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We present and discuss various one-dimensional linear Fokker–Planck type equations

that have been recently considered in connection with the study of interacting multi-

agent systems. In general, these Fokker–Planck equations describe the evolution in time
of some probability density of the population of agents, typically the distribution of

the personal wealth or of the personal opinion, and are mostly obtained by linear or

bilinear kinetic models of Boltzmann type via some limit procedure. The main feature
of these equations is the presence of variable diffusion, drift coefficients and boundaries,

which introduce new challenging mathematical problems in the study of their long-time
behavior.

Keywords: Kinetic models; Fokker–Planck equations; Relative entropies; Large-time be-

havior

AMS Subject Classification: 35Q84; 82B21; 91D10, 94A17

1. Introduction

Starting from the well-consolidated concept that many laws of nature have a sta-

tistical origin, the mathematical modelling of systems composed by a huge number

of interacting agents has been often and fruitfully based on arguments typical of
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statistical physics. In the last two decades, there has been in fact a trend toward ap-

plications of statistical physics to interdisciplinary fields ranging from the classical

biological context to the new aspects of socio-economic dynamics.28,82,84

In the biological context, a consistent part of the recent research in population

and behavioral biology and ecology has been looking for the emergent behavior of

bird flocks, fish schools or bacteria aggregations.26,27,38,39,40,60,61,62 Other important

examples of emergent behaviors describe building of tumors by cancer cells and

their migration through the tissues.8,9,10,11,70 Further examples refer to the classical

Luria–Delbrück mutation problem,70,74,76,77,99 and to various probabilistic models

of genome evolution describing the size distribution of gene families. 7,51,58,65,69,87

In socio-economic phenomena, systems are composed not by particles but by

humans, and every individual usually interacts with a very limited number of peers,

which appears negligible compared to the total number of people in the system.

Nevertheless, the phenomena are characterized by unexpected global behaviors,

like the formation of very stable curves for the wealth distribution or the emergence

of consensus about a specific issue.

Economics is, by far, one of the human behaviors to which methods bor-

rowed from statistical mechanics for particle systems have been systematically

applied16,29,30,31,32,36,42,63,67,90 (cf. also Ref. 23, 24 for relationships with free bound-

ary problems, and Ref. 35, 78, 98 for connections with finance and micro-economy).

Starting from the original idea developed by Angle,3,4 a variety of both discrete

and continuous models for wealth distribution has been proposed and studied in

view of the relation between parameters in the microscopic rules and the resulting

macroscopic statistics.30,36,42,56,89

Likewise, the dynamics of opinion formation in a multi-agent society has received

growing attention.12,13,14,15,19,20,21,34,41,46,52,53,54,55,91,96 In view of the relation be-

tween parameters in the microscopic interaction rules, the society develops a certain

steady macroscopic opinion distribution,82,84 which characterizes the formation of

a relative consensus around certain opinions.

Other aspects of human behaviors treated by the same methodology include the

formation of knowledge,83 and conviction around a certain opinion 22 (cf. also Ref. 1

for a recent exhaustive survey).

The description of these apparently different phenomena has its common basis in

statistical physics. In particular, methods borrowed from kinetic theory of rarefied

gases have been successfully used to construct master equations of Boltzmann type,

usually referred to as kinetic equations, describing the time-evolution of the number

density of the population and, eventually, the emergence of universal behaviors

through their equilibria.25,82,84

The building block of kinetic theory is represented by binary interactions, which,

similarly to binary interactions between particles velocities in the classical kinetic

theory of rarefied gases, describe the variation law of some selected agent trait, like

its wealth or opinion. Then, the microscopic law of variation of the number density

consequent to the (fixed-in-time) way of interaction, is able to capture both the
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time evolution and the steady profile, in presence of some conservation law. 82,84

In the following, v ∈ I will indicate the value of the selected trait of agents.

Here trait will denote a distinguishing quality or characteristic of the agents (wealth,

opinion, knowledge, conviction and others). Depending on the problem one is dealing

with, the domain I ⊆ R usually denotes a fixed interval, or the positive half-line.

The pair v, w will indicate the values of the selected trait of the pair of agents

before their interaction. The most general binary interaction considered so far can

be uniquely described as follows. When two agents interact, the values v, w of their

traits change into the values v∗, w∗ according to the rule

v∗ = v + P (v)(w − v) +Q(v)η,

w∗ = w + P (w)(v − w) +Q(w)η̃.
(1.1)

The nonnegative functions P and Q contain the details of the interaction, and

measure the intensities of the variation of the trait due to the presence of the other

agent (the function P ), and the variation of the trait due to random effects (the

function Q). In particular, to outline the independence among agents, the random

parameters η and η̃, usually of zero mean and bounded variance, are assumed to

be independent and identically distributed. Since the trait v varies on the domain

I ⊆ R, which can be a fixed interval, or the positive half-line, the functions P and Q

and the random parameters are subject to conditions which assure that the binary

interaction (1.1) maintains the values v∗, w∗ on the same domain I. In particular,

this will imply that Q(0) = 0 if I = R+ and Q(v) = 0 on the boundary of I

whenever I is a bounded interval.

The study of the time-evolution of the distribution of the selected trait v conse-

quent to interactions of type (1.1) among individuals can be obtained by resorting

to kinetic collision-like models.84 Let f = f(v, t) the density of agents which at time

t > 0 are represented by their trait v ∈ I. Then, the time evolution of f(v, t) obeys

to a nonlinear Boltzmann-like equation. This equation can be fruitfully written in

weak form. It corresponds to say that the solution f(v, t) satisfies, for all smooth

functions ϕ(v) (the observable quantities)

d

dt

∫
I

f(v, t)ϕ(v) dv =

1

2

〈∫
I×I

(ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)) f(v, t)f(w, t) dv dw
〉
.

(1.2)

In (1.2) 〈·〉 represents mathematical expectation. Here expectation takes into ac-

count the presence of the random parameters η, η̃ in (1.1).

The meaning of the kinetic equation (1.2) is clear. At any positive time t > 0,

the variation in time of the distribution of the trait v (the left-hand side) is due to

the change in v resulting from interactions of type (1.1) that the system of agents

has at time t. This change is measured by the interaction operator at the right-hand

side.
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Related linear kinetic equations of Boltzmann type are obtained by assuming

that the change in the trait v ∈ I is consequent to interactions with a fixed en-

vironment. In this case, the variation of individual trait in a single (microscopic)

interaction is the result of three different contributes

v∗ = v + PE(v)z − P (v)v +Q(v)η. (1.3)

Unlike the previous case, in (1.3) the intensity of the (nonnegative) variation PE
of the trait v due to the presence of the environment is in general assumed to

be different from P . Here z ∈ I indicates the amount of trait absorbed by the

agent from the environment. In this case the density f(v, t) satisfies, for all smooth

functions ϕ(v) (the observable quantities)

d

dt

∫
I

f(v, t)ϕ(v) dv =
〈∫

I×I
(ϕ(v∗)− ϕ(v)) f(v, t)E(z) dv dz

〉
. (1.4)

The function E(z), z ∈ I denotes the distribution of the environment. As precised

before, to be physically consistent, the functions P , PE and Q and the random

parameter η are subject to conditions which ensure that the binary interaction

(1.1) maintains the values v∗, w∗ on the domain I. Likewise, the distribution E of

the environment will take values on the same domain I.

The kinetic equations (1.2) and (1.4) then describe the evolution of the density,

and allow us to study, at least numerically, the long-time behavior of the system of

agents, by recovering its macroscopic universal behavior.

However, except in some simple case,5,6,90 a precise analytic description of the

emerging equilibria is very difficult to obtain. A further insight into the large-time

behavior of the kinetic equation, and a more accessible description of the possible

stationary states can be achieved by resorting to particular asymptotics which lead

to Fokker-Planck type equations.36,96

This asymptotic procedure is a well-consolidated technique which is reminiscent

of the so-called grazing collision limit, fruitfully applied to the classical Boltzmann

equation,100,101,102 and to the dissipative versions of Kac caricature of a Maxwell

gas 50 introduced in Ref. 86.

In the rest of the paper we will introduce various Fokker–Planck type equations

which arise in the study of socio-economic systems. Section 2 will deal with the

description of the asymptotic procedure which allows us to pass from the kinetic

model of Boltzmann type to the Fokker–Planck description. Various examples which

refer to the evolution of different traits of multi-agent system will be presented and

discussed. Next, Section 3 will be concerned with the main mathematical methods

that have been introduced to study the asymptotic behavior of the solution, and

the rate of convergence to equilibrium. Finally Sections 4 and 5 will be devoted to

some open problems and concluding remarks.
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2. Quasi-invariant limits and Fokker-Planck equations

To start with, let us consider the case of the linear kinetic equation (1.4), and let

us fix the domain I = R+. This corresponds to assume that the trait v can only

assume nonnegative values. Moreover, here and in the rest of the paper the random

parameter η will be limited to assume values on a bounded set, and in addition to

satisfy 〈η〉 = 0 and 〈η2〉 = λ. To avoid inessential difficulties, the distribution of the

environment E(z), z ≥ 0 will possess moments finite at least up to the fourth order.

In particular, the finite average value of the environment will be denoted by ME .

To justify computations, the functions PE(v), vP (v) andQ(v) which characterize

interaction (1.3) will be limited to have at most a linear growth. The following

definition will be used

Definition 2.1. We will say that a function f = f(v), v ∈ R+ has linear growth if

there is a positive constant C such that |f(v)| ≤ C(1 + v), v ∈ R+.

Among observable quantities, besides the mass which is conserved as we can

easily check by letting ϕ = 1 in (1.4), the first representative ones to be studied

are the average value of the density f , as well as its variance. To this aim, choosing

ϕ(v) = v in (1.4) and remarking that (1.3) implies

〈v∗ − v〉 = PE(v)z − P (v)v = A(v, z),

we obtain

d

dt

∫
R+

v f(v, t) dv =

∫
R+×R+

A(v, z)f(v, t)E(z) dv dz. (2.1)

Likewise, since

〈v∗2 − v2〉 = λQ2(v) +A2(v, z) + 2vA(v, z),

d

dt

∫
R+

v2 f(v, t) dv =

∫
R+×R+

(
λQ2(v) +A2(v, z) + 2vA(v, z)

)
f(v, t)E(z) dv dz.

(2.2)

Note that, in view of the condition of linear growth, the boundedness of the moments

of the distribution E is enough to guarantee that the moments at the first two orders

of the solution to equation (1.4) remain bounded at any time t > 0, provided that

they are bounded initially.

Let us suppose now that the interaction (1.3) produces a very small mean change

of the trait. This can be easily achieved by multiplying the functions PE(·) and P (·)
by some value ε, with ε� 1, and the function Q(·) by εα, where the exponent α is

a positive constant. In other words, given a small parameter ε, we will consider the

scaling

PE(·)→ εPE(·), P (·)→ εP (·), Q(·)→ εαQ(·). (2.3)
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Concerning the evolution of the average value (2.1) this scaling will produce a small

variation of the average, independent of the value of the exponent α

d

dt

∫
R+

v f(v, t) dv = ε

∫
R+×R+

A(v, z)f(v, t)E(z) dv dz.

It is clear that, if we want to observe an evolution of the average value independent

of ε,we can resort to a scaling of time. If we set τ = εt, fε(v, τ) = f(v, t), then the

evolution of the average value for fε(v, τ) satisfies

d

dτ

∫
R+

v fε(v, τ) dv =

∫
R+×R+

A(v, z)fε(v, τ)E(z) dv dz,

namely the same evolution law for the average value of f given by (2.1). The reason

is clear. If we assume that the interactions are scaled to produce a very small

change in the trait, to observe an evolution of the average value independent of the

smallness, we need to wait enough time to restore the original evolution.

