent neuronal hyperexcitability [47]. Investigation 
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on the cellular mechanisms by which microglial P2X4R activation could trigger the release of BDNF 

showed that stimulation of P2X4Rs causes Ca2+ flux and p38-MAPK activation, which in turn 

promoted the synthesis and release of BDNF [48].  

The generation of P2X4R knockout mice showed a remarkable reduction of tactile allodynia 

and a complete absence of mechanical hypersensitivity after spinal nerve injury in comparison with 

wild-type animals [49]. The development of genetically modified mice has been an important step to 

directly assess the role of microglial P2X4Rs in chronic pain, since these findings indicated that 

microglial P2X4R stimulation is not only necessary but also sufficient to cause tactile allodynia. The 

up-regulation of P2X4R expression on microglial cells is clearly a key process in neuropathic pain, 

and studies have shown that the extracellular matrix protein fibronectin is involved [50]. Indeed, 

intrathecal delivery of ATP-stimulated microglia to the rat lumbar spinal cord revealed that microglia 

treated with fibronectin could induce allodynia more effectively than control microglia. Blockade of 

the fibronectin receptor attenuated nerve injury-induced P2X4R up-regulation and allodynia [51]. In 

parallel, the intrathecal delivery of fibronectin increased P2X4R expression and induced allodynia, a 

behavior that was not evoked in P2X4R-deficient mice. Moreover, fibronectin failed to induce up-

regulation of P2X4R expression in microglial cells lacking Lyn tyrosine kinase, a member of the Src 

family kinases [52]. It was also reported that activating both toll-like receptors and NOD2 (another 

pattern-recognition receptor) in cultured microglia increased the expression of P2X4R at the mRNA 

level [53], thus suggesting the involvement of these receptors in the regulation of P2X4Rs. 

Mechanical allodynia and upregulation of P2X4Rs in spinal microglia is also a feature of 

experimental autoimmune neuritis [54]. 

Recent papers showed that interferon regulatory factor-5 (IRF-5), which is induced in spinal 

microglia after peripheral nerve injury, is responsible for direct transcriptional control of P2X4Rs 

[55]. Dexmedetomidine, a selective α2-adrenoceptor agonist which has been used as analgesic, 

reduced pain in a spared nerve injury (SNI) rat model of neuropathic pain, in parallel to a reduced 

expression of P2X4Rs and BDNF in microglia of the spinal dorsal horn [56]. 

Also in the case of P2X4Rs, studies with selective and non-selective antagonists were a useful 

tool to validate the receptor as a potential target for treating chronic pain. A series of benzofuro-1,4-

diazepin-2-ones were reported to be effective P2X4R antagonists in a Bayer Health Care, AG patent 

[57]. The microglia-to-neuron P2X4R–BDNF–K+–Cl- cotransporter pathway could be a therapeutic 

target for preventing hyperalgesia [58]. Also, morphine tolerance resulted to be attenuated by 

inhibition of microglial P2X4Rs receptors [59]. Antidepressants have been claimed to be effective in 

relieving neuropathic pain; among these, paroxetine was an effective antagonist of P2X4Rs in 

transfected cells, and preliminary clinical studies showed that it was successful in inhibiting chronic 



	 9	

pain [60]. Carbamazepine derivatives have been recently shown to have potent P2X4R blocking 

activities as well, thus offering a promising development for the treatment of neuropathic pain [61]. 

Interestingly, a recent study investigated the effect of hyperbaric oxygen (HBO) treatment at 

various stages following CCI of the sciatic nerve. Early HBO treatment produced a persistent 

antinociceptive effect and inhibited the CCI-induced increase in the expression of P2X4Rs [62]. 

Finally, a very recent study identified NP-1815-PX (Table 1) as a novel selective antagonist 

at P2X4Rs, with high potency and selectivity compared to other P2XR subtypes. In vivo assays for 

both acute and chronic pain showed that the intrathecal administration of NP-1815-PX induced an 

anti-allodynic effect in mice with traumatic nerve damage without affecting acute nociceptive pain 

and motor function. Furthermore, intrathecal NP-1815-PX suppressed the induction of mechanical 

allodynia in a mouse model of herpetic pain [63]. 

Surprisingly, recent evidence has shown that the role of microglia in pain is sexually 

dimorphic. In fact, despite similar microglia proliferation in the dorsal horn in both sexes, females do 

not upregulate P2X4Rs and utilize a microglia-independent pathway to mediate pain hypersensitivity. 

On the other hand, adaptive immune cells, possibly T cells, seem to mediate pain hypersensitivity in 

female mice only [64]. Moreover, unpublished data presented at the 16th IASP® World Congress on 

Pain (September 26th-30th 2016, Yokohama, Japan) revealed that blocking P2X4R-BDNF signaling 

reverses SNI-induced pain hypersensitivity in males only, and P2rx4 gene expression was not 

upregulated in female mice subjected to peripheral nerve injury (data presented by M. Salter within 

the Topical Workshop “Distinct Forms and Phases of Neuroinflammation in Chronic Pain”; abstract 

title: “Sexual dimorphism in immune-neuronal signaling in pain hypersensitivity”). This profound 

sex difference highlights the importance of including subjects of both sexes in preclinical pain 

research. 

Unfortunately, at the moment no clinical trials are ongoing to test the efficacy or P2X4R 

antagonists in chronic pain. 

 

P2X7Rs. Among the P2XR family, P2X7Rs are considered the most unusual with respect to 

their functional and molecular characteristics. For example, homomeric P2X7Rs require 10-fold 

higher concentrations of ATP (>100 µM) than other receptor subtypes to be activated, with prolonged 

agonist exposure inducing the formation of large cytolytic pores in the cell membrane [65]. P2X7R 

subunits were initially cloned from rat and human macrophages, and they are mainly expressed by 

cells of the immune system including lymphocytes and peripheral macrophages [66]. In the rat CNS, 

functional P2X7Rs are expressed by microglia and astrocytes, while their presence on neurons is still 

controversial, even though evidence reports their expression by some neuronal populations (see 3.1.1) 
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[67]. The specific distribution of P2X7Rs has led to a large interest in drug development research, 

where they are mostly targeted to treat inflammatory diseases (see 3.1.1). Nevertheless, although 

mainly involved in inflammation processes, a role for P2X7Rs in chronic pain has also been proposed 

[68]. 

In fact, the pharmacological blockade of P2X7Rs reduced neuropathic pain in different 

experimental models [69]. Several P2X7R antagonists have been used so far, including: oxidized 

ATP (oATP), Brilliant Blue G, the tyrosine derivatives KN-62 and KN-04, cyclic imides, adamantane 

and benzamide derivatives, compound 4g, chelerythrine and other benzophenenanthidine alkaloids, 

U73122 and U73343 (Table 1). Later, compounds such as cyanoguanidines and aminotetrazoles have 

been introduced [70]. The systemic administration of the P2X7R selective antagonists A-438079 and 

A-740003 showed a dose-dependent antinociceptive effect in models of neuropathic pain [71, 72]. In 

particular, A-740003 is more potent than A-438079 in reducing mechanical allodynia 2 weeks after 

spinal nerve ligation. The antinociceptive activity of P2X7R antagonists is comparable to their anti-

inflammatory effect, and A-740003 was more effective in reducing nociception than paw edema in 

inflammatory pain models [71]. The antinociceptive action of A-438079 was due to the blockade of 

mechanical and thermal inputs to spinal neurons, and the spontaneous activity of all classes of spinal 

neurons was reduced in neuropathic, but not sham rats [72], which might have important clinical 

implications. 

It has been reported that P2X4R and P2X7R knockout mice have a common pain phenotype, 

both showing reduced pain behavior through the inhibition of their receptor-specific signaling 

pathway. In P2X7R knockout mice, both chronic inflammatory and neuropathic pain were abolished, 

as well as IL-1β release [73], which has been demonstrated to play an upstream transductional role 

in the development of both types of pain [74]. Later, another study observed similar results and 

additionally suggested a role for microglial P2X7R activation in the p38 MAPK-dependent release 

of cathepsin, and hypothesized that this may represent an additional mechanism responsible for the 

efficacy of P2X7R antagonists in neuropathic pain [75]. Several other diffusible factors such as iNOS, 

PGE2, COX-2 and BDNF are also released by microglia upon P2X7R activation [76], and could 

account for the cross-talk between P2X7R- and P2X4R-dependent mechanisms that are associated 

with neuropathic pain (see also above). P2X7R-induced pore formation initiates several downstream 

effects, which may be involved in pain hypersensitivity. Thus, the specific inhibition of the pore 

formation without affecting the cation channel activity provides a mean to reduce chronic pain [77].  

Recently, an increase in P2X7R mRNA and protein expression in spinal microglia has been 

observed in a neuropathic pain model induced by peripheral nerve injury [78]. Activation of P2X7Rs 

was also shown to induce the release of glutamate in the spinal cord, which contributes to mechanical 
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allodynia following partial nerve ligation of the sciatic nerve [79]. P2X7R turned out to be activated 

in a model of oxaliplatin-induced painful neuropathy [80], and the P2X7R antagonist A-438079 

prevented the effects on allodynia induced by paclitaxel, another anticancer drug [81].  

Peripheral P2X7R activation also induced mechanical hyperalgesia via inflammatory 

mediators, especially BK [82]. Genetic deletion and antagonists of P2X7R reduced pain in a mouse 

model of nitroglycerin-induced migraine [83]. Finally, a thalamic hemorrhagic rat model 

characterized by thermal and mechanical allodynia, which develops in the subacute to chronic phases 

upon central post-stroke pain onset, showed a significant increase in P2X7R expression in reactive 

microglia/macrophages in thalamic perilesion tissues at 5 weeks post-hemorrhage. Thalamic P2X7Rs 

were proved to be directly involved in pain transmission and hypersensitivity, and their systemic 

targeting rescued abnormal pain behaviors and neuronal activity in the thalamo-cingulate pathway 

[84]. 

