
FuzzyXPath: using fuzzy logic an IR features to
approximately query XML documents.

Ernesto Damiani1, Stefania Marrara1, and Gabriella Pasi2

(1)Università degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione
via Bramante 65 26013 Crema (CR), Italy

{damiani, marrara}@dti.unimi.it

(2) Università degli Studi di Milano Bicocca
DISCO

Via Bicocca degli Arcimboldi, 8 20126 Milano (MI), Italy
pasi@disco.unimib.it

Abstract. XML has become a key technology for interoperability, pro-
viding a common data model to applications. However, diverse data mod-
eling choices may lead to heterogeneous XML structure and content. In
this paper, information retrieval and database-related techniques have
been jointly applied to effectively tolerate XML data diversity in the eval-
uation of flexible queries. Approximate structure and content matching
is supported via a straightforward extension to standard XPath syntax.
Also, we outline a query execution technique representing a first step to-
ward efficiently addressing structural pattern queries together with pred-
icate support over XML elements content.

1 Introduction

Il the last few years, the problem of modeling and querying semi-structured infor-
mation has been intensively studied by both database and information retrieval
research communities, although with a slightly different focus. Database research
mostly deals with data which do not conform to a strict database schema, i.e.
whose structure is not regular [1]. Information retrieval focuses on documents
sharing a basic logical structure, constituted by sub-components (or sections).
Research on semi-structured information querying also comes in two different
flavors: in the context of semi-structured databases, flexible query languages
take into account the lack of a rigid schema of the database, thus allowing to
enquiry both data and the type/schema [4,8], while in the context of IRSs, mod-
eling flexibility means mainly to take into account the possibility to refer to
a non-uniform structure of the documents when formulating queries [16]. De-
facto standards for the definition of semi-structured documents such as HTML
and XML further enriched this picture by adding some features of hierarchical
data models. Today, the XML Infoset is widely employed as a basic data model
for semi-structured information, and is now the basic standard for representing

semi-structured documents in Information Retrieval. Also, techniques for query-
ing and updating XML data have been investigated and several standards like
XQuery [26] and XUpdate [28] have been proposed. Looking at the amount and
diversity of XML data items, it is possible to roughly divide them into two main
classes:

– document-centric items where XML is used for logical markup of text,
– data-centric items where XML is used for exchanging structured data among

applications.

For the sake of simplicity, in this work we concentrate on the selection aspect
of queries. Namely, we extend the idea originally proposed by two of us in [6],
and recently re-stated in a more formal garment in [9], in which fuzzy predicates
are introduced into a XPath query to express flexible selection conditions and to
perform fuzzy subtree matching. In addition to extending structural properties of
flexible queries by means of fuzzy operators, we also outline some content-based
properties adopting IR features similarly to the proposal of [16]. Our proposal
includes modeling of vagueness and imprecision in XML retrieval by means of
the following features:

– index term weighting to produce ranked query results,
– specificity-oriented search for retrieving only the most relevant parts of doc-

uments,
– use of vague predicates in query formulation to express flexible constraints

on stored data,
– structural vagueness, in order to find close matches for structural query

conditions.

The aim of the work is to set the foundations for a flexible XML selection
language, FuzzyXPath, later to be extended to a fully fledged query language1,
which implements imprecision and vagueness for both structural and content-
oriented query conditions. The paper is structured as follows: Section 2 motivates
the ideas exposed in this work and proposes a running example that will be used
in the rest of the paper, Section 3 gives details on query execution and show how
it works by means of an example and, finally, Section 4 exposes our conclusions
and outlines our future work.

1.1 Related work

Several approaches have been proposed to introduce flexibility in semi-structured
information processing and, in particular, in XML querying. An early technique
[14] was based on fuzzy encoding of XML data trees. That method did not at-
tempt to define a query language; rather, it supported introducing new nodes
in the XML tree structure in order to carry out fuzzy similarity comparison of
1 Since the language name originally adopted in [6], FXPath, has recently been used

with the meaning of Functional XPath, in this work we suggest the new name
FuzzyXPath to overcome confusion.

