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Abstract 

Meristems are groups of pluripotent cells that contribute to plant growth and the development of 

its organs. In rice the inflorescence architecture, which determines the grain yield is established 

at early stages of reproductive development. Activity of the different types of reproductive 

meristem and the timing of transition between them shape the branching pattern and the number 

of spikelets on the inflorescence. A few genes that specify the identity of these meristems and 

regulate the transitions have been reported but the molecular mechanisms, underlying this 

process are still not clear. To gain a better understanding we used a precise laser microdissection 

and RNA-sequencing approach in Oryza sativa ssp. japonica cv. Nipponbare to elucidate the 

landscape of gene expression in four reproductive meristem types: the rachis meristem (RM), the 

primary branch meristem (PBM), the elongating primary branch meristem (including axillary 

meristems) (ePBM/AM), and the spikelet meristem (SM). We found that genes could be grouped 

based on specific expression behavior in these meristem types. The bioinformatics analysis of the 

datasets resulted in the identification of several genes potentially involved in branching. We 

generated loss of function mutants using a genome editing CRISPR/Cas9 approach, for two 

promising candidate genes, namely G1L1 and G1L2, both belonging to the ALOG family 

encoding a conserved domain: “Domain of Unknown Function 640” (DUF640). The knock-outs 

revealed an interesting branching phenotype that is consistent with the expression profile of these 

genes. Future research of our datasets combined with mutant analysis are expected to provide 

important new insights into the molecular mechanism that control rice inflorescence 

development, which has as an ultimate scope the improvement of grain yield, a trait that has 

without any doubt top priority for a sustainable agriculture of the future.      
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1. INTRODUCTION 

1.1. THE MODEL SPECIES RICE (Oryza sativa) 

Rice is one of the most important staple food crops, feeding almost half of the world 

population. Furthermore, it is considered to be one of the main model plants for monocotyledon 

research because it offers important advantages as an experimental model. Rice has a small 

genome size and there is the availability of sequenced genomes for several rice species and 

varieties and this information is stored in publically available searchable databases. It is a self-

fertilizing annual plant, which completes its lifecycle in 6-8 months. Furthermore, rice can 

efficiently be transformed by means of Agrobacterium tumefaciens. Being an important cereal 

crop, rice belongs to the Poaceae family, together with wheat, maize, sorghum and barley. As 

stated by Clark et al. (1995), all these cereals have a monophyletic origin therefore rice can 

function as an important source of information for studying other cereal crops. 

1.2. MORPHOLOGY OF RICE INFLORESCENCE/PANICLE ARCHITECTURE 

The rice inflorescence morphology has been studied during different developmental stages 

and described in detail by Hoshikawa (1989) and Ikeda et al. (2004), the latter using scanning 

electron microscopy imaging. The rice inflorescence, like in many other grasses, is a compound 

raceme, also known as a panicle (Figure1A). The main axis of the panicle is known as the rachis, 

which starts from the upper node of the highest internode. A rachis, which is around 18 cm long, 

has 6 to 15, usually 8 to 10 nodes; from each of these nodes arise a primary-rachis branch in the 

axil of a vestigial leaf, the bract. The length of the internodes greatly varies and sometime it can 

be observed that two or three primary branches growing almost adjoining. The primary branches 

follow spiral phyllotaxy, which is different from the alternate phyllotaxy of lateral organs in 

vegetative phase. The length of the primary branch also varies being the longest in the fourth and 

fifth primary branches and similar to rachis it also has nodes and internodes and several of these 

nodes develop secondary branches. In rare cases tertiary branches arise from the basal nodes of 

secondary branches, otherwise each node of secondary branches and distal nodes of primary 

branches develop short stalks known as the pedicels or peduncles, each of which terminates into 

a single spikelet. The terminal flowers develop in primary, secondary and tertiary branches but 

not in the rachis. At the base of the last developing primary branch a small knot like node can be 
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seen which is the degenerated tip of the rachis (Figure1 B). The difference between a branch and 

a peduncle is that the branch bears nodes and long enough to produce more than one spikelet 

while the peduncle is without nodes, produce a single spikelet. On average a single primary 

panicle axis (rachis) produces 10 or more primary branches and about 150 spikelets. (Figure1 A). 

1.3. DEVELOPMENTAL STAGES OF INFLORESCENCE/PANICLE 

DIFFERENTIATION 

The first step in panicle formation is when the plant goes through the transition from 

vegetative to reproductive development. This transition is dependent on internal signals, like 

plant age, phytohormone levels, but also environmental conditions such as temperature and day-

length (photoperiod) (Andres and Coupland, 2012). After the flag leaf primordium differentiates, 

the first bract primordium similar to a leaf primordium develops at the opposite position of the 

flag leaf at the shoot apex and then the first node of the panicle is formed at the base of this bract. 

This is the first stage of panicle differentiation (Figure1 C-D). Due to the similarity in primordial 

structures, the bract is considered a homogenous organ of the leaf. At this stage the cone shaped 

reproductive apex, the rachis meristem elongates producing bract 2 and primary branch 

primordia simultaneously develop (Figure1 E-F).  Very rapidly higher order bract primordia are 

formed in a spiral manner and primary rachis branches develop in the axil of each bract (Figure1 

G). After formation of all its primary branch primordia the rachis meristem looses its activity and 

stops growing further. The primary branch primordia at the proximal end, which developed 

earlier, don’t elongate till all the primary branch primordia are established. The growth potential 

of primary branch primordia 1 and 2 is about half compared to the higher ones, i.e. 7 to 10, and 

secondary branch primordia developing on these are also different in number and length, being 

less and smaller than the primary ones. 
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Figure 1.1. Rice panicle morphology and early developmental stages (A). Rice panicle; (B). Degenerative point; (C). 
First stage of rachis meristem; (D). First bract primordium formation; (E). Formation of two primary branch 
primordia. Rachis meristem is the largest at this stage; (F). Rachis meristem forming several primary branch 
primordia; (G). Final stage of primary branch formation. The white arrowhead indicates bract differentiating into 
hairs. Meristems are indicated by black arrowheads. pib, primary branch; sib, secondary branch; sp, spikelet; fl, flag 
leaf; b1, first bract; b2, second bract. Bar = 150 µm for (A) to (G). (Ikeda et al., 2004) 

1.4. ACTIVITIES OF REPRODUCTIVE MERISTEMS DURING 

INFLORESCENCE/PANICLE DEVELOPMENT 

Meristems are groups of actively dividing cells, present in specific growing regions 

especially in shoot apices (shoot apical meristem), root apices (root apical meristem), base of 

nodes and leaf blades in monocot stems (intercalary meristem) that contribute to primary growth 

of the plant and also produces axillary meristems which form lateral organs (lateral roots, tillars, 

leaves, branches etc) of the plant. In reproductive phase shoot apical meristem is converted to 

inflorescence meristem that form reproductive organs, inflorescence and flowers. Variation in 
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shoot architecture of higher plants is due to several key traits including the nodes number, length 

of the internodes, activity of meristems present in these nodes and other factors, for example the 

mechanism of regulation of the stem cells pool at the apices (Bennett and Leyser 2006). The 

architecture of the rice inflorescence is established during the early stages of development by the 

activities of reproductive meristems (Rachis meristem, branch meristems and spikelet 

meristems). The number of primary branches is determined by the timing of rachis meristem 

abortion, while the transformation of meristem identities, from indeterminate (branch meristems) 

to determinate (spikelet meristems) defines the pattern of branching. As soon as spikelet 

differentiation occurs, the branching complexity is fixed and branch primordia rapidly elongate 

which leads to heading. 

1.5. MOLECULAR MECHANISM OF INFLORESCENCE/PANICLE 

DEVELOPMENT 

The branching pattern of the inflorescence not only plays an important role in systematic 

studies (Classification of plants in groups and subgroups based on morphological homology in 

plant organs) but it also determines the grain yield of the crop (Kirchoff and Bockhoff, 2013). In 

higher vascular plants the life cycle is completed by passing through several developmental 

stages, the two most pronounced are the vegetative phase change, (juvenile to adult transition) 

and transition from vegetative to reproductive phase (conversion of shoot apical meristem to 

inflorescence meristem) (Poethig, 2003), the later is critical for reproductive success of the plant 

species to enter into the next generation.  

1.5.1. TRANSITION TO REPRODUCTIVE PHASE AND THE DOUBLE ROLE OF 
FLOWERING TIME GENES IN REGULATION OF HEADING DATE AND 

INFLORESCENCE ARCHITECTURE 

In ancestral angiosperms the shoot apex is believed to terminate in a flower (Stebbins, 1974), 

while in most of the descendant angiosperms, a diverse pattern of flowering exists in which the 

reproductive phase has been prolonged by introducing an intermediate step, the inflorescence 

meristem, which has the potential to produce axillary meristems that instead of developing 

flowers produce inflorescence branches.  

The main factors, which regulate the phase transition in plants, are those that control shoot apical 
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meristem (SAM) identity and maintenance, specific miRNAs and flowering signal integrators 

(Fan et al., 2015). The integrators of the flowering time pathways modulate the switch from 

vegetative to inflorescence meristem identity by integrating the endogenous signaling pathways 

and environmental controlled pathways. Some genes involved in the flowering pathways are 

conserved in both Arabidopsis, a long-day plant, and rice (Oryza sativa), a short-day plant, but in 

rice the regulatory pathways seem to be more complex having several heading date genes that 

regulate flowering under short day and long day conditions which are not found in A. thaliana 

(Brambilla & Fornara, 2013). Genetic module of the photoperiodic flowering pathways as shown 

in Figure 1.2, in Arabidopsis, a long day plant, flowering is triggered in a light dependent fashion 

when FLAVIN BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) and GIGANTEA (GI) 

form a protein complex (Sawa et al., 2007). This complex targets CYCLING DOF FACTORs 

(CDFs), which encode transcriptional repressors, which regulate the activities of CONSTANTS 

(CO), that finally activates the expression of FLOWERING LOCUS T (FT), which encode a 

“florigen” protein (Fornara et al., 2009; Putterill et al., 1995; Kardailsky et al., 1999). The 

florigen moves from the leaves through the phloem to the SAM where it induces flowering 

(Wigge et al., 2005; Corbesier et al., 2007). Together with linear GI-FKF1-CDFs pathway 

several other independent mechanisms operate regulating the expression of CO at transcriptional 

and post-transcriptional level (Ito et al., 2012).  Some rice varieties are day neutral but tropical 

varieties flower only when the day length or photoperiod is short. In rice Heading date 1 (Hd1) a 

homolog of Arabidopsis CO is regulated by OsGI and activates the expression of Hd3a, an 

orthologue of Arabidopsis FT, which triggers flowering in SD. While Hd3a is suppressed under 

LD, which delays flowering (Yano et al., 2000; Hayama et al., 2003). In alternative and 

independent of the Hd1 pathway, EARLY HEADING DATE 1 (Ehd1), is unique to rice and 

having no counter part in Arabidopsis. It encodes a B-type response regulator and activates the 

expression of RICE FLOWERING LOCUS T1 (RFT1), and Hd3a (Doi et al., 2004). An increase 

in the day length above 13.5h resulted in low expression of Hd3a in “Norin8”, a japonica rice 

(Oryza sativa), while expression of RFT1 is less affected (Itoh et al., 2010). Geographic 

distribution and sequence variation indicates that RFT1 functional alleles were selected in the 

process for adaptation to regions with high latitude and short day length (Zhao et al., 2015). 

Several factors have been reported to regulate the expression of Ehd1, such as Heme Activator 

Protein like 1 (OsHAPL1) (Zhu et al., 2017), Grain number, plant height and heading date 7 
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(Ghd7) (Xue et al., 2008), Days To Heading on chromosome 8 (DTH8/Ghd8/OsHAP3H) (Xue et 

al., 2008; Wei et al., 2010), OsCOL4 (Lee et al., 2010) and OsCOL10 (Tan et al., 2016) act as 

repressors of Ehd1, while Ehd1 expression is positively regulated by Rice Indeterminate1 

(RID1)/Early heading date 2 (Ehd2) (Matsubara et al., 2008; Wu et al., 2008), Early heading 

date 3 (Ehd3), Early heading date 4 (Ehd4) (Matsubara et al., 2011; Gao et al., 2013) and 

OsMADS51 (Kim et al., 2007).  

A MYB-type protein, TaMYB72 from wheat (Triticum aestivum), when expressed in rice, 

triggers flowering in long day conditions, which indicates functional conservation of genes in the 

control of flowering time in these two diverse crops (Zhang et al., 2016). In several independent 

flowering pathways and multiple genes are involved in accomplishing heading date in rice 

through complex interactions and finally targeting Hd3a and RFT1, which encode for florigen 

proteins that moves from leaves to the shoot apical meristem (SAM) through the phloem and 

play a key role in reprogramming of meristem identity and floral transition (Komiya et al., 2009). 

Hd3a forms a complex with 14-3-3, an intracellular receptor that links OsFD1, a bZIP 

transcription factor to Hd3a and constitutes the florigen activation complex (FAC) in the SAM, 

which activates the transcription of the downstream target genes OsMADS14 and OsMADS15, 

that are members of the AP1/FUL family, a subgroup of the MADS-box gene family (Taoka et 

al., 2011). Furthermore, AP1-like genes, which specify floral organ identity in Arabidopsis, are 

shown to regulate the switch from SAM to inflorescence meristem (IM) in wheat and rice 

(Kobayashi et al., 2012). Transcriptome analysis of meristem phase transition from SAM to IM 

revealed that PAP2, a SEPALLATA subfamily MADS-box gene and 3 AP1/FUL family genes, 

OsMADS14, OsMADS15, and OsMADS18 show overlapping expression pattern. The PAP2 loss 

of function mutant (pap2-1) doesn’t show any phenotype at early inflorescence developmental 

stages, however suppression of OsMADS14, OsMADS15, and OsMADS18, by RNAi resulted in a 

delay of phase transition from SAM to IM in the pap2-1 background and instead of an 

inflorescence multiple shoots were produced. It has been reported that these four MADS-box 

genes act coordinately in the specification of inflorescence meristem identity downstream of the 

florigen signal (Kobayashi et al., 2012). Some key regulators of flowering time including 

Heading date1 (Hd1), Early heading date (Ehd1) (Endo-Higashi and Izawa, 2011), Ehd2, Rice 

Indeterminate1 (RID1) or Oryza sativa Indeterminate 1 (OsID1) (Matsubara et al., 2008, Park et 

al., 2008, Wu et al., 2008), Ehd3 (Matsubara et al 2011), Ehd4 (Gao et al., 2013), Grain number, 
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Plant height, Heading date 7 (Ghd7) (Xue et al., 2008) and Ghd8/Days to Heading 8 (DTH8) 

(Wei et al., 2010, Yan et al., 2011) play a role in inflorescence development besides their main 

role in regulating flowering time in rice. Some of these QTLs including Hd1, Ehd1, Ghd7, and 

Ghd8, have already been used in breeding programs because of their functional association with 

higher grain yield (Endo-Higashi and Izawa 2011). However to explain how these flowering time 

genes are directly associated with inflorescence development and grain yield is still not 

understood and further genetic and molecular investigation is needed to elucidate this important 

developmental process.  

	

 

Figure 1.2. A schematic representation of genetic network controlling photoperiodic flowering in Arabidopsis (A) 
and Rice (B). Figure taken from (Brambilla et al., 2017) 
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1.5.2. INFLORESCENCE MERISTEM IDENTITY AND MAINTENANCE 

Inflorescence form and architecture is mainly determined by the pattern of inflorescence 

branches created in the due course of development and reflects the number, arrangement, 

activities and duration of meristems present in the reproductive phase of the plant life cycle 

(Vollbrecht et al., 2005). Stem cells homeostasis within the reproductive meristems is crucial for 

normal inflorescence development.  

The CLAVATA-WUSCHEL signaling pathway 

In Arabidopsis, the CLAVATA (CLV)–WUSCHEL (WUS) feedback pathway is a well-

characterized signaling pathway that regulates the coordination of stem cells proliferation with 

differentiation in the shoot apical meristem (SAM), (Clark et al., 1997, Gaillochet et al., 2015; 

Pautler et al., 2013). WUS is a homeobox gene required for the specification of stem cell identity 

and mutations in this gene cause premature termination of the SAM and floral meristem after 

initiation of a few organs (Laux et al., 1996; Xin et al., 2017; Zhou et al., 2015). The role of the 

CLV genes including CLV1, CLV2 and CLV3, major components of the signaling pathway, is to 

restrict the size of the stem cells compartment. High expression of WUS in clv mutants implies 

that the CLV genes act as negative regulators of WUS at the transcript level (Schoof et al., 2000). 

CLV1 and CLV2 encode an extracellular leucine-rich-repeat receptor with or without kinase 

domain respectively (Clark et al., 1997, Jeong et al., 1999; Somssich et al., 2016), while CLV3 is 

a founding member of the CLE peptide family, which regulates the size of the stem cell niche 

(Clark et al., 1997; Kayes and Clark 1998; Muller et al., 2008; Ogawa et al., 2008; Ohyama et 

al., 2009). A compromised expression of any one of these proteins results in over proliferation of 

the inflorescence and floral meristems and hence formation of extra floral organs. (Clark et al., 

1997; Fletcher et al., 1999; Jeong et al., 1999). In both the distantly related species, Arabidopsis 

and rice, the SAM is organized into a tunica with two clonal layers L1 and L2 and a corpus with 

one clonal layer the L3. Despite that both species have differences in SAM structure, it is 

suggested that the CLV signaling pathway is partially conserved in these distant related species. 