One important issue in the research on P2X7Rs has been to demonstrate its possible 

interactions with membrane proteins, which could account for its ability to open a non-selective pore 

upon repeated stimulation. Recently, a research group suggested that Pannexin-1 (Panx1) 

hemichannel could represent a novel regulator of pain hypersensitivity, and showed its interaction 

with P2X7Rs in glial cells. Authors showed that ATP released from presynaptic neurons activates 

P2X7R on surrounding microglia, increasing intracellular calcium and activating Panx1, thus causing 

more ATP release. This ATP-induced ATP release potentiated purinergic signaling and enhanced the 

release of pro-inflammatory cytokines, thus participating to pain induction and chronicization [85]. 

Further supporting evidence for Panx1-P2X7R interaction in pain was also provided by another group 

suggesting that the increased P2X7R-dependent glutamate release through the recruitment of Panx1 

is a downstream effector for the neuropathic syndrome generated by repeated administration of the 

anti-cancer agent oxaliplatin [86]. Moreover, a research group recently demonstrated that glial Panx1, 

and therefore its interaction with P2X7Rs, also contributes to tactile sensitivity in a mouse model of 

chronic orofacial pain [87]. 

A very recent study assessed the contribution of P2X7R in the antiallodynic and 

antihyperalgesic effects of the intraperitoneal daily administration of riluzole in a rat model of 

neuropathic pain induced by CCI, by demonstrating that riluzole downregulated P2X7R expression 

and inhibited microglial activation [88]. 

Interestingly, variations within the coding sequence of the P2rx7 gene affect chronic pain 

sensitivity in both mice and humans. Using genome-wide linkage analyses, researchers discovered 

an association between nerve injury-induced mechanical allodynia and the P451L mutation of the 

mouse P2rx7 gene: mice in which P2X7Rs have impaired pore formation, as a result of this mutation, 
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showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide 

corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel 

activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-

forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, authors observed a 

genetic association between lower pain intensity and the hypofunctional His270 allele of P2X7R. 

These findings suggest that selectively targeting P2X7R pore formation may be an innovative strategy 

to achieve a personalized treatment of chronic pain [77]. Subsequently, it has been shown that other 

P2X7R single nucleotide polymorphisms (SNPs) correlate with pain sensitivity [89]. Another 

research group conducted linkage disequilibrium analyses for 55 reported SNPs in the region within 

and around the P2X7R gene using genomic samples from 100 patients, and further analyzed 

associations between genotypes/haplotypes of these SNPs and clinical data, for a total of 355 samples. 

Authors demonstrated that cold pain sensitivity and the analgesic effects of fentanyl are related to the 

SNPs and haplotypes of the P2X7R gene [90], further underlining the involvement of P2X7R gene 

polymorphisms in pain sensitivity and their importance for personalized medicine. 

 

2.1.2 P2Y G protein-coupled receptors and chronic pain 

As mentioned, during inflammation and tissue injury, different cell types can release ATP and 

other nucleotides from their intracellular stores to the extracellular compartment (Figures 1 and 2) 

[91]. These nucleotides can bind to specific metabotropic receptors, the P2Y receptors (P2YRs) 

family, leading to the activation of different signaling pathways.  

In particular, P2Y1,12,13Rs are sensitive to ADP, P2Y2,4Rs respond to both UTP and ATP, 

P2Y6R is sensitive to UDP, P2Y11R has ATP as endogenous ligand and finally P2Y14R responds to 

the uridine sugars (such as UDP-glucose and UDP-galactose) [92]. Activation of each receptor 

subtype leads to the recruitment of various second messengers, which can vary also depending upon 

the tissue or cell expressing the receptor [92]. P2YRs are widely expressed throughout the body, and 

they are especially localized on endothelial cells (P2Y1,2,4Rs), microglia (P2Y6,12Rs), satellite glial 

cells (P2Y1,2Rs) and other immune cells and leukocytes [93]. 

Unfortunately, selective available pharmacological entities targeting this receptor family are 

currently limited: P2Y12R antagonists are used as antithrombotic agents [94], and recently a P2Y2R 

agonist (i.e. Denufosol) reached phase III clinical trials for the treatment of cystic fibrosis, but has 

not been commercialized [95]. Conversely, another P2Y2R agonist (i.e. Diquafosol) has been 

approved for topical treatment in dry eye syndrome [96]. Nonetheless, in the last years many 

published studies have shown the importance of P2YRs during chronic pain and inflammation, also 

thanks to the synthesis of new subtype-selective agonists and antagonists, thus increasing the interest 
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of the scientific community for the possible exploitation of these receptors as new pharmacological 

targets.  

 

P2Y1Rs. To date the role of this receptor subtype in chronic pain is controversial. It has been 

demonstrated that activation of P2Y1Rs has an antinociceptive action, since intraperitoneal 

administration of a selective P2Y1R agonist reduced allodynia in rats affected by neuropathic pain 

[97].  

Conversely, other studies showed that P2Y1R antagonists reduced both thermal hyperalgesia 

[98] and bone cancer pain in rats [99]. It has also been found that P2Y1Rs are involved in formalin-

induced pain at peripheral level. Activation of this receptor led to an increase in pain response, 

whereas inhibition decreased it [100]. Moreover, the same group found that P2Y1R expression was 

increased in the DRGs of different animal models of neuropathic pain, and this effect was exclusively 

observed in the early stages of the pathology, suggesting the involvement of this receptor in the 

development of neuropathic pain rather than in its maintenance [101]. Nontheless, the selective 

P2Y1R antagonist MRS2179 failed to reduce facial allodynia in a model of sub-chronic inflammatory 

trigeminal pain (i.e. CFA injection in the temporomandibular joint) [102]. 

P2Y1Rs are also highly expressed in the rectosigmoid mucosa of diarrhea-predominant 

irritable bowel syndrome (IBS-D) patients [103], and further studies have shown that they are 

involved in the increased action potential firing of colonic sensory neurons that leads to visceral pain 

[104, 105].  

Another study clearly indicates that P2Y1Rs play a role in chronic ischemia with severe 

acidosis. In particular, their activation led to the phosphorylation of TRPV1, a key receptor in 

nociceptive pathways, which in turn promoted thermal hyperalgesia [106]. This evidence seems to 

confirm a pro-nociceptive and pro-algogenic role of P2Y1Rs, and thus the availability of selective 

antagonist could open up new strategies for innovative analgesic approaches. 

 

P2Y2Rs. A significant body of evidence is now depicting a clear role for this receptor subtype 

in several types of pain. Previous studies indicated that P2Y2Rs play an important role in thermal 

nociception, since mice lacking this receptor subtype failed to develop heat hyperalgesia in response 

to CFA-injection [107]. Recently, Molliver and colleagues confirmed these findings, by showing that 

lack of P2Y2Rs led to the reduction of the responsiveness of unmyelinated polymodal afferents to 

heat. Moreover, P2Y2R deletion altered the mechanical properties of these cutaneous afferents, which 

translated into the acquisition of mechanical responsiveness by a subset of TRPV1-expressing 

afferents [108].  
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Our group has recently demonstrated that P2Y2Rs expressed by satellite glial cells in the TG 

are upregulated by pro-algogenic stimuli, and that their inhibition by a selective antagonist led to a 

total recovery from allodynia in a sub-chronic inflammatory trigeminal pain model (i.e., CFA 

injection in the temporomandibular joint) [102]. This is in agreement with the results obtained in a 

previous study that showed the same antinociceptive effect of P2Y2Rs antagonist in a rat model of 

trigeminal neuropathic pain [109].  

Finally, further evidence validates the involvement of P2Y2Rs in IBS-D and it has been 

suggested that its increased expression in the rectosigmoid mucosa of IBS-D patients correlates with 

the presence of abdominal pain [103].  

 

P2Y4Rs. This receptor subtype is known to be expressed by satellite glial cells in the TG [110, 

111], and could therefore affect sensory neurons during pain development. Nonetheless, to date its 

role in pain transmission has been only speculated but not demonstrated.  

 

P2Y6Rs. Together with P2Y12Rs, P2Y6Rs are crucially involved in controlling microglial cell 

functions. In fact, their activation led to increased production of chemokines [112], and promoted 

microglial phagocytic activity [113]. In accordance to this, expression of P2Y6Rs, together with 

P2Y13Rs and P2Y14Rs, has been found upregulated in spinal microglial cells after peripheral nerve 

injury [114]. This increased expression lasted at least 2 weeks, and the pharmacological inhibition of 

this receptor subtype attenuated mechanical pain hypersensitivity [114]. Similar results on the 

pronociceptive role of P2Y6Rs were confirmed by another research group, which showed that the 

expression of P2Y6Rs and P2Y11Rs is increased in a model of neuropathic pain (spinal nerve ligation, 

SNL), and that the pharmacological inhibition of these receptors improved tactile allodynia [115]. 

Moreover, the activation of P2Y6Rs (and also P2Y1Rs and P2Y11Rs) increased the flinch behavior 

due to formalin-induced pain, and pre-treatment with receptor antagonists relieved pain [100].  

Conversely, opposite results have been obtained in other studies. In a model of SNI, the 

pharmacological inhibition of P2Y6Rs failed to reduce allodynia [116]. In sharp contrast with the 

pronociceptive role of P2Y6Rs observed in other studies, Bernier et al. showed that P2Y6R activation 

led to a decreased P2X4R activity, suggesting that P2Y6Rs might have an antinociceptive role [117].  

 

P2Y11Rs. It has been shown that the expression of this receptor subtype is increased in 

different animal models of pain, and that its inhibition decreased tactile allodynia in both neuropathic 

[115] and formalin-induced pain models [100]. It is, however, worth mentioning that the existence of 

a rodent ortholog of human P2Y11R is still a matter of debate, since no cloned receptor but only 
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functional data are currently available. This claims for caution when postulating the involvement of 

this receptor in preclinical models of pathology. 