By using the same scaling (2.3) into the equation (2.2), the evolution equation

for the second moment of fε(v, τ) takes the form

d

dτ

∫
R+

v2 fε(v, τ) dv =∫
R+×R+

(
ε2α−1λQ2(v) + εA2(v, z) + 2vA(v, z)

)
fε(v, τ)E(z) dv dz.

Hence, by choosing α = 1/2 one shows that the evolution of the second moment

of fε(v, τ), for any given ε � 1 depends on all the quantities appearing in the

interaction (1.3), and

d

dτ

∫
R+

v2 fε(v, τ) dv =

∫
R+×R+

(
λQ2(v) + 2vA(v, z)

)
fε(v, τ)E(z) dv dz +Rε(τ),

where the (small) remainder is given by

Rε(τ) = ε

∫
R+×R+

A2(v, z)fε(v, τ)E(z) dv dz.

If the remainder vanishes as ε → 0, one obtains a closed form for the evolution of

the second moment, valid for any value of the small parameter ε. In this case, the

limit evolution equation for a density f(v, τ) reads

d

dτ

∫
R+

v2 f(v, τ) dv =

∫
R+×R+

(
λQ2(v) + 2vA(v, z)

)
f(v, τ)E(z) dv dz. (2.4)

However, one has to note that, while the scaling (2.3), with α = 1/2 is such that

the evolution law of the average value is independent of ε, the limit evolution law of

the second moment, as given by (2.4), is different from the evolution law (2.2). In

particular, for a fixed density f the right-hand side of (2.2) is strictly bigger than

the right-hand side of (2.4). This shows that the variance of the solution to the

kinetic model is strictly bigger than the variance of the (possibile) limit density.
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Analogous computations enable us to study the evolution of moments in the

nonlinear kinetic equation (1.2). In particular, it can be shown that very close

properties for the average value and the second moment continue to hold in presence

of the scaling of the parameters in (1.1). We refer the interested reader to Ref. 36

for further details.

2.1. From Boltzmann to Fokker-Planck

The short discussion about moments of the previous section contains the main mo-

tivations and the mathematical ingredients that justify the passage from the kinetic

model (1.4) to its continuos counterpart given by the Fokker–Planck description.

As before, we restrict here our analysis to the linear model.

Given a smooth function ϕ(v), let us expand in Taylor series ϕ(v∗) around ϕ(v).

Using the scaling (2.3) with α = 1/2 it holds

〈v∗ − v〉 = εA(v, z); 〈(v∗ − v)2〉 = ε2A2(v, z) + ελQ2(v).

Therefore, in terms of powers of ε, we easily obtain the expression

〈ϕ(v∗)− ϕ(v)〉 = ε

(
ϕ′(v)A(v, z) +

1

2
ϕ′′(v)λQ2(v)

)
+Rε(v, z),

where the remainder term Rε, for a suitable 0 ≤ θ ≤ 1 is given by

Rε(v, z) =
1

2
ε2 ϕ′′(v)A2(v, z) +

1

6
〈ϕ′′′(v + θ(v∗ − v))(v∗ − v)3〉, (2.5)

and it is vanishing at the order ε3/2 as ε → 0. Therefore, if as in Section 2 we set

τ = εt, fε(v, τ) = f(v, t), we obtain that the evolution of the (smooth) observable

quantity ϕ(v) is given by

d

dτ

∫
R+

ϕ(v) fε(v, τ) dv =∫
R+×R+

(
ϕ′(v)A(v, z) +

1

2
ϕ′′(v)λQ2(v)

)
fε(v, τ)E(z) dv dz +

1

ε
Rε(τ) =∫

R+

(
ϕ′(v)(PE(v)ME − P (v)v) +

1

2
ϕ′′(v)λQ2(v)

)
fε(v, τ) dv +

1

ε
Rε(τ),

where

Rε(τ) =

∫
R+×R+

Rε(v, z)fε(v, τ)E(z) dv dz,

and Rε is given by (2.5). Letting ε → 0 shows that in consequence of the scaling

(2.3) the weak form of the kinetic model (1.4) is well approximated by the weak

form of a linear Fokker–Planck equation (with variable coefficients)

d

dτ

∫
R+

ϕ(v) g(v, τ) dv =∫
R+

(
ϕ′(v)(PE(v)ME − P (v)v) +

1

2
ϕ′′(v)λQ2(v)

)
g(v, τ) dv.

(2.6)
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In fact, provided the boundary terms produced by the integration by parts vanish,

equation (2.6) coincides with the weak form of the Fokker–Planck equation

∂g

∂τ
=
λ

2

∂2

∂v2

(
Q2(v)g

)
+

∂

∂v
((P (v)v − PE(v)ME)g) . (2.7)

A brief discussion which clarifies the vanishing of the boundary terms will be

carried out in the next subsection. One of the main advantages in resorting to this

asymptotic procedure is that in many cases it is possible to obtain from the Fokker–

Planck equation (2.7) its explicit stationary solution, which is obtained by solving

an ordinary differential equation of first order. We will provide in the remaining

of this section various examples connected with socio-economic applications. As we

will see, most of these applications refer to a standard drift term, which corresponds

to fix both the functions P and PE to be constant. In this simple but relevant case

for applications, the Fokker–Planck equation (2.7) simplifies to

∂g

∂τ
=
λ

2

∂2

∂v2

(
Q2(v)g

)
+

∂

∂v
((v −ME)g) , v ∈ R+. (2.8)

Then, the form of the diffusion coefficient Q determines the characteristics of the

equilibrium distribution.

It is remarkable that the results of this section remain valid also in the case in

which the variable v is allowed to vary on some interval I ⊆ R,96 and in the case of

the bilinear kinetic model (1.2).36

2.2. Boundary conditions

As main example, let us take into account the bilinear model (1.2) with I = R+,

and let us set P (v) = 1. In addition, let us fix the (constant in time) average value

of the solution f(v, t) equal to one. In this case, under the scaling (2.3), the weak

form of the kinetic equation is well-approximated by the Fokker–Planck equation

(in weak form)

d

dτ

∫
R+

ϕ(v)h(v, τ) dv =

∫
R+

ϕ′(v)(1− v)h(v, τ) dv +
λ

2

∫
R+

h(v, τ)Q2(v)ϕ′′(v)dv.

(2.9)

Integration by parts then shows that equation (2.9) coincides with the weak form

of the Fokker–Planck equation

∂h

∂τ
=
λ

2

∂2

∂v2

(
Q2(v)h

)
+

∂

∂v
((v − 1)h) , (2.10)

provided the boundary terms produced by integration vanish. While the vanishing

of the boundary term at infinity follows by choosing initial data with a smooth

and rapid decay, a more detailed analysis is required at the boundary v = 0. In

particular, on this boundary one obtains the conditions

Q2(v)h(v, τ) |v=0 = 0, τ > 0 (2.11)
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and

(v − 1)h(v, τ) +
λ

2

∂

∂v

(
Q2(v)h(v, τ)

)
|v=0 = 0, τ > 0. (2.12)

While condition (2.11) is automatically satisfied for a sufficiently regular density

h, condition (2.12) requires an exact balance between the so-called advective and

diffusive fluxes on the boundary v = 0. This condition is usually referred to as the

no-flux boundary condition.

This condition appears in a natural way by imposing that the solution to the

Fokker–Planck equation (2.10) is mass preserving, which follows from (2.9) by taking

ϕ(v) = 1. The same result holds for the standard form (2.10) if

d

dτ

∫
R+

h(v, τ) dv =

∫
R+

∂

∂v

(
λ

2

∂

∂v

(
Q2(v)h(v, τ)

)
+ (v − 1)h(v, τ)

)
dv = 0,

which is certainly true if (2.12) holds.

Likewise, condition (2.11) appears by imposing that the solution to the Fokker–

Planck equation (2.10) preserves the mean value, provided that the mean value of

the initial density is equal to one. This fact follows from (2.9) by taking ϕ(v) = v.

Remark 2.1. As this example clearly shows, boundary conditions are present

when the space variable in the one-dimensional differential problem is ranging on a

bounded interval, or, more generally, on a half-line. This is a problem that appears

each time one resorts to an asymptotic procedure to pass from a kinetic description

in terms of a Boltzmann-type collision operator to a kinetic description in terms

of a Fokker–Planck-type operator, which involves derivatives with respect to the

spatial variable. Then, as the previous discussion clarifies, the natural boundary

conditions are found by imposing that the solution to the limit equation would

maintain the same macroscopic properties of the solution to the kinetic equation.

In reason of the fact that the solution to the kinetic equation is mass preserving, we

can always assume that the solution to the various Fokker–Planck equations satisfy

no-flux boundary conditions of type (2.12). Then, further conservation properties

at the kinetic level will induce other ad-hoc boundary conditions.

Remark 2.2. Fokker–Planck equations with variable coefficients in presence of

boundary conditions were first studied in a paper by Feller, who treated the case

v ∈ R+ and Q(v) =
√
v, with a general drift term in Ref. 48 (cf. also the book

Ref. 49 for a general view about boundary conditions for diffusion equation). In

particular, the importance of the boundary conditions has been shown in Ref. 48

to be related to the action of the drift term.

2.3. Examples

2.3.1. Wealth distribution

The basic model discussed in this section has been introduced in 2005 in Ref. 36

within the framework of classical models of wealth distribution in economy, to un-
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derstand the possible formation of heavy tails, as predicted by the economic analysis

of the italian economist Vilfredo Pareto.85 This model belongs to a class of models

in which the interacting agents are indistinguishable. In most of these models an

agent’s state at any instant of time t ≥ 0 is completely characterized by his current

wealth v ≥ 0.43,44 When two agents encounter in a trade, their pre-trade wealths v,

w change into the post-trade wealths v∗, w∗ according to the rule 29,30,32

v∗ = p1v + q1w, w∗ = q2v + p2w.

The interaction coefficients pi and qi are non-negative random variables. While

q1 denotes the fraction of the second agent’s wealth transferred to the first agent,

the difference p1 − q2 is the relative gain (or loss) of wealth of the first agent due

to market risks. It is usually assumed that pi and qi have fixed laws, which are

independent of v and w, and of time. This means that the amount of wealth an

agent contributes to a trade is (on the average) proportional to the respective agent’s

wealth.

In Ref. 36 the trade has been modelled to include the idea that wealth changes

hands for a specific reason: one agent intends to invest his wealth in some asset,

property etc. in possession of his trade partner. Typically, such investments bear

some risk, and either provide the buyer with some additional wealth, or lead to the

loss of wealth in a non-deterministic way. An easy realization of this idea consists

in coupling the saving propensity parameter 29,30 with some risky investment that

yields an immediate gain or loss proportional to the current wealth of the investing

agent

v∗ =
(

1− γ + η1

)
v + γw, w∗ =

(
1− γ + η2

)
w + γv, (2.13)

where 0 < γ < 1 is the parameter which identifies the saving propensity, namely

the intuitive behavior which prevents the agent to put in a single trade the whole

amount of his money. In this case

pi = 1− γ + ηi, qi = γ (i = 1, 2).