2

XML data trees. This approach was later extended in [13] providing some flex-
ibility in content comparison with the concept of XML data smushing. A later
paper [2] proposed an approach based on XML query rewriting, supporting re-
naming and deletion of nodes in the query. Hybrid techniques [25] have also been
proposed, where XML data are encoded and queries are rewritten. On the one
hand, hybrid techniques can provide an accurate computation of the query cost;
on the other hand, it is very difficult to implement them because they require ad
hoc XML data indexing. A recent approach to this problem [20] proposes a dy-
namic summarization and indexing method, FLUX, based on Bloom filters and
B+-trees. Also, the work [12] presents an indexing method to execute approx-
imate queries on XML documents taking into account approximation on both
document structure and content. The proposed indexing aims to reduce the com-
plexity of finding approximate query patterns, avoiding sequentially scanning all
documents in the collection.
Another recent paper [7] proposes a fuzzy-based XML querying system that
performs approximate comparisons between XML query and data trees. This
technique supports imprecision on data via possibility distributions. However,
while the authors claim that their querying system is fully compatible with XML
querying standards since the final rewriting is performed in XQuery, their query
rewriting is based on a mediated architecture called MIEL++ that requires sev-
eral rewriting steps and is unlikely to scale well. In [22] the authors propose an
approach for approximate query answering in which, instead of working directly
on the data, they interpret the structural component of the query by exploiting
a reworking of the documents’ schemas by means of a schema matching process.
The information retrieval angle has been explored in the seminal paper [16],
which uses a probabilistic data modeling combined with some IR features in
order to query document-centric XML. Of course, several works in the litera-
ture had already addressed the problem of defining IR models for structured
documents [5,10,8,19,21,27]. They focused on two main aspects: how to index
structured documents so as to usefully exploit their structure in their formal rep-
resentation, and how to define query evaluation mechanisms that can retrieve
also document subparts. Passage retrieval is mainly concerned with identify sub-
parts of a text document as retrievable information units. Specifically, passage
retrieval aims to identify short blocks of relevant information among irrelevant
text [8,17]. In [21] a conceptual model for structured documents has been pro-
posed which supports a query language enabling to retrieve passages based on
their context as well as content. Aggregation-based approaches have also been
explored for representation and retrieval of structured documents. These ap-
proaches estimate the relevance of document subparts based on the aggregation
of estimated relevance of their content and of their structurally related parts
[3,18,15,23,11]. In order to improve the effectiveness of IRSs some considerable
efforts are being spent in trying to define new conceptual models aimed at in-
dexing and querying structured documents [3,24,18,17,27,11]. In [11] the idea
of producing a composite representation of structured documents is exploited,
enabling focusing retrieval only on some document subparts. In [18] this ba-

3

sic scheme is enriched by modeling uncertainty in content representation. In
[10,21,3] other approaches to representation and retrieval of structured docu-
ments are presented. Particularly, in [3] a fuzzy model for defining an indexing
mechanism is described which exploits users’ feedback to create personalized rep-
resentations of the same structured document. This model exploits the vagueness
in the indexing process and enables the system to learn users needs at the in-
dexing level. This pioneering work has been further developed in [5], which is
the starting step of this work.

2 Motivations and Running Example

Thanks to XML standards several application involving data interchange enjoy
interoperability at the level of the data model. Nonetheless, they often have to
face the lack of shared semantic models which causes different modeling choices.
In turn, these different choices cause differences in XML schemata, leading to
heterogeneous XML structure and content. Also, XML data stored in repos-
itories constantly evolve over time. Such evolution is a challenge, as existing
applications must continue to work with the evolved data. In our approach,
flexible querying of XML data is aimed at tolerating schema-level heterogeneity
due to either different modeling choices or to data evolution, allowing for posing
the same query to multiple, possibly heterogeneous XML document collections
loosely sharing the same semantics. For the sake of concreteness, in the