 

P2Y12Rs. This receptor subtype is mainly expressed by microglial cells both in the brain and 

spinal cord [118-120], where it crucially modulates microglial chemotactic activity [118]. Its 

expression in these cells increases following partial nerve injury (PNI) in the spinal cord [121, 122], 

and its genetic deletion improved tactile allodynia [123]. These results strongly suggest the 

involvement of microglial P2Y12Rs in the pathogenesis of neuropathic pain.  

Moreover, P2Y12Rs also carry out an important role in controlling the engulfment of 

myelinated axon by activated microglia in the spinal dorsal horn, and also this pathway could be 

critical for the development of neuropathic pain [124].  

Recently, it has been demonstrated the involvement of microglial P2Y12Rs in a model of 

spinal nerve transection, since its genetic deletion ameliorated pain hypersensitivity and reduced the 

morphological and electrophysiological changes observed in microglial cells upon nerve transection 

[125]. 

 

P2Y13Rs. Recent studies clearly show the involvement of P2Y13Rs in neuropathic pain. In 

particular, it has been demonstrated that the expression of these receptors increased during 

neuropathic pain in spinal microglia. Therefore, authors proposed P2Y13R as a key receptor in the 

induction and maintenance of neuropathic pain through ROCK, a protein suggested to be involved in 

morphological changes that occur during microglia activation [114, 126]. 

 

2.2. Adenosine modulation of chronic pain conditions 

As shown in Figure 1, adenosine (Ado) is extracellularly generated as the final product of the 

hydrolysis of purine nucleotides, i.e. its peak of concentration follows that of ATP and ADP. Also 

thanks to this relationship, Ado-mediated effects are often opposite to that of nucleotides, thus 

providing an efficient system to fine-tune and/or turn off nucleotide-mediated cellular responses. 

These modulatory properties of Ado on neuronal functions and on glial cell activation have important 

outcomes in pain transmission. Ado itself has been demonstrated to exert important analgesic actions 

in various types of both inflammatory and neuropathic pain models [127], and even in clinical settings 

[128]. Nevertheless, significant cardiovascular side effects have been detected, due to the wide 

distribution of G protein-coupled adenosine receptors (ARs, collectively referred to as P1 receptors, 

encompassing the A1, 2A, 2B, 3 AR subtypes) and to the lack of selectivity of the endogenous nucleoside 

towards the various receptor subtypes. Research has, therefore, mostly focused on the identification 
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of the actual AR subtypes involved in Ado-mediated analgesia, in order to elaborate a more selective 

therapeutic strategy devoid of major side effects. 

 

A1ARs. The antinociceptive activity of Ado has been initially only attributed to the activation 

of A1ARs, mostly due to their neuronal localization and their known inhibitory activity on cell firing, 

thanks to the modulation of specific K+ channels. Marked analgesic effects of selective A1AR agonists 

have been demonstrated in a wide variety of preclinical models of pain, spanning from neuropathic 

pain due to nerve injury, diabetic neuropathy, peri-operative pain, and central pain following spinal 

cord injury [reviewed in [129]]. Multiple sites of action have been identified, due to the widespread 

expression of A1ARs along the pain signaling pathways. In fact, they are expressed on peripheral 

nerve endings, in the superficial layers of dorsal horn spinal cord, and in specific supraspinal sites 

crucially involved in pain integration and perception[129]. Unfortunately, A1ARs are also the AR 

subtype mostly involved in the modulation of cardiovascular functions, thus reducing the possible 

clinical exploitation of selective agonists due to dose limitation and significant side effects[129]. It is 

worth mentioning that various series of new potent and selective A1AR agonists have been 

synthesized in recent years, which could separate their antinociceptive activity from the modulation 

of cardiovascular functions [130]. It has been in fact hypothesized that limitations with earlier 

agonists could be due to both pharmacokinetic (e.g., low central nervous system permeability) and 

pharmacodynamic (e.g., limited intrinsic activity) issues. Additional strategies to overcome 

potentially harmful side effects are represented by: i) the use of partial agonists, which could show 

better receptor selectivity due to receptor plasticity under painful conditions (e.g., increased receptor 

density and/or coupling to second messengers in the presence of nerve injury) [131], and ii) the use 

of allosteric modulators, acting on distinct binding site with respect to agonists, that have already 

proven effective in various models of acute and chronic pain [132]. In fact, one of the main issue 

which has long limited the clinical exploitation of Ado receptor ligands is their widespread 

distribution, which could account for serious side effects. An innovative strategy to overcome this 

problem is represented by the synthesis of allosteric modulators that can selectively enhance P1 

receptor activity only at sites where Ado concentrations are increased, due to tissue damage and/or 

inflammatory processes [133]. The first interesting example of this strategy is represented by T62, 

which showed promising results in the management of mechanical allodynia associated with nerve 

injury, and in inflammatory pain [134]. Unfortunately, despite a concluded Phase II clinical trial 

aimed at evaluating its efficacy in postherpetic neuralgia ClinicalTrials.gov Identifier: 

NCT00809679), no further data on the clinical application of this compound have been provided. 
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New insights on the role of A1ARs in pain transmission have also emerged from the 

demonstration of their expression and function in spinal cord microglia. Exposure to ATP, as it 

happens following tissue damage, led to the upregulation of A1ARs on spinal cord microglia, and 

their activation with selective agonists inhibited both the morphological changes linked to microglia 

activation and its ability to promote neuronal sensitization [135]. More interestingly, the chronic 

administration of a new, potent and selective A1AR agonist, named 5’-chloro-5’-deoxy-(+)-ENBA 

(Table 1), alleviated neuropathic pain in the mouse model of the SNI of the sciatic nerve, in parallel 

with a reduction of microglia activation and with no effect on motor coordination and blood pressure 

[136]. Taken together, these data support the growing notion that targeting the purinergic system on 

glial cells represents a promising therapeutic strategy against various forms of pain that are currently 

poorly controlled. 

 

A2AARs. In the case of A2AARs, the connections between inflammation and pain is stronger 

than with all the other Ado receptors (see also 4.2). In fact, A2AARs are highly expressed on cells of 

the immune system where they mostly exert anti-inflammatory effects (see 4.2), whereas in the CNS 

their localization is both neuronal and glial. A2AARs expressed by post-synaptic neurons in the 

striatum are key modulators of movements, and act as functional antagonists of dopamine D2 

receptors [137]. Their expression in other brain areas directly involved in pain integration and 

modulation is more controversial. It is known that traumatic and ischemic conditions, or chronic stress 

and ageing can induce A2AAR expression in the CNS, and that increased concentrations of 

inflammatory cytokines exert similar effects on microglia [138]. Moreover, as conflicting results on 

the pro- or anti-nociceptive action of A2AARs have been provided, it is foreseen that the overall 

outcome of a pharmacological approach targeting this receptor subtype is not easily predictable [139]. 

Initial data seem to overall point to a pro-nociceptive role of A2AAR activation. However, it 

was lately demonstrated that the spinal administration of low doses of a selective A2AAR agonist 

reverted neuropathic pain in rats, and that the i.c.v. injection of an antibody with A2AAR agonist-like 

activity was antinociceptive in naïve mice [reviewed in [139]]. Discrepancies can be due to the 

different sites of action (e.g., peripheral versus central; neuronal versus inflammatory cells), but also 

to the low selectivity and bioavailability of older molecules. According to their fundamental role in 

inflammatory conditions, activation of A2AARs with the new selective agonist LASSBio-1359 (Table 

1) led to a significant reduction of thermal and mechanical hyperalgesia in several models of 

monoarthritis in rodents [140]. These effects were accompanied by normalization of TNF-a and 

iNOS expression levels, thus suggesting a direct action on inflammatory cells. 
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One A2AAR agonist named BVT-115959 has reached phase II clinical trial for diabetic 

neuropathy. The study has been concluded (ClinicalTrials.gov identifier: NCT00452777) but no 

results are available, and the development of the drug has been discontinued.  

To consider possible side effects, it must be remembered that A2AAR activation mediates 

vasodilation of the local microvessel circuits and of coronary arteries, as well as inhibits platelet 

aggregation, through increased cAMP levels [141, 142]. These actions might be responsible for 

undesired and potentially life threatening events.  

 

A2BARs. This is the last P1 receptor subtype in order of characterization, and therefore its role 

in many physiological and pathological conditions is still elusive. Its prominent expression on 

inflammatory cells suggests a role in inflammatory pain (see 4.2), while in the CNS low levels have 

been described with a specific localization on astrocytes [139]. Interestingly, as for the A3AR subtype, 

this receptor is activated by high Ado concentrations, which suggests its crucial involvement in 

pathological conditions when extracellular concentrations of nucleosides and nucleotides increase 

several folds. Overall, the few available reports on a possible role of A2BARs in nociception indicate 

pro-nociceptive effects, also in the periphery [143]. Conversely, the acute intratechal administration 

of the selective A2BAR agonist BAY 60-6583 (Table 1) showed a potent antiallodynic activity in a 

CCI model of neuropathic pain [144]. Thus, as observed for the A2AARs which is coupled to similar 

intracellular signaling pathways (Figure 1), it seems that opposite outcomes on nociception can be 

obtained depending on the peripheral or central site of action. This must be taken into careful account 

when planning either the synthesis of new selective chemical entities or their protocol of 

administration. 

 

 A3ARs. The A3AR subtype has more recently emerged as a previously unexpected player in 

the development of chronic pain, and currently represents the most promising target for innovative 

purinergic-based analgesic therapies, due to the different mechanisms at the basis of its action and to 

the availability of selective agents which have been already tested in humans (see below). This is the 

only AR subtype that has been identified by cloning (and not based on pharmacological evidence) in 

early ‘90s [145], and later pharmacological studies have demonstrated its low (in the micromolar 

range) affinity for the endogenous ligand Ado, similar to the A2BAR, thus leading to the hypothesis 

of its key involvement in pathological conditions. Selective synthetic agonists (i.e., IB-MECA and 

Cl-IB-MECA; Table 1) and antagonists [146] were almost immediately made available by Prof. 