The coefficients η1, η2 are random parameters, which are independent of v and

w, and distributed so that always v∗, w∗ ≥ 0, i.e. η1, η2 ≥ γ − 1. Unless these

random variables are centered, i.e. 〈η1〉 = 〈η2〉 = 0, it is immediately seen that the

mean wealth is not preserved, but it increases or decreases exponentially (see the

computations in Ref. 36). For centered ηi,

〈v∗ + w∗〉 = (1 + 〈η1〉)v + (1 + 〈η2〉)w = v + w,

implying conservation of the average wealth. Various specific choices for the ηi
have been discussed in Ref. 81. The easiest one leading to interesting results is

ηi = ±r, where each sign comes with probability 1/2. The factor r ∈ (0, γ) should

be understood as the intrinsic risk of the market: it quantifies the fraction of wealth

agents are willing to gamble on. Within this choice, one can display the various

regimes for the steady state of wealth in dependence of γ and r, which follow from
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numerical evaluation. In the zone corresponding to low market risk, the wealth

distribution shows again socialistic behavior with slim tails. Increasing the risk,

one falls into capitalistic, where the wealth distribution displays the desired Pareto

tail. A minimum of saving (γ > 1/2) is necessary for this passage; this is expected

since if wealth is spent too quickly after earning, agents cannot accumulate enough

to become rich. Inside the capitalistic zone , the Pareto index decreases from +∞
at the border with socialist zone to unity. Finally, one can obtain a steady wealth

distribution which is a Dirac delta located at zero. Both risk and saving propensity

are so high that a marginal number of individuals manages to monopolize all of

the society’s wealth. In the long-time limit, these few agents become infinitely rich,

leaving all other agents truly pauper.

The analysis of Ref. 81 essentially shows that the microscopic interaction (2.13)

considered in Ref. 36 is such that the kinetic equation (1.2) is able to describe all

interesting behaviors of wealth distribution in a multiagent society.

The choice in (2.13) corresponds to set in (1.1) P (v) = γ and Q(v) = v. By

assuming 〈η2
i 〉 = λ, for i = 1, 2, and a unitary average value of the initial density,

we obtain that the scaled density satisfies the limit Fokker–Planck equation

∂h

∂τ
=
λ

2

∂2

∂v2

(
v2h
)

+ γ
∂

∂v
((v − 1)h) . (2.14)

It is immediately recognizable that equation (2.14) has a unique stationary solution

of unit mass, given by the Γ-like distribution 18,36

h∞(v) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

v

)
v1+µ

, (2.15)

where

µ = 1 + 2
γ

λ
> 1.

This stationary distribution exhibits a power-law tail for large values of the wealth

variable.

Among the possible generalizations of the models presented in this section, one

of them is related to the statistical description of agent-based models constituted

by agents from n different countries or social groups of individuals which can trade

with each other. These groups shall be identified with countries or social classes

inside a country. The main outcome one expects from this type of models is to

reach stationary profiles for wealth distribution able to capture phenomena which

are present in the recent history of economies, but impossible to obtain on the basis

of binary exchanges in a homogeneous group.

In general, to simplify models without affecting the possibility of a general out-

come, it is adopted the hypothesis that all agents belonging to one group share a

common saving rate parameter. This hypothesis can be further relaxed by assuming

that the saving rate is a random quantity, with a statistical mean which is differ-

ent for different social groups. A general model was proposed in Ref. 45. In case

of an international trade, i.e. when two agents of different countries interact, each
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agent uses the transaction parameter which is characteristic for his country. Hence,

when two agents, one from country i (i = 1, 2, . . . , n) with pre-trade wealth v and

the other from country j (j = 1, 2, . . . , n) with pre-trade wealth w interact, their

post-trade wealths v∗ and w∗ are given by

v∗ = (1− γiγ)v + γjγw + ηijv, (2.16a)

w∗ = (1− γjγ)w + γiγv + ηjiw. (2.16b)

In (2.16), the trade depends on the transaction parameters γ and γi (i = 1, . . . , n),

while the risks of the market are described by ηij (i, j = 1, . . . , n), which are equally

distributed random variables with zero mean and variance λij . The different vari-

ances for domestic trades in each country and for international trades reflect differ-

ent risk structures in these trades. For example, investments and trades inside dif-

ferent countries or markets may be subject to different types and quantities of risk,

and international trading may face additional risks compared to domestic trades.

In the usual scaling (2.3) this general trade leads to a system of Fokker-Planck

equations for the wealth densities gi(v, τ), (i = 1, . . . , n)

∂gi
∂τ

=

n∑
j=1

[ λij
2τij

∂2

∂v2

(
v2ρjgi

)
+

1

τij

∂

∂v

(
(γivρj − γjmj)gi

)]
,

where τij represent suitable relaxation times, and the mi’s are the averages of the

densities.

As observed in Ref. 45 the distributed saving gives rise to an additional interest-

ing feature when a special case is considered where the saving parameter is assumed

to take only two fixed values, preferably widely separated. In this case, the steady

distribution of wealth can result in a bimodal distribution.59 The numerical output

evolves towards a robust and distinct two-peak distribution as the difference in the

two saving parameters is increased systematically.

2.3.2. Knowledge in a society

A similar Fokker–Planck equation has been considered, in connection with the for-

mation of knowledge in a multi-agent society, in Ref. 83. The main reason there was

to understand the joint effect of knowledge and trade in the distribution of wealth.

Let us briefly explain the main motivations about microscopic interactions which

determine the individual knowledge, which can be described as a familiarity with

someone or something unknown, which can include information, facts, descriptions,

or skills acquired through experience or education. Knowledge is in part inherited

from the parents, but the main factor that can enrich it is the environment in which

the individual grows and lives.57,92 Indeed, the experiences that produce knowledge

can not be fully inherited from the parents, such as the genome, but rather are ac-

quired over a lifetime of several elements of the environment. The learning process is

very complicated and produces different results for each individual in a population.



June 30, 2017 15:27 WSPC/INSTRUCTION FILE
Fokker-28-6˙versionesottomessa

13

Although all individuals are given the same opportunities, at the end of the cogni-

tive process every individual appears to have a different level of knowledge. Also,

the personal knowledge is the result of a selection, which leads to retain mostly the

notions that the individuals consider important, and to discard the rest. As noticed

in Ref. 83, this aspect of the process of learning has been recently discussed in a

convincing way by Umberto Eco,47 one of the greatest philosophers and contem-

porary Italian writers. In his fascinating lecture, Eco outlines the importance of a

drastic selection of the surrounding quantity of information, to maintain a certain

degree of ingenuity.

If one agrees with these facts, each microscopic variation of knowledge is in-

terpreted as an interaction where a fraction of the knowledge of the individual is

lost by virtue of the selection, while at the same time the external background (the

surrounding environment) can move a certain amount of its knowledge to the indi-

vidual. If we quantify the nonnegative amount of knowledge of the individual with

v ∈ R+, and with z ∈ R+ the knowledge achieved from the environment in a single

interaction, the new amount of knowledge can be computed using the interaction

(1.3), where the functions P and PE quantify, respectively, the amounts of selec-

tion and external learning, while η is a random parameter which takes into account

the possible unpredictable modifications of the knowledge process. In this model,

it is assumed that the possible random variation of knowledge are proportional to

the knowledge itself. Therefore, Q(v) = v. If one assumes that 〈η2〉 = λ, and that

the average value of the distribution of knowledge in the environment is equal to

ME , it is immediate to recognize that the Fokker–Planck equation for the density

k = k(v, τ) of the agents which possess knowledge v at time τ > 0 is given by

equation (2.7), in which Q(v) = v

∂k

∂τ
=
λ

2

∂2

∂v2

(
v2k
)

+
∂

∂v
((P (v)v − PE(v)ME)k) . (2.17)

2.3.3. The formation of conviction

Our third example concerns the formation of conviction considered in Ref. 22. Con-

viction is typically described as a certain resistance to modify a personal behavior.

How the personal amount of conviction is formed is a very difficult question. In

Ref. 22 it was argued that, among other reasons, responsible of conviction forming

include familiar environment, personal contacts, readings or skills acquired through

experience or education. Moreover, while conviction (at least concerning some as-

pects of life like religious or political beliefs) is in part inherited in the interior of

family from the parents, it is also evident that the main factor that can influence

it is the social background in which the individual grows and lives.79,92 Like in

knowledge formation, although all individuals are given the same opportunities, at

the end of the process every individual appears to have a different level of con-

viction about something. Also, it is almost evident that the personal conviction is

heavily dependent on the individual nature. A consistent part of us is accustomed
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to rethink, and to have continuous afterthoughts on many aspects of our daily de-

cisions. This is particularly true nowadays, where the global access to information

via web gives to each individual a huge number of different information, very often

producing insecurity.

Analogously to the process of knowledge formation, each variation of conviction

is interpreted as an interaction where a fraction of the conviction of the individual

could be lost by virtue of afterthoughts and insecurities, while at the same time the

individual can absorb a certain amount of conviction through the information and

social pressure achieved from the external environment. The individual conviction is

the trait, quantified in terms of a scalar continuous parameter v, ranging from zero

to infinity. Small values of this parameter will characterize floating agents, while

high values will characterize inflexible agents.

Owing to the previous considerations, the variation of individual conviction fol-

lows the law (1.3), where P quantifies the loss of individual conviction due to the

action of afterthoughts and insecurities and PE the amount of conviction absorbed

from the social environment. Finally Q(v)η quantifies the possible unpredictable

modifications of the conviction process. The randomness present in the interaction

is given by the random parameter η, while Q denotes an increasing function of

conviction. This choice is driven by the assumption that random modifications of

conviction are directly proportional to the conviction itself. The typical choice is to

take Q(v) = vν , with 0 < ν ≤ 1.

In Ref. 22 two different situations were considered, both corresponding to the

choice of constant functions P and PE . If P = γ and PE = γE , 〈η2〉 = λ, and

the average value of the distribution of conviction in the environment is equal to

ME , in the scaling (2.3) the density of conviction c(v, τ) satisfies the Fokker–Planck

equation

∂c

∂τ
=
λ

2

∂2

∂v2

(
Q2(v)c

)
+

∂

∂v
((γv − γEME)c) . (2.18)

The explicit form of the steady distribution of conviction then depends on the choice

of a particular function Q. The case in which Q(v) = v leads to a Fokker–Planck

equation similar to (2.14). One obtains

c∞(v) =
C0

v2+2γ/λ
exp

{
−2γEME

γv

}
. (2.19)

In (2.19) the constant C0 is chosen to fix the total mass of c∞(v) equal to one.

Note that the steady profile is heavy tailed, and the size of the polynomial tails is

related to both λ and γ. Hence, the percentage of individuals with high conviction

is increasing as soon as the parameter γ of insecurity is decreasing, and/or the

parameter λ of self-thinking is increasing. It is moreover interesting to note that

the size of the parameter γE is important only in the first part of the v-axis, and

contributes to determine the size of the number of undecided. Like in the case of

wealth distribution, this solution has a large middle class, namely a large part of
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the population with a certain degree of conviction, and a small poor class, namely

a small part of undecided people.

The second case refers to the choice Q(v) =
√
v. Now, people with high convic-

tion is more resistant to change (randomly) with respect to the previous case. On

the other hand, if the conviction is small, v < 1, the individual is less resistant to

change. Direct computations now show that the steady profile is given by

c∞(v) = C0 v
−1+(2γEME)/λ exp

{
−2γ

λ
v

}
,

where again the constant C0 is chosen to fix the total mass of c∞(v) equal to

one. In contrast with the previous case, the distribution decays exponentially to

infinity, thus describing a population in which there are very few agents with a

large conviction. Moreover, this distribution describes a population with a huge

number of undecided agents. Note that, since the exponent of v in c∞ is strictly

bigger than −1, c∞ is integrable for any choice of the relevant parameters.