Mutations in the FLORAL ORGAN NUMBER 1 (FON1) an ortholog of CLV1 (Suzaki et al 2004) 

and FON4/2 an ortholog of CLV3 (Chu et al., 2006; Suzaki et al., 2006) genes also show an 

enlargement of the floral meristem. Unlike CLV1, which is expressed mainly in the corpus of the 
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SAM in Arabidopsis (Clark et al., 1997; Jeong et al., 1999), FON1 shows a broad expression 

pattern including all the meristems producing the aerial parts of the rice plant. Compared to the 

clv1 mutant, having an enlarged inflorescence meristem, fon1 has only a phenotype in the floral 

meristem and produces a normal inflorescence meristem suggesting that there might be an 

additional FON1-like uncharacterized protein (leucine-rich-repeat receptor kinases), which may 

putatively regulate inflorescence meristem development in rice (Suzaki et al., 2004). 

FON2 SPARE1 (FOS1), which encodes a CLE peptide and together with FON2 maintain FM. 

Overexpression of FOS1 led to the termination of SAM, which means it additionally function in 

Vegetative SAM maintenance. FOS1 was identified in rice indica varieties however its 

phenotype was suppressed in japonica rice due to functional polymorphism (FNP) in the 

signaling peptide. Based on genetic analysis they have shown that FOS1 doesn’t require FON1, a 

putative receptor of FON2, which suggest that FOS1 and FON2 works as signaling molecules in 

regulation of meristem maintenance in independent manner (Suzaki et al., 2009). A third FON2-

related gene in rice, FON2-LIKE CLE PROTEIN1 (FCP1), widely expressed in SAM and RAM 

has a role in vegetative SAM maintenance (Kinoshita et al., 2007; Suzaki et al., 2008). 

Constitutive expression of FCP1 results in smaller SAM size and inhibits the initiation of 

adventitious roots, while FCP1 RNAi lines, showed similar seedling phenotypes and meristem 

size to those of the wild types (Suzaki et al., 2008). FCP2 which is a close paralog of FCP1 

shows similar expression and mutants with double knock down of FCP1 and FCP2 transcripts 

by RNAi, failed to regenerate shoots, which indicates the redundant function of FCP1 and FCP2 

(Suzaki et al., 2008). FCP1 negatively regulate WOX4, a WUSCHEL-RELATED HOMEOBOX4, 

that functions in the SAM maintenance by regulating the expression of a homeobox gene (OSH1) 

and FON2 (Ohmori et al., 2013). TAB1 a WUS-like gene that is expressed in the pre-meristem 

zone controls the formation of axillary meristem by up-regulating OSH1 (Tanaka et al., 2015). In 

short, CLV-WUS pathway in monocots and eudicots is partially conserved but individual 

components of the signaling pathway have functionally diversified during evolution. Also it is 

intriguing to understand if there is a functional counter part of the Arabidopsis WUS gene in 

grasses and if so how it modulates stem cells homeostasis in reproductive meristems.  

  



 
 

12 

The Role of Homeobox genes in Meristem Maintenance  

In plants SAM formation and maintenance relies on Class 1 KNOTTED 1–like homeobox 

(KNOX) genes. Knockout mutants of KNOX genes, such as Oryza sativa homeobox 1 (OSH1), 

maize knotted 1 (KN1), and Arabidopsis SHOOT MERISTEMLESS (STM), are shown to exhibit 

abnormal inflorescence development (Long et al., 1996; Tsuda et al., 2011; Vollbrecht et al., 

2000). The osh1 mutant has a smaller inflorescence and a decreased number of spikelets (Tsuda 

et al., 2011). These reports suggested that KNOX proteins play an important role in shoot apical 

meristem maintenance. The key role of KNOX proteins has been investigated in Arabidopsis and 

Rice, which control the shoot apical meristem maintenance by repressing the level of gibberellin 

(GA) and accumulating high level of cytokinin. GA is shown to promote cell elongation and 

differentiation while cytokinin regulates cell division and meristem function (Barazesh et al., 

2008; Jasinski et al 2005; Sakamoto et al., 2006). The maize KN1 is shown to link the gene 

network involved in regulating the specification of plant meristem identity by targeting as many 

as 643 genes, mostly transcription factors and other proteins involved in hormonal pathways 

including auxin, cytokinin, GA, and brassinosteroid (Bolduc et al., 2012). The mediation of 

KNOX protein function by hormones and the mechanism by which KNOX proteins detect the 

hormone change is still to be investigated. 

In rice, it is reported that OSH1 binds to the evolutionarily conserved cis-elements in the 

promoter region of other KNOX genes and regulate their expression in a direct manner. This 

regulation between HOX genes is stated to be an indispensable mechanism for self-maintenance 

of the SAM (Vollbrecht et al., 2000). A negative regulator of class 1 KNOX genes in rice, OPEN 

BEAK (OPB), an orthologue of the JAGGED gene in Arabidopsis is expressed in different 

meristematic tissues including reproductive meristems. In mutants, open beak-1 (opb-1) and 

opb2, a higher expression of many KNOX genes was observed and plants displayed pleiotropic 

defects in leaf morphology and reproductive meristems (Horigome et al., 2009). However, the 

mechanism of interaction of these positive regulator i.e cytokinin and negative regulators like 

OPB for transcriptional regulation of KNOX genes during reproductive stage development is still 

not clear. 
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1.5.3.  AXILLARY MERISTEM INITIATION DURING INFLORESCENCE / 

PANICLE DEVELOPMENT 

The role of Hormones and TFs 

In grasses axillary meristems produce tillers during vegetative development and after phase 

transition they give rise to branches in the inflorescence and these developmental events are 

under hormonal, genetic and environmental control. During both vegetative and reproductive 

phases, the plant hormone auxin plays a key role in axillary meristem initiation (McSteen and 

Hake 2009). Many genes have been identified through screening for mutants affected in axillary 

meristem initiation and outgrowth, which results in reduced inflorescence branching. Some of 

these genes have a key role in hormone biosynthesis, transport and signaling pathways. Genes 

involved in auxin biosynthesis, transport and signaling have conserved and distinct roles in 

regulating the axillary meristem initiation and differentiation during inflorescence development 

in eudicots and monocots. The homologs of the Arabidopsis YUCCA family responsible for 

auxin biosynthesis, the PIN-FORMED 1 (PIN1) and PINOID (PID), auxin transport proteins and 

the auxin signaling components ARFs (Auxin response factors) in rice and maize are studied and 

have shown to have similar roles (Benjamens and Scheres 2008; Forestan and Varotto 2012; 

Zhao 2010).  

Two Arabidopsis cytochrome P450s CYP79B2/CYP79B3 and YUCCA have been investigated 

and they have shown to be involved in the conversion of Tryptophan (Trp) into Indole-3-

acetaldoxime (IAOx); an important metabolite in the Indole-3-acetic acid (IAA) biosynthetic 

pathway (Zhao et al., 2001, 2002). In rice the homologues of CYP79B2/CYP79B3 are still to be 

identified but seven YUCCA (OsYUCCA1-7) genes are identified and constitutive expression of 

OsYUCCA-1 resulted in increased level of IAA and plants displayed characteristic phenotypes 

similar to auxin overproduction. They concluded from these results that OsYUCCA-1 has a key 

role in IAA biosynthesis (Yamamoto et al., 2007). The Trp-dependent IAA biosynthetic pathway 

in rice is still not well elucidated and the enzymes, which catalyze other steps in this pathway, 

should be investigated. 

Auxin transport during inflorescence development is mediated through phosphorylation of PIN1 

(auxin efflux carriers) and its homologues by PINOID (PID) that encode Ser/Thr protein kinase 

including OsPID/OsBIF2 in rice, BIF2 in maize, PID in Arabidopsis and PsPID in Pea 
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(Gallavotti et al., 2008; Skirpan et al., 2009; Xu et al., 2005). Several rice mutants have been 

identified that show axillary meristem (AM) patterning and panicle development defects. These 

mutants include frizzy panicle (fzp), lax panicle1 (lax1), and monoculm1/small panicle 

(moc1/spa) (Komatsu et al., 2001, 2003; Li et al., 2003). They encode mostly transcriptional 

regulators that constitute the network that operates during AM initiation and maintenance, 

however the mutual interactions between these factors are still not clear. The rice MOC1 gene, 

that encodes a transcriptional regulator belongs to the GRAS (GAI, RGA and SCR) family, is an 

ortholog of LATERAL SUPPRESSOR (LS) of tomato and LAS of Arabidopsis (Li. et al., 2003; 

Greb et al., 2003). The FZP gene in rice, which encodes a protein containing an 

APETALA2/ethylene-response factor (AP2/ERF) domain, is an ortholog of the maize 

BRANCHED SILKLESS1 (BD1). FZP and BD1 determine floral meristem identity in rice and 

maize respectively, possibly by repressing the AM initiation (Komatsu et al., 2003). Rice LAX1 

(Komatsu et al., 2003) and maize BARREN STALK1 (BA1) (Gallavotti et al., 2004) encoding 

bHLH protein are described as key regulators of AM initiation. Despite that BA1 and LAX1 

likely have an important role in auxin-mediated inflorescence morphogenesis, the molecular 

mechanism by which they act remains unclear. Additionally LAX2 in rice, physically interacts 

with LAX1 and together they regulate AM formation in rice (Tabuchi et al., 2011). Rice 

ABERRANT SPIKELET AND PANICLE 1 (ASP1) a homolog of TOPLESS (TPL), which is a 

transcriptional corepressor in Arabidopsis, plays a role in auxin-related inflorescence 

development. In the asp1 mutant, fewer inflorescence branches and flowers were observed 

similar to auxin-related pleiotropic defects (Yoshida et al., 2012). Though the exact function of 

ASP1 in auxin signaling has not been clearly demonstrated a putative link between ASP1 

function and auxin response has been proposed (Yoshida et al., 2012). Cytokinin accumulation in 

reproductive meristems is also associated with the meristems function and regulation of 

inflorescence architecture. In rice the LONELY GUY (LOG1) gene, specifically expressed in the 

apical and axillary meristems, encodes a cytokinin-activating enzyme that catalyzes the final step 

in the bioactive cytokinin biosynthetic pathway, is required for continuous function of meristem 

during inflorescence development (Kurakawa et al., 2007). A LOG homolog, LONELY GUY 

LIKE PROTEIN6 (OsLOGL6) or An-2 gene, is shown to promote awn length by increasing the 

level of endogenous cytokinin (Gu et al., 2015). Gn1a, which encode an enzyme for cytokinin 

degradation, CYTOKININOXIDASE/DEHYDROGENASE (OsCKX2), decreases the cytokinin 
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level in reproductive meristems and reducing transcript levels of OsCKX2 leads to higher yield 

of plants by producing more grains (Ashikari et al., 2005). The UNBRANCHED3 (UB3), an 

ortholog of OsSPL14 studied in maize and rice respectively, has shown to regulate the 

expression of LOG1 and Type-A response regulators (ARRs) which are involved in cytokinin 

biosynthesis and signaling. Transcriptome analysis of shoot apices and young panicle, showed 

that many genes associated with cytokinin biosynthesis and signaling were down-regulated in 

UB3 overexpression lines, including LOG1 which functions in cytokinin biosynthesis and five 

Type-A Response Regulator genes (OsRR1, OsRR4, OsRR6, OsRR9 and OsRR10), involved in 

the cytokinin response pathway, while OsCKX2 gene from cytokinin oxidase/dehydrogenase 

family was upregulated which suggest rapid degradation of cytokinin in SAM tissue (Du et al., 

2016). 

	

 

Figure 1.3. Schematic representation of hormones (Auxin, Cytokinin and KNOXs) involved in regulation of 
meristem activities during inflorescence development in Rice (Shown in blue) and Maize (Shown in red). (a) genetic 
module for KNOX genes regulating meristem maintenance (b) Mechanism of auxin biosynthesis, transport and 
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signaling and its role in reproductive meristem activities. (c) Cytokinin ontrolling reproductive meristems size and 
grain yield. Abbreviations: ARR, auxin-response regulator; ARF, auxin-response factor; IAA, indole-3-acetic acid; 
CK, cytokinin; GA, gibberellin; ADT, adenosine diphospho-5-(β- ethyl)-4-methylthiazole-2-carboxylic acid; PRO, 
promoter; TF, transcription factor; TIR/AFB, transport inhibitor response/auxin-binding F-box protein. (From Zheng 
and Yuan, 2014) 

1.5.4. BRANCHING POTENTIAL OF THE INFLORESCENCE 

Arabidopsis TERMINAL FLOWER1 (TFL1) and its Antirrhinum ortholog 

CENTRORADIALIS (CEN), is needed for inflorescence meristem to maintain the indeterminate 

SAM identity and mutation in these genes led to conversion of inflorescence meristem to 

terminal flower (Alvarez et al., 1992; Bradely et al., 1996). The function of TFL1/CEN 

homologues in rice RCN1 and RCN2 have been investigated to understand if there is a similar 

mechanism underlying inflorescence development. In plants overexpressing RCN1 and RCN2, 

resulted in a delay of phase transition and plants produced more inflorescence branches 

(Nakagawa et al., 2002). In Arabidopsis TFL1 activity is suppressed in the floral meristem by the 

interaction of APETALA1 (AP1) and four MADS-domain factors, SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), AGAMOUS-LIKE 24 (AGL24), SHORT 

VEGETATIVE PHASE (SVP), and SEPALLATA4 (SEP4) when indeterminate IM acquires 

determinate FM identity. OsMADS50 and OsMADS56, homologous to Arabidopsis SOC1; 

OsMADS22, OsMADS47, and OsMADS55, homologous to Arabidopsis SVP and AGL24, seem to 

play a similar role because when these MADS-box genes (OsMADS50, OsMADS56, 

OsMADS22, OsMADS47 and OsMADS55) were knocked-down in the pap2-1 background, a 

significant increase in panicle branching was observed and the phenotype was similar to plants 

overexpressing RCN1 and RCN2. When expression of four RCN genes were examined in this 

particular pap2-1 mutant, RCN4 expression was found upregulated and knocking down of RCN 

genes produced even smaller inflorescences, which indicates that SOC1, AGL24, SVP and SEP4 

orthologs in rice regulate panicle branching by suppressing TFL1 orthologs in rice (Liu et al., 

2013). The precise genetic interaction between these MADS-box genes and other inflorescence 

determinants is still not elucidated. The SQUAMOSA PROMOTER BINDING PROTEIN, a 

transcription factor that binds to the promoter of the MADS-box gene SQUAMOSA was first 

reported in Antirrhinum majus and emerged as an important regulator of a wide range of 

biological processes (Klein et al., 1996). In rice now 19 SPL (SQUAMOSA PROMOTER 

BINDING PROTEIN-LIKE) genes have been identified by genome wide identification including 
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OsSPL14 which is encoded by a QTL known as the WFP (WEALTHY FARMER PANICLE), that 

regulates panicle branching, and tiller number in rice. The expression of OsSPL14 is post-

transcriptionally regulated by OsmiR156 and a single point mutation in the OsmiR156 target site 

resulted in the production of fewer tillers and more panicle branches that led to ideal plant 

architecture (Jiao et al., 2010, Miura et al., 2010). However the molecular mechanism by which 

OsSPL14 regulate panicle branching is still not elucidated and study of its downstream targets 

can provide a clue to understand this regulatory mechanism.  

1.5.5. SPIKELET MERISTEM IDENTITY AND DETERMINATION 

An important event in panicle development, which determines the architecture and final yield 

of the inflorescence, is transformation of indeterminate meristems (lateral and terminal 

meristems of inflorescence branches) to determinate meristems (spikelet meristems), which 

differentiate into functional units of the inflorescence known as the florets. Many key players 

involved in this transition have been reported including ABERRANT PANICLE 

ORGANIZATION-1 (APO1) an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO) 

and APO2, which is identical to RFL an ortholog of Arabidopsis LEAFY (LFY). APO1 encodes 

an F-box protein and suppresses the transition from indeterminate to determinate meristems and 

hence produces more branch meristems, which ultimately results in higher spikelet numbers 

(Ikeda et al., 2007). APO2 controls meristem size and apo2 mutants exhibit smaller meristem and 

altered phylotaxy of primary branches (Ikeda et al., 2012). Another key regulator of this event is 

TAWAWA1 (TAW1), which belongs to ALOG family and encodes a nuclear protein containing an 

uncharacterized DUF640 domain, which is conserved in all land plants. TAW1 shows high 

expression in the SAM and reproductive meristems and in the dominant gain-of-function mutant 

tawawa1-D, indeterminate meristem activity is extended by delaying spikelet meristem 

specification, which resulted in more secondary and tertiary inflorescence branches and hence 

producing more spikelets. In the tawawa1-D mutant three genes, OsMADS22, OsMADS47, and 

OsMADS55 belongs to SVP subfamily of MADS-box genes were highly up-regulated while 

spikelet identity genes showed reduced expression including OsMADS7 (SEP3), OsMADS8 

(SEP3), OsMADS16 (AP3), OsMADS4 (PI), OsMADS3 (AG), and OsMADS58 (AG) (Yoshida et 

al., 2013). Chapter 3 of this thesis is dedicated to the study of other ALOG genes in rice 

inflorescence development. 
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1.5.6. FLORAL MERISTEM IDENTITY AND DETERMINATION 

In grass species the florets are grouped into a single basic unit of the inflorescence known as 

the spikelet. In rice each spikelet bears a single floret. FRIZZY PANICLE or BRANCHED 

FLORETLESS 1 (FZP/BFL1) an ortholog of maize BD1, encodes an Ethylene Response Factor 

(ERF), a transcription factor from the AP2/ERF family, which is expressed in reproductive 

meristems at the time of rudimentary glumes differentiation and hence prevents axillary 

meristem formation within spikelets and establishes the floret formation. In fzp mutants floret 

formation is arrested and the meristems acquires spikelet identity producing axillary meristems 

in the axils of rudimentary glumes resulted in a highly branched panicle (Komatsu et al., 2003).  

SUPERNUMERARY BRACT (SNB) and INDETERMINATE SPIKELET-1 (OsIDS1) are two AP2 

family genes, which are functionally associated and control floral meristem specification.  