Jacobson’s group at the NIH. These tools have greatly help identifying the involvement of a specific 

AR subtype in various physiological and pathological conditions, with the initial demonstration of its 
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involvement in the modulation of reactive astrogliosis, mast cell degranulation, recovery after stroke 

[147] and later in cancer and autoimmune pathologies, like rheumatoid arthritis and dry eye disease 

[148]. 

In early years 2000s, some papers with contradictory results have suggested an involvement 

of A3ARs in inflammatory chronic pain, with the initial demonstration of its analgesic role [reviewed 

in [149]]. Interestingly, all these papers pointed to the ineffectiveness of A3AR agonist to alter 

“physiological” protective painful responses and basal threshold nociception. This suggests that 

targeting this Ado receptor subtype could represent an interesting approach to pathological painful 

conditions. It has been only starting from 2012 that robust evidence has unveiled a clear analgesic 

role played by A3ARs. First of all, the availability of novel, selective A3AR agonists (like MRS1898 

and MRS5698; Table 1), more potent than IB-MECA and Cl-IB-MECA, has significantly fostered 

research in this field [149]. Thanks to these new tools, multisite analgesic actions of A3AR agonists 

have been demonstrated in neuropathic pain, with antinociceptive effects exerted both in the 

periphery, and at the spinal and supraspinal levels along the ascending nociceptive pathway. 

Moreover, receptors expressed by neurons, glial cells and immune system cells are involved in the 

overall analgesic outcome of A3AR agonist administration, further demonstrating the complexity of 

the signaling pathways involved in nociception and modulated by this receptor subtype [reviewed in 

[149]]. The analgesic properties of A3ARs have been also demonstrated in various cancer-related 

painful conditions, thus suggesting the modulation of common pathways involved in different forms 

of chronic painful states. Interestingly, although A3ARs are likely undergoing rapid receptor down-

regulation, no tolerance has developed following chronic administration of agonists. Additionally, no 

involvement of both the endocannabinoids and opioids systems has been observed [150], thus 

suggesting a total lack of risk of abuse for A3AR-based analgesics, and further strengthening the 

necessity to foster the clinical application of these preclinical observations. The fact that the oldest 

A3AR agonists IB-MECA and Cl-IB-MECA (now known as CF-101 and CF-102, respectively, 

thanks to their acquisition by CanFite Therapeutics) have been already tested in clinical trials for 

psoriasis, rheumatoid arthritis, dry eye syndrome and as anti-cancer agents with excellent results and, 

equally important, with no significant side effects [151], unveils the feasibility of this 

pharmacological approach also for different pain states in the near future (see also 4.2). 

 

Figure 3 provides a simplified schematic summary of the sites of activity of the purinergic 

system in pain pathways from the periphery to the spinal cord and above. 
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3. ROLE OF PURINES IN NON-CONVENTIONAL THERAPEUTIC APPROACHES TO 

PAIN 

 An intriguing new field of research on the role of the purinergic system in nociception has 

open after the publication of Prof. Burnstock’s hypothesis on the involvement of purines in 

acupuncture in 2009 [152]. The evidence at its basis was simple and incontrovertible: i) purinergic 

receptors, especially neuronal P2X3Rs, are key modulators of chronic and inflammatory pain; ii) 

acupoints (i.e., the specific sites for insertion of needles) generally overlie major neuronal bundles 

[153]; iii) massive amounts of ATP are released following traumatic injuries or mechanical 

deformation of tissues; iv) needle insertion and manipulation (i.e., twisting) in acupuncture is likely 

to provoke micro-traumatic injuries or mechanical deformation of the tissue. A scenario was therefore 

depicted where increased extracellular ATP concentrations at the site of needle insertion (or due to 

the application of an electrical current in electroacupuncture, EA) can locally act on neuronal 

P2X3Rs, leading to their desensitization. This, in turn, would reduce neuronal firing and sensitization 

in the spinal cord, with the final result of a reduction of the painful sensation [152]. Additionally, 

activation of specific purinergic receptors on nerve endings could engage specific central inhibitory 

neuronal pathways in the spinal cord, brainstem and cerebral cortex, which could promote analgesia 

and, in parallel, account for the modulation of various physiological functions by acupuncture [152]. 

Since then, several studies have experimentally confirmed this hypothesis by demonstrating 

the involvement of P2X3Rs in the analgesic effects exerted by EA [reviewed in [154]]. Moreover, it 

has also become increasingly clear that the whole purinergic system is possibly involved in 

acupuncture-mediated analgesia. In fact, the rapid degradation of ATP to ADP and, more importantly, 

to Ado has prompted researchers to verify whether these mediators are also involved. A seminal paper 

has indeed demonstrated that A1ARs are necessary for the analgesic actions of acupuncture against 

inflammatory and neuropathic pain, since full analgesia and reduction of hypersensitivity was 

obtained by injecting the A1AR agonist CCPA into the so-called “Zusanli” acupoint (or St 36, located 

close to the deep peroneal nerve), whereas a complete loss of effect of acupuncture was observed in 

A1AR knockout animals [155]. Moreover, the transient effect of acupuncture could be prolonged by 

pharmacologically inhibiting adenosine deaminase by deoxycoformicin, thus confirming that Ado 

generation is a fundamental step for the development of the observed beneficial effects [155]. This 

has also suggested that enzymes known to increase Ado concentrations (like, for example, 

nucleotidases; see paragraph 5) could be locally injected into acupoints to sustain and prolong the 

analgesic effects of acupuncture [139]. Interestingly, increased Ado levels have been later observed 

in humans subjected to acupuncture practice [156], thus suggesting that the above-mentioned 

hypothesis can be translated to patients as well.  
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Although few data are currently available, it is conceivable that other ARs apart from A1ARs 

are also involved, based on the above-mentioned evidence of their key role in specific types of pain 

and inflammatory conditions. One single report shows that A2AARs mediate the analgesic effects of 

EA on synovitis in collagen-induce arthritis (i.e., a type of inflammatory pain) [157], while the 

recruitment of A3ARs in the treatment of neuropathic pain can at the moment only be hypothesized, 

based on the role exerted by this receptor subtype in neuropathic pain (see 2.2). 

  Not only Ado receptors, but also P2 nucleotide receptors have been implicated in the analgesic 

actions of acupuncture. A recent study in rats subjected to CCI of the sciatic nerve showed that EA 

depresses the currents created by ATP and the upregulation of the P2X3Rs. Additionally, EA turned 

out to be more potent in reducing mechanical allodynia and thermal hyperalgesia when combined 

with the intrathecal administration of the P2X3R antagonist A-317491, indicating that EA and A-

317491 might have an additive effect in inhibiting the transmission of pain mediated by P2X3Rs 

[158]. Moreover, another study on CCI rats reported that EA ameliorated tactile allodynia by down-

regulating excessive expression of IFN-γ in the spinal cord and subsequently reducing the expression 

of P2X4Rs [159]. 

Overall, the above-mentioned evidence clearly demonstrates that the purinergic system is as 

involved in mediating acupuncture-based analgesia as other known signaling systems, like opioids 

[160]. Based on the temporal relationship existing between the increases in extracellular nucleotide 

and nucleoside concentrations, with the latter derived from the hydrolysis of the former, the logical 

question is: are P1Rs or P2Rs mostly responsible for the observed effects? [154]. At the light of 

available evidence, and due to the extremely rapid (and virtually immediate) degradation of ATP to 

Ado, it can be hypothesized that the main analgesic activity is to be ascribed to P1Rs, with a 

subsequent normalization of P2Rs taking place consequently. Additional studies possibly employing 

more selective receptor subtype antagonists are needed to definitively clarify this issue and, 

eventually, to exploit these results in clinics. 

Interestingly, the involvement of the purinergic system has been also proposed in other 

branches of traditional medicine, like Chinese herbal medicine where herbal preparations have been 

administered for centuries based on the long-lasting experience of elderly and on the empiric 

demonstrations of their therapeutic effects. To favor the spreading of traditional medicine to Western 

countries and to overcome the diffidence of the scientific community against these types of treatment, 

in the last decades Chinese researchers are putting enormous efforts to unveil the biochemical and 

molecular bases for the efficacy of traditional herbal products. In this respect, it has been shown that 

several chemical components  of traditional analgesic herbal products, like sodium ferulate, 

tetramethylpyrazine and puerarin, act by inhibiting P2X3Rs [161-163]. Lappaconitine, a Chinese 
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herbal medicine used as analgesic for centuries, reduced neuropathic pain acting on P2X3Rs on rat 

DRG [164]. Finally, the active compound anthraquinone emodin, constituent of rhubarb extract, 

reduced neuropathic pain mediated by P2X3Rs in primary sensory nerves [165]. Recent literature 

data reported that the flavonoid luteolin reduced the severity of CFA-induced arthritic scores also via 

the suppression of P2X4R activity, thus becoming a potential preventive or therapeutic candidate for 

the treatment of inflammation and arthritis [166]. Additionally, Aconitum species are known to 

suppress purinergic receptor expression. In vitro studies demonstrated that the Aconitum suppresses 

ATP-induced P2X7R-mediated inflammatory responses in microglial cell lines [167]. Additionally, 

a recent paper investigated the effect of intrathecal administration of thermally processed Aconitum 

jaluense on pain behavior, showing an anti-allodynic effect of the compound on spared nerve ligation 

(SNL)-induced neuropathic pain, possibly by suppressing P2X7R expression as well as reducing 

microglial activation in the spinal cord [168].  