Other choices of the exponent ν in the range 0 < ν ≤ 1 do not lead to essential

differences. The previous examples show that, despite the simplicity of the kinetic

interaction, by acting on the coefficient of the random part η one can obtain very

different types of steady conviction distributions.

2.3.4. Opinion formation

Our last model is concerned with the problem of opinion formation. A kinetic basis

to this problem has been done in Ref. 96, and we refer to this paper for further

details and references (cf. also Ref. 84). In the pertinent literature, the opinion

trait is usually represented by a number v which takes values in the interval I =

{|v| ≤ 1}, where ±1 represent the extremal opinions. In order to build a possibly

realistic model, this severe limitation has to be coupled with a reasonable physical

interpretation of the process of opinion forming. In other words, the impossibility

of crossing the boundaries has to be a by-product of good modelling of binary

interactions.

The two terms in the binary interaction (1.1) assume now the meaning of com-

promise and self-thinking. In other words, the functions P and Q take into account

the local relevance of compromise and diffusion for a given opinion. Since extremal

opinions can not be crossed, and opinions close to the extremal are considered

more difficult to change, it is consistently assumed that both P (v) and Q(v) are

nonincreasing functions of v2, and in addition Q(v) is equal to zero as v2 = 1.

The most interesting example in Ref. 96 refers to the choice P (v) = 1, and

Q(v) =
√

1− v2. In this case the weak form of the Fokker–Planck equation (2.8)

for the opinion density g(v, τ) is given by

∂g

∂τ
=
λ

2

∂2

∂v2

(
(1− v2)g

)
+

∂

∂v
((v −m)g) , (2.20)
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where |v| ≤ 1, with suitable boundary conditions which guarantee mass and mo-

mentum conservation (cf. the discussion of Section 2.2). The interesting feature of

the Fokker–Planck equation (2.20) is that it leads to close evolution of moments.

The steady-state solution of equation (2.20) solves

λ

2

∂

∂v

(
(1− v2)g

)
+ (v −m)g = 0,

and equals

g∞(v) = cm,λ

(
1

1 + v

)1−(1+m)/λ(
1

1− v

)1−(1−m)/λ

.

The constant cm,λ is such that the mass of g∞ is equal to one. Since −1 < m < 1,

g∞ is integrable on {|v| ≤ 1}. Note that g∞ has no peaks inside the interval, and

as soon as λ > 1 + |m| tends to infinity as v → ±1.

2.4. Further examples

The basic models introduced in the previous sections are the building blocks to study

more realistic situations. Indeed, one realizes that the distribution of wealth in a

society can depend on further aspects of human behavior, like personal knowledge

(cf. Ref. 64 for a detailed study of the relationships between early-life cognition and

late-life financial knowledge). In this case one can fruitfully consider binary trades

in which the outcome of the trade depends on both the wealth and the knowledge.

This problem has been dealt with in Ref. 83, along the following lines. Knowledge is

supposed to evolve along microscopic interactions like the ones described in Section

2.3.2. Then, given two agents A and B characterized by the pair (x, v) (respectively

(y, w)) of knowledge and wealth, the new binary trade between A and B now reads

v∗ =
(

1−Ψ(x)γ + Φ(x)η1

)
v + Ψ(y)γw,

w∗ =
(

1−Ψ(y)γ + Φ(y)η2

)
w + Ψ(x)γv.

(2.21)

In (2.21) the personal saving propensity and risk perception of the agents depends

on their personal knowledge and are contained into the functions Ψ = Ψ(x) and

Φ = Φ(x). In this way, the outcome of binary trade considered in Section 2.3.1 re-

sults from a combined effect of (personal) saving propensity, knowledge and wealth.

Among other possibilities, one reasonable choice is to fix the functions Ψ and Φ as

non-increasing functions. This reflects the idea that the knowledge could be fruit-

fully employed both to improve the result of the outcome and to reduce the risks. In

Ref. 83, the numerical experiments have been done by choosing Ψ(x) = (1 + x)−α

and Φ(x) = (1 + x)−β , with various values of α, β > 0.

The choice of a trade in the form (2.21) induces a limit procedure that generates

in the scaling (2.3) a Fokker-Planck equation for the joint density h = h(x, v, τ) of



June 30, 2017 15:27 WSPC/INSTRUCTION FILE
Fokker-28-6˙versionesottomessa

17

knowledge and wealth

∂h

∂τ
=
δ

2

∂2h

∂x2
+ Φ2(x)

σ

2

∂2h

∂v2
+

∂

∂x
[(xλ(x)− λBM)h] + γ

∂

∂v
[(Ψ(x)v −MW (τ))h] ,

(2.22)

where we denoted

MW (τ) =

〈∫
R2

+

wΨ(y)h(y, w, τ) dy dw

〉
. (2.23)

In the simpler case in which the saving propensity remains a universal constant, so

that Ψ(y) = 1, the drift term in the Fokker-Planck equation (2.22) simplifies, and,

by resorting to the conservation of the mean wealth, one can show that the density

h = h(x, v, τ) solves the equation

∂h

∂τ
=
δ

2

∂2h

∂x2
+ Φ2(x)

σ

2

∂2h

∂v2
+

∂

∂x
[(xλ(x)− λBM)h] + γ

∂

∂v
[(v −MW )h] ,

where now MW represents the (constant) value of the quantity in (2.23). Unlike the

previous cases in which the steady state solution was explicitly found, in presence

of two parameters it seems difficult to extract not only the explicit expression, but

also its essential properties.

3. Large-time behavior of Fokker–Planck equations

The presentation of the previous section clarifies that socio-economic modelling

leads to consider a variety of one-dimensional linear Fokker–Planck equations which

are characterized by the presence of non constant diffusion coefficients, general drift

terms and boundaries. The further interesting features of these Fokker–Planck equa-

tions is that they are closely related to kinetic models based on binary interactions

with natural conservation properties. This characteristic introduces a correct phys-

ical structure on these equations, which in many cases have an explicit stationary

solution, which possesses the essential features which are expected from the mod-

elling assumptions.

The main example is represented by the Fokker–Planck equation for wealth

distribution (2.14), which exhibits a steady state with Pareto tails. Even reducing

the mathematical analysis to Fokker–Planck equations with a standard drift term,

the presence of a diffusion term with variable diffusion coefficient is such that, while

the explicit form of the equilibrium density is available in many cases, the standard

methods which are usually introduced to control the large-time behavior of the

solution, and the possible rate of convergence of the solution towards the equilibrium

fail. A detailed analysis of the differential inequalities which are classically used to

control convergence has been recently done in Ref. 80. This analysis shows that

in general one can not expect, in presence of a diffusion term with non constant

coefficient, exponential convergence in relative entropy of the solution to the Fokker–

Planck equation towards the equilibrium solution.
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In what follows, we enlighten in some details the available techniques, and the

possible results that can be expected for this new group of Fokker–Planck equations.

For the sake of clarity, we will consider only the case of Fokker–Planck equations

which are characterized by a linear drift term and a variable diffusion coefficient.

Given a density f = f(v, τ), where the trait variable v belongs to the domain I, the

prototype of these equations can be fruitfully written in divergence form as

∂f

∂τ
=

∂

∂v

[
∂

∂v
(κ(v)f) + (v −m) f

]
. (3.1)

The diffusion coefficient κ(v) is a nonnegative function. In general κ vanishes only

for v = 0 if it is defined on the half line and in correspondence to the boundaries

of the domain whenever this is bounded. Equation (3.1) covers most of the models

introduced in Section 2.3. The Fokker–Planck equation (2.14) describing the evolu-

tion of wealth, corresponds to the choice κ(v) = (λv2)/2, m = 1 and I = (0,+∞).

Similar choices lead to the Fokker–Planck equations for knowledge formation (2.17),

and to equation (2.18) for conviction. Here, also the case κ(v) = (λv)/2 is impor-

tant to study. Finally, the choice κ(v) = (λ(1− v2))/2, and I = (−1, 1) leads to the

Fokker-Planck equation (2.20) treated in Section 2.3.4.

The stationary solution f∞ of equation (3.1) is found by solving on I ⊆ R the

differential equation

∂

∂v
(κ(v)f∞) + (v −m) f∞ = 0. (3.2)

Equation (3.1) admits many equivalent formulations, each of them useful for various

purposes. For example, since

∂

∂v
(κ(v)f) + (v −m) f = κ(v)f

(
∂

∂v
log(κ(v)f) +

v −m
κ(v)

)
=

κ(v)f

(
∂

∂v
log(κ(v)f)− ∂

∂v
log(κ(v)f∞)

)
= κ(v)f

∂

∂v
log

f

f∞
= κ(v)f∞

∂

∂v

f

f∞
,

we can write the Fokker–Planck equation (3.1) in the equivalent form

∂f

∂τ
=

∂

∂v

[
κ(v)f

∂

∂v
log

f

f∞

]
, (3.3)

which enlightens the role of the logarithm of the quotient f/f∞, and

∂f

∂τ
=

∂

∂v

[
κ(v)f∞

∂

∂v

f

f∞

]
. (3.4)

In particular, owing to (3.2), the form (3.4) allows us to obtain the evolution equa-

tion for the quotient F = f/f∞. Indeed

∂f

∂τ
= f∞

∂F

∂τ
= κ(v)f∞

∂2

∂v2

f

f∞
+

∂

∂v
(κ(v)f∞)

∂

∂v

f

f∞
=

κ(v)f∞
∂2F

∂v2
− (v −m)f∞

∂F

∂v
,
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which shows that F satisfies the equation

∂F

∂τ
= κ(v)

∂2F

∂v2
− (v −m)

∂F

∂v
. (3.5)

Remark 3.1. As discussed in Section 2.2, if mass conservation is imposed on equa-

tion (3.1), and I = (i−, i+) ⊆ R is the allowed domain, we obtain the boundary

conditions

∂

∂v
(κ(v)f(v, τ)) + (v −m)f(v, τ)

∣∣∣∣
v=i±

= 0, τ > 0.

In analogous way, the boundary conditions of the two equivalent forms of the Fokker-

Planck equation (3.1), given by (3.3) and (3.4), follow by imposing mass conserva-

tion. In this case for τ > 0

k(v)f(v, τ)
∂

∂v
log

f(v, τ)

f∞(v)

∣∣∣∣
v=i±

= 0. (3.6)

Likewise, if mass conservation is imposed on equation (3.4), the natural boundary

condition reads for τ > 0

k(v)f∞(v)
∂

∂v

f(v, τ)

f∞(v)

∣∣∣∣
v=i±

= k(v)f∞(v)
∂F (v, τ)

∂v

∣∣∣∣
v=i±

= 0. (3.7)

Remark 3.2. For a suitable choice of the coefficients, equation (3.5) allows us to

obtain in various cases uniform bounds on the ratio F (τ) = f(τ)/f∞, provided that

the same bounds hold for the initial value f0/f∞. In particular, when the maximum

principle is shown to hold for the solution to equation (3.5), all the computations

that will be done in the forthcoming sections are rigorously justified. This is the

case, for example, of the Fokker–Planck equation for wealth distribution (2.14)

introduced in Section 2.3.1, which corresponds to the choice κ(v) = v2, studied in

Ref. 94, and of the Fokker–Planck equation for opinion formation (2.20) considered

in Section 2.3.4. This last equation indeed can be treated in the framework of the

theory developed by Lions and Le Bris in Ref. 75. For this reason, even if a general

result is still missing, we will always assume in the following that the solution

to (3.5) satisfies a maximum principle, and that consequently all the forthcoming

computations are rigorously justified.