Compared to the snb single mutant, the snb osids1 double mutant further delayed the transition to 

floral meristem and the mutants exhibit fewer inflorescence branches and spikelet numbers (Lee 

and An 2012). Another member of the AP2/ERF family, MULTI-FLORET SPIKELET 1 (MFS1), 

is expressed in the spikelet and floral meristems and regulates spikelet meristem fate and 

determines floral meristem identity. In mfs1 mutants the transition to floral meristem is 

suppressed and floral organs identity is altered. MFS1 positively regulate SNB and OsIDS1, 

which control floral meristem specification and G1/ELONGATED EMPTY GLUME (ELE), a 

member of the ALOG family, which specifies sterile lemma identity (Ren et al., 2013). 

Overexpression of the microRNA, OsmiR172 mostly phenocopies the snb osids1 double mutant 

in rice (Zhu et al., 2009; Lee and An 2012). This indicates that miR172 is involved in regulation 

of IDS1-like genes in rice, which play a key role in specifying the fate of the spikelet meristem. 

The AP2 family genes in grasses are functionally diverged and further investigations on these 

genes will add more insight into the evolution and functional diversification of AP2 members in 

specifying the fate of reproductive meristems in grasses.  
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Figure 1.4. Late Stages of rice inflorescence development. (Ikeda et al 2004). (A) Primary branches eleongation, (B) 
Secondary or axillary branch primordia (SBP) differentiation, (C) Top view of (B)  showing distichous phyllotaxy of 
SBP. Spikelet development (Itoh et al., 2005). (A) Mature spikelet, (B) Mature flower. (C) Early SM producing RG 
primordium. (D) Formation of EG primordia. (E) Formation of LE primordium. (F) Formation of PA primordium. 
(G) Formation of ST primordia. (H) Formation of CA and OV primordia. (I) Formation of embryo sac. 
Abbreviations: PA, palea; LE, lemma; EG, empty glume; RG, rudimentary glume; ST, stamen; PI, pistil; LO, 
lodicule; CA, carpel; OV, ovule.  

1.6. NEW TECHNOLOGIES AND ITS IMPACT ON FUNCTIONAL GENOMICS 

The human population is increasing with rapid pace and expected to reach 9.7 billion by 

2050 (United Nation, 2015 Revision). In order to produce sufficient food for such a huge 

population, sustainable crop productivity has posed a difficult challenge to the scientists in the 

era of limited natural resources, unpredictable global climatic changes and other biotic and 

abiotic stresses (Fischer et al., 2002). A tremendous progress has been made with rapid 

development in technologies to bring a revolution in the areas of biology and biotechnology, 

especially in computational biology, functional genomics, genetic engineering and molecular 
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breeding. Application of advanced biological and biotechnological approaches has procreated 

greater impact on agriculture in terms of sustainable production and improving crop yield (Thao 

and Tran, 2016). 

The main aim of functional genomics studies is to explore the information stored in the genes 

and regulatory elements of the genome, to decipher the gene networks that underlie certain 

biological pathways and to study the overall functions while looking into the phenotypes or 

responses of mutant alleles to biotic and abiotic stresses.  

According to an updated 7.1 release of rice pseudo-molecules and annotation, from 12 rice 

chromosomes, 55,986 genes (loci) have been identified, of which 6,457 have 10,352 additional 

alternative splicing isoforms reaching to a total of 66,338 transcripts in the rice genome 

(http://orygenesdb.cirad.fr/index.html). To ascribe biological functions to all these predicted 

genes, a great effort has been done by different groups around the globe in generating mutant 

libraries through Tos17 tagging, T-DNA insertion, Ds/dSpm tagging, and chemical/ irradiation 

mutagenesis. From analysis of 246 566 flanking sequence tags (FSTs), among 211470 unique 

hits, 60.49% of nuclear genes contain at least one insertion and 68.16% were having insertion in 

the genic region and additionally 57% of non-TE (transposable element) related genes have 

insertion tags (Wang et al., 2013). Advancement in omics technologies, computational tools and 

genome editing approaches (see below) have greatly eased and speeded up functional genomic 

research in rice and other model organisms. 

1.6.1. NEXT GENERATION SEQUENCING AND TRANSCRIPTOMICS  

Since the discovery of the DNA double helix in 1953, the first effort to sequence 10 out of 20 

residues of a linear λDNA strand was made by (Wu et al., 1968) which further continued until 

modern and reliable methods like chemical method by Maxam-Gilbert (Maxam and Gilbert 

1977) and the dideoxy sequencing method by Sanger (Sanger et al., 1977) were developed to 

obtain longer reads. Initially this technology progressed with slow pace but incremental 

improvements made complete genome sequencing, ranging from small phages of 5386 bases to 

the human genome of ∼3 billion bases, possible (Hutchison 2007). To address more biological 

questions and to overcome the limitations of traditional sequencing methods with respect to 

throughput and costs, second generation or next generation sequencing (NGS) approaches 

emerged (Margulies et al., 2005) and revolutionized the field of genome sequencing. Application 
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of NGS technologies are not limited to the static genome analysis but give further insights into 

the genome organization, gene interaction and epigenetic control in eukaryotic cells with several 

approaches like ChIP-seq used for studying DNA-protein interaction, Hi-C that investigate the 

3D architecture of whole genome and Methylated DNA Immunoprecipitation (MeDIP) to find 

the methylated cytosine bases distributed in the genome. Furthermore, these NGS methods are 

also successfully applied for gene expression or transcriptome analysis using RNA-seq 

approaches resulting in high-resolution RNA expression analysis (Nowrousian, 2010). 

Laser microdissection coupled with transcriptome analysis is successfully applied to probe the 

cell specific gene expression dynamics under certain growth conditions or developmental stages 

(Ogo et al., 2014; Mantegazza et al 2014).  Knowledge of gene expression, i.e the timing, growth 

or developmental stage and the cell or tissue where the gene is expressed provides a clue to 

evaluate its biological function. For gene expression analysis initially hybridization based 

microarray techniques and real-time PCR methods were used to measure the mRNA level, 

however both lack exquisite sensitivity and are not reliable to deal with alternative splicing 

isoforms and non-annotated transcripts. To overcome these limitations, tag based sequencing 

methods like serial analysis of gene expression (SAGE) (Velcules et al., 1995; Herbers and 

Carninci 2005), cap analysis of gene expression (CAGE) (Kodiziu et al., 2006; Shiraki et al., 

2003) and massively parallel signature sequencing (MPSS)(Brenner et al., 2000; Reinartz et al., 

2002) were developed which provided a digital readout of mRNA level. These sequencing 

approaches were best in their ability to provide the accurate digital expression of genes at levels 

below the sensitivity of hybridization based microarray techniques, but still have some 

disadvantages like most were based on expensive Sanger sequencing technology, and a 

significant portion of the short tags cannot be uniquely mapped to the reference genome. 

Moreover, only a portion of the transcript is analyzed and isoforms are generally 

indistinguishable from each other. By contrast, the RNA-seq approach by NGS technologies 

offers rapid and cost effective sequencing capacity, which complemented perfectly the SAGE 

and other traditional sequencing methods for both mapping and quantifying the transcriptome 

(Mardis 2008). Wide range of applications and better reliability make RNA-Seq a preferred 

method for the scientists to evaluate absolute transcript levels, single nucleotide polymorphism 

(SNPs), to detect novel transcripts and isoforms, map exon/intron boundaries, and many more, 

working with both sequenced and unsequenced organisms (Mutz et al., 2013). 
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1.6.2. BRIDGING TRANCRIPTOMICS AND FUNCTIONAL GENOMICS 

THROUGH GENOME EDITING TOOLS 

Functional characterization of genes through genetic mutation is critical for crop genetic 

improvement, which has been proven from studies on naturally occurring allelic variations and 

its application in breeding programs. Moreover characterization of thousands of mutants 

generated artificially by T-DNA/transposon insertion, physical or chemical mutagenesis in 

model plants species including Arabidopsis (Kuromori et al., 2006) and rice (Wu et al., 

2003 and Yang et al., 2013) has paved the way to understand and exploit various biological 

mechanisms but the fact that random mutagenesis is linked to unwanted background mutations 

and screening of large scale mutant libraries is costly and time consuming (McCallum et al., 

2000). Other approaches like RNA interference (Smith et al., 2000b), antisense RNA (Mol et al., 

1990) and virus-induced gene silencing (Baulcombe, 1999) can suppress the expression of 

corresponding mRNAs and may compromise their functions but silencing is often only partial 

and unstable which make these tools less successful compared to genetic mutants. An advantage 

of these systems is the possibility to silence genes tissue specifically.  

In the last decade a few exciting new technologies for genome engineering including Zinc 

Fingers Nucleases (ZFNs), transcription activator-like effector nucleases (TALEN) and recently 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 have emerged, 

which are capable to target a nuclease to specific DNA sequence creating a double strand break 

(DSB) at the desired target locus (Gaj et al., 2013). Activation of the cellular response called 

DNA damage response triggers the DNA repair machinery which follows two possible 

mechanisms i.e homology-directed repair (HDR) and error-prone non-homologous end joining 

(NHEJ) to operate and ultimately leads to several types of mutations including point mutations, 

deletions, insertions, inversions, duplications and translocations at specific sites (Wyman et al., 

2006; Joung and sander, 2013). Success of these methods mainly depends on their designing and 

engineering procedures, selection, specificity, precision and genome editing efficiency.  
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1.6.3. Zinc Finger Nucleases (ZFNs) 

Zinc Finger Nucleases here after (ZFNs) were developed based on the functional principles 

of the Cys2-His2 zinc finger domains (Miller et al., 1985), which constitutes one of the most 

common structural motifs in eukaryotes (Rubin et al., 2000). In ZFNs a custom-designed 

sequence-specific DNA-binding zinc finger domain at the N-terminus is fused with a non-

specific nuclease domain of the type IIS restriction enzyme FokI at the C-terminus that cleave 

DNA (Kim et al., 1996). For the nuclease activity of ZFNs, dimerization of FoKI domains is a 

crucial step, which is established by the binding of a ZFN-FokI hybrid molecules to the target 

DNA which is 18-36 bp long including 5-7 bp spacer or cleavage site (Smith et al., 2000). 

For gene modification, ZFNs have been successfully applied in living system including human 

cells (Perez et al., 2008), animals (Doyon et al., 2008; Meng et al., 2008) and plants (Osakabe et 

al., 2010; Townsend et al., 2009; Shukla et al., 2009). However, carrying some shortcomings 

such as difficult screening procedures (Hsu et al., 2012), not all sequences can be targeted, off 

target activity (Cathomen et al., 2008), possible toxicity to the host cell etc. limit its application 

in functional genomics studies.  

1.6.4. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES (TALENS)  

Success of ZFNs in genetic research inspired the scientists to further improve and explore the 

customized nuclease technology and its application for therapeutic and other research purposes. 

TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES (TALENs), which were 

relatively easier to design emerged as a better alternative to ZFNs for genome modification. 

Similar to ZFNs, TALENs also contains a sequence specific customizable DNA-binding domain 

fused to a nonspecific FokI nuclease domain (Joung and Sander 2013). The DNA-binding 

domain is derived from a naturally occuring transcription activators like (TAL) effector family 

secreted by a pathogenic gram negative bacteria of the genus Xenthomonas and is made up of a 

central domain comprised of 1.5 to 33.5 tandem repeats or TAL repeats, each containing 33 to 35 

highly conserved amino acids and it recognize one specific DNA base pair (Boch et al., 2009 and 

Kay et al., 2005). The effector proteins are pumped into the plant cells via a type III secretion 

system, bind to the promoters of target genes and reprogram the host cell transcription machinery 

which leads to plant developmental changes such as cell division and enlargement (Boch et al., 
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2009). Within each TAL repeat at position 12th and 13th there are two hypervariable residues 

also known as Repeat Variable diresidues (RVDs), which confer TAL effectors, its DNA binding 

specificity. The most commonly occuring RVDs are His/Asp (HD) accounting for cytosine (C) 

binding, Asn/Gly (NG) recognizes thymine (T), Asn/Ile (NI) for Adenine (A) and NN specific 

for G or NK which is less common but in some contexts appears to have higher efficiency for G 

than NN (Moscou and Bogdanove 2009; Mak et al., 2012). Due to ease in manipulation and 

performing the same features as ZFNs, TALENs have been widely applied for genome 

modification and gene functional analysis in zebrafish (Sander et al., 2011; Huang et al., 2011), 

rat (Tesson et al 2011), human cells (Miller et al., 2011; Hockemeyer et al., 2011) Arabidopsis 

(Christian et al 2010; cermak et al., 2011; Li et al., 2012), rice (Li et al., 2012), wheat (Wang et 

al., 2014), potato (Sawai et al., 2014) and tomato (Lor et al., 2014).  

1.6.5. CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC 

REPEATS (CRISPR)-CAS TECHNOLOGY  

Prokaryotes have developed various defense strategies to face a wide range of threats posed 

by viruses and one of these is the RNA-directed genome targeting nuclease system called 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system, which 

provide adaptive immunity against mobile genetic elements such as viruses and plasmids 

(Marraffini, 2015). CRISPRs were reported for the first time in 1987, from sequencing the iap 

gene in Escherichia coli (Ishino et al., 1987). Downstream of iap an unusual repeat cluster 

comprising of a series of 29 nucleotide repeats were found separated by 32 nucleotides unique 

spacer sequences. However its biological significance was not found until a family of unique 

sequences of Short Regularly Spaced Repeats (SRSRs) were reported in prokaryotes (Mojica et 

al., 2000). Subsequently it was demonstrated in Archaeoglobus fulgidus that these SRSRs loci 

transcribed into snmRNAs (Tang et al., 2002). To avoid the confusion in nomenclature it was 

decided to use the acronym CRISPR for SRSRs and in the same report investigation of the 

flanking sequences of CRISP loci in prokaryote genome, leads to the discovery of four CRISPR 

associated genes cas1 to 4, showing a clear homology in different prokaryotes species (Jansen et 

al., 2002). The functional role of these repeats was demonstrated based on findings from three 

independent studies. They showed that the spacers were identical in sequence to plasmid and 

viral sequences (Bolotin et al., 2005, Mojica et al., 2005, Pourcel 2005), and the more spacers 



 25 

there were in Streptococcus thermophiles strains, the fewer phages could infect them (Pourcel et 

al., 2005). Based on these observations it was suggested that CRISPR-Cas probably plays a role 

as immune system in prokaryotes. It was indicated that CRISPRs function via a similar 

mechanism to that of RNAi in eukaryotes (Mojica et al., 2005, Makarova et al., 2006). In type II 

CRISPR/Cas from Streptococcus pyogenes, a pre-crRNA is processed into a short CRISPR RNA 

(crRNA) by RNAse III in the prescence of transactivating crRNA (tracRNA) and Cas9. The 

tracrRNA forms a ribonucleoprotein complex with a nuclease protein Cas9 and crRNA 

recognizes a specific sequence in the target genome known as protospacer followed by a 3 

nucleotide unique sequence called Protospacer Adjacent motif (PAM), and thereby recruite the 

Cas9 nuclease to the desired target locus at PAM site to generate the DSB in the DNA (Jinek et 

al., 2012, Mali et al., 2013).  

In a very short period of time the CRISPR-Cas9 genome editing technology has been applied 

successfully in a wide range of organisms including human cells (Mali et al., 2013; Tsai et al., 

2014; Guilinger et al., 2014), mice (Shen et al., 2013), zebrafish (Chang et al., 2013, Hwang et 

al., 2013), wheat (Shan et al., 2013), rice (Miao et al., 2013; Xie et al., 2013), Arabidopsis (Li et 

al., 2013; Feng et al., 2014), tobacco (Li et al., 2013), sweet orange (Jia et al., 2014). The only 

limitation with this system is the off-target activity introducing unwanted mutations but several 

efforts have been made to further enhance the specificity and flexibility of this system to 

eliminate or reduce the potential off target effects. Using Cas9 from different bacteria which 

recognize longer target sequence (Hou et al., 2013), using a modified form of Cas9 i.e Cas9 

nickase (Cho et al., 2014) and manipulating the length of the protospacer sequence in the guide 

RNA (Fu et al., 2014) has greatly reduced the off target effects. 
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Figure 1.5. Diagrammatic presentation of the Genome Editing Tools taken from. Addgene plasmid repository 
(https://www.addgene.org/) 

1.7. AIM OF THE PROJECT 

Inflorescence development in rice is a complex process starting from the conversion of Shoot 

Apical Meristem (SAM) to Inflorescence Meristem (IM), transition of indeterminate (IM and 

Branch Meristems) to determinate meristems (Spikelet Meristems), formation of reproductive 

branches and finally flowers and grain formation. The timing of meristem activities in a 

particular stage and transition to the next stage determines the architecture and final grain yield 

of the inflorescence. The molecular mechanism that control these activities and developmental 

events is however still poorly understood and many genes involved in these processes have for 

sure not been identified yet, we are in a way just seeing the tip of the iceberg. The aim of this 

study is to find and characterize new genes potentially involved in regulating these various 

developmental events during inflorescence development in rice. 
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1.7.1. TASKS 

! Morphology of inflorescence at early stages of development? 

As described earlier meristem transitions occur very fast and these early stages of meristem 

are difficult to obesrve. We decided to perform histological analysis on these early stages to 

understand the exact timing of the distinct stages of meristem formation. We were able to 

identify four distinct developmental stages of meristems and the exact timing of their 

development, including IM, Primary Branch Meristem (PBM), elongated PBM/Axillary 

Meristems and SM. 

! How to get meristem specific and high quality mRNA from the distinct stages?  