Moreover, norisoboldine extracted from Radix Linderae has proved efficacious against 

inflammatory pain through the activation of the A1AR subtype [169], and Uliginosin B, a dimeric 

acyphloroglucinol occurring in Hypericum species native to South America, showed analgesic effects 

in the hot plate test in mice through activation of the A1ARs and A2AARs [170]. 

 

4. ROLE OF PURINES IN INFLAMMATION 

 

4.1 Involvement of nucleotides in inflammatory processes 

 

4.1.1 P2X receptors and inflammation 

Extensive literature data clearly indicate that inflammatory diseases are associated with 

increased extracellular release of nucleotides. Moreover, experimental evidence shows changes in 

P2XRs expression in inflammatory conditions in various in vitro and in vivo models. However, for 

several years the majority of these studies was lacking demonstration for a causative relationship 

between P2XR activation and inflammation. Nowadays, besides neuronal P2X3Rs, which are mainly 

involved in chronic pain mechanisms, most literature is addressed toward a pivotal role for microglial 

P2X4Rs and P2X7Rs in the development and maintenance of inflammatory pain. 

 

P2X3Rs. It is now clearly evident that ATP plays a broad range of activities in inflammatory 

pathways, acting on many different cell types and receptors that have been implicated in chronic 

inflammatory diseases [171]. As mentioned above, P2X3Rs are almost exclusively expressed by 

neurons in sensory and sympathetic ganglia, and their expression in inflammatory cells has not been 
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reported. Previous reports have described possible functions of P2X3Rs in the activation of 

inflammatory responses in chondrocytes and synovial fibroblasts in joints [172, 173] but without any 

in vivo correlate. However, studies on sensory responsiveness of tissues in models of chronic 

inflammation showed a clear potential for P2X3R antagonism in inflammatory pain conditions. In 

fact, following activation of primary afferent neurons, sensory axon reflexes give rise to the release 

of factors, including prostanoids, substance P, CGRP and ATP itself, that could contribute to or 

modulate neurogenic inflammatory responses [174]. 

Increased P2X3R expression and function have been reported in several rodent joint 

inflammation models, obtained by application of noxious irritants or by mechanical damage to paw, 

knee, vertebral, or temporomandibular sites. Acute administration of CFA, formalin, carrageenan, 

and mono-iodoacetate (mIOA) in rodents induced the development of inflammatory pain-related 

behavior, such as reduced tolerance threshold to mechanical and thermal stimulation. In these models, 

P2X3R mRNA and protein expression were increased in small- and medium-sized neurons in DRG 

or cranial ganglia, as well as in the peripheral terminal fields in the joint and/or in central terminals 

in the dorsal horn of spinal or brainstem projections [29]. Knockout mice with deletions of P2X3R, 

P2X2R or both receptor subunits showed reduced response to formalin injection into the paw [33], 

while rats intrathecally injected with antisense oligonucleotides and siRNA probes showed a 

significant reduction of mechanical and thermal hyperalgesia in paw and knee joint irritation models 

[34, 35]. ATP was also reported to be increased in inflamed and damaged tissues and joints, thus 

activating arthritic knee-joint afferent fibers. Literature data showed that, in patients with arthritic 

knee joints, synovial ATP release was proportionally related to symptom severity and decreased 

during symptom ameliorating therapy with intraarticular administration of hyaluronic acid [175]. 

P2X3R and P2X2/3R antagonists also reduced spontaneous firing and evoked responses of spinal 

nociceptive neurons in inflamed rats [176]. 

Moreover, a recent study investigated the involvement of P2XRs in TG sensitization caused 

by LPS-induced dental pulp inflammation. The expression of P2X2Rs, P2X3Rs, and P2X5Rs was 

found increased in the V1-V2 division of the TG, primarily in small- and medium-sized neurons. 

Markers of glutamatergic afferents and GABAergic afferents were induced by LPS and co-expressed 

with P2X3Rs in small-sized TG neurons [177]. 

It has been recently shown that cAMP-dependent guanine nucleotide exchange factor 1 

(Epac1) is upregulated after inflammatory injury in rat DRGs, where it plays a critical role in P2X3R 

sensitization by activating protein kinase C epsilon (PKCε), the major PKC isoform mediating CFA-

induced inflammatory hyperalgesic responses [178]. 
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Another study showed that P2X3Rs in masseter muscle afferent neurons and in the TG are 

involved in muscle pain induced by inflammation caused by chemical agents or eccentric muscle 

contraction. Authors showed an upregulated expression of P2X3Rs in the TG subnucleus caudalis 

and periaqueductal gray (PAG), which may contribute to the development of inflammatory orofacial 

pain [179]. 

Recent studies using P2X3R knockout mice or antagonists suggest that P2X3Rs also 

contribute to the development of visceral inflammation. A recent paper investigated the effect of the 

selective P2X3R antagonist A-317491 (Table 1) on visceral sensitivity under physiological 

conditions, during acute and post-inflammatory phases of colitis. Rats with acute colitis and in the 

post-inflammatory phase displayed significant visceral hypersensitivity, which was dose-dependently 

reversed by A-317491. Moreover, A-317491 did not modify visceral sensitivity in control animals, 

indicating that P2X3Rs are not involved in sensory signaling under physiological conditions, whereas 

they modulate visceral hypersensitivity during the course of the pathology, thus validating P2X3Rs 

as potential new targets in the treatment of abdominal inflammatory pain syndromes [180]. 

 

P2X7Rs. Among the seven P2XR subtypes, the strongest body of evidence for an involvement 

in mediating inflammation so far exists for P2X7Rs. It is currently accepted that P2X7Rs are widely 

distributed throughout the mammalian body in a wide variety of cells involved in inflammatory 

processes [67]. After its discovery, this receptor subtype was thought to be restricted to cells of the 

hematopoietic lineages, i.e. macrophages, mast cells, monocytes, lymphocytes, erythrocytes and 

eosinophils. However, it is now accepted that P2X7Rs are expressed by other cell lineages, including 

osteoblasts, fibroblasts, endothelial, and epithelial cells. Furthermore, P2X7Rs are present on cells in 

both the central and peripheral nervous system, including microglia, astrocytes, oligodendrocytes and 

Schwann cells. In addition, P2X7Rs expression has been reported on some populations of neurons in 

the spinal cord, cerebellum, hypothalamus, and substantia nigra [67].  

Gene-linking and epidemiological studies have implicated P2X7Rs in different inflammatory 

CNS diseases [89]. In vivo studies have been a fundamental tool to demonstrate the involvement of 

the P2X7Rs in activating the inflammasome in a broad variety of rodent CNS disease models, 

including cerebral ischemia, epilepsy, Parkinson's disease, Alzheimer's disease, depression and 

anxiety and multiple sclerosis [69].  

Different features of the P2X7R make it an optimal mediator of cellular responses to 

inflammation. Indeed, the low affinity of the receptor for ATP and its slow desensitization mean that 

it is unresponsive to micromolar variations in extracellular ATP concentrations. This allows ATP 

signaling to exert its actions in different ways at different concentrations, with phasic micromolar 
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ATP signaling operating via other P2XRs to modulate a number of physiological pathways, while 

millimolar concentrations, released into the extracellular milieu in response to injury, can act via 

P2X7Rs, in turn initiating the inflammatory cascade [181]. Moreover, the pore-forming functionality 

of P2X7R facilitates the release of large hydrophilic molecules, and seems to be necessary for its role 

in activating the inflammasome [182].  

The molecular and cellular mechanisms through which P2X7R exerts its pro-inflammatory 

role still represent a matter of debate. The inflammasome is a protein complex that regulates the 

interaction with caspase molecules, which cleave precursor protein substrates into 

immunomodulatory molecules. Six or possibly eight inflammasome subtypes have been currently 

identified, with the main but not exclusive function to catalyze conversion of pro-IL-1β and pro-IL-

18 into their respective mature forms [183]. Inflammasome activated by damage-associated 

molecular pattern molecules (DAMPs) promotes a massive K+ efflux, which in turn leads to the 

processing of procaspase-1 into caspase-1, followed by the cleavage of pro-IL-1β. It has been 

demonstrated that ATP acts as a DAMP, via P2X7Rs, activating the inflammasome and caspase-1 

and that it is also involved in cytokine release and in the production of superoxide products and TNF-

α, all of which have roles in generation and/or maintenance of inflammatory pain [184]. P2X7R 

activation leads to an increase in K+ permeability either directly through the P2X7R pore, or through 

the opening of Panx1 hemichannels. While some reports indicate that Panx1 channel opening is a 

mandatory step of inflammasome activation [185], other groups have described a P2X7R-induced 

IL-1β release independent from Panx1 [186]. A further study hypothesized that Panx1 is responsible 

for the ATP release from dying cells, upstream of P2X7R in the signaling cascade [187]. 

Alternatively, Panx1 hemichannels may open in response to an increase in extracellular K+ as a result 

of P2X7R pore opening, thus amplifying K+ efflux [188]. 

Considering the overall distribution of P2X7Rs in pro-inflammatory cells and their functional 

properties, it is not surprising that several studies have been carried out to determine the role of this 

receptor subtype in inflammation. As mentioned, in the CNS P2X7Rs are expressed in highest 

concentrations on microglial cells, but also on astrocytes, oligodendrocytes and neurons, particularly 

at presynaptic terminals [189]. P2X7R expression on different cell types, upregulated in response to 

CNS insult, combines to mediate a neuroinflammatory response. In particular, ATP-activated 

microglial cells are main actors of the neuroinflammatory response, releasing IL-1β in response to a 

pro-inflammatory stimulus, acquiring an activated morphology, proliferating and migrating towards 

the site of the damage to form an inflammatory focus [185].  