3.1. Lyapunov functionals

As it happens for the standard Fokker-Planck equation (cf. for example Ref. 95),

convergence to the stationary state can be achieved by looking at the monotonicity

in time of various Lyapunov functionals of the solution. The typical one is the

relative Shannon entropy. Let f , g : I ⊂ R −→ R+ denote two probability densities.

Then, the relative Shannon entropy of f and g is defined by the formula

H(f, g) =

∫
I

f(v) log
f(v)

g(v)
dv. (3.8)
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As proven in Ref. 2, whenever g = f∞, and the classical Fokker–Planck equation

is considered (i.e. κ(v) = 1 and m = 0), other Lyapunov functionals are shown to

decrease monotonically in time.

The same property holds true for the Fokker–Planck equation (3.1). This follows

easily from the following

Proposition 3.1. Let F (v, τ) be the solution to equation (3.5) in I = (i−, i+) ⊆ R.

Then, if Ψ(v) is a smooth function such that

|Ψ(i±)| ≤ c <∞, (3.9)

the following equality holds∫
I

f∞(v)Ψ(v)
∂F (v, τ)

∂τ
dv = −

∫
I

κ(v)f∞(v)
∂Ψ(v)

∂v

∂F (v, τ)

∂v
dv. (3.10)

Proof. The proof of (3.10) is immediate. Indeed, since F (v, τ) satisfies (3.5), then∫
I

f∞(v)Ψ(v)
∂F (v, τ)

∂τ
dv =∫

I

(
Ψ(v)κ(v)f∞(v)

∂2F (v, τ)

∂v2
− (v −m)f∞(v)Ψ(v)

∂F (v, τ)

∂v

)
dv =

Ψ(v)κ(v)f∞(v)
∂F (v, τ)

∂v

∣∣∣∣i+
i−

−
∫
I

∂F (v, τ)

∂v

∂

∂v
(κ(v)f∞(v)Ψ(v)) dv+

−
∫
I

Ψ(v)(v −m)f∞(v)
∂F (v, τ)

∂v
dv =

−
∫
I

κ(v)f∞(v)
∂F (v, τ)

∂v

∂Ψ(v)

∂v
dv+

−
∫
I

Ψ(v)

(
∂

∂v
(κ(v)f∞(v)) + (v −m)f∞(v)

)
∂F (v, τ)

∂v
dv =

−
∫
I

κ(v)f∞(v)
∂F (v, τ)

∂v

∂Ψ(v)

∂v
dv.

Indeed, the border term vanishes in view of conditions (3.9) and (3.7), and we used

(3.2) on the last line to conclude.

Proposition 3.1 has important consequences, we prove in the following

Theorem 3.1. Let the smooth function Φ(x), x ∈ R+ be convex. Then, if F (v, τ)

is the solution to equation (3.5) in I = (i−, i+) ⊆ R, and c ≤ F (v, τ) ≤ C for some

positive constants c < C, the functional

Θ(F (τ)) =

∫
I

f∞(v)Φ(F (v, τ)) dv

is monotonically decreasing in time, and the following equality holds

d

dτ
Θ(F (τ)) = −IΘ(F (τ)), (3.11)
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where IΘ denotes the nonnegative quantity

IΘ(F (τ)) =

∫
I

κ(v)f∞(v)Φ′′(F (v, τ))

∣∣∣∣∂F (v, τ)

∂v

∣∣∣∣2 dv. (3.12)

Proof. Since the integral defining Θ(F (τ)) is uniformly bounded, we get

d

dτ
Θ(F (τ)) =

∫
I

f∞(v)Φ′(F (v, τ))
∂F (v, τ)

∂τ
dv.

Then, we apply Proposition 3.1 with Ψ(v) = Φ′(F (v, τ)) with fixed τ > 0.

Remark 3.3. Theorem 3.1 shows that the decay of convex functionals along the

solution to the Fokker–Planck equation (3.1) does not depend on the presence of

the weight κ. However, the weight κ is present in the rate of decay. As we will see,

this represents a major obstacle in determining precise rates of convergence.

We list below various leading examples of functionals that can be used to look

for the large-time behavior of the solution to equation (3.1).

The relative Shannon entropy. The Shannon entropy of f relative to f∞, defined by

(3.8) with g = f∞, is obtained by choosing Φ(x) = x log x. In this case

IΘ(F (τ)) =

∫
I

κ(v)f∞(v)
1

F (v, τ)

∣∣∣∣∂F (v, τ)

∂v

∣∣∣∣2 dv.
This quantity is usually referred to as entropy production and we will denote it by

Iκ(f(τ), f∞). So formula (3.11) applied to the relative Shannon entropy reads

d

dτ
H(f(τ), f∞) = −Iκ(f(τ), f∞). (3.13)

It is interesting to remark that Iκ(f(τ), f∞) can be written in two equivalent ways.

A first expression is obtained by observing that f∞ = f/F . In this case we obtain

Iκ(f(τ), f∞) =

∫
I

κ(v)f∞(v)
1

F (v, τ)

∣∣∣∣∂F (v, τ)

∂v

∣∣∣∣2 dv =∫
I

κ(v)f(v, τ)
1

F 2(v, τ)

∣∣∣∣∂F (v, τ)

∂v

∣∣∣∣2 dv =∫
I

κ(v)f(v, τ)

∣∣∣∣∂ logF (v, τ)

∂v

∣∣∣∣2 dv =∫
I

κ(v)f(v, τ)

(
∂vf(v, τ)

f(v, τ)
− ∂vf∞(v)

f∞(v)

)2

dv.

(3.14)

If κ = 1, the entropy production induced by the relative Shannon entropy is known

with the name of Fisher information of f relative to f∞. In general, one can intro-

duce the following
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Definition 3.1. Let f and g be two (smooth) probability densities, and let κ be a

nonnegative function. Then, the Fisher information of f relative to g weighted by

κ is

Iκ(f, g) =

∫
I

κ(v)f(v)

(
∂vf(v)

f(v)
− ∂vg(v)

g(v)

)2

dv. (3.15)

In addition to (3.14), a second fruitful expression of the Fisher information of f

relative to f∞ is obtained in the following way68∫
I

κ(v)f∞(v)
1

F (v, τ)

∣∣∣∣∂F (v, τ)

∂v

∣∣∣∣2 dv =

∫
I

κ(v)f∞(v)

∣∣∣∣ 1

F 1/2(v, τ)

∂F (v, τ)

∂v

∣∣∣∣2 dv =

4

∫
I

κ(v)f∞(v)

∣∣∣∣∣∂
√
F (v, τ)

∂v

∣∣∣∣∣
2

dv = 4

∫
I

κ(v)f∞(v)

∣∣∣∣∣ ∂∂v
√
f(v, τ)

f∞

∣∣∣∣∣
2

dv.

(3.16)

Hence, for a given probability density f

Iκ(f(τ), f∞) = 4

∫
I

κ(v)f∞(v)

∣∣∣∣∣ ∂∂v
√
f(v, τ)

f∞(v)

∣∣∣∣∣
2

dv. (3.17)

Weighted L2–distance. A second example is furnished by the choice Φ(x) = (x−1)2.

In this case, the quantity Θ(F (τ)) gives the (weighted by f−1
∞ ) L2–distance of the

solution to the Fokker–Planck equation from f∞ itself.2

L2(f(τ), f∞) =

∫
I

f∞(v) (F (v, τ)− 1)
2
dv =

∫
I

f−1
∞ (v) (f(v, τ)− f∞(v))

2
dv.

(3.18)

Then, formula (3.11) shows that

d

dτ
L2(f(τ), f∞) = −Jκ(f(τ), f∞), (3.19)

where the entropy production relative to L2 is given by the nonnegative expression

Jκ(f(τ), f∞) = 2

∫
I

κ(v)f∞(v)

∣∣∣∣ ∂∂v f(v, τ)

f∞(v)

∣∣∣∣2 dv. (3.20)

Hellinger distance. A third example of Lyapunov functional refers to the choice

Φ(x) = (
√
x−1)2. In this case the Lyapunov functional Θ(F (τ)) coincides with the

square of the Hellinger distance of f(τ) and f∞

d2
H(f(τ), f∞) =

∫
I

f∞(v)
(√

F (v, τ)− 1
)2

dv =

∫
I

(√
f(v, τ)−

√
f∞(v)

)2

dv.

Indeed, the Hellinger distance is defined as follows.

Definition 3.2. For any given pair of nonnegative functions f and g defined on a

subset I ⊂ R, the Hellinger distance dH(f, g) is66,103

dH(f, g) =

(∫
I

(√
f(v)−

√
g(v)

)2

dv

) 1
2

. (3.21)
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Applying formula (3.12) shows that

d

dτ
d2
H(f(τ), f∞) = −Dκ(f(τ), f∞), (3.22)

where the entropy production relative to d2
H is easily computed to give the nonne-

gative expression

Dκ(f(τ), f∞) = 8

∫
I

κ(v)f∞(v)

∣∣∣∣∣ ∂∂v 4

√
f(v, τ)

f∞(v)

∣∣∣∣∣
2

dv. (3.23)

Reverse relative Shannon entropy. Our last example refers to the choice Φ(x) =

− log x. In contrast with the case Φ(x) = x log x the Lyapunov functional Θ(F (τ))

is given by the Shannon entropy of f∞ relative to f(τ)

H(f∞, f(τ)) =

∫
I

f∞(v) log
f∞(v)

f(v, τ)
dv. (3.24)

Applying formula (3.11) to (3.24) shows that

d

dτ
H(f∞, f(τ)) = −Ĩκ(f∞, f(τ)),

where this time the entropy production Ĩκ has the nonnegative expression

Ĩκ(f∞, f(τ)) =

∫
I

κ(v)f∞(v)

∣∣∣∣ ∂∂v log
f(v, τ)

f∞(v)

∣∣∣∣2 dv. (3.25)

For a given constant α, with 0 < α < 1 let us consider the particular solution to the

Fokker–Planck equation (3.1) given by αf(τ) + (1− α)f∞ and its relative entropy

Hα(f∞, f(τ)) := H(f∞, αf(τ) + (1− α)f∞). (3.26)

If α = 1/2, the entropy Hα is known with the name of Jensen-Shannon entropy.73

This class of entropies has been introduced and studied in information theory mainly

in view of their equivalence to the Hellinger distance.73,88,93 We will be back on these

entropies in Section 4.

Remark 3.4. The notion of Jensen-Shannon relative entropy suggests to consider

closely related relative entropies, like the following

Definition 3.3. For any pair of probability densities f and g taking values on

I ⊆ R and α ∈ [0, 1) we define the weighted Jensen–Shannon entropy by

H̃α(f, g) =
1

(1− α)2

∫
I

g(v) log
g(v)

αg(v) + (1− α)f(v)
dv.

This class of entropies connects the relative Shannon entropy (3.8), achieved when

α = 0

H̃0(f, g) = H(g, f) =

∫
g(v) log

g(v)

f(v)
dv,
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to a weighted L2–distance between f and g (see Ref.2). Indeed we have

Proposition 3.2. For any pair of probability densities f and g defined on a subset

I ⊂ R it holds

H̃1(f, g) := lim
α→1

H̃α(f, g) =
1

2
L2(f, g) =

1

2

∫
I

(f(v)− g(v))2

g(v)
dv.

Proof. We apply De l’Hôpital formula twice and we get

lim
α→1

H̃α(f, g) = lim
α→1

1

2(1− α)

∫
I

g(v)
g(v)− f(v)

αg(v) + (1− α)f(v)
dv =

lim
α→1

1

2

∫
I

g(v)
(g(v)− f(v))2

(αg(v) + (1− α)f(v))2
dv =

1

2

∫
I

(f(v)− g(v))2

g(v)
dv =

1

2
L2(f, g),

where L2(f, g) is given by (3.18).