For this step we planned to isolate the specific meristem types with micrometric precision 

using laser microdissection methodology and to define the accurate transcriptome for each 

distinct meristem type. For this purpose we improved the protocol for embedding meristem 

tissue and membrane slides preparation for laser microdissection, to get good quality RNA for 

sequencing. We analyzed the transcriptome of the four selected meristem types collected from 

wild type rice, Nipponbare inflorescences. Chapter 2 of this thesis is dedicated to this 

transcriptome analysis. 

! Picking up candidate genes and generation of loss of function mutants. 

Candidate genes were selected from the transcriptome datasets taking into consideration the 

literature and expression patterns. The expression profiles of the selected candidate gene was 

further confirmed by RT-PCR and in-situ hybridization and for functional characterization the 

CRISPR/Cas9 genome editing approach was applied to produce loss of function mutants. 

Chapter 3 of this thesis is related to this study.  

Overall this work is based on modern technologies for cell specific transcriptome analysis using 

the laser microdissection technique coupled with NGS RNA-Seq technology. We presented a 

highly valuable resource for gene expression profiling during early reproductive stages, which 

could be exploited by scientists to get a clue for studying the biological function of putative 

candidates involved in cereal inflorescence development. Moreover the mutant lines we 

produced with the CRISPR-Cas9 genome editing approach will be used to get further insight into 

the molecular mechanism of inflorescence development in rice. 
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SUMMARY

In rice, inflorescence architecture is established at early stages of reproductive development and contributes

directly to grain yield potential. After induction of flowering, the complexity of branching, and therefore the

number of seeds on the panicle, is determined by the activity of different meristem types and the timing of

transitions between them. Although some of the genes involved in these transitions have been identified,

an understanding of the network of transcriptional regulators controlling this process is lacking. To address

this we used a precise laser microdissection and RNA-sequencing approach in Oryza sativa ssp. japonica cv.

Nipponbare to produce quantitative data that describe the landscape of gene expression in four different

meristem types: the rachis meristem, the primary branch meristem, the elongating primary branch meris-

tem (including axillary meristems), and the spikelet meristem. A switch in expression profile between apical

and axillary meristem types followed by more gradual changes during transitions in axillary meristem iden-

tity was observed, and several genes potentially involved in branching were identified. This resource will be

vital for a mechanistic understanding of the link between inflorescence development and grain yield.

Keywords: inflorescence development, rice, reproductive meristems, RNA sequencing.

INTRODUCTION

Agricultural development is essential to ensure food pro-

duction and security for a growing population (Borlaug,

2007). Rice is a staple food for over half the world’s popu-

lation, including many developing countries. A sustainable

increase in the production of rice under the constraints of

a changing climate and diminishing water and land avail-

ability will require plants with improved grain output, mak-

ing the establishment of high-yield rice varieties a goal of

modern breeding programmes (Peng et al., 2008). Rice

yield is a complex trait influenced by genetic and epige-

netic factors, and is progressively defined during the life

cycle of the plant, first during the vegetative phase, in

which the number of fertile tillers is established, and then

during the reproductive phase and grain-filling phase

(Ikeda et al., 2004).

The branched inflorescence of rice is a compound

raceme, classified as a panicle, and is composed of a

rachis (the main axis), primary branches, higher-order

branches, and spikelets. The number of seeds on the pani-

cle is influenced by the complexity and arrangement of

branches and spikelets. The establishment and activity of

apical and axillary meristems conditions branching in two

phases during the early stages of panicle development: the

timing of rachis meristem abortion determines the number

of primary branches, whilst the transition of indeterminate

branch meristems to determinate spikelet meristems speci-

fies the complexity of branching. After spikelet differentia-

tion, branching complexity is fixed and the rachis and

branches elongate rapidly and heading and flowering

occur (Ikeda et al., 2004). The landscape of gene expres-
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sion is a characteristic that differentiates meristem types

and is involved in the control of meristem identity transi-

tions. Mutant analyses and mapping of quantitative trait

loci have identified a number of genes required for the ini-

tiation and development of panicles, as well as genes that

control the number and size of grains and panicles (Xing

and Zhang, 2010; Wang and Li, 2011). Some of these genes

are involved in the patterning of axillary meristems and

panicle branching, such as the nuclear regulatory factor-

encoding genes MONOCULM 1, LAX PANICLE 1 and LAX

PANICLE 2 (Wang and Li, 2011). A large set of genes

related to floral development, which may also affect pani-

cle architecture, has been identified (Yoshida and Nagato,

2011). Some of these genes may have been under selec-

tion during domestication or are associated with crop

improvement in Asian rice (Xing and Zhang, 2010; He

et al., 2011; Wang and Li, 2011; Xu et al., 2012; Ikeda et al.,

2013).

Understanding the events during development that

determine panicle characteristics such as branching com-

plexity and its plasticity will be vital for sustainable

improvement of rice yield potential using targeted breed-

ing programmes. Despite advances in the characterization

of individual genes and their interactions, a complete

understanding of the control of panicle morphology and

grain yield will require mechanistic studies that explain

the interactions of gene regulatory network components

with each other and with the environment (Azpeitia et al.,

2013). One step towards this goal is to describe the dif-

ferences in gene expression between different meristem

types during development. In this article, we describe the

measurement and analysis of genome-wide expression in

meristematic tissues from the early stages of panicle

development in Oryza sativa ssp. japonica cv. Nippon-

bare, using a precise laser microdissection and RNA-

sequencing approach.

RESULTS

Panicle morphology and sampling for laser

microdissection

In rice, the start of the reproductive phase and subsequent

initiation of inflorescence development involves fast mor-

phological transformations (described by Ikeda et al.,

2004). A detailed histological analysis of rice inflorescences

was performed to select four morphologically distinct

inflorescence meristem types for laser microdissection

(LMD). After differentiation of the flag leaf, the first stage

of reproductive development is the conversion of the shoot

apical meristem (SAM) to the rachis meristem (RM). The

first bract primordium was produced opposite the flag leaf

(Figure 1a). After the establishment of the RM, some cells

differentiated into primary branch meristem (PBM) in the

axils of newly developed bracts (Figure 1b). After the for-

mation of primary branches, bract growth ceased and pri-

mary branches elongated (ePBM) (Figure 1c). During

primary branch elongation, the PBM can give rise to axil-

lary meristems (AM), which may differentiate into sec-

ondary and higher-order branches or be converted directly

to spikelet meristem (SM). For this analysis, SM differentia-

tion was considered as the final stage of panicle develop-

ment (Figure 1d). The PBM and secondary branch

meristem (SBM) are both converted to a terminal SM. Each

terminal or axillary SM produces one floret meristem (FM),

which differentiates into a single floret. The RM, PBM and

ePBM/AM stages are the indeterminate stages in which

meristematic cells are maintained, whilst the SM has a

determinate fate in which the stem cell activity will be lost

and from which florets will differentiate (Ikeda et al., 2004).

Genome-wide expression analysis of inflorescence

development in rice

To investigate gene expression during the development

of the rice inflorescence, LMD was used to collect meris-

tematic tissues from the RM, PBM, ePBM/AM and SM of

early panicles (Figure 1e–l). RNA isolated from the meris-

tem samples was amplified and used to produce cDNA

libraries for sequencing. RNA input for amplification was

between 2.3 and 79.6 ng and the average RNA integrity

number (RIN) was 7.2 (Table S1). Initially, two biological

replicates were prepared for each stage, but after per-

forming a principal components analysis (PCA) on trans-

formed expression values, two libraries that were

produced from degraded RNA (RIN < 6.5) were excluded

from the analysis (Figure S1). Following this, further sam-

ples were prepared to provide a total of three biological

replicates with intact RNA (RIN ≥ 7) for each meristem

type. A single sequencing library was produced from

each biological replicate.

At least 53 million single-end, 50-base reads were pro-

duced from each library, yielding between 16 and 40 mil-

lion uniquely mapped reads within genes, after excluding

reads likely to have originated from rRNA and tRNA. Using

strict cut-offs for gene expression, 11 652 unique genes

were detected in two or more libraries from at least one

stage (Data S1). As a preliminary assessment of the RNA

sequencing (RNA-seq) results, the qualitative and quantita-

tive expression of 20 genes were compared with previ-

ously reported patterns. 16 of the 20 genes were detected

in two or more libraries from at least one meristem type in

the LMD dataset (Figure S2 and Table S2). The expression

of a further four uncharacterized genes that were detected

in specific meristem types by RNA-seq was confirmed by

RNA in situ hybridization. Each of the four genes was

detected in the same meristem types by both methods

(Figure 2). These results suggest that the tissues used for

RNA sequencing were accurately dissected and represent

the intended meristem types.
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Patterns of gene expression during inflorescence

development

To recover common expression patterns, read counts were

transformed using the variance-stabilizing transformation

(VST) included in the DESeq2 software package (Love et al.,

2014). Detected genes were ranked by variance, and stan-

dardized, VST-transformed read counts for the 3884 genes

with the highest variance (33% of expressed genes) were

clustered using the fuzzy c-means algorithm implemented

in the Mfuzz package (Kumar and Futschik, 2007). To deter-

mine the number of cluster cores (c), the minimum distance

between cluster centroids, the formation of empty clusters,

and PCA plots of cluster members were monitored for clus-

ters produced with c values between 2 and 25 (Figure S3),

leading to the use of eight cluster cores (Figure 3). Several

common patterns were recovered by clustering: genes that

increase or decrease in expression steadily during develop-

ment (clusters 1 and 4), genes that change expression

between the apical meristem (RM) and axillary meristem

(PBM to SM) samples (clusters 7 and 5) and genes that

RM

RM

PBM

ePBM

ePBM

ePBM

AM

AM

AM
SM SM

SM

bp

PBM

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1. Morphology of the early stages of inflorescence development and laser microdissection of meristem samples.

(a–d) Toluidine blue-stained sections of developing panicles at (a) rachis meristem (RM), (b) primary branch meristem (PBM), (c) elongating primary branch

meristem with axillary meristem (ePBM/AM), and (d) spikelet meristem (SM) stages of differentiation. The position of the first bract primordium (bp) and flag

leaf (fl) are indicated in (a).

(e–l) Laser microdissection (LMD) samples were collected from RM (e, i), PBM (f, j), ePBM/AM (g, k) and SM (h, l). Images show the samples before (e–h) and

after (i–l) dissection. Scale bars represent 50 lm (a–c), 100 lm (d), 200 lm (e–g, i–k), or 320 lm (h, l).
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change expression gradually over the course of changes in

axillary meristem identity (clusters 6 and 2). There were also

two weaker clusters containing fewer genes, which had

complex expression patterns involving changes in expres-

sion particular to the PBM (clusters 3 and 8).

Dynamic expression of transcription factor families

Examination of the clustered genes suggested that tran-

scription factor (TF) genes were overrepresented in most

clusters (Data S2). Using lists available in the Plant Tran-

scription Factor Database (P�erez-Rodr�ıguez et al., 2010),

geneset enrichment analysis (GSEA) was used to provide

an overview of expression of TFs and other regulators in

the meristem samples (Figure 4). Unlike soft clustering,

which was used to group genes based on shared expres-

sion dynamics, this analysis was used to investigate the

overall strength of expression of the families based on

log2-fold changes (L2FC) in read count of their members.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. RNA in situ hybridization analysis to confirm the specific expression patterns of four genes detected in the RNA-sequencing dataset.

(a–p) Expression of LOC_Os09g27730 (a–d), LOC_Os01g04670 (e–h), LOC_Os10g04270 (i–l) and LOC_Os10g059908 (m–p) was analysed at the RM (a, e, i, m),

PBM (b, f, j, n), ePBM/AM (c, g, k, o) and SM (d, h, l, p) stages. Each gene was detected in the same stage by in situ hybridization as by RNA sequencing. The

scale bars represent 100 lm.
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The most pronounced change in expression appears to

occur between the RM and branch meristem samples (i.e.

the change from apical to axillary meristem). Several fami-

lies (including ABI3VP1 and GROWTH-REGULATING FAC-

TOR TF genes and Aux/IAA genes) are more highly

expressed in RM than in the other meristem types. Another

group, including MYB and SBP TF genes and SET and PHD

regulator genes, was enriched in one or both of the PBM

and ePBM/AM samples but depleted or not enriched in the

RM samples.

Homeodomain genes are involved at various stages of

plant development and in several hormone response path-

ways (Chan et al., 1998; Himmelbach et al., 2002; Sawa

et al., 2002). The expression of this family in inflorescence

meristem types was explored in greater detail using a heat-

map of scaled, transformed read counts. Hierarchical clus-

tering of the transformed counts recovered five prominent

groups of expression (Figure 5). In general, there was no

clear relationship between homeodomain subfamily and

expression pattern. However, there was an apparent

enrichment of class IV HD-Zip genes with lowest expres-

sion in the RM, a peak in indeterminate axillary meristems

and then a gradual decrease during axillary meristem tran-

sitions.

DISCUSSION

Several previous transcriptomic studies have measured

gene expression in whole rice inflorescences at later stages

of development than those described here (e.g. Wang

et al., 2010; Sato et al., 2011; Sharma et al., 2012; Khanday

et al., 2013; Jiang et al., 2014). Another study used

microarray experiments at earlier stages to highlight the

importance of TFs in panicle development (Furutani et al.,

2006). LMD has also been used for precise control of

developmental stage during the collection of whole panicle

sections for microarrays (Kobayashi et al., 2012). This
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identified three MADS genes, which are members of the

SQUA-like (FUL-like) clade, that are co-expressed with

PANICLE PHYTOMER2 (PAP2/MADS34), and a quadruple

knockdown of these four genes resulted in defects in inflo-

rescence development (Kobayashi et al., 2012). All four

genes were detected in all stages in the RNA-seq dataset

presented in this article (Data S1), confirming their expres-

sion in reproductive meristems. In contrast with previous

transcriptomic datasets, only the meristematic regions of

young panicles were collected by LMD for the RNA-seq

analysis described here, to restrict the measurement of

gene expression to those tissues.

Switch in gene expression between apical and axillary

meristems

Clusters 5 and 7 contain genes that change in expression

between apical (RM) and axillary meristems (PBM to SM).

Axillary meristem initiation requires auxin synthesis and

transport in Arabidopsis thaliana and maize (reviewed by

Gallavotti, 2013), and excess auxin may be inactivated by

conjugation to amino acids by GH3 enzymes (Staswick

et al., 2005), but these processes are not as well under-

stood in rice. Cluster 7 contains the auxin response factor

ARF6A and the small auxin-up RNA SAUR33, as well as

two ABC transporters (ALS1 and MDR12), while the com-

plementary cluster 5 contains four uncharacterized genes

with annotations relating to auxin (IAA10 and IAA16, two

auxin-responsive transcriptional regulators; ABCB27, an

ABC transporter; and LOC_Os01g63770, an AUX/LAX trans-

porter), and the GH3 gene related to auxin homeostasis,

GH3-8. Transgenic rice plants presumably expressing GH3-

8 in the endogenous pattern of FLO-LFY HOMOLOG OF

RICE (RFL) (i.e. PBM and SBM; Ikeda-Kawakatsu et al.,

2012) have smaller panicles with fewer branches (Yadav

et al., 2011), and GH3-8 conjugates amino acids to auxin

in vitro (Ding et al., 2008), suggesting that the panicle phe-

notype may be related to reduced auxin signalling.

Although auxin response factors and Aux/IAA response

genes are generally more strongly expressed at earlier

stages (Figure 4), the presence of auxin-related genes in

complementary clusters suggests that the transcriptional
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Figure 5. Five prominent patterns of expression of homeobox genes in

reproductive meristems.

Scaled, transformed read counts for the homeobox genes that were

detected in the dataset are represented by the continuous heat scale. The

colour of the y-axis denotes the homeobox subfamily for each gene (Jain
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HD-Zip genes.
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effects of auxin signalling are dependent on meristem

type. Understanding of the relationship between auxin and

meristem specification will require functional analysis of

the components of the regulatory network involved in the

response in these tissues.

Two STMADS11-like (SVP-like) MADS genes, MADS22

and MADS55, decrease in expression between PBM and

SM, whilst the third (MADS47) was not detected (Fig-

ure 6a). MADS22 and MADS55 are activated by the G1-Like

(G1L/ALOG) transcriptional activator G1L5 (TAWAWA1/

TAW1), but activation of MADS47 has not been reported

(Yoshida et al., 2013). Overexpression of TAW1 increases

the production of secondary branches and leads to the for-

mation of tertiary branches, resulting in higher grain yield

(Yoshida et al., 2013). TAW1 was recovered from the same

cluster as MADS55, and the presence and co-expression of

genes that are involved in inflorescence development

along with other TF genes indicates that the clusters cap-

ture biologically meaningful groups of genes, including

uncharacterized signalling components. Only three ALOG

genes (which are annotated with the Pfam domain

PF04852) were detected in the dataset. Two were retrieved

from clusters 5 and 4 (G1L2 and TAW1 respectively), and

the third (G1L1) has a similar expression pattern (Fig-

ure 6b). taw1 missense mutants have small inflorescences

with reduced grain yield, but this phenotype was stronger

when TAW1 was targeted by RNA interference (Yoshida

et al., 2013). This finding may suggest functional redun-

dancy between the three co-expressed ALOG genes, G1L1,

G1L2 and TAW1, with more than one affected by the RNAi

construct used against TAW1. Although the increase in

secondary branches linked to TAW1 overexpression sug-

gests that it acts by suppression of SM identity, perhaps

via downstream factors that may promote BM activity such

as the STMADS11-like genes, taw1 plants also have fewer

primary branches (Yoshida et al., 2013), and the peak

expression in the RM of G1L1, G1L2, TAW1, MADS22 and

MADS55 suggests an additional role before the transition

from apical to axillary meristem. The difference in expres-

sion of annotated TF genes between RM and PBM samples

and the recovery of co-expression clusters of primarily

uncharacterized genes that appear to be either switched on

or off between the RM and the PBM indicate a significant

change in gene expression between apical and axillary

meristems.