Relief from inflammation-induced mechanical hyperalgesia in rats treated with the P2X7R 

antagonist oxidized ATP has been reported [190], and the systemic administration of bacterial LPS 
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markedly increased the expression of P2X7Rs in the CNS, offering a mechanism for changes in CNS 

function in response to systemic infection [191]. Moreover, it has been reported that P2X7R 

stimulation on enteric neurons elicited a direct release of ATP, which stimulated glial cells through 

Panx1 [192]. Through this paracrine signaling, P2X7Rs can function as gatekeepers between glial 

cells and neurons to regulate inflammatory cascades [193].  

Also astrocytic P2X7Rs contribute to the inflammatory response, with their activation leading 

to a neurotoxic phenotype in a model of Amyotrophic Lateral Sclerosis (ALS) [194]. Previous studies 

also showed that, following trauma, astroglial P2X7R activation led to upregulation of monocyte 

chemoattractant protein-1 (MCP-1) and, subsequently, to an increased infiltration of systemic 

immune cells at the site of damage [195]. 

The in vivo investigation of the role of P2X7Rs in inflammation has been greatly supported 

by the development of P2X7R knockout mice, which gave a further confirmation of the role of this 

receptor subtype in promoting inflammation. A first study examined the response of P2X7R knockout 

mice in a monoclonal antibody-induced arthritis model, showing that arthritis severity was 

significantly attenuated in P2X7R knockout mice compared to wild-type [196]. In a more detailed 

study, another research group showed that P2X7R-deficient animals did not develop measurable pain 

symptoms following induction of inflammatory status [73]. More recently, in an acute inflammatory 

pain model, microglial P2X7Rs were demonstrated to play a major role in the development of 

sensitization of nociceptive neurons in rat medullary dorsal horn in vivo [197]. 

Surprisingly, a recent study analyzed the P2X7R secretome in wild-type and P2X7R-deficient 

macrophages polarized either to M1 or M2, providing evidence that proteins released after P2X7R 

stimulation goes beyond the caspase-1 secretome. Authors found that P2X7R stimulation in 

macrophages is able to release potent anti-inflammatory proteins independently from their 

polarization state, suggesting for first time a potential role for P2X7R during resolution of the 

inflammation [198]. 

In light of the role of P2X7Rs in mediating inflammatory pain, a search for selective 

antagonists has been carried on by different pharmaceutical companies. Systematic compound 

screening led to the discovery of several selective P2X7R antagonists. Among these, AZ-11645373 

(Table 1), a highly potent antagonist at human P2X7Rs, proved to be effective in inhibiting ATP- and 

Bz-ATP-elicited currents. In parallel, systemic administration of the selective P2X7R antagonists A-

438079 and A-740003 was able to reduce thermal hyperalgesia in both CFA- and carrageenan-

induced inflammatory pain [70]. 

The PET ligand 11C-GSK1482160, recently reported by GSK, was derived from medicinal 

chemistry efforts directed toward the generation of pyroglutamate and imidazolidine carboxamide-
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based P2X7R antagonists. These antagonists are highly potent at the human P2X7R and showed 

excellent exposure in the CNS; they also have modest potency at the rat receptor allowing for their 

use in preclinical pain models. Recently, a phase I clinical trial has been conducted by GSK to 

evaluate the pharmacokinetic, pharmacodynamics, safety and tolerability of GSK1482160 

compound. In preclinical studies, GSK1482160 was shown to be efficacious in the chronic joint pain 

model of inflammatory pain and in the CCI model of neuropathic pain. A reduction of ATP-mediated 

release of IL-1β following LPS stimulation was observed in patients’ blood samples. Later, authors 

postulated that >90% inhibition of IL-1β release was necessary throughout the dosing interval to test 

the P2X7R hypothesis, and that GSK1482160 did not have the safety margins to achieve such 

sustained inhibition. Therefore, the further development of GSK1482160 was terminated [70]. 

In addition to the discovery of P2X7R PET ligands, a number of novel CNS-penetrant P2X7R 

antagonists is now appearing in the literature, proving increased interest in centrally penetrating 

compounds for the treatment of pain and inflammation [70]. 

Finally, an essential step towards personalized medicine has been recently made, with 

literature showing that P2X7R SNPs (see 2.1.1) could be exploited as diagnostic biomarkers for the 

development of tailored therapies [199]. 

Interestingly, a recent study shed new light on the functional role of P2X7R in the regulation 

of microglial effector functions during substance abuse. Authors suggested that P2X7Rs play an 

important role in methamphetamine-induced microglial activation responses, and thus selective 

antagonists may represent a novel therapeutic approach to neuroinflammatory conditions in stimulant 

abuse by regulating pathologically activated glial cells [200]. 

 

P2X4Rs. As previously described, plenty of evidence demonstrate changes in P2XR 

expression during inflammation, but no clear demonstration that other P2XRs than P2X7Rs mediate 

the process. Evidence is accumulating, however, that P2X4Rs may also play a role.  

It has been recently demonstrated that, similarly to P2X7Rs, also P2X4Rs form a large 

conductance pore on the cell membrane, facilitating ion efflux and subsequently inflammasome 

activation [181], but this process seems to be Panx1-independent [188]. Since P2X4Rs have higher 

affinity than P2X7Rs to extracellular ATP, sequential inflammasome activation by distinct P2XRs 

might represent responses to insults of different intensity, i.e. while P2X4Rs may act as an initial 

trigger, P2X7Rs in concert with Panx1 may later amplify the signal [201]. 

Concerning CNS inflammation, i both systemic and i.c.v. injection of LPS resulted in thermal 

hyperalgesia and tactile allodynia, and LPS has been shown to enhance the responses to low 

concentrations of ATP through P2X4R activation [202]. Moreover, evidence for the involvement of 
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microglial P2X4Rs in post-ischemic inflammation in the brain ischemic injury has been recently 

provided [203].  

Again, strong evidence on the pro-inflammatory role of P2X4Rs derived from in vivo studies 

using knockout mice. P2X4R knockouts showed less microglial activation and loss of the 

prostaglandin E2-mediated inflammatory pathway [204]; a more recent study showed that P2X4R 

knockout mice displayed impaired inflammasome activation, resulting in a decrease in extracellular 

IL-1β and reduced infiltration of neutrophils and monocyte-derived M1 macrophages following 

spinal cord injury [205].  

Finally, in the high-throughput screening of a compound library, a research group recently 

identified the phenylurea BX430 (Table 1) with antagonist properties on human P2X4R-mediated 

Ca2+ uptake. BX430 proved to be highly selective, having virtually no functional impact on all other 

P2XR subtypes at the surface of human macrophages. Therefore, this ligand provides a novel 

molecular probe to assess the specific role of P2X4Rs in inflammatory and neuropathic pain 

conditions, where ATP signaling has been shown to be dysfunctional [206]. 

 

4.1.2 P2Y receptors and inflammation 

At variance from P2XRs and P1Rs, the role of P2YRs in inflammatory pathways is still 

elusive, mostly due to the long-lasting lack of subtype-selective agonists and antagonists (see also 

2.1.2). Recent data are, however, clearly demonstrating that also this receptor family is participating 

to inflammatory processes, thus adding further complexity to the role of purinergic system in 

controlling these events. 

 

P2Y1Rs. This receptor subtype is involved in vascular inflammation and in the recruitment of 

leukocytes, which could be inhibited by its deletion or inhibition, thus suggesting a possible 

therapeutic approach for inflammatory vascular diseases such as atherosclerosis. In particular, authors 

reported that this effect is mediated through the regulation of the p38 MAPK pathway and they 

addressed the pharmacological inhibition of the P2Y1Rs as new tool for the treatment of p38 MAPK-

mediated vascular inflammation [207].  

The activation of P2Y1Rs expressed by platelets induces shape changes as well as weak and 

transient aggregation [208], and its deletion leads to impaired platelet aggregation [209]. As for 

P2Y12Rs (see below), these observations suggest caution in planning a therapeutic approach based on 

its pharmacological modulation, due to possible life-threatening side effects (i.e., thrombosis or 

bleeding). Nonetheless, platelet P2Y1Rs activation, plays a fundamental role in the recruitment of 

leukocytes in the lungs of allergic mice, and this effect is mediated by RhoA signaling [210]. P2Y1Rs 
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are also involved in macrophage phagocytosis and migration [211]. It has been recently discovered 

that inorganic polyphosphate interacts with this receptor. This compound is known to have a pro-

inflammatory effect, and its interaction with endothelial P2Y1Rs promoted the expression of cell 

adhesion molecules and induced barrier-disruptive effects, thus fostering leukocyte infiltration and 

recruitment [212]. 

Moreover, it has been shown that astrocytic P2Y1Rs are upregulated in the brain after 

ischemia  [213]. A more recent study indicated the presence of P2Y1R-dependent neuroinflammation 

in the hippocampus after focal cerebral stroke, and the inhibition of this receptor ameliorated the 

associated cognitive deficits [214].  

 

 P2Y2Rs. This receptor is involved in the resolution of inflammation by mediating the 

recruitment of leukocytes and promoting the clearance of apoptotic cells by macrophages [215] and 

neutrophils [216, 217]. Nonetheless, its contribution to lung inflammatory diseases like asthma or 

contact hypersensitivity has been also demonstrated [218, 219]. Moreover, P2Y2Rs also contribute to 

the release of pro-inflammatory chemokines and cytokines from neutrophils, monocytes and 

macrophages [220], further highlighting its pro-inflammatory actions.  

In the last decade, the pharmacological interest around P2Y2R agonists has raised, due to the 

capacity of this receptor to induce chloride secretion by epithelial cells, which is drastically impaired 

in cystic fibrosis [221]. For this reason, Denufosol, a selective agonist at P2Y2Rs, has been developed 

as potential pharmacological agent that would be able to compensate the effect caused by non-

functional chloride CFTR channel. This compound was tested in phase III for the treatment of cystic 

fibrosis, but long term follow-up of patients did not show beneficial effects in reducing the symptoms 

of the disease [95], probably due to the concomitant pro-inflammatory role of P2Y2Rs. Accordingly, 

more studies are needed to better evaluate the role of P2Y2Rs in inflammation. Nevertheless, another 

P2Y2R agonist, Diquafosol, has been recently approved in Japan for the topical treatment of the dry 

eye syndrome [96, 222, 223], a pathology in which immunoinflammatory processes play a major role 

[224].  