Remark 3.5. All the expressions of the entropy production we found above share

a common feature. Indeed, they all are expressed as

IΘ(F (τ)) =

∫
I

κ(v)f∞(v)

∣∣∣∣ ∂∂vφ(F (v, τ))

∣∣∣∣2 dv, (3.27)

where φ(x) = cδx
δ in the first three cases (respectively δ = 1/2, 1 and 1/4), and

φ(x) = log x in (3.25).

Remark 3.6. Concerning the standard relative Shannon entropy (3.8), it is re-

markable that H(f(τ), f∞) and H(f∞, f(τ)) give rise to different entropy produc-

tions, given by (3.17) and (3.25) respectively. While the former has been investigated

in details,68,95 the study of the latter, at least to our knowledge, is not present in

the pertinent literature.

Remark 3.7. If we set I = R, κ(v) = 1 and m = 0, we reduce to the classical

one-dimensional Fokker–Planck equation

∂g

∂τ
=
∂2g

∂v2
+

∂

∂v
(vg) , v ∈ R. (3.28)

In this case, the steady state is given by the Maxwellian (Gaussian) density

f∞(v) = M(v) =
1√
2π
e−

v2

2 , (3.29)

and the relation

d

dτ
H(f(τ),M) = −I(f(τ),M) (3.30)

coupled with the log–Sobolev inequality (cf. for example Ref. 95)

H(f(τ),M) ≤ 1

2
I(f(τ),M)
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leads to exponential decay to zero of the relative entropy. 95,97 We denoted by I(f, g)

the standard relative Fisher information between the two densities f and g

I(f, g) =

∫
I

f(v)

(
∂vf(v)

f(v)
− ∂vg(v)

g(v)

)2

dv. (3.31)

Then, Csiszár–Kullback–Pinsker inequality37,72

‖f − g‖2L1 ≤ 2H(f, g)

permits to prove exponential convergence in L1 to the Maxwellian density.

If the diffusion weight κ(v) is not constant, the analogous of the log–Sobolev

inequality is not available.80 This leads to the challenging problem of investigating

whether it is still possible to control the relative Shannon entropy with the weighted

relative Fisher information, or, in alternative, if one can obtain a lower bound on

the relative weighted Fisher information in order to prove convergence of a generic

solution f(τ) to the stationary state in some sense and at a certain rate.

3.2. Steady states and Chernoff-type inequalities

In Ref. 68, Johnson and Barron showed that for the classical Fokker–Planck equa-

tion (3.28) it is possible to prove convergence in L1 to the Maxwellian equilibrium

without resorting to the log–Sobolev inequality, at the price of loosing the exponen-

tial rate of convergence. Indeed, since the relative entropy is decreasing and relation

(3.30) holds true, for any τ > 0 it holds

H(f(τ),M)−H(f(0),M) = −
∫ τ

0

I(f(s),M) ds.

In particular, for all τ > 0∫ τ

0

I(f(s),M) ds ≤ H(f(0),M),

which shows that I(f(τ),M) ∈ L1(0,∞). Consequently there is at least a diverging

sequence of times {τk} such that

lim
k→∞

I(f(τk),M) = 0. (3.32)

In order to avoid the restriction to a sequence, and to pass from the vanishing of the

relative Fisher information into a genuine distance, Johnson and Barron made use

of a well-known inequality in probability theory, the Chernoff inequality33, coupled

with the Hellinger distance. Let us first recall the original result of Chernoff.

Theorem 3.2 (Chernoff). Let X be a Gaussian random variable distributed with

density M given as in (3.29). If the function φ is absolutely continuous and φ(X)

has finite variance, then

V ar[φ(X)] ≤ E[φ′(X)]2 (3.33)
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with equality if and only if φ(X) is linear in X.

In analytical terms, inequality (3.33) reads∫
R

(
φ(v)−

(∫
R
φ(v)M(v) dv

))2

M(v) dv ≤
∫
R
M(v) (φ′(v))

2
dv. (3.34)

Inequality (3.34) allows us to connect the relative Fisher information (3.31) with the

Hellinger distance.68 In view of expression (3.17), written for κ = 1 and f∞ = M ,

let us apply inequality (3.34) with φ(v) =
√
f(v, τ)/M(v) for fixed τ > 0. Since the

solution f(τ) of the classical Fokker–Planck equation has an explicit expression as a

convolution between the initial density f0 and the Gaussian kernel,
√
f(v, τ)/M(v)

is smooth enough to satisfy the assumptions in Chernoff theorem. Recalling that

f(τ) and M are probability density functions, we get∫
R
M(v)

(
∂v

√
f(v, τ)

M(v)

)2

dv ≥

∫
R

(√
f(v, τ)

M(v)
−

(∫
R

√
f(v, τ)

M(v)
M(v) dv

))2

M(v) dv =

∫
R

(√
f(v, τ)

M(v)

)2

M(v) dv −

(∫
R

√
f(v, τ)

M(v)
M(v) dv

)2

=

∫
R
f(v, τ) dv −

(∫
R

√
f(v, τ)M(v) dv

)2

=

1−
(∫

R

√
f(v, τ)M(v) dv

)2

.

Hence we have

I(f(τ),M) ≥ 4

(
1−

(∫
R

√
f(v, τ)M(v) dv

)2
)
. (3.35)

It is immediate to relate the right-hand side of the previous inequality to the

Hellinger distance. Indeed, whenever f and g are probability density functions∫
R

(√
f(v)−

√
g(v)

)2

dv =

∫
R

(
f(v) + g(v)− 2

√
f(v) g(v)

)
dv =

2

(
1−

∫
R

√
f(v) g(v) dv

)
≤ 2

(
1−

(∫
R

√
f(v) g(v) dv

)2
)
.

(3.36)

The last inequality in (3.36) follows by Cauchy–Schwartz inequality. Finally, (3.35)

and (3.36) imply

I(f(τ),M) ≥ 2dH(f(τ),M)2, τ > 0 (3.37)

and, by (3.32)

lim
k→∞

dH(f(τk),M) = 0.
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To use a similar approach for the Fokker–Planck equation (3.1), one needs a lower

bound for the relative weighted Fisher information (3.15) in terms of the Hellinger

distance. Indeed, if

Iκ(f(τ), f∞) ≥ 2dH(f(τ), f∞)2, τ > 0 (3.38)

by (3.13) we would conclude. Note that in reason of (3.16), inequality (3.38) is a

weighted Chernoff-type inequality for the probability density f∞.

The interest in this type of proof is related to the fact that, while log-Sobolev

type inequalities are very difficult to achieve for a general steady state f∞, Chernoff-

type inequalities have been shown to be more flexible, and to hold for various

probability density functions.71 Surprisingly enough, the Fokker–Planck equation

(3.1) permits to establish a key differential relationship between its steady state

f∞ and the weight κ which furnishes a direct way to reobtain the Chernoff-type

inequalities of Klaassen in Ref. 71 for the probability density f∞ with a sharp

constant.

In other words, the differential equation which defines the steady state f∞ of

the Fokker–Planck equation (3.1) is the relationship which enables us to prove the

Chernoff-type inequality for the probability density f∞, and characterizes in a sharp

way the weight associated to f∞. We prove

Theorem 3.3 (Chernoff with weight). Let X be a random variable distributed

with density f∞(v), v ∈ I ⊆ R, where the probability density function f∞ satisfies

the differential equality

∂

∂v
(κ(v)f∞) + (v −m) f∞ = 0, v ∈ I. (3.39)

If the function φ is absolutely continuous on I and φ(X) has finite variance, then

V ar[φ(X)] ≤ E
{
κ(X)[φ′(X)]2

}
(3.40)

with equality if and only if φ(X) is linear in X.

Remark 3.8. While generalized weighted Chernoff–type inequalities involving

probability densities different from the normal density already exist in literature

(cf. for example Ref. 71), the main novelty here is to point out the deep relation-

ship between the weight κ and the density f∞, which naturally appears by looking

for the stationary state (of unit mass) of the Fokker–Planck equation (3.1).

Proof. For any given v ∈ I and constant value m ∈ I, let r(v, t) be defined as

r(v, t) = (v −m)t+m, 0 ≤ t ≤ 1

so that r(v, 0) = m and r(v, 1) = v. Let ṙ(v, t) denote the partial derivative of r

with respect to t. Thanks to the gradient theorem, for any given (smooth) function

φ(v) we have

φ(v)− φ(m) =

∫ 1

0

φ′(r(v, t))ṙ(v, t)dt =

∫ 1

0

φ′(r(v, t))(v −m)dt,
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so that, by Jensen’s inequality

(φ(v)− φ(m))
2 ≤

∫ 1

0

[φ′(r(v, t))(v −m)]
2
dt. (3.41)

On the other hand, for any probability density function f∞, we have the elementary

inequality∫
I

φ2(v)f∞(v) dv −
(∫

I

φ(v)f∞(v) dv

)2

≤
∫
I

(φ(v)− φ(m))2f∞(v) dv.

Hence, by (3.41)

V ar[φ(X)] ≤
∫
I

(φ(v)−φ(m))2f∞(v) dv ≤
∫
I

f∞(v) (v−m)2

∫ 1

0

(φ′(r(v, t)))
2
dt dv.

(3.42)

By virtue of (3.39)∫
I

(v −m)2f∞(v)

∫ 1

0

(φ′(r(v, t)))2 dt dv =

−
∫
I

(v −m)
∂

∂v
[κ(v)f∞(v)]

∫ 1

0

(φ′(r(v, t)))2 dt dv ≤∫
I

κ(v)f∞(v)
∂

∂v

[
(v −m)

∫ 1

0

(φ′(r(v, t)))2 dt

]
dv.

(3.43)

In (3.43), we used integration by parts to get the last line. Indeed here the border

term satisfies

− (v −m)κ(v)f∞(v)

∫ 1

0

(φ′(r(v, t)))2 dt

∣∣∣∣i+
i−

≤ 0. (3.44)

When I is a bounded interval, inequality (3.44) is a consequence of the fact that

i− < m < i+, while κ ≥ 0. When I = R+ inequality (3.44) is proven by considering

that, since m is a positive bounded constant,

lim
v→∞

(v −m)κ(v)f∞(v) ≥ 0,

while

lim
v→0

(v −m)κ(v)f∞(v) ≤ 0.

The proof is completed by observing that, for any given function ψ(r(v, t)) one has

the identity

d

dt
(tψ((v −m)t+m)) =

∂

∂v
[(v −m)ψ((v −m)t+m)] . (3.45)

Clearly, (3.45) implies

∂

∂v

[
(v −m)

∫ 1

0

(φ′(r(v, t)))2 dt

]
=

∫ 1

0

d

dt

(
t(φ′(r(v, t)))2

)
dt = (φ′(v))2.

Substituting into (3.43) gives the result.
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Remark 3.9. Inequality (3.40) improves the analogous one obtained by Klaassen

in Ref. 71. Indeed, the relationship (3.39) enables us to identify the correct weight

κ to set into this inequality. Surprisingly enough, the result of Klaassen has to

our knowledge never been improved. Unfortunately, this proof is restricted to one-

dimensional Fokker–Planck type equations. Related results in higher dimensions

have been recently obtained in Ref. 17.