Gradual changes in expression during transitions in

axillary meristem identity

Compared with the switch from apical to axillary meristem,

more gradual changes in gene expression were apparent

during the sequential transition from PBM to SM (Fig-

ure 3). This transition corresponds to the acquisition of

determinate fate by the axillary meristem. The enrichment

of MADS genes in the SM sample and their overrepresen-

tation in cluster 6 is consistent with their involvement in

flower development in rice and other plants (Figure 4; e.g.

Kyozuka and Shimamoto, 2002; Nagasawa et al., 2003;

Yamaguchi et al., 2006; Yao et al., 2008; Dreni et al., 2011;

the role of MADS genes in Arabidopsis flower develop-

ment was reviewed by Prunet and Jack, 2013). Two recent

studies in A. thaliana and the domesticated tomato, Sola-

num lycopersicum, used an LMD and RNA-seq approach

to investigate inflorescence development (Park et al., 2012;

Mantegazza et al., 2014). These two datasets were used

with the dataset presented in this article to compare the

expression of the MIKCC-type class of MADS-box genes

(Henschel et al., 2002), suggesting several differences

between the species (Figure S4 and Methods S1). A. thali-

ana AGL6 is the only gene from the AGL6-like clade that is

more highly expressed in indeterminate meristems than

determinate meristems. agl6 mutants have fewer axillary

buds on the inflorescence stem, suggesting that AGL6 pro-

motes axillary meristem formation (Huang et al., 2012).

The rice genes from the AGL6-like clade, MFO (MADS6)

and MADS17, redundantly promote floral meristem deter-

minancy (Ohmori et al., 2009), and are correspondingly

enriched in determinate meristems. Expression of the puta-

tive tomato AGL6-like gene SOLYC01G093960.2 is also

enriched in determinate meristems, suggesting that the

role of AGL6 in axillary meristem formation may be speci-

fic to the Arabidopsis lineage. In contrast, consistent with

their functions in floral organ specification in rice and A.

thaliana, genes in the AGL2-like clade are generally more

highly expressed in determinate meristems. PAP2, which

was strongly expressed at all stages with higher expres-

sion in the RM and PBM (Data S1), acts with another AGA-

MOUS-LIKE2-like (AGL2-like/SEPELLATA) MADS gene,

LEAFY HULL STERILE 1 (LHS1/MADS1), to specify floral

organs (Gao et al., 2010). pap2 mutants also have altered

primary and secondary branch number, suggesting an ear-

lier role is SM specification (Gao et al., 2010; Kobayashi

et al., 2010). LHS1, which is involved in floral meristem

determination and floral organ development (Jeon et al.,

2000; Agrawal et al., 2005), was enriched in the SM

(Figure S4).

The strong enrichment of SQUAMOSA promoter bind-

ing protein-like (SPL/SBP) genes in the PBM and their pres-

ence in cluster 2 suggests involvement in the early stages

of inflorescence development. WEALTHY FARMER’S PANI-

CLE (WFP/SPL14 or IDEAL PLANT ARCHITECTURE 1/IPA1),

SPL3, SPL12 and SPL17 are all highly expressed in the RM

and PBM, gradually decrease in expression and have weak-

est expression in the SM (Figure 6c), suggesting a redun-

dant function in indeterminate axillary meristems. These

genes are all putative targets of miR156, a microRNA that

causes reduced panicle size and delayed flowering when

overexpressed (Xie et al., 2006; Wang et al., 2015), and

SPL gene expression is controlled by miR156 and miR529
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(Jeong et al., 2011; Wang et al., 2015). The precursor for

another microRNA, MIR319A, was recovered from the

same cluster as SPL3 and SPL12 and has a similar expres-

sion pattern to these genes, SPL17 and WFP (Figure 6c). In

A. thaliana, miR319a targets TEOSINTE BRANCHED/

CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) TFs

and is involved in floral organ development (Palatnik et al.,

2003; Nag et al., 2009). No direct interaction with SPL

genes or role in reproductive development has been

reported for miR319a in rice. Overexpression of WFP,
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Figure 6. Expression of selected genes in transcripts per million (TPM).

A red point indicates that the gene was above the detection cut-off, and blue indicates that the gene was not detected.

(a) Two reported STMADS11-like (SVP-like) targets of TAW1, MADS22 and MADS55 (Yoshida et al., 2013), are more strongly expressed in the RM than in other

meristems, and the other STMADS11-like gene, MADS47, was only detected in one library.

(b) Only three ALOG genes (G1L1, G1L2 and G1L5/TAW1) were detected, and they share a similar pattern of expression.

(c) Several SPL genes and a co-regulated microRNA precursor, MIR319A, which was recovered in cluster 2, are highly expressed in RM and PBM before decreas-

ing in expression in ePBM/AM and SM.

(d) GN1A (CKX2) was not detected in the LMD dataset, but LOG1 is expressed in all meristem types, and two other genes possibly related to cytokinin activation,

LABA1 (LOGL6) and LOGL1, are expressed more highly in ePBM/AM and SM than in RM and PBM.
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which was detected by in situ hybridization experiments in

the RM and branch meristems in wild-type plants, is asso-

ciated with increased branching and grain yield (Jiao et al.,

2010; Miura et al., 2010). WFP binds to the promoter region

and appears to cause upregulation of the DENSE AND

ERECT PANICLE 1 (DEP1) gene (Lu et al., 2013), which is

present in cluster 3 and encodes a major QTL for grain pro-

duction and panicle morphology in high-yield O. sativa

ssp. japonica varieties. Probable loss-of-function dep1

mutants have larger SAMs with higher cell number, and

reduced expression of a cytokinin oxidase gene, GRAIN

NUMBER 1A (GN1A/CKX2) (Huang et al., 2009). WFP also

binds to the promoters of genes that are involved in the

determination of inflorescence architecture via the cytoki-

nin, auxin and gibberellic acid pathways, including

LONELY GUY 1 (LOG1), PIN PROTEIN 1B and SLENDER

RICE1 respectively, suggesting a role in the coordination of

hormone signalling (Lu et al., 2013).

A homologue of LOG1, LONELY GUY LIKE PHOSPHORI-

BOHYDROLASE 1 (LOGL1), is present in cluster 1 with

genes that increase in expression between RM and SM. In

rice, cytokinins may increase branching complexity by pro-

moting IM or BM activity (reviewed by Han et al., 2014).

The LOG1 enzyme converts cytokinin nucleotides to the

active form in vitro, and log1 mutants have lower expres-

sion of two cytokinin-inducible RESPONSE REGULATOR

genes, resulting in early termination of BM and IM and

small panicles with small SAMs and branching defects

(Kurakawa et al., 2007). Similarly, reduced expression of

GN1A, which encodes an enzyme that inactivates cytoki-

nin, is associated with increased grain production in sev-

eral high-yield O. sativa ssp. indica varieties (Ashikari

et al., 2005). Although GN1A transcripts were not detected

in this LMD dataset (Figure 6d), these results suggest that

an increase in active cytokinin is associated with grain

yield via an effect on meristem activity. However, the func-

tion of the LONG AND BARBED AWN1 (LABA1/LOGL6/An-

2) gene provides evidence for an inverse role. The LABA1

protein present in O. rufipogon, which shares an identical

primary sequence with the protein from O. sativa ssp.

japonica cv. Nipponbare, also activates cytokinin in vitro

(Gu et al., 2015; Hua et al., 2015). Introduction of the Laba1

allele from O. rufipogon into an O. sativa ssp indica back-

ground, which contains a non-functional laba1 allele,

results in a higher concentration of endogenous cytokinins

and higher expression of RESPONSE REGULATOR genes

(Hua et al., 2015), but reduces the number of grains per

panicle and the number of tillers per plant (Gu et al., 2015).

laba1 is a domestication allele found at high frequencies in

cultivated accessions, implying that it was affected by arti-

ficial selection either for awn phenotype or grain yield (Gu

et al., 2015; Hua et al., 2015). LABA1 was detected in the

ePBM/AM and SM samples but not the RM or PBM sam-

ples. Although the function of LOGL1 has not been

reported, the expression patterns of LABA1 and LOGL1

suggest increasing cytokinin activation along the course of

axillary meristem determination (Figure 6d). Such a mech-

anism would support a cytokinin function secondary to the

maintenance of IM and BM, but it is not clear how this

would influence meristem identity or panicle branching at

the molecular level. A type-A RESPONSE REGULATOR

(RR3) is present in cluster 5 (containing genes more highly

expressed in RM), highlighting the possible complexity of

the roles of cytokinins in inflorescence development.

Homeodomain genes and meristem identity

log1 mutants also appear to have reduced HOMEOBOX 1

(OSH1) expression (Kurakawa et al., 2007). OSH1 encodes

a class I Knotted1-like homeobox (KNOX) homeodomain

TF, and the expression of class I KNOX genes in meristems

in the developing inflorescence has been detected by

in situ hybridization (Sentoku et al., 1999). osh1 mutants

have defects in SAM maintenance during vegetative

growth and lower expression of other KNOX genes, and

expression of KNOX genes can be induced by cytokinin

treatment during shoot regeneration (Tsuda et al., 2011).

Another class I KNOX gene, HOMEOBOX 15 (OSH15) is

expressed in a similar pattern to OSH1 (Figure 5), as previ-

ously reported in O. sativa cv. Nipponbare (Sato et al.,

1998), and a third, OSH6, has a peak in expression in the

RM and PBM (Figure 5). OSH1 binds to the upstream

region of the OSH15 locus, and osh1 osh15 double-

mutants have lower induction of OSH6 after treatment with

cytokinin (Tsuda et al., 2011), supporting a role of KNOX

genes in the response to this phytohormone. The higher

expression of OSH1 and OSH15 in indeterminate axillary

meristems is compatible with a function in the promotion

of BM identity. In A. thaliana, cytokinin promotes the

expression of the homeodomain gene WUSCHEL, which

itself enhances cytokinin signalling (Leibfried et al., 2005;

Lindsay et al., 2006; Gordon et al., 2009). wox1 plants car-

rying a likely null mutation in the rice orthologue of

WUSCHEL, WUSCHEL-LIKE HOMEOBOX 1 (WOX1/WUS)

(Nardmann and Werr, 2006), have defects in axillary meris-

tem formation and lower expression of OSH1 (Tanaka

et al., 2015). WOX1 was not detected in the meristem tis-

sues described here, but another WUSCHEL homeobox

(WOX) gene, WOX8, has a peak in expression in RM, and a

third, LOC_Os01 g70810, is predominantly expressed in the

RM and PBM (Figure 5). Although these results and previ-

ous studies support a role of KNOX and WOX genes in the

maintenance of indeterminate meristem identity, possibly

coordinated by phytohormone signalling, more work is

required to elucidate this mechanism.

In A. thaliana, class III homeodomain-leucine-zipper (HD-

Zip) genes are involved in meristem initiation and regula-

tion (Prigge et al., 2005). The class III HD-Zip gene REVO-

LUTA is required for axillary meristem formation (Talbert
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et al., 1995; Otsuga et al., 2001). Seven of the nine anno-

tated class III HD-Zip genes in O. sativa were detected (Fig-

ure 5), including two homologues of REVOLUTA, HOX9

and HOX10 (Prigge and Clark, 2006), which are both highly

expressed in the RM. Three class IV HD-Zip genes, RICE

OUTMOST CELL-SPECIFIC GENE 1 (ROC1), ROC3 and

LOC_Os09g35760, were recovered in cluster 7, containing

genes that had lowest expression in the RM and higher

expression in the samples from axillary meristems. Five of

the eight detected class IV HD-Zip genes and several genes

from other homeobox subclasses, including OSH1, also

follow this pattern (Figure 5). Zea mays class IV HD-Zip

genes are expressed in the outer cell layer of the SAM and

transgenic overexpression of OUTER CELL LAYER 1 delays

flowering (Dep�ege-Fargeix et al., 2011; Javelle et al., 2011).

In rice, several class IV HD-Zip genes have been detected

in the vegetative SAM by in situ hybridization (Ito et al.,

2003), but their role in axillary meristems in the developing

inflorescence has not been explained. There are also smal-

ler groups of homeobox genes that peak in expression in

the SM or RM samples, suggesting multiple roles and pos-

sible redundancy for homeodomain proteins during inflo-

rescence development.

In conclusion, the molecular mechanisms controlling

the meristematic activities that guide panicle develop-

ment in rice remain largely uncharacterized. The dataset

presented here addresses this by describing both the

transcriptome profiles associated with specific meristem

identities and the changes in gene expression that occur

during the early stages of panicle development. A

marked expression switch was evident between apical

and axillary meristems, followed by gradual changes dur-

ing transitions between PBM and SM. This could be

explained by the difference between the fates of the RM,

which aborts after PBM differentiation (Ikeda et al., 2004),

and the axillary meristems, which undergo transition to

determinate SMs. The latter process may be comparable

to the gradual meristem maturation observed during

tomato inflorescence development (Park et al., 2012),

rather than to the continual production of determinate

floral meristems characteristic of the Arabidopsis inflores-

cence meristem. Promising uncharacterized genes were

identified, notable examples including TF genes with

expression patterns similar to known regulators of pani-

cle architecture, and putative hormone-related genes

such as the auxin-responsive genes. Functional studies of

these genes will reveal the mechanics of the regulatory

networks that establish gene expression patterns in

meristems and their control by hormone signalling.

Genes with expression specific to certain meristem types

were also identified, which may prove valuable as marker

genes, for example in developmental studies of mutants

affected in determination of reproductive meristem iden-

tity. Combined with current technology for the creation

of mutants such as CRISPR/Cas9 genome editing, this

dataset promises to accelerate research on the molecular

mechanisms controlling panicle development, which is a

vital for efforts to achieve the sustainable increase in

grain yield required to address population growth.

EXPERIMENTAL PROCEDURES

Plant material and sampling

O. sativa ssp. japonica cv. Nipponbare plants were grown in a
growth chamber with 70% relative humidity at 30°C during the
day and 26°C at night. After 7 weeks under long day conditions
(14 h light and 10 h darkness) plants were transferred to short day
conditions (10 h light and 14 h darkness) to induce floral transi-
tion. Inflorescence meristems were harvested from 6 to 14 days
after the change of photoperiod.

Morphological analysis

Panicles were harvested in FAA (formaldehyde 10%, acetic acid
5%, ethanol 50%), infiltrated under vacuum for 15 min, stored
overnight at 4°C and embedded in paraffin as described by Huijser
et al. (1992). Tissues were cut into 8-lm sections using an RM2155
microtome (Leica, Wetzlar, Germany), mounted on glass slides
and stained with 0.5% w/v toluidine blue for observation with an
Axiophot D1 microscope (Zeiss, Oberkochen, Germany) and
image capture with an Axiocam MRc 5 camera (Zeiss).

Tissue embedding, laser microdissection and sequencing

Each inflorescence was harvested in 2 ml ice-cold 3:1 ethanol:
acetic acid fixative solution, infiltrated twice under a mild vacuum
for 15 min and stored for 20 h in fresh fixative at 4°C. Embedding
for dissection was performed as described by Mantegazza et al.
(2014). Tissues were cut into 8-lm sections on an RM2155 or
RM2255 microtome (Leica) and dissected on a LMD6000 or
LMD7000 laser dissector (Leica). RNA was isolated using the ARC-
TURUS PicoPure RNA Isolation Kit (ThermoFisher, Waltham, MA,
USA) and assayed on a 2100 Bioanalyzer with the RNA 6000 Pico
Kit (Agilent, Santa Clara, CA, USA) before amplification and cDNA
synthesis with the Ovation RNA-Seq System V2 (NuGEN, San Car-
los, CA, USA). Library preparation with the Ovation Ultralow
Library Sytem (NuGEN) and 50-base, single-end sequencing on
the HiSeq 2000 platform (Illumina, San Diego, CA, USA) were per-
formed by IGA Technology Services (Udine, Italy).

RNA in situ hybridization

Samples harvested from the main stem from four developmental
stages of panicle development were embedded in Paraplast X-
TRA (Sigma-Aldrich, St. Louis, MO, USA) as described by Huijser
et al. (1992). Digoxigenin-labelled antisense and sense RNA
probes were generated with the DIG RNA Labelling Kit SP6/T7
(Roche, Penzberg, Germany) according to the manufacturer’s
instructions. To generate the probes, cDNA was amplified using
the following primers: LOC_Os01g04670, 50-GTGTCAAGG-
CATCGCCAAC-30 and 50-CATCAGCTGGCTGCTTTACC-30; LOC_Os
10g04270, 50-TCCCAGTTGACCGAGAACTG-30 and 50-TGAACTTC
CGTCACGAACTCC-30; LOC_Os10g05990, 50-CCTCCGGCAAA-
GAACTGATG-30 and 50-CCGTCATTGGGACTAGTTTGTCAG-30. For
detection of LOC_Os09g27730, a digoxigenin-labelled LNA probe
with the sequence 50-TCTG{A}CGACG{T}GCG{A}C{T}GGT-30 was
synthesised (Eurogentec, Li�ege, Belgium). Hybridization was per-
formed as described by Coen et al. (1990) using an NBT/BCIP
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(Roche) or VECTOR Blue Alkaline Phosphatase Substrate Kit (Vec-
tor Laboratories, Burlingame, CA, USA) for detection.

Data analyses

Analysis of the sequenced libraries was carried out with bash
and R scripts (R Core Team, 2015), which were arranged into a
pipeline using the ruffus package for python3 (Goodstadt, 2010).
All of the code used for the analysis and to generate text, figures
and tables for this report, along with the versions and parame-
ters of the software used, are available with revision history in a
public GitHub repository at https://github.com/evoreprice/lmdPa-
per.