Furthermore, it has been demonstrated that peripheral inflammation leads to upregulation of 

P2Y2Rs in cutaneous sensory neurons [225], thus further suggesting a possible role for this receptor 

in inflammatory pain.  

 

 P2Y4Rs. Recent studies have shown the involvement of this receptor in inflammation. For 

example, P2Y4Rs on endothelial cells act as key regulators of the inflammatory response after cardiac 



	 30	

ischemia [226]. Moreover, this receptor subtype is expressed by eosinophils, but its action on 

chemotaxis still has to be demonstrated [227].  

 

 P2Y6Rs. The activation of this receptor subtype in monocytes, eosinophils, dendritic and 

endothelial cells leads to the release of chemokines, which in turn increase the recruitment of 

inflammatory cells at the site of inflammation or bacterial infection [228-230]. Indeed, P2Y6Rs are 

important in the development of inflammation, suggesting that their inhibition could help improving 

the inflammatory states [231]. Moreover, it has been shown that neurons release UTP/UDP after 

injury, thus causing the upregulation of P2Y6Rs on microglial cells and increasing their phagocytic 

activity [113]. To support these findings, another study showed that blocking P2Y6Rs helps 

preventing neuronal loss in vitro [232]. 

In IBS-D, the inhibition of P2Y6Rs improves the disease outcome in mice [233, 234]. 

Moreover, P2Y6Rs activation induces atherosclerotic disease in murine models [235], whereas their 

inhibition or deletion contribute to a favorable the outcome of the pathology by developing smaller 

plaque [236]. 

 

 P2Y11Rs.  A recent in vitro study showed that P2Y11Rs are involved in the autocrine regulation 

of macrophages, and thus their antagonism could help in inflammatory diseases [237].  

 

 P2Y12Rs. The P2Y12R is the most studied subtype of purinergic metabotropic receptors, due 

to its peculiar expression on platelets where it controls aggregation, and to the use of selective 

antagonists (i.e., clopidogrel, ticlopidine, and ticagrelor) as effective antithrombotics [94]. It is worth 

notice that the circulating levels of inflammatory mediators are decreased in patients treated with 

clopidogrel [238], thus suggesting a role for this receptor also in the modulation  of inflammatory 

processes. Consistently, the genetic deletion of P2Y12Rs in mice exerted a protective role against the 

development of atherosclerosis [239-241]. In contrast, the inflammatory response to LPS is more 

potent in P2Y12R null than in wild type mice [242]. 

Furthermore, it has been shown that leukotriene E4 exerts its pro-asthmatic role through 

P2Y12Rs expressed by platelets, and this effect can be deduced from the lack of inflammation after 

platelet depletion, treatment with clopidogrel or following the genetic deletion of the receptor [243]. 

Nonetheless, a more recent study points out that P2Y12Rs expressed by platelets were not involved in 

inflammatory response in the lungs of allergic mice [210]. Moreover, P2Y12R SNPs in asthmatic 

children were associated with altered lung function [244]. Thus, the role of P2Y12Rs in inflammation 

is still elusive and needs to be fully understood and clarified.  



	 31	

 

 P2Y13Rs. A recent a study showed an increase in the incidence of atherosclerosis in double-

knockout mice for apoE and P2Y13Rs, compared to single apoE knockout mice [245]. This finding 

has unveiled a novel role for this receptor subtype in inflammatory vascular diseases.  

 

P2Y14Rs. This receptor subtype is expressed by leukocytes, thus pointing out a possible effect 

in inflammation [246]. It has been shown that the activation of P2Y14Rs promoted the chemotaxis of 

neutrophils [247, 248], specifically in the lungs [249]. 

 

4.2. Adenosine and inflammation: a well-known connection with possible future clinical 

exploitations 

 Hypoxic/anoxic conditions foster the local generation of Ado, since available ATP is rapidly 

degraded to produce energy in the absence of oxidative phosphorylation. Therefore, high micromolar 

concentrations of Ado are detected at any site of inflammation. In this condition, it has been initially 

demonstrated that Ado acts as “STOP” signal on inflammatory cells mostly through the activation of 

the A2AARs, thus turning down the acute beneficial inflammatory response of the tissue to avoid the 

development of a sustained, chronic, and potentially harmful reaction of the damaged tissues [250]. 

Research in recent years has significantly increased our knowledge on the complex role played by 

Ado on the modulation of inflammatory and immune cell functions, through the activation of its 

different receptor subtypes. For a detailed overview on this issue, we recommend to refer to excellent 

reviews that have been recently published [133, 251]. Here, we shall highlight the most important 

actions exerted by the different Ado receptor subtypes in the course of inflammation, to identify the 

most promising targets to be possibly exploited in clinics. 

 

 A1ARs. This receptor subtype is mainly expressed by activated neutrophils where it mediates 

stimulatory activities on various cell functions, and by dendritic cells where it promotes chemotaxis 

and maturation [133]. Overall, activation of A1ARs has been linked to pro-inflammatory activities, 

with a specific role in asthma also in response to exposure to allergens. It is worth mentioning that 

the methylxanthine theophylline has been used for decades as anti-asthmatic drug, with its main 

mechanisms of action linked to its ability of inhibiting phosphodiesterases but also to its antagonistic 

activity at Ado receptors (see also Conclusions) [252]. A crucial role for A1ARs in asthma has been 

provided by the demonstration that administration of selective antisense oligonucleotides reduced 

bronchoconstriction in rodents [253], although to date data on humans have not led to their clinical 

exploitation [254]. 
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 A2AARs. As already mentioned, A2AARs have long been recognized as crucially involved in 

the fine-tuning of inflammatory processes, by acting at different levels with an overall anti-

inflammatory action. A2AARs are expressed by virtually all immune cells, and their expression is 

upregulated in inflammatory conditions, like asthma, inflammatory kidney diseases and arthritis 

[133]. Concerning the latter, it has been recently demonstrated that receptor upregulation is paralleled 

by increased expression of CD73, the nucleotide-metabolizing enzyme whose activity increases Ado 

concentrations (Figure 2) [255]. This has led to the development of a pro-drug of a selective A2AAR 

agonist that is converted in its active form by CD73, i.e. at the site of the pathology where increased 

density of A2AARs can be also found [255], thus avoiding unwanted cardiovascular side effects. In 

fact, currently available drugs acting selectively on this receptor subtype (like Regadenoson) are 

employed as coronary dilatory agents in diagnostic procedures [256], thus highlighting the 

importance of this receptor subtype in controlling vascular and cardiac functions (see 2.2). 

 By activating A2AARs on T cells, Ado mediates immunosuppression in the hypoxic tumor 

microenvironment. As already mentioned, high Ado concentrations are generated at any hypoxic sites 

due to rapid ATP breakdown [251]. A significant contribution to this pathway is provided by the 

transcription factor Hypoxia-Inducible Factor 1-alpha (HIF-1a), which upregulates the nucleotide 

metabolizing enzymes CD39 and CD73, thus fostering Ado production [257]. This Ado-enriched 

tumor microenvironment is now considered a fundamental barrier that needs to be overcome to allow 

anti-tumor T lymphocytes and natural killer cells to infiltrate and eliminate tumor cells. One possible 

therapeutic strategy is represented by the use of selective A2AAR antagonists to weaken Ado-

mediated immunosuppression and to facilitate immunotherapies in cancer [257]. 

Other pathological settings were the modulation of A2AARs could prove beneficial are 

intestinal inflammation, enteritis, sepsis induced by various pathogens, as well as autoimmune 

diseases like multiple sclerosis, where pharmacological stimulation of these receptors on 

lynmphocytes from patients led to a reduced release of several pro-inflammatory mediators [133].  

 

 A2BARs. Contradictory data on the role of this receptor in inflammation have been published 

so long, thus pointing to the need of additional research on the molecular pathways activated by this 

receptor subtype under different physiological and pathological conditions. For example, a clear anti-

inflammatory effect of A2BAR antagonists has been foreseen following the demonstration of 

increased pro-inflammatory cytokines by receptor activation. In line with this, a selective A2BAR 

antagonist, CVT 6883 (Table 1), has proven effective in reducing airway hyperreactivity in several 

models of inflammatory lung disorders. The compound showed no side effects and good tolerability 
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in healthy subjects, but no further clinical exploitation of these data is currently available [258]. The 

same receptor antagonist was able to ameliorate the course of experimental autoimmune 

encephalomyelitis, the rodent model of human multiple sclerosis, thanks to a reduction in the 

production of pro-inflammatory mediators by immune cells [259]. As already mentioned in 

nociception (see 2.2), opposite results have been obtained in other experimental settings. In fact, the 

selective A2BAR agonist BAY 60-6583 (Table 1) was able to potentiate the anti-inflammatory activity 

of dexamethasone on human airway epithelial cells in vitro [260]. A pro-inflammatory role of this 

receptor subtype in intestinal inflammation has been also suggested, although once again conflicting 

results have been provided [133].  

 

 A3ARs. Since its cloning in early 1990’s, this receptor subtype has been linked to immune cell 

functions, with a role in degranulation, chemotaxis, and cytokine production. As mentioned in 2.2, 

the immediate availability of selective agonists, like IB-MECA and its chloro derivative Cl-IB-

MECA has allowed their testing in various pre-clinical models of inflammatory conditions, like 

arthritis, and uveitis [for review see [133]]. These data have prompted CanFite Therapeutics to 

undertake clinical trials in patients affected by rheumathoid arthritis, uveitis, psoriasis and dry eye 

syndrome, with excellent encouraging results [261], which suggest that these molecular entities will 

soon reach the market for several clinical inflammatory conditions. 