If we apply the new Chernoff–type inequality (3.40) with φ(v) =
√
f(v, τ)/f∞(v)

with fixed τ > 0 (assuming
√
f(v, τ)/f∞(v) smooth enough, as we will point out

in the next section) we get

Iκ(f(τ), f∞) = 4

∫
I

κ(v)f∞(v)

(
∂v

√
f(v, τ)

f∞(v)

)2

dv ≥

4

∫
I

f(v, τ)

f∞(v)
f∞(v) dv −

(∫
I

√
f(v, τ)

f∞(v)
f∞(v) dv

)2
 =

4

(
1−

(∫
R

√
f(v, τ) f∞(v) dv

)2
)
.

(3.46)

This is exactly the same relation as (3.35), which implies inequality (3.38), namely

the same inequality (3.37) found in the classical Fokker–Planck case. In the case

in which the decay of the relative Shannon entropy can be rigorously proven, this

leads again to

lim
k→∞

dH(f(τk), f∞) = 0.

3.3. Rates of convergence

In this short section we will give few indications on the way in which the results

we found in Section 3 can be used to determine rates of convergence to equilibrium

for the solution to the Fokker–Planck equation (3.1). The general strategy is the

following.94 Let us consider the solution to the initial value problem for equation

(3.1) corresponding to an initial probability density f0 with some relative (to the

equilibrium solution) Lyapunov functional bounded, typically the relative Shannon

entropy (3.8). If the assumptions of Theorem 3.1 do not hold, we consider a suit-

able lifting of the initial value f0,ε, with the same mass of f0, bounded Lyapunov

functional, but such that the subsequent solution to equation (3.5), say Fε (cf. Re-

mark 3.2) satisfies c ≤ Fε ≤ C for some finite positive constants c < C and it is

smooth enough to justify application of the generalized Chernoff inequality (3.40).

Starting from the lifted initial datum, we can rigorously prove the time-decay of the

Lyapunov functional, and subsequently apply the generalized Chernoff inequality

(3.40) proven in Theorem 3.3. Once the time-rate of convergence (independent of

ε) has been derived, one can eliminate the lifting. As a first example, let us start

from an initial probability density with bounded Shannon entropy relative to the
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stationary solution. We have proved in the previous section that, regardless to the

form of the dissipation coefficient κ and of the stationary state f∞, the solution

converges to the stationary state f∞ at least on a sequence of diverging times τk
and in Hellinger distance

lim
k→∞

dH(f(τk), f∞) = 0.

In order to obtain this result, it is enough to have a weighted Chernoff–type in-

equality (Theorem 3.3) which enables us to relate the relative Fisher information

(3.15) with the Hellinger distance (3.21). Indeed, Chernoff inequality with weight

is the key point to relate the relative entropy production (in this case the relative

Fisher information) to the square of the Hellinger distance.

Moreover, resorting to the monotonicity of the Hellinger distance between f(τ)

and f∞, one can get rid of the restriction on a sequence of times in the convergence.

Indeed we have

Theorem 3.4. Let f(τ) be the solution of the Fokker–Planck equation (3.1), cor-

responding to an initial value f0 such that the relative Shannon entropy H(f0, f∞)

is bounded, and the decay of relative entropy can be rigorously justified. Then,

dH(f(τ), f∞)2 = o

(
1

τ

)
, τ →∞.

Proof. The decay of the relative Shannon entropy coupled with the weighted Cher-

noff inequality in this case implies

d

dτ
H(f(τ), f∞) = −Iκ(f(τ), f∞) ≤ −2dH(f(τ), f∞)2,

as we have showed in (3.46). Integrating with respect to time from 0 to ∞ we get

the bound ∫ ∞
0

2dH(f(τ), f∞)2 dt ≤ H(f0, f∞). (3.47)

Consequently, dH(f(τ), f∞)2 belongs to L1(R+). On the other hand, by (3.22) the

Hellinger distance is a monotone function of time. Hence

dH(f(τ), f∞)2 = o

(
1

τ

)
, τ →∞.

In the case in which we need to apply a lifting to the initial value, inequality

(3.47) still holds with the right-hand side given by the relative entropy H(f0,ε, f∞).

Letting ε to zero we then arrive to the same conclusion.

Remark 3.10. The previous result shows that, unlike the case of the classical

Fokker–Planck equation, where exponential convergence in L1 is known to hold for

initial data with bounded relative entropy, in this case, by considering the same

class of initial data, only a weaker time decay (essentially a rate of order 1/τ1+δ,
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with δ � 1) is proven to hold. However, as we shall see, exponential convergence is

found for initial data that are suitably close to the steady state.

This stronger result follows by considering as Lyapunov functional the weighted

L2-distance defined in (3.18). We have

Theorem 3.5. Let f0 a probability density satisfying

L2(f0, f∞) <∞

where f∞ is the stationary solution of (3.1) and L2 is the weighted L2–distance

defined in (3.18). Then for any solution f(τ) of the Fokker–Planck equation (3.1)

with f0 as initial data, such that the decay of the L2 functional can be rigorously

justified, the following holds true

L2(f(τ), f∞) ≤ e−2τL2(f0, f∞), τ > 0.

Proof. The proof is based on Theorem 3.1 applied to the L2 functional. Indeed by

(3.19), (3.20) we get

d

dτ

∫
I

(f(v, τ)− f∞(v))2

f∞(v)
dv = −2

∫
I

κ(v)f∞(v)

(
∂

∂v

f(v, τ)

f∞(v)

)2

dv.

Then, applying Theorem 3.3 with φ(v) = f(v, τ)/f∞(v) with fixed τ > 0, leads to∫
I

κ(v)f∞(v)

(
∂

∂v

f(v, τ)

f∞(v)

)2

dv ≥∫
I

(
f(v, τ)

f∞(v)
−
(∫

I

f(v, τ)

f∞(v)
f∞(v) dv

))2

f∞(v) dv =∫
I

(
f(v, τ)

f∞(v)
− 1

)2

f∞(v) dv =

∫
I

(f(v, τ)− f∞(v))2

f∞(v)
dv.

Hence

d

dτ

∫
I

(f(v, τ)− f∞(v))2

f∞(v)
dv ≤ −2

∫
I

(f(v, τ)− f∞(v))2

f∞(v)
dv,

and this ends the proof.

Remark 3.11. The boundedness of the quantity L2(f0, f∞) is in general a quite re-

strictive condition, which limits the result to initial values very close to the station-

ary solution. For example, if one considers the Fokker–Planck equation for wealth

distribution of Section 2.3.1, given by (2.14), the steady state (2.15) has a very rapid

decay at v = 0. Hence, the boundedness of the weighted L2- distance is equivalent

to choosing well-behaved initial data, which have the same decay at v = 0, thus

excluding more general (and natural) initial values for the problem. The situation

in the case of the Fokker–Planck model for opinion formation presented in Section

2.3.4 is somewhat different. Here, the stationary solution of equation (2.20) is such

that g−1
∞ is a bounded function, and the weighted L2-norm is very close to the usual
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L2-norm. In this case, exponential convergence to equilibrium is found to hold for

a larger class (with respect to equation (2.14)) of initial densities.

3.4. Relative entropies between solutions are decaying

We end this section by enlightening further the structure of the Fokker–Planck

equation (3.1). Indeed, for any two solutions, say f(τ) and g(τ), departing from

initial probability densities f0 and g0 such that some relative Lyapunov functional

between them is initially bounded, the time-evolution of the same Lyapunov func-

tional is monotonically decreasing in time. This property generalizes the analogous

one proven for the pair f0, g0 = f∞. By virtue of Proposition 3.1 we proved that

the relative Shannon entropy H(f(τ), f∞), the square of the Hellinger distance

d2
H(f(τ), f∞), the weighted L2–distance L2(f(τ), f∞) and the reverse relative Shan-

non entropy H(f∞, f(τ)) are decreasing in time. Indeed, the same holds true for the

same quantities evaluated on two generic solutions of the Fokker–Planck equation

(3.1).

Proposition 3.3. Let f(τ) and g(τ) denote two solutions of the Fokker–Planck

equation (3.1), departing from initial data f0 and g0. Then

d

dτ

∫
I

f(v, τ) log
f(v, τ)

g(v, τ)
dv = −

∫
I

κ(v)f(v, τ)

(
∂

∂v
log

f(v, τ)

g(v, τ)

)2

dv, (3.48)

d

dτ

∫
I

(√
f(v, τ)−

√
g(v, τ)

)2

dv =

− 1

2

∫
I

κ(v)
√
f(v, τ) g(v, τ)

(
∂

∂v
log

f(v, τ)

g(v, τ)

)2

dv, (3.49)

d

dτ

∫
I

(f(v, τ)− g(v, τ))2

g(v, τ)
dv = −2

∫
I

κ(v)g(v, τ)

(
∂

∂v

f(v, τ)

g(v, τ)

)2

dv. (3.50)

Proof. In order to make the proof easier to read, we will drop all the variables v

or v, τ unless they are useful for comprehension. Let us begin by proving (3.48). To

simplify computations, we resort to the proof of Proposition 3.1. Hence, denoting

again F = f/f∞ and G = g/f∞, we prove (3.48) in an equivalent form in terms of

F and G. Resorting to the conservation of the mass of f we get

d

dτ

∫
I

f∞F log
F

G
dv =

∫
I

f∞
∂F

∂τ
log

F

G
dv +

∫
I

f∞G
∂

∂τ

(
F

G

)
dv =∫

I

f∞ log
F

G

∂F

∂τ
dv −

∫
I

f∞
F

G

∂G

∂τ
dv.
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Next, Proposition 3.1 gives∫
I

f∞ log
F

G

∂F

∂τ
dv −

∫
I

f∞
F

G

∂G

∂τ
dv =

−
∫
I

κ(v)f∞

(
∂

∂v

(
log

F

G

)
∂F

∂v
− ∂

∂v

(
F

G

)
∂G

∂v

)
dv =

−
∫
I

κ(v)f∞

(
F
∂

∂v
(logF )

∂

∂v

(
log

F

G

)
− F ∂

∂v

(
log

F

G

)
∂

∂v
(logG)

)
dv =∫

I

κ(v)f∞F

(
∂

∂v

(
log

F

G

))2

dv =

∫
I

κ(v)f

(
∂

∂v

(
log

f

g

))2

dv.

Note that the last term coincides with the relative Fisher information of f relative

to g weighted by κ, defined in (3.15).

Let us now prove (3.49). As before, we write the square of the Hellinger distance

d2
H(f, g) =

∫
I

(√
f −√g

)2
dv, in terms of F and G. Owing to mass conservation we

obtain

d

dτ

∫
I

(√
F −

√
G
)2

f∞dv =

∫
I

(√
F −

√
G
)(∂τF√

F
− ∂τG√

G

)
f∞ dv =

−
∫
I

(√
G

F
∂τF +

√
F

G
∂τG

)
f∞ dv.

Next, Proposition 3.1 implies

−
∫
I

(√
G

F
∂τF +

√
F

G
∂τG

)
f∞ dv =

∫
I

κ(v)f∞

(
∂

∂v

√
G

F
∂vF +

∂

∂v

√
F

G
∂vG

)
dv =

∫
I

κ(v)f∞
√
FG

(
∂

∂v

√
G

F

∂vF√
FG

+
∂

∂v

√
F

G

∂vG√
FG

)
dv =

− 1

2

∫
I

κ(v)f∞
√
FG

((
∂vF

F

)2

+

(
∂vG

G

)2

− 2

(
∂vF

F

)(
∂vG

G

))
dv =

− 1

2

∫
I

κ(v)f∞
√
FG

(
∂vF

F
− ∂vG

G

)2

dv =

− 1

2

∫
I

κ(v)f∞
√
FG

(
∂

∂v

(
log

F

G

))2

dv = −1

2

∫
I

κ(v)
√
fg

(
∂

∂v

(
log

f

g

))2

dv.