Briefly, adaptor trimming was performed with cutadapt (Mar-
tin, 2011) and reads were mapped against the MSUv7 genome
and annotation (Ouyang et al., 2007; Kawahara et al., 2013)
downloaded from Phytozome 10.3 (Goodstein et al., 2012) using
STAR (Dobin et al., 2012) in 2-pass mode. The ‘quantMode’ argu-
ment of STAR was used for read counting. rRNA and tRNA con-
tamination was estimated using htseq-count (Anders et al., 2014)
to count the number of reads that mapped to regions annotated
as tRNA or rRNA on the Rap-DB (Ohyanagi et al., 2006) or to
regions where reads simulated with wgsim (https://github.com/
lh3/wgsim) from rRNA sequences in the TIGR Plant Repeats Data-
base (Ouyang and Buell, 2004) also mapped. Differential expres-
sion analysis to calculate log2-fold change (L2FC) values and
transformed read counts was performed with the DESeq2 pack-
age (Love et al., 2014). To determine a strict cut-off for unex-
pressed genes, expression values in transcripts per million were
calculated for each gene (Li et al., 2010; Wagner et al., 2012).
These values were compared with pseudoexpression values cal-
culated from intergenic regions of the genome, using intervals of
a similar size distribution to those used for calculating the ‘genic’
expression values. For each library, the cut-off was placed at the
95th percentile of the distribution of intergenic expression values.
Transformed counts and L2FC values from expressed genes were
used for soft clustering with the Mfuzz package (Kumar and
Futschik, 2007) and geneset enrichment analysis with the gage
package (Luo et al., 2009) respectively. Gene lists were analysed
using annotations from several databases, including TIGR (Kawa-
hara et al., 2013), Oryzabase (Kurata and Yamazaki, 2006) and
OGRO (Yamamoto et al., 2012). All plots were produced with the
ggplot2 package (Wickham, 2009).

Accession numbers

All rice genes are referred to by either their locus identifier
(MSUv7; Ouyang et al., 2007) or their official gene symbol pro-
vided on Oryzabase (McCouch, 2008).

Data availability

Sequence data from this article have been deposited with the
National Centre for Biotechnology Information Sequence Read
Archive under accession number SRP067488.
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3. FUNCTIONAL CHARACTERISATION OF ALOG FAMILY GENES, 

G1L1 AND G1L2 IN RICE (Oryza sativa) 

3.1. SUMMARY 

Meristems are groups of pluripotent cells that contribute to plant growth and the development 

of its organs. Based on meristems fate, the rice inflorescence or panicle development has two 

main stages; the indeterminate meristems stage in which the length and number of branches of 

the inflorescence are established by the activities of the inflorescence meristem (IM), branch 

meristems (BMs), and the determinate spikelet meristems (SMs). The timing of determinate SMs 

specification plays an important role in determining the inflorescence architecture and is 

associated with final grain yield. A good example is TAWAWA1 (TAW1) of rice, a member of the 

plant specific ALOG family, which encodes an uncharacterized nuclear protein containing a 

DUF640 domain. The dominant taw1-D mutant delayed the specification of SMs identity 

resulting in more panicle branches. The important role of ALOG genes related to meristem 

function has been reported in other species including Arabidopsis and Tomato. Very little is 

known about other ALOG genes in rice, therefore we investigated the expression dynamics of 

ALOG family members in detail and our results show that two other genes, G1L1 and G1L2, 

showed a similar expression pattern to G1L5/TAW1. We used the CRISPR/Cas9 genome editing 

tool to generate single and double knock out mutant lines for G1L1 and G1L2 to study their 

functional role in rice panicle development. Preliminary results suggest a role for G1L1 and 

G1L2 in controlling the branch numbers and final grain yield of the panicle. 

  



 61 

3.2. INTRODUCTION 

Environmental cues and endogenous flowering pathways induce the switch from vegetative 

to reproductive growth leading to the conversion of the vegetative Shoot Apical Meristem 

(SAM) into the Inflorescence Meristem (IM) (Kobayashi & Weigel, 2007), which activity is 

important for inflorescence development. Crop productivity is largely dependent on 

inflorescence architecture. Variation in inflorescence architecture (length of the main axis and 

branches, number of branches and number of flowers) among species and cultivars determines 

the final yield (MacAlister et al., 2012; Weberling, 1989).  

Rice has a complex determinate inflorescence known as panicle; composed of a main axis called 

rachis with 8-10 nodes each 2-4cm apart, which produce primary, secondary and rarely tertiary 

branches (Hoshikawa, 1989). These branches bear spikelets, which ultimately develop florets, 

which are the rice flowers (Ikeda et al., 2004). The architecture of the rice inflorescence is 

determined by the activities of meristems. The fate of a meristem is specified after a series of 

transitions, starting from shoot apical meristem (SAM) to rachis meristem (RM) or IM that 

produces BMs, which convert to determinate SMs that each finally form a single fully fertile 

flower or floret (Itoh et al., 2005). 

Several genes in rice have been described to understand the molecular mechanism governing 

meristem phase transition especially from BMs to SMs, which is considered a critical step in 

determining the architecture of the inflorescence. A conserved role of rice TERMINAL 

FLOWER/CENTRORADIALIS (RCN) genes, homologs of Arabidopsis TFL1/CEN, has been 

proposed, which repress floral/spikelet meristem identity specification in both distant species and 

its overexpression results in a delay in flowering time and in highly branched inflorescences 

(Nakagawa et al., 2002). However, several studies on UNUSUAL FLORAL ORGANS (UFO) and 

LEAFY (LFY), and its rice orthologs ABERRANT PANICLE ORGANIZATION1 (APO1) and 

APO2, respectively, showed a functional divergence in monocot and eudicot species with respect 

to inflorescence meristem fate. Loss of function mutations in both APO1 and APO2 resulted in 

precocious SMs identity specification and small inflorescences with fewer branches (Wilkinson 

& Haughn, 1995; Ikeda et al., 2005, 2009, 2012). 

The SQUAMOSA PROMOTER BINDING PROTEIN, a transcription factor that binds to the 

promoter of SQUAMOSA, which is a MADS-box gene, was first reported in Antirrhinum majus 

and emerged as an important regulator of a wide range of biological processes. Oryza sativa 
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SQUAMOSA PROMOTER BINDING PROTEIN-LIKE14 (OsSPL14) is encoded by a QTL 

known as the WFP (WEALTHY FARMER PANICLE), that regulates panicle branching, and tiller 

number in rice. The expression of OsSPL14 is post-transcriptionally regulated by OsmiR156 and 

a single point mutation in the OsmiR156 target site resulted in the production of fewer tillers and 

more panicle branches, a highly desired inflorescence phenotype by breeders (Jiao et al., 2010, 

Miura et al., 2010). However, the molecular mechanism by which OsSPL14 regulates panicle 

branching is still not understood and study of its downstream targets may provide a clue to 

understand this regulatory mechanism. PANICLE PHYTOMER2 (PAP2) encodes a MADS-box 

protein named OsMADS34, which belongs to a grass specific subclade of SEPALLATA (SEP) 

subfamily proteins and it controls meristem phase transition from BMs to SMs (Gaoet al., 

2010;Kobayashi et al., 2010). Quadruple knockdown of the three AP1-like genes (OsMADS14, 

OsMADS15 and OsMADS18) and PAP2 block the transition from vegetative to reproductive 

phase and IM identity failed to establish which indicate that these four genes act redundantly to 

determine IM identity (Kobayashi et al., 2012). The function of TERMINAL FLOWER 

1(TFL1)/CENTRORADIALIS (CEN) homologues in rice RCN1 and RCN2 have been 

investigated to understand if there is a similar mechanism underlies inflorescence development. 

In plants overexpressing RCN1 and RCN2 transcripts, were delayed in phase transition and plants 

produced more inflorescence branches (Nakagawa et al., 2002).  Other MADS-box genes SOC1, 

AGL24, SVP, and SEP4 homologs in rice, OsMADS50, OsMADS56, OsMADS22, OsMADS47, 

and OsMADS55 respectively, control inflorescence branching by suppressing RCN genes in 

lateral meristems (Liu et al., 2013), however the putative genetic interactions between these 

genes and other inflorescence determinants are still not elucidated.  

ALOG (Arabidopsis LSH1 & Oryza G1) (Zhao et al., 2004; Yoshida et al., 2009), is a family of 

eukaryotic transcription factors containing a single DUF640 domain that is considered to be 

derived from DNA Binding Domains (DBDs) of mobile and selfish elements (Lyer & Aravind, 

2012), however its DNA-binding specificity and mechanism of action is still not clear. Only few 

members of this family have been studied, the first one identified was Arabidopsis LSH1, which 

showed hypersensitivity to continuous light and regulates hypocotyl length (Zhao et al., 2004). 

Furthermore, in Arabidopsis, two direct transcriptional targets of CUP SHAPED COTYLEDON1  

(CUC1), including LSH3 and LSH4, which are specifically expressed in the boundary region 

between the SAM and lateral organs. Constitutive expression of LSH3 and LSH4 resulted in 
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ectopic meristem formation, which suggests that they are putatively involved in regulation of 

meristem function by modulating meristem cells proliferation and differentiation (Cho and 

Zambryski, 2011; Takeda et al., 2011), however it will be interesting to study the loss-of-

function phenotypes of these LSH genes. In a dominant gain of function mutant of TAW1, an 

enhanced branching of the inflorescence was observed with a higher spikelet number due to a 

delayed switch from BMs to SMs identity. Terminating Flower (TMF), the closest homolog of 

TAW1 in tomato, has been shown to have a similar function.  In the tmf loss-of-function mutant, 

the primary SAMs instead of producing a sympodial inflorescence terminates in a single flower 

(MacAlister et al., 2012). Another TAW1 homolog in maize was identified by transcriptome 

analysis of SAMs during embryogenesis, named ALOG1, and was shown to be expressed in the 

boundaries between SAM and the lateral meristems (Takacs et al., 2012).  
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3.3. MATERIALS AND METHODS 

3.3.1. PLANT MATERIALS AND GROWTH CONDITIONS 

Oryza sativa L. ssp. japonica cv. Nipponbare plants were grown in a growth chamber with 

70% relative humidity at 30°C during the day and 26°C at night. After 8 weeks under long day 

conditions (14 h light and 10 h darkness) plants were transferred to short day conditions (10h 

light and 14h darkness) to induce floral transition. For mRNA expression analysis reproductive 

meristems were collected from young inflorescence harvested from 6 to 14 days after the change 

of photoperiod. Transgenic plants were grown in the greenhouse under short day conditions (10h 

light and 14h darkness) at 28°C day temperature and 24°C night temperature with 80% relative 

humidity. 

3.3.2. Vector Construction and Rice Transformation 

For the generation of single knock-out mutants, for each gene G1L1, G1L2, 20-bp target 

specific protospacers (Table 3.1) were selected using the CRISPR-P database 

(http://cbi.hzau.edu.cn/crispr/) and cloned into the BsaI site of pOs-sgRNA entry vectors shown 

in Figure 3.1 (B) under U3 promoter and then combined into the destination vector containing 

the Cas9 under maize Ubiquitin promoter Figure 3.1 (A) using the Gateway LR Clonase II 

Enzyme mix following the procedure reported by Miao et al. (2013). For double (g1l1, g1l2) 

knockout lines, protospacers were designed containing BsaI sites according to Xie et al. (2015), 

amplified with PCR using the pGTR plasmid as template and then ligated with Golden Gate 

(GG) and assembled with PCR. To make the Polycistronic tRNA-gRNA (PTGs) the PCR 

reaction was purified and digested with FokI and cloned into the destination vector pRGEB32 

shown inFigure1 (C) containing the Cas9 under the control of the UBI promoter. The destination 

vectors were introduced into Agrobacterium tumefaciens strain EH105 and embryogenic calli 

from Oryza sativa L. ssp. Japonica cv. Nipponbare seeds were transformed according to the 

methods described by Hiei et al. (1994) and Toki (1997). 
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Figure 3.1. Schematic representation of the vectors. Destination vector containing cas9, Miao et al. (2013). (A) 
sgRNAplasmid for cloning protospacer (B) and pOS-sgRNA map showing U3 sequence, BsaI site and sgRNA 
scaffold (D). Destination vector for Multiplex CRISPR/Cas9 system (C) by Xie et al. (2015). 

3.3.3. Mutant screening in transgenic plants 

Genomic DNA was extracted from To-hygromycin-resistant plants and genotyped by PCR using 

the Cas9 and gRNA specific primers (Table 3.1). Subsequently, from the positive plants, DNA 

fragments across the target sites were amplified with PCR using the gene-specific primer pairs 

(Table 3.1). The PCR amplicons were purified with isopropanol and sequenced. The sequencing 

chromatograms were analysed carefully for mutations. 

3.3.4. RNA isolation and RT-PCR analysis 

To analyse gene expression, total RNA from different tissues was extracted with the 

NucleoSpin® RNA Plant kit (http://www.mn-net.com) and DNA contamination was removed 

using the TURBO DNA-free™ Kit according to the manufacturer’s instructions 

(https://www.thermofisher.com). The RNA was reverse transcribed using the ImProm-II™ 

Reverse Transcription System (https://ita.promega.com) and the cDNA was used as template in 
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RT-PCR reactions included three different biological. As a control, we amplified rice Elongation 

Factor1 (EF1) fragment for all the samples. Primers used for RT-PCR are given in (Table 3.1). 

3.3.5. In-situ hybridization 

Reproductive meristems harvested from the main stem at different stages of early panicle 

development were embedded in Paraplast X-TRA (http://www.sigmaaldrich.com) as described 

by Huijseret al. (1992). To generate the sense and antisense probes, gene fragments were 

amplified from cDNA using gene specific primers (Table 3.1), cloned into pGEM®-T Easy 

Vector and confirmed by sequencing. Digoxigenin-labeled antisense and sense RNA probes were 

generated with the DIG RNA Labeling Kit SP6/T7 from promega (https://ita.promega.com) 

according to the manufacturer's instructions. Hybridization was performed as described by 

Coenet et al. (1990) using an NBT/BCIP from Promega for detection. 

 
Table 3.1:List of Primers 

PROTOSPACERS FOR SINGLE CRISPR/Cas9 

GENE OLIGOS-ID SEQUENCE 

G1L1  Osp1012 (+ve) GGCACATCCGCGACACGCAGTCCA 

  Osp1013 (-ve) AAACTGGACTGCGTGTCGCGGATG 

G1L2 Osp1016 (+ve) GGCACTGGAGCTGTCGCGGTGCAG 

  Osp1017 (-ve) AAACCTGCACCGCGACAGCTCCAG 

G1L5 Osp1024 (+ve) GGCAGTGCCCCTTCTTCGGCCACC 

  Osp1025 (-ve) AAACGGTGGCCGAAGAAGGGGCAC 

PROTOSPACERS FOR MULTIPLEX CRISPR/Cas9 

GENE OLIGOS-ID SEQUENCE 

G1L1  Osp1271 (+ve) TAGGTCTCACGACACGCAGTCCAGTTTTAGAGCTAGAA 

  Osp1272 (-ve) CGGGTCTCAGTCGCGGATGTGCACCAGCCGGG 

G1L2 Osp1273 (+ve) TAGGTCTCAGTCGCGGTGCAGGTTTTAGAGCTAGAA 

  Osp1274 (-ve) CGGGTCTCACGACAGCTCCAGTGCACCAGCCGGG 
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G1L5 Osp1275 (+ve) TAGGTCTCACTTCTTCGGCCACCGTTTTAGAGCTAGAA 

  Osp1276 (-ve) CGGGTCTCAGAAGAAGGGGCACTGCACCAGCCGGG 

PRIMERS FOR PRODUCING PTGs FOR pRGEB32 VECTOR 

GENE OLIGOS-ID SEQUENCE 

L5AD5F Osp1198 CGGGTCTCAGGCAGGATGGGCAGTCTGGGCAACAAAGCAC 
CAGTGG 

L3AD5R Osp1199 TAGGTCTCCAAACGGATGAGCGACAGCAAACAAAAAAAAAAGC
ACCGACTCG 

S5AD5F Osp1200 CGGGTCTCAGGCAGGATGGGCAGTCTGGGCA 

S3AD5R Osp1201 TAGGTCTCCAAACGGATGAGCGACAGCAAAC 

PRIMERS FOR GENOTYPING TRANSGENIC PLANTS FOR Cas9 

 OLIGOS-ID SEQUENCE 

 Atp5706 (Fw) GTGAAGCTCAATAGAGAGGACC 

 Atp5718 (Rev) CTTGATAATCTTGAGGAGGTCGTGG 

   

PRIMERS FOR AMPLIFYING TARGET SITE 

GENE OLIGOS-ID SEQUENCE 

G1L1 Osp1840 GGAGATGGACATGATCGGCATGG 

 Osp1841 GAAGTGCGCCGGGAACAAGAAGTG 

G1L2 Osp1362 AGGTTTGCTGCTGCTTGTGC 

 Osp1363 TGAGACGAAGACGAGGAGGTG 

G1L5 Osp1837 GCAGATCGACGATGGAGTTCGTG 

 Osp1838 GCTTCTTGCGCTTCTTCTTCTCG 

PRIMERS FOR SEQUENCING TARGET SITE 

GENE OLIGOS-ID SEQUENCE 

G1L1 Osp1842 GCAGGTACGAGTCGCAGAAGC 

G1L2 Osp1362 AGGTTTGCTGCTGCTTGTGC 

G1L5 Osp1837 GCAGATCGACGATGGAGTTCGTG 
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PRIMERS FOR qRT-PCR 

GENE OLIGOS-ID SEQUENCE 

EF1 RT1212 TGGTATGGTGGTGACCTTTG 

 RT1213 GTACCCACGCTTCACATCCT 

G1L1 RT2541 (Fw) GCACACCACACCTACCATGA 

 RT2542 (Rev) GGCTGCAGAGATCGAAGTGT 

G1L2 RT1387 (Fw) TTGCAGTGGTCTTCTTCGCA 

 RT1389 (Rev) AGAGTTTGAGGTGCAGATGTGA 

G1L5 RT2543 (Fw) GAGCTGCTAGCCTCCTACG 

 RT2544 (Rev) GCTAGTAGCAAGAGCAGCCTA 

PRIMERS FOR in-situ HYBRIDIZATION 

GENE OLIGOS-ID SEQUENCE 

G1L1 Osp1384 (Fw) ACACCAAGCAGAAGCAGCAG 

 Osp1385(Rev) ATGCAAATCACCACGCATCC 

G1L2 Osp1387 (Fw) CACACTTCATGCACGGACAC 

 Osp1388(Rev) TGCTATATGCTGCTGATCTCTG 

G1L5 Osp1390 (Fw) GCGTCAGCTACGAGAAGAAG 

 Osp1391(Rev) ATTAGATGCAGTAGCAGCAGC 
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3.4. RESULTS 

3.4.1. THE CHROMOSOMAL LOCATION, GENE STRUCTURE, AND 

CONSERVED DOMAIN OF ALOG FAMILY GENES 

The ALOG family in rice is composed of 10 genes. The locations of ALOG genes on the 12 

rice chromosomes are shown in Figure 3.2. G1L7, G1L4, G1L2, G1 and G1L5/TAW1 are located 

on chromosome 1, 4, 6, 7 and 10 respectively, whereas G1L8 and G1L9 are both located on 

chromosome 5 and the remaining three genes, G1L1, G1L3 and G1L6/TH1 are located on 

chromosome 2. There is no ALOG gene located on chromosome 3, 8, 9, 11 and 12. ALOG 

protein size range from 202 to 284 amino acids while the molecular weight ranges from 21.673 

to 29.165 kDa as shown in Table 3.2. The conserved DUF640 domain is shown in Figure 3.3.  