 

5. MODULATION OF PURINE METABOLIZING ENZYMES AND TRANSPORTERS  

 Not only P1 and P2 receptors, but also other molecular components of the purinergic system 

have already been (or could be) targeted pharmacologically to modulate the balance between the 

extracellular concentrations of Ado and ATP, especially when increased Ado concentrations are 

needed. For example, the nucleoside uptake inhibitor, dipyridamole, has long been utilized as anti-

thrombotic agent thanks to its ability to inhibit membrane transporters, thus leading to increased 

extracellular Ado concentrations which in turn activate platelet A2AARs [262]. The same overall 

effect can be obtained by inhibiting adenosine deaminase (ADA)-mediated Ado metabolism  or its 

reconversion to AMP mediated by adenosine kinase and/or by increasing its production through the 

administration of CD39 or CD73 ectonucleotidase enzymes (Figures 1 and 2). The issue of the site 

of action of these agents is not trivial, since increased Ado concentrations are needed only in the 

target organ or tissue to avoid potentially life-threatening side effects. Moreover, due to the opposite 

effects on pain and inflammation exerted by some receptor subtypes (see above) the development of 

selective agents acting only at peripheral or central sites would be desirable. 

 Nevertheless, similar pharmacological approaches aimed at modulating endogenous Ado 
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concentrations has been already applied to pain and inflammatory conditions. For example, inhibitors 

of adenosine kinase have proved beneficial in inflammatory and neuropathic pain models, although 

severe side effects have led to discontinue their further development [139]. Also dipyridamole and 

other uptake inhibitors have shown significant analgesic properties in guinea pigs [263], accompanied 

by hypothermia and alterations of motor activity, due to central actions. A single intrathecal 

administration of the recombinant AMP-metabolizing enzyme CD73 (also known as 5’-ecto-

nucleotidase) showed long-lasting anti-nociceptive activity in wild type mice which was lost in 

A1ARs knockout animals [264, 265]. 

Concerning inflammatory conditions, administration of the ADA blockers EHNA (Table 1) 

and pentostatin has significantly improved the outcome of experimental colitis and sepsis [for review 

see [133]]. Similar beneficial effects have been observed by adenosine kinase inhibitors in colitis, 

diabetic retinopathy, and carrageenan-induced arthritis [133]. Finally, dypiridamole has provided 

significant protection against lung injury induced by LPS inhalation in rodents [266]. Results have 

driven a randomized, double-blind, placebo-controlled study to evaluate its use in human 

experimental endotoxemia, with the demonstration of increased circulating concentrations of Ado 

and a steep reduction in the production of pro-inflammatory cytokines in patients [267]. 

 

6. CONCLUSIONS 

Available literature pre-clinical data together with the results of some clinical trials clearly 

highlight the purinergic system as a new target for the development of new analgesic and anti-

inflammatory agents. Unfortunately, to date, no molecule has reached the market, and many 

promising clinical trials have failed (Table 2). Since no results are available for many of these studies, 

only speculations on the possible reasons for failure can be made. As already mentioned, the intrinsic 

complexity and widespread distribution of the purinergic signaling system is likely to contribute to 

the difficulties in translating pre-clinical results to humans, where the development of previously 

unforeseen side effects can represent an important issue. . Moreover, for many purinergic receptors 

(e.g., the A3ARs, and several P2YRs) [92, 148] significant differences in pharmacology and in 

agonists/antagonists affinity and selectivity between rodents and humans have been observed. For 

example, in the case of some P2X7R antagonists with very poor affinity at rodent receptors, a study 

on patients with rheumatoid arthritis has been directly performed following in vitro proof-of-

principles experiments, leading to no results [70]. Additionally, many chemicals that are utilized as 

pharmacological tools in preclinical studies are not sufficiently centrally permeant when administered 

to patients through classical routes. This could significantly limit their efficacy and their clinical 

development. The availability of modified molecules with enhanced CNS permeability could help 
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overcome this important issued [70]. It is worth mentioning that, to date, the most promising 

candidates for a purine-based therapy against inflammatory pain and rheumatoid arthritis are 

represented by A3AR selective agonists (Table 2). This is possibly due to their multiple sites of 

actions, both in the CNS and in the periphery [149], which overall contribute to the final positive 

outcome of the treatment. Additionally, several promising agents and new pharmacological 

approaches (like allosteric modulators) have been studied to overcome these issues [133], and we are 

confident that some new purine-based drugs will soon reach the market for pain and inflammation.  

When thinking about innovative pharmacological strategies targeting the purinergic system, 

it should be remembered that it is the main target of the most widely diffused substance of abuse 

worldwide, i.e. caffeine. Its estimate average intake in Western countries spans from about 227 

mg/die to 70 mg/kg/die, deriving mostly from coffee but also from food, cold drinks, and tea. 

Concerns are raised by the increasing assumption of energy drinks, which contain twice as much 

caffeine as cold drinks, especially by adolescents [268, 269]. From a pharmacological point of view, 

methylxanthines in general, and caffeine in particular, are known to act as antagonists at Ado receptor 

subtypes apart from being inhibitors of phosphodiesterases. Most of the stimulating effects of caffeine 

are due to its antagonistic activity versus Ado receptors, especially the A1ARs and A2AARs; based on 

studies on rodents, it was long generally believed that the A3ARs are virtually insensitive to 

methylxanthines. However, at variance from rodents, caffeine shows antagonistic activity versus all 

four human ARs, thus including the A3AR subtype [270]. Thus, it is conceivable that caffeine-

containing beverages and foods could exert a significant inhibitory action on ARs-based analgesics 

and anti-inflammatory drugs in patients, whatever the receptor subtype targeted by the drug. This 

issue must be taken into careful account, and specific advices to avoid or limit the assumption of 

caffeine in the course of therapy with Ado receptor agonists must be given to patients. Conversely, 

inhibition of pro-nociceptive A2AARs could prove beneficial. On this basis, low doses of caffeine are 

utilized as adjuvant component in combination with antidepressant, acetaminophen and non-steroidal 

anti- inflammatory drugs in many over the counter (OTC) analgesics [139, 271].  

In line with this, it has been reported that a moderate caffeine intake at doses relevant to 

average daily human consumption can hide acupuncture-mediated analgesia in mice [269]. Apart 

from further confirming the role of caffeine-sensitive Ado receptors in acupuncture, this observation 

opens to the evaluation of coffee intake in patients as a predictive factor for possible beneficial effects 

before starting an acupuncture treatment for painful conditions. Once again, the issue of caffeine 

assumption is not trivial for patients subjected to this alternative therapy, and to any future patient 

that will be exposed to new purine-based pharmacological approaches. 
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FIGURE CAPTIONS 

 

Figure 1. Purine metabolism and Adenosine receptors. Schematic picture showing the pathways 

of ATP release under pathological conditions, its sequential degradation to AMP and Adenosine, 

through the activity of CD39 and CD73 surface enzymes. Extracellular adenosine can be then 

reuptaken by surrounding cells or bind to four different G-protein-coupled receptors that either 

stimulate (A2AARs and A2BARs) or inhibit (A1ARs and A3ARs) adenylyl cyclase activity. Moreover, 

all adenosine receptors couple to mitogen-activated protein kinase (MAPK) pathways, including 

extracellular signal-regulated kinase 1 (ERK1), ERK2 and p38 MAPK. In the extracellular space, 

adenosine concentrations are controlled by adenosine deaminase (ADA; which catalyses the 

conversion of adenosine into inosine) and by the activity of nucleoside transporters (NTs). cAMP, 

cyclic AMP; JNK, JUN N-terminal kinase. Much less is known about the release and catabolism of 

uracil and uracil-sugar nucleotides, which nevertheless contribute to the modulation of inflammatory 

and painful conditions.  Reproduced with permission (licence #3976430230660) from [1]. 

 

Figure 2. ATP release pathways, receptors and degrading enzymes involved in purinergic 

signaling. Schematic representation of the contribution of P2 receptors to purinergic signaling. ATP 

is released into the extracellular space via secretory vesicles (exocytosis), plasma membrane-derived 

microvesicles, transporters (for example, ABC cassettes), channels (for example, pannexin-1 or 

connexins) or through the ion channel P2X7R itself. Once in the extracellular milieu, ATP acts at 

P2X and some P2Y receptors (like the P2Y2Rs and P2Y4Rs). It is also hydrolyzed to ADP which 

activates P2Y12Rs but also P2Y1Rs and is further degraded to adenosine (ADO) which activates its 

specific membrane receptors. Uracil nucleotides which activate other P2Y receptor subtypes are not 

included in this scheme. Reproduced with permission (licence #3977540979535) from [2]. 

 

 

Figure 3. Involvement of purinergic receptors in chronic pain pathways. P2XR ion channels have 

been identified as the main players at sensory nociceptive terminals in the periphery, together with G 

protein-coupled P2YRs. Although less potent than ATP, adenosine (ADO) also exerts an action on 

sensory terminals through P1 receptors, and can potentiate P2XR activation. Painful stimuli are 

integrated within peripheral sensory ganglia (i.e. DRG and TG), where ATP induces the sensitization 

of nociceptive neurons, thus increasing the sensitivity to ATP of surrounding satellite glial cells, 

which in turn can modulate neuronal firing. In the sensory synapsis in the spinal cord, ATP acts 

postsynaptically through P2XRs, and after being degraded to ADO, it acts on P1 receptors expressed 
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on the presynaptic primary afferent terminal, which play a modulatory role on neurotransmitter 

release. In the spinal cord, both P1 and P2 receptors on activated microglia have been implicated in 

chronic pain generation and maintenance. A role for purinergic receptors expressed by activated 

astrocytes has been also hypothesized, although no direct proofs are available yet. Due to the paucity 

of data, uracil nucleotides have not been reported in this scheme, although it is foreseen that they 

significantly contribute to the modulation of the whole process at different levels. See text for details. 

	

 

 