Note that, in constrast with the previous computation, the relative entropy produc-

tion is completely symmetric. Simple computations then show that this expression

can be rewritten in a completely equivalent form. One has indeed

1

2

∫
I

κ(v)
√
fg

(
∂

∂v

(
log

f

g

))2

dv = Dκ(f, g) = Dκ(g, f),
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where Dκ has been defined in (3.23).

Last, we prove relation (3.50) on the weighted L2–distance. To take advantage

from Proposition 3.1, we write the distance in its equivalent form in terms of F and

G. We obtain

d

dτ

∫
I

(
F

G
− 1

)2

Gf∞ dv = −2

∫
I

κ(v)f∞G

(
∂

∂v

(
F

G

))2

dv.

In details,

d

dτ

∫
I

(
F

G
− 1

)2

Gf∞ dv =

2

∫
I

(
F

G
− 1

)
∂τ

(
F

G

)
Gf∞ dv +

∫
I

(
F

G
− 1

)2

∂τG f∞ dv =

2

∫
I

(
F

G
− 1

)(
1

G
∂τF −

F

G2
∂τG

)
Gf∞ dv +

∫
I

(
F

G
− 1

)2

∂τG f∞ dv =

2

∫
I

(
F

G
− 1

)
∂τF f∞ dv − 2

∫
I

(
F

G
− 1

)
F

G
∂τG f∞ dv +

∫
I

(
F

G
− 1

)2

∂τG f∞ dv =

2

∫
I

(
F

G
− 1

)
∂τF f∞ dv+∫

I

((
F

G
− 1

)2

− 2

(
F

G
− 1

)
F

G
+

(
F

G

)2

−
(
F

G

)2
)
∂τG f∞ dv =

2

∫
I

(
F

G
− 1

)
∂τF f∞ dv +

∫
I

(
1−

(
F

G

)2
)
∂τG f∞ dv.

Finally, by Proposition 3.1 we get

2

∫
I

(
F

G
− 1

)
∂τF f∞ dv +

∫
I

(
1−

(
F

G

)2
)
∂τG f∞ dv =

− 2

∫
I

κ(v)f∞
∂

∂v

(
F

G

)
∂vF dv + 2

∫
I

κ(v)f∞∂vG

(
F

G

)
∂

∂v

(
F

G

)
dv =

− 2

∫
I

κ(v)f∞
∂

∂v

(
F

G

)(
∂vF − ∂vG

(
F

G

))
dv =

− 2

∫
I

κ(v)f∞G

(
∂

∂v

(
F

G

))2

dv = −2

∫
I

κ(v)f

(
∂

∂v

(
f

g

))2

dv.

4. Open problems

The mathematical analysis of Sections 3.1–3.3 outlined the importance of Lyapunov

functionals in the study of the large-time behavior of the solution to the Fokker–

Planck equation (3.1). Also, the presence of the weight κ, closely related to the

shape of the equilibrium density f∞, has been at the basis of the generalization of

Chernoff inequality considered in Section 3.2. This establishes a deep connection
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among the Fokker–Planck equation (3.1), its steady state and various relative en-

tropy functionals and relative entropy productions. Among others, this investigation

enlightened the leading role of Shannon relative entropy between two solutions of

the Fokker–Planck equation (3.1)

H(f, g) =

∫
I

f(v) log
f(v)

g(v)
dv,

its relative weighted Fisher Information

Iκ(f, g) =

∫
I

κ(v)f(v)

(
∂vf(v)

f(v)
− ∂vg(v)

g(v)

)2

dv

and Hellinger distance

dH(f, g) =

(∫
I

(√
f(v)−

√
g(v)

)2

dv

) 1
2

.

Hence, the Fokker–Planck equation (3.1) appears to be a useful vehicle to establish

connections between Shannon entropy of a probability density function f relative

to a particular density f∞ (the stationary solution) with the weighted Fisher infor-

mation of f relative to f∞. Then, in view of the Chernoff-type inequality (3.40) a

link between the weighted Fisher information and the Hellinger distance follows.

However, while the Hellinger distance bounds from above the usual L1 distance

between probability densities, it does not bound from above the relative Shannon

entropy. Consequently, in contrast with the well-known case of the standard Fokker–

Planck equation, briefly discussed in Remark 3.7, it is not possible to conclude

with the exponential convergence to equilibrium in relative Shannon entropy. This

suggests to look for relative entropy functionals which are equivalent to Hellinger

distance.

In the pertinent literature, the link between some relative entropies and the

Hellinger distance has been known for many years now, and it has been object of

several studies in the framework of information theory.73 It is not surprising that

the Fokker–Planck equation (3.1) represents a new interesting approach to study

relationships among relative entropies introduced so far to generalize the concept of

relative Shannon entropy, their relative entropy production and Hellinger distance.

In particular, a class of relative entropies, known as symmetric Jensen–Shannon

relative entropies,73,88,93 seems useful to be studied in this context.

Definition 4.1. Given a pair of probability densities f and g, taking values on

I ⊆ R, and α ∈ [0, 1] the symmetric Jensen–Shannon relative entropy is defined by

Kα(f, g) = H(f, αf + (1− α)g) +H(g, αg + (1− α)f) =∫
I

f(v) log
f(v)

αf(v) + (1− α)g(v)
dv +

∫
I

g(v) log
g(v)

αg(v) + (1− α)f(v)
dv.

(4.1)



June 30, 2017 15:27 WSPC/INSTRUCTION FILE
Fokker-28-6˙versionesottomessa

36

We remind that a non symmetrized version of (4.1) was considered in (3.26). Clearly

K0(f, g) = H(f, g) +H(g, f)

the symmetric Shannon relative entropy, while

K1(f, g) = 0.

Thanks to the linearity of the Fokker–Planck equation (3.1), any linear combination

αf(τ) + (1 − α)g(τ) with α ∈ [0, 1] of two different solutions f(τ) and g(τ) is a

solution as well. Consequently

d

dτ
Kα(f(τ), f∞) = −Iκ(f(τ), αf(τ)+(1−α)f∞)−Iκ(f∞, αf∞+(1−α)f(τ)). (4.2)

The interesting feature of the symmetric Jensen–Shannon relative entropies Kα

is that, for any given α 6= 0, differently from the relative Shannon entropy, they are

equivalent to the square of the Hellinger distance. This result is easy to obtain.

Lemma 4.1. For any α ∈ (0, 1), and a pair of probability densities f and g there

are positive constants cα and Cα such that

cα (dH(f, g))
2 ≤ Kα(f, g) ≤ Cα (dH(f, g))

2
.

Proof. Let us consider probability densities f and g which allow for rigorous com-

putations. The general result then follows by a density argument. To make the proof

easier to read, let us drop again the v variable inside the integrals. For β ∈ (0, 1)

we obtain

d

dβ
Kβ(f, g) = −

∫
I

f(f − g)

βf + (1− β)g
dv −

∫
I

g(g − f)

βg + (1− β)f
dv =

−
∫
I

(f − g)(1− β)(f2 − g2)

(βf + (1− β)g)(βg + (1− β)f)
dv =

− (1− β)

∫
I

(f − g)2

f + g

(f + g)2

β(1− β)(f2 + g2) + (β2 + (1− β)2)fg
dv.

Now, since

β2 + (1− β)2 ≥ 2β(1− β),

we obtain the bounds

2

β2 + (1− β)2

1

(f + g)2
≤

1

β(1− β)(f2 + g2) + (β2 + (1− β)2)fg
≤ 1

β(1− β)

1

(f + g)2
,

(4.3)

which implies

− 1

β

∫
I

(f − g)2

f + g
dv ≤ d

dβ
Kβ(f, g) ≤ − 2(1− β)

β2 + (1− β)2

∫
I

(f − g)2

f + g
dv.
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Since K1(f, g) = 0, integrating (4.3) between α ∈ (0, 1) and 1 we get

cα

∫
I

(f − g)2

f + g
dv ≤ Kα(f, g) ≤ Cα

∫
I

(f − g)2

f + g
dv,

where

cα =

∫ 1

α

1

β
dβ = log

1

α
> 0

Cα =

∫ 1

α

2(1− β)

β2 + (1− β)2
dβ > 0.

On the other hand, since

(dH(f, g))
2

=

∫
I

(√
f −√g

)2

dv =

∫
I

(f − g)2

(
√
f +
√
g)2

dv,

one has the bounds

1

2

∫
I

(f − g)2

f + g
dv ≤

∫
I

(f − g)2

(
√
f +
√
g)2

dv ≤
∫
I

(f − g)2

f + g
dv,

and the proof is completed.

In reason of Lemma 4.1, each symmetric Jensen–Shannon relative entropy (4.1)

appears to be a good candidate to replace the classical relative Shannon entropy

in order to eventually achieve exponential convergence in Jensen–Shannon relative

entropy (or in the equivalent Hellinger distance) to the steady state of the Fokker–

Planck equation (3.1). Indeed, due to (4.2), this convergence would follow any time

one has the bound

Iκ(f(τ), αf(τ) + (1− α)f∞) + Iκ(f∞, αf∞ + (1− α)f(τ))

≥ C(α)dH(f(τ), αf(τ) + (1− α)f∞)2

which appears as a generalization of (3.38). Recalling the definition of the relative

Fisher information (3.15) we have

Ik(f(τ), αf(τ) + (1− α)f∞) + Ik(f∞, αf∞ + (1− α)f(τ)) =

4

∫
I

κ(v)(αf(v, τ) + (1− α)f∞)

(
∂

∂v

√
f(v, τ)

αf(v, τ) + (1− α)f∞(v)

)2

dv+

∫
I

κ(v)f∞(v)

(
∂

∂v
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)

)2

dv.

(4.4)

While both terms are of the type∫
I

κ(v)g(v, τ)

(
∂φ(v, τ)

∂v

)2

dv,
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in the first one g is not the stationary state but a convex combination of f∞ and

f(τ), and the Chernoff-type inequality (3.40) is not directly applicable. In the second

one it is possible to apply Chernoff inequality (3.40) to get∫
I

κ(v)f∞(v)

(
∂

∂v
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)

)2

dv ≥∫
I

(
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)
+

−
(∫

I

(
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)

)
f∞(v) dv

))2

f∞(v) dv =∫
I

(
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)

)2

f∞(v) dv+

−
(∫

I

(
log

f∞(v)

αf∞(v) + (1− α)f(v, τ)

)
f∞(v) dv

)2

.

Also in this case it is not clear how to relate this term with the Hellinger distance

between f∞ and αf∞+ (1−α)f(τ). However, the question of finding lower bounds

for the weighted entropy production given in (4.4) remains an open interesting

question.

5. Conclusions

The mathematical modelling of various social and economic aspects of the mo-

dern society, in reason of the huge number of the population involved, is fruitfully

described by resorting to statistical mechanics. Among others, kinetic theory of

multi-agent systems became in the last decade a leading modelling approach to

understand the formation of emerging phenomena, consequent to microscopic in-

teractions between agents.

The possibility to obtain explicitly the expression of the underlying equilibrium

densities is mainly based on the possibility to extract from kinetic models of Boltz-

mann type their mean field description, in the form of Fokker–Planck like equations.

In the present paper, we introduced and discussed various theoretical aspects

of these Fokker–Planck equations, which, in contrast with the classical one coming

from physics, are characterized by the presence both of a variable diffusion coefficient

and of boundaries. As discussed in this paper, the study of the large-time behavior

of the solution to these equations introduces a number of challenging problems,

with intersections with classical Shannon’s information theory and probability.
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