 
 

 
Figure 3.2. Distribution of ALOG genes on 12 rice chromosomes. Scale correspondent to Chr1. is 45.7 Mb 
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Table 3.2:ALOG family, gene Locus IDs, CDS, Protein length (AA) and Mol. Weight (kDa) 
Gene Name Locus ID CDS (nucleotides) Protein Length 

(Amino Acids) 
Mol. Weight 

(kDa) 

G1 LOC_Os07g04670 831 276 28.496 

G1L1 LOC_Os02g07030 813 270 28.628 

G1L2 LOC_Os06g46030 834 277 29.165 

G1L3 LOC_Os02g41460 630 209 21.808 

G1L4 LOC_Os04g43580 609 202 21.673 

G1L5 (TAW1) LOC_Os10g33780 615 204 21.835 

G1L6 (TH1) LOC_Os02g56610 747 248 25.885 

G1L7 LOC_Os01g61310 639 212 21.743 

G1L8 LOC_Os05g39500 717 238 24.725 

G1L9 LOC_Os05g28040 855 284 29.440 
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Figure 3.3. Sequence alignment of ALOG/DUF640 proteins in rice. 

 
 
 



 
 

72 

3.4.2. EXPRESSION PATTERN OF THE ALOG GENES DURING RICE PANICLE 

DEVELOPMENT AND OTHER TISSUES 

 
Rice inflorescence architecture is determined by the activities of reproductive meristems. 

Reproductive meristems go through quick transformation as soon shoot apical meristem convert 

to IM/RM, which then form branch meristems and finally transform into determinate spikelet 

meristems that differentiate into floral meristems. 

We investigated the expression dynamics of all members of the ALOG family using RNA seq 

data obtained from transcriptome analysis of four different types of reproductive meristems that 

were specifically dissected by laser micro-dissection microscopy (Harrop et al., 2016; see 

chapter 2 of this thesis). We dissected Rachis meristem (RM), Primary branch meristem (PBM), 

Elongated primary branch meristem when it produces axillary meristems (ePBM) and spikelet 

meristem (SM) shown in (Figure 3.4) Our results showed that among the 10 ALOG family 

genes, G1L1, G1L2 and G1L5 (TAW1) are highly expressed in all the four meristem types and 

that the expression pattern of G1L1 and G1L2 was similar to G1L5 (TAW1) and therefore they 

might have a similar function in inflorescence development.  

To investigate the expression patterns of these genes in more detail, we analysed vegetative (root 

tips, whole roots, young leaves, mature leaves, shoot apical meristem), reproductive (i.e Rachis 

meristem or inflorescence meristem, branch meristems and spikelet plus early floret meristems) 

and fruit tissues (i.e milk seeds and mature seeds) by real-time quantitative PCR (RT-qPCR). A 

high expression level for all three genes was observed starting from SAM to PBM and SM. 

G1L1 was low expressed in vegetative tissues except the SAM and showed high expression in 

reproductive meristems, milk seeds and mature seeds. G1L2 was more widely expressed and 

showed high expression in reproductive meristems but was also expressed in vegetative tissues 

including root tips, whole roots, young leaves, SAM and fruit tissue i.e mature seeds. G1L5 was 

expressed in SAM and reproductive meristems and root tips. These results indicate that these 

ALOG genes might play an important role in meristem activities during growth and development 

of the plant organs. 
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Figure 3.4. Gene Expression in Transcript Per Million (TPM) of Rice ALOG family members in four meristem 
types including RM, PBM, ePBM and SM (A). Data retrieved from our study on reproductive meristem 
transcriptome analysis (Harrop et al., 2016; see chapter 2 of this thesis). Expression of the selected genes analysed 
by RT-PCR across different tissues including vegetative, reproductive and fruit tissues (B).  
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3.4.3.EXPRESSION ANALYSIS OF G1L1 AND G1L2 BY IN SITU HYBRIDIZATION 

ACROSS REPRODUCTIVE MERISTEMS DURING EARLY STAGES OF 

PANICLE DEVELOPMENT 

To study the spatial expression pattern of ALOG genes in different meristem types during 

inflorescence development, we selected 2 out of 10 genes i.e G1L1 and G1L2 from the ALOG 

family based on expression data obtained from the transcriptome analysis of 4 types of 

reproductive meristems. We applied the mRNA in situ hybridization technique using highly 

specific antisense digoxigenin-labeled RNA probes. For control experiment, sense digoxigenin-

labeled probes were used as negative control while G1L5 (TAW1) antisense probe was used as 

positive control. Similar to TAW1, both G1L1 and G1L2 genes showed expression in all the 

mersitem types including IM, BMs and SM as shown in Figure 3.5.  

 

 

Figure 3.5. Morphological stages of early panicle development (a-d) showing Rachis Meristem (RM), Primary 
Branch meristem (PBM), Elongated Primary Branch Meristem or Axillary Meristem (ePBM/AM) and Spikelet 
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Meristem (SM). Selected ALOG genes expression pattern analysed by in situ hybridization in four stages. G1L1 
antisense probe (e-h), G1L1 sense probe as negative control (i), G1L2 antisense probe (j-m), G1L2 sense probe (n), 
G1L5 antisense probe (o-r), G1l5 sense probe (s). Scale bars represent 50 µm (a-c) and 100 µm (d-s). 

CRIPR-Cas9 technology 

In order to generate mutants for the ALOG genes we applied the CRISPR-Cas9 technology 

(Miao et al., 2013; Xie et al., 2015) in rice to specifically induce mutation in two ALOG family 

genes, G1L1 and G1L2. For G1L1 (OS02G0166800), which has two exons, sgRNA was 

designed to target the coding sequence in the first exon and was expected to induce mutation in 

this region (397-417 bp from the ATG), as shown in Figure 3.6. Another sgRNA was designed to 

target G1L2 (OS06G0672400), which has a single exon, at 131 bp downstream from the ATG 

start codon (Figure 3.7) and we were expecting mutations 131-151 bp downstream of the start 

codon in the coding sequence of G1L2. To generate double mutants, the sgRNAs for multiplex 

CRISPR/Cas9 were designed targeting the same region as the one used in the single construct. 

Using Agrobacterium mediated transformation, rice embryogenic calli were transformed with the 

single and multiplex CRISPR/Cas9 constructs. Positive plants were selected from regeneration 

on hygromycin containing media and screened for mutations.    

3.4.4. g1l1 LOSS OF FUNCTION MUTANT AND RELATED PHENOTYPE 

From the first round of transformation only two plants were generated. One plant was wild-

type at the target locus whereas the other line was heteroallelic. One allele showed a 6 bp 

(GCAGCT) deletion while the other showed 1 bp (T) deletion. The plant having no mutation in 

G1L1 was used as control and both vegetative and reproductive growth was carefully observed. 

Preliminary phenotypic analysis of the T0 line showed that the g1l1 mutant flowered very late 

and plant height was short compared to the control. For agronomic traits analysis three panicles 

were taken from three tillers coming from the same plant for both the control and g1l1 mutant. 

The mutant exhibited differences in panicle shape and architecture producing fewer branches and 

total number of seeds compared to control plant. The panicle length observed was 13.83 cm in 

control plant while 11.1 cm in mutant. Control plant produced 8 primary and 5.5 secondary 

branches while mutant plant produced 2.67 and 1.5 primary and secondary branches 

respectively.  We also found a significant difference in total number of seeds per panicle, which 

were 40.67 in control compared to 20 seeds per panicle in mutant. g1l1 spikelets were 



 
 

76 

completely sterile and for this reason we were able to analyse only the T0 generation. The data 

presented in Figure 3.6, is obtained from T0 generation. In the second round of transformation 

we have generated several transgenic plants for the single G1L1 CRISPR/Cas9 construct but they 

are still to be analysed. 

3.4.5. g1l2 LOSS OF FUNCTION MUTANT AND RELATED PHENOTYPE 

For the sgRNA targeting G1L2 we obtained 6 independent lines in T0 for G1L2. By 

sequencing we found that 90% of the regenerants were bearing a single bp insertion of either T, 

A, C or a heteroallelic mutation of T insertion on one allele and A insertion on the other allele, 

3bp upstream of the PAM sequence on the target site. In the T1 generation, two mutants that 

were homozygous for the C insertion (Figure 3.7, c), and which have lost the Cas9 were selected 

for further characterization. As given in Figure 3.7, wild type and g1l2 plants showed a slight 

difference in panicle length which was 20 cm in wild type plants compared to 17 cm in the 

mutants and number of Primary Branches (PBs) per panicle were 9 in the wild type plants while 

5.5 in the mutants.  A difference was observed in Secondary Branches (SBs) of the wild type (11 

SBs per panicle) compared to the mutants (5 SBs per panicle). Wild type plants produced on 

average 77 seeds per panicle while mutants produced 36 seeds per panicle. These observations 

were consistent with the T0 generation. No obvious phenotypic affect was observed in vegetative 

organs i.e tiller numbers, number of leaves, plant height and roots. The data presented in Figure 

3.7, is obtained from the T1 generation.  

3.4.6. g1l1 g1l2 DOUBLE MUTANT AND RELATED PHENOTYPE 

For double mutants, we obtained 9 independent transformants, which were genotyped for the 

presence of Cas9 to check the transformation efficiency and it was 100%. All the positive lines 

were sequenced and screened for mutations in both genes, G1L1 and G1L2. We found 7 lines 

carrying mutations on both loci and two lines with only mutations at the G1L2 locus. One line 

shown in Figure 3.8, is biallelic for G1L1 with a 1bp (T) insertion and a 2bp (AG) deletion. The 

same line is also biallelic for G1L2 with a 1bp (T) insertion and a 1bp (A) insertion. Detail for all 

the mutations in the 9 independent lines is shown in Table 3.3. All the independent lines showed 

similar phenotype in the panicle but compared to the single mutants the phenotype was more 

drastic. Control plants from the same transformation but wild-type for both the G1L1 and G1L2 
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loci have a panicle length of 13.83 cm and produced 8 primary and 2.67 secondary branches per 

panicle with average of 40.67 total numbers of seeds per panicle. The double mutants shown 

average panicle length of 13 cm with 5.4 primary and 0.857 secondary branches respectively 

which are less when compared to control plants and single mutants g1l1 or g1l2 as well.  The 

mutants produced fewer panicle branches with less seeds compared to the wild type control. 

Average total numbers of seeds per panicle produced by double mutants were 20.74 compared to 

40.67 in control plants, 20 seeds in g1l1 and 36 in g1l2. Similar to g1l1 single mutant, also in the 

double mutant spikelets were completely sterile. 

 

Figure 3.6. g1l1 loss of function mutant and related phenotype. G1L1 transcript structure representing ATG site (949 
bp downstream of 5' end), protospacer sequence and target site (397 bp upstream of ATG) for gRNA. 
Chromatograms showing Wt. G1L1 genomic sequence (b) and g1l1 mutant with a 6bp (GCAGTC) deletion and a 
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1bp (T) insertion. Phenotypic characterization of Wt. and g1l1 panicle for panicle length, number of primary and 
secondary branches and total number of seeds (d). Mature plants Wt/Control and g1l1 (e). Mature panicle of 
Wt/Control and g1l1 (g). 

 

 

Figure 3.7. g1l2 loss of function mutant and related phenotype. G1L2 transcript structure representing ATG site (765 
bp downstream of 5' end), protospacer sequence and target site (131 bp upstream of ATG) for gRNA. 
Chromatograms showing Wt G1L2 genomic sequence (b) and g1l2 mutant with 1bp C insertion 3bp upstream of 
PAM site. Phenotypic characterization of Wt and g1l2 panicle for panicle length, number of primary and secondary 
branches and total number of seeds (d). Wt (left) and g1l2 (right). Mature panicle of Wt (e) and g1l2 (f). 
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Figure 3.8. g1l1 g1l2 double mutant and related phenotype. Chromatograms representing g1l1 g1l2 double mutant 
showing biallelic mutation for both genes. Single T insertion on one allele and 2bp (AG) deletion on second allele 
for g1l1 (a), 1bp A insertion on one allele and 1bp T insertion on second allele for g1l2. Phenotypic characterization 
of Wt/Control and g1l1 g1l2 panicle for panicle length, number of primary and secondary branches and toatal 
number of seeds (c).Mature panicle of Control (d) and g1l1 g1l2 (e). 
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Table 3.3: Detail of mutations at G1L1 and G1L2 loci for the double mutants g1l1+g1l2 

T0 Plants Cas9 

Mutations 
g1l1 g1l2 

07 +ve 

Allele 1: 1bp insertion (T) 
Allele 2: 2bp deletion (AG) 

Allele 1: 1bp insertion (A) 
Allele 2: 1bp insertion (T) 

13 +ve 

Allele 1: 1bp insertion (T) 
Allele 2: 2bp deletion (AG) 

Allele 1: 1bp insertion (A) 
Allele 2: 1bp insertion (T) 

15 +ve 

Allele 1: Wt 
Allele 2: Wt 

Allele 1: 1bp insertion (T) 
Allele 2: 31 bp deletion 

16 +ve 

Allele 1: 1bp insertion (T) 
Allele 2: 1bp insertion (T) 

Allele 1: 1bp insertion (T) 
Allele 2: 1bp insertion (T) 

17 +ve 

Allele 1: 30 bp deletion 
Allele 2: 21 bp deletion 

Allele 1: 1bp insertion (G) 
Allele 2: 1bp insertion (T) 

18 +ve 

Allele 1: 2bp deletion (AG) 
Allele 2: 1bp insertion (T)  

Allele 1: 1bp insertion (T) 
Allele 2: 1bp insertion (A) 

19 +ve 

Allele 1: 2bp deletion (CT) 
Allele 2:3bp deletion (ACT) 

Allele 1: 1bp insertion (T) 
Allele 2: 1bp insertion (T) 

20 +ve 

Allele 1: Wt 
Allele 2: Wt 

Allele 1: 1bp insertion (G) 
Allele 2: 1bp insertion (T) 

21 +ve 

Allele 1: 1bp insertion (G) 
Allele 2: 1bp insertion (T) 

Allele 1: 1bp insertion (G) 
Allele 2: 1bp insertion (T) 
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3.5. DISCUSSION 

The ALOG family in rice consists of 10 genes distributed on 7 out of 12 chromosomes as 

shown in Figure 3.2. All these genes encode protein with a conserved domain named DUF640 

(domain of unknown function 640) in PFAM database (http://pfam.xfam.org). Phytozome Blast 

(https://phytozome.jgi.doe.gov/pz/portal.html) and NCBI Blast 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed the presence of ALOG members in all the land 

plants including Physcomitrella patens (bryophyte), Selaginella moellendorffii (lycophyte), 

Amborella trichopoda (angiosperm) but not in algae, fungi and animals (data not shown), which 

indicates that ALOG family is specific to land plants and evolved during early evolution. 

Arabidopsis and rice have 10 members each while tomato encodes 11 ALOG family members. 

In rice members of ALOG family are present in all the species including wild type, Oryza 

rufipogon, Oryza barthii and cultivated species, Oryza glaberrima and Oryza sativa (japonica 

and indica), however the number of these genes in each species is not the same.  

Only three members of ALOG family have been studied in rice.  They showed to play roles in 

inflorescence and spikelet development. LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY 

GLUME (ELE) was the first member of the ALOG family to be characterized in rice by Yoshida 

et al. (2009). Its expression was investigated in floral organs where it was only expressed in 

sterile lemma primordia through out development while there was no expression in lemma. Its 

function in specification of the sterile lemma by repressing lemma identity and demonstrates that 

continuous expression of G1 in sterile lemma primordia throughout development is consistent 

with the g1 phenotype in which spikelets display a long sterile lemma. The phenotype of this g1 

mutant is caused by a missense mutation in the conserved domain, which suggests that the 

conserved ALOG domain critical is for protein function. G1 function was further confirmed by 

the fact that the Oryza grandiglumis species, which has a natural allelic variation at the G1 locus, 

also produces spikelets with long sterile lemmas. TRIANGULAR HULL1 (TH1) transcript was 

detected in vascular tissues of lemmas, paleas, inflorescence branches and leaves using in situ 

hybridization. Stronger signal was observed in distal part of the lemma but not in the basal part. 

The th1 mutant reduced the size of tubercles on the surface of the lemma and palea and the 

phenotype was stronger in the distal part of the lemma compared to the basal part which resulted 

in beak like spikelet. However, the number and spatial distribution of tubercles was not affected. 

These findings show that TH1 functions in lemma and palea morphogenesis (Li et al., 2012). 
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Another member of the ALOG family, TAW1 which is expressed in Shoot Apical Meristem 

(SAM), Inflorescence Meristem (IM), Branch Meristems (BMs) and Spikelet Meristems (SMs), 

plays an important role in determining rice inflorescence architecture by delaying SMs identity 

and enhancing BMs activities producing more reproductive branches and higher spikelet 

numbers in the inflorescence. ALOG genes in other species for example LSH3 and LSH4 of 

Arabidopsis are shown to be involved in the regulation of meristem function by modulating 

meristem cells proliferation and differentiation (Cho and Zambryski, 2011; Takeda et al., 2011) 

and Terminating Flower (TMF), a closest homolog of TAW1 in tomato has been shown to have a 

similar and conserved function.  In the tmf mutant the primary SAM instead of producing a 

sympodial inflorescence, terminates in a single flower (MacAlister et al., 2012). All the 

aforementioned reports suggest that ALOG family play important role in inflorescence 

development by putatively regulating meristem activities and function. Here we study two other 

members of the ALOG family, namely G1L1 and G1L2, located on Chr2 and Chr6 and which 

share similar expression patterns with TAW1.   

Our analysis of the RNA-Seq Data from reproductive rice meristems (Harrop et al., 2016) 

revealed that only G1L1, G1L2 and G1L5/TAW1 were expressed in the reproductive meristems. 

The taw1 missense mutation resulted in small inflorescences with fewer branches and grain 

number and this phenotype was even stronger in RNAi lines. Our hypothesis is that the increased 

phenotype of the RNAi lines might be explained by the fact that TAW1 is co-expressed with 

G1L1 and G1L2 and that the RNAi silencing constructs may also be affecting the activity of 

these genes. This suggests that these genes have a redundant function. To investigate the role of 

G1L1 and G1L2 in inflorescence development we performed a functional analysis of these genes. 

The expression pattern of the selected genes was further confirmed by RT-PCR in both 

vegetative and reproductive tissues and also by in-situ hybridization in reproductive meristems. 

Our results demonstrate that G1L1, G1L2 and TAW1 are expressed in all the reproductive 

meristems analysed by RNA-seq, RT-PCR and in-situ hybridization. 

By loss of function mutant analysis, generated with CRISPR/Cas9 genome editing technology, 

we demonstrated that both single mutants g1l1 and g1l2 produced less inflorescence branches 

and reduced grain yield and the phenotype was stronger in the double mutant in respect to the 

single mutants however panicle length was not affected significantly. These results suggest that 

G1L1 and G1L2 control lateral meristem initiation/formation in the inflorescence but unlike 
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TAW1 there was no significant difference observed in flowering time in single and double g1l1, 

g1l2 mutants. It will be interesting to study the triple mutant of G1L1, G1L2 and TAW1 to check 

if there is any functional redundancy between these ALOG genes. 

Meristem size is regulated by the maintenance of the stem cells pool, which replenished after it 

consumes in lateral organs formation (Barton 2010). Mutation in CLV pathway genes enlarge the 

size of meristems, which lead to increase in shoot and inflorescence branches, more flowers and 

ectopic organs formation in flowers and fruits (Laufs et al., 1998). Inflorescence branches and 

grain numbers are determined by reproductive meristems formation, maintenance and 

differentiation. Branching pattern of the inflorescence can also be explained by rate of initiation 

of BMs and transition to SMs (Prusinkiewicz et al., 2007; Park et al., 2014). Studying the 

activities of early reproductive shoot apex while analysing 8 cultivars of japonica rice revealed 

that the initial size of the IM control the number of PBs but has no association with the number 

of spikelets per PB. Spikelet numbers on each primary branch are determined by the cell division 

activity in early reproductive apex (Mu et al 2005). It is also reported that altered inflorescence 

architecture in apo1 and apo2 mutants, having a small panicle with little PBs and SBs compared 

to wild type, is putatively associated with smaller IM displaying reduced cell proliferation rate. 

Overexpression of APO1 resulted in larger IM and highly branched inflorescence (Ikeda et al., 

2009; 2012). Similarly overexpression of SPL14, a regulator of miR156, leads to smaller IM and 

produce smaller inflorescence with fewer branches (Wang et al., 2015).  

Our results indicated that G1L1 and G1L2 might be involved in regulating meristem activities 

and function during inflorescence development. It will be interesting to analyse the meristem size 

in g1l1 and g1l2 mutants to see if the branching phenotype in these mutants is related to 

meristem size. Also by checking the expression of meristem marker gene like OSH1 in the g1l1 

and g1l2 mutant background can further explain the role of these genes in meristem 

maintenance. By investigating co-expression and identifying putative target genes in the mutant 

back ground will further add to our understanding how these genes interact with each other in 

order to regulate panicle branching and grain numbers in rice. 
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4. CONCLUSION AND FUTURE PROSPECTS 

Nowadays functional genomics studies apply sophisticated technologies to gain deep 

understanding of the molecular genetic mechanisms that are underlying important biological 

processes. In rice, which feeds almost half of the world population, the functional 

characterization of genes can help to understand their function and this knowledge can be used 

for classical and modern breeding approaches to improve the yield performance of the crop. This 

thesis focuses on the molecular mechanisms controlling inflorescence development by 

transcriptome analysis using laser microdissected inflorescence meristems. These datasets were 

subsequently used to select genes that putatively control meristem functions and these were 

targeted by a genome editing approach to create mutations in these genes. 

The global population is expected to reach 9.7 billion people by 2050 (United Nation, 2015 

Revision). Population burst of this enormity is placing unprecedented demand on natural 

resources and agriculture production to meet the challenge of growing society’s food need (Foley 

et al., 2011). This combined with effects of global climate change renders meeting with the 

required food production even more challenging. For improving crop productivity, at one side it 

is important to exploit modern technologies and to ensure proper crop and soil management 

practices while limiting degradation of natural resources and environment. On the other side it is 

pertinent to produce new crop varieties that can perform better under different environmental 

constrains like biotic and abiotic stresses and give higher yield with less input (Fan et al., 2012). 

Genetic improvement offers great potential to develop new crop varieties with higher yield 

(Miflin, 2000). Functional genomic studies, which rely on molecular genetics approaches 

(forward and reverse genetic screens) are followed to identify new genes that influence yield 

related traits (McCouch et al., 1995; Ashikari & Matsuoka 2006). Due to the availability of 

sequenced genomes and well established transformation techniques in Arabidopsis and rice, 

molecular genetic approaches are relatively straight forward to identify the genes that regulate 

certain function, compared to conventional breeding approaches which are laborious and time 

consuming (Takeda & Matsuoka 2008). Molecular functional genomic studies help to explore 

the information stored in the genes and regulatory elements of the genome, to decipher the gene 

networks that underlie certain biological pathways and to study the overall functions while 

looking into the phenotypes or responses of mutant alleles to biotic and abiotic stresses. As 
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described in Chapter 1, from 12 rice chromosomes, 55,986 genes (loci) have been identified, of 

which 6,457 have 10,352 additional alternative splicing isoforms reaching to a total of 66,338 

transcripts in the rice genome (http://orygenesdb.cirad.fr/index.html). In an attempt to ascribe 

biological functions to all these predicted genes, a great effort has been done by different groups 

around the globe in generating mutant libraries through Tos17 tagging, T-DNA insertion, 

Ds/dSpm tagging, and chemical/ irradiation mutagenesis.  

Advancement in omics technologies, computational tools and innovation of new genome editing 

methods have greatly eased and speeded up functional genomic research in rice and other model 

organisms. As mentioned in Chapter 1, over the last decade NGS technology is becoming faster 

and cheaper, which can easily be applied to study genes expression pattern in different cells, 

tissues and organs or under different growth conditions. The emerging CRISPR/Cas technology 

can be used to induce specific mutation in one gene, multiple genes, nearly everywhere in the 

genome to elucidate the functional elements in the genome. Genome editing using CRISPR/Cas9 

method can also be applied to induce mutations in QTLs that negatively regulate the agronomic 

traits. The aforementioned approaches have contributed to our understanding and provided 

information on genetic components that can be exploited effectively for crop improvement. In 

rice CRISPR/Cas technology is successfully applied to modify several traits, including herbicide 

tolerance, biotic and abiotic stress response, fertility, architecture and yield by inducing targeted 

mutations in single or multiple genes (Ikeda et al., 2016; Li et al., 2016a,b,c; Osakabe et al., 

2016; Sun et al., 2016; Wang et al., 2016; Xu et al., 2014, 2016; Zhou et al., 2015).  

The molecular mechanisms controlling the meristematic activities that determine panicle 

architecture in rice, which is the focus of this thesis, remain largely uncharacterized. We recently 

published transcriptome datasets for specific inflorescence meristem types providing insight into 

the spatiotemporal expression of genes occuring during early stages of panicle development. 

These data will yield useful information and will set a baseline for reverse genetics approaches to 

understand the molecular mechanisms underlying rice panicle development. We believe that 

functional characterization of genes selected based on expression patterns as reported in this 

thesis will provide in the future deep insight into molecular network involved in inflorescence 

meristems identity specification.  
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4.1 MERISTEMS SPECIFIC TRANSCRIPTOME ANALYSIS  

A complete overview of developmental stages and morphology of the rice inflorescence is 

described in detail in Chapter 1. To decipher the transcriptional changes at the early dynamic 

phase of inflorescence development, starting from the switch to the reproductive phase and 

subsequent initiation of morphologically distinct meristems, we started to analyze the 

morphology of these reproductive meristems to understand better their differences at different 

developmental stages.  Based on this analysis we were able to select 3 distinct stages of 

indeterminate meristems including Inflorescence Meristems (IMs), Primary Branch Meristems 

(PBMs), elongated PBMs/Axillary Meristems (ePBMs/AM) and 1 of the determinate meristems 

Spikelet Meristems (SMs), described in Chapter 2. We used for these studies the japonica rice 

cv., Nipponbare, because of its photoperiod sensitive nature, which allowed us to synchronize 

flowering since the floral transition can be induced by changing the photoperiod after 7 weeks 

from long day conditions (14h light and 10h dark), to short day conditions (10h light and 14h 

dark). The four meristem stages can be harvested starting from 6 to 14 days (Green house) and 

10 to 18 (Phytotron) under short day.  

In last decade several transcriptome studies have been reported in rice, measuring gene 

expression profiles of various developmental stages, i.e transcriptome analysis performed on 48 

organs and tissues through out the life cycle of the rice plant under natural conditions including 

later stages of inflorescence development (Sato et al., 2011); spatiotemporal expression profiling 

of 19 stages covering both vegetative and reproductive phases by microarray analysis (Sharma et 

al., 2012); a global expression profile of young panicles in the OsMADS1-RNAi background 

(Khanday et al., 2013), and genome wide expression profiling of a wild type japonica breeding 

line, 933 and a Clustered-Spikelet mutant sped1-D (Guanghuai et al., 2014). Laser 

microdissection and RNA-seq has also been used for studying the role of MADS-box genes 

controlling inflorescence meristem identity (Kobayashi et al., 2012). In contrast to previous 

transcriptomic datasets, we have defined the precise transcriptome of only the early reproductive 

meristems develop in sequential and time dependent manner following laser dissection combined 

with RNA-seq method in order to restrict the measurement of gene expression to specific 

meristem types providing highly specific and accurate datasets. 

Genes that are coordinately regulated and share similar expression patterns cluster together and 

can yield clues for predicting function of uncharacterized genes if any gene in the cluster has a 
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known function (Mantegazza et al., 2014). By clustering genes, we recovered 8 clusters (1-8), 

each containing genes that exhibit a common pattern of expression demonstrated in Chapter 2. 

A marked change in transcript profile was observed between RM and axillary meristems, 

followed by gradual changes during transitions between PBM and SM. This could be explained 

by the difference between the fates of the rachis meristem, which aborts after PBM 

differentiation (Ikeda et al., 2004), and the axillary meristems, which undergo transition to 

determinate SMs. The latter process may be comparable to the gradual meristem maturation 

observed during tomato inflorescence development (Park et al., 2012), rather than to the 

continual production of determinate floral meristems characteristic of the Arabidopsis 

inflorescence meristem. Numerous new genes were identified, including transcription factor and 

putative hormones related genes potentially controlling meristem activities during panicle 

development based on sharing common expression patterns with known regulators. Functional 

characterization of these genes will contribute to the generation of a genetic model describing the 

regulatory networks that determine inflorescence architecture by controlling reproductive 

meristems identities and specification.  

When performing cell or tissue specific gene expression, there is always the concern that the 

cells or tissue are contaminated even if dissected precisely with a laser microdissector. We 

checked by in-situ hybridization the localization of the expression of four uncharacterized genes 

that are according to the RNA-seq data expressed only in one of the 4 selected stages. These 

experiments confirmed that the expression was really specific for each meristem type. These 

genes with meristem specific expression may be used as marker genes in the future, especially 

for analyzing mutants affected in determinacy of reproductive meristem identity. However, it 

might also interesting to analyze the function of these genes.  

To further confirm the reliability of our data we picked the genes already reported in literature 

and compared the expression to our RNA-seq data and we found the same expression for most of 

the genes we analyzed, however there were a few exceptions but this might be justified by the 

fact that RNA-seq is a sensitive procedure and the results might vary with genetic background of 

the plant as well as the growth conditions.  

Furthermore, the analysis of the ALOG genes as described in chapter 3 showed that also these 

genes are expressed as predicted by our transcriptome datasets. 
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4.2 FROM RNA-SEQ TO GENOME EDITING 

Transcriptome analysis helps to elucidate the quantitative expression dynamic of the 

complete set of transcripts in a specific cell types for a certain developmental stage or 

physiological condition. (Wang et al., 2009). RNA-Seq method, which is rapidly developing has 

the advantage to offer a global view of the transcriptome and its organization for a number of 

cell types in different organisms (Cloonan et al., 2008). Analysing the transcriptome is helpful in 

functional genomic studies, which can help to interpret the biological function of genetic 

elements to understand for example development and diseases (wang et al., 2009). In plants 

many studies on transcriptome analysis have been reported (e.g. Jiang et al., 2014; Kobayashi et 

al., 2012; Mantegazza et al., 2014; Sato et al., 2011; Sharma et al., 2012), in which they have 

presented large gene expression data sets. It is convenient to pick candidate genes from these 

datasets, however to study the function of these genes there is need to generate loss of function 

alleles for these genes. As mentioned in Chapter 1, the limited availability of T-DNA insertion 

lines and limitations associated with random mutagenesis, RNA interference, antisense RNA and 

virus-induced gene silencing make genome editing technology a preferred tool for researchers to 

generate loss of function mutants. Among the current generation of nucleases with capabilities to 

precisely target loci in the genome, the CRISPR/Cas system emerged more rapidly because of 

several advantages, including versatility, simplicity, high efficiency, specificity and acquiescence 

to multiplexing, and for these particular reasons it seems to be immensely promising in plants 

(Sergiu et al., 2017). Moreover by implementing a multiplex approach to target multiple genes 

simultaneously we will be able to elucidate pathways and help engineering of complex 

multigenic yield related traits in crop plants, even when these genes are closely linked in the 

genome (Kumar and Jain 2015). The CRISPR/Cas9 type-II system consists of a Cas9, an 

endonuclease, which is more versatile in terms of genome engineering in many organisms 

(Sontheimer et al., 2015). We successfully applied the CRISPR/Cas9 system for targeted 

mutagenesis in a single gene (Miao et al., 2013) and another multiplex system for generating 

double and triple mutants (Xie et al., 2015). 

Based on our transcriptome data the selected 2 ALOG family genes, G1L1 and G1L2, that were 

co-expression with TAW1, another member of the same family shown to be involved in 

inflorescence development (Yoshida et al., 2013) (Chapter 2). The fact that having high 

sequence similarity plus the mutant phenotype of the single taw1 mutant is enhanced when using 
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an RNAi approach suggests that there could be a functional redundancy between these genes. 

Based on this hypothesis we generated single and multiple knockout mutants (Chapter 3). Based 

on preliminary observations both g1l1 and g1l2 single mutants show a phenotype in panicle 

branching and the phenotype is enhanced in the g1l1 g1l2 double mutant. From this we  can 

conclude that they function independently in regulating panicle development. However the g1l1 

single mutant and double mutant were sterile in the T0 generation complicating deep analysis of 

these genes.. We try to avoid the sterility of these lines by crossing with wild type, as male or 

female and this work is still in progress. Additionally taw1, g1l1 and g1l2 triple mutant lines are 

growing in our greenhouse but at the time of writing this thesis (June 2017) they are not 

flowering yet. At this point we are not yet able to demonstrate if there is a genetic relationship 

between TAW1 and G1L1 and/or G1L2. Moreover further analysis is needed on meristem size of 

the mutant plants and expression analysis of meristem marker genes in these mutants to 

understand better the function of these ALOG genes.   

4.3 FINAL CONCLUSION 

We have shown that transcriptome analysis of morphologically distinct meristems using laser 

microdissection and RNA-Seq, is a reliable approach to study the transcriptional dynamic at 

early stages of rice panicle development. We also combined new technologies like laser 

microdissection and genome editing through CRISPR/Cas9 to evaluate the function of genes 

putatively involved in inflorescence development. Based on the data obtained so far this strategy 

seems to be very promising.   

I believe that the data that we presented here will accelerate research on the molecular 

mechanisms controlling panicle development and will pave the way toward achieving a 

sustainable increase in grain yield required to meet with the challenge of producing enough food 

for the rapidly growing population. 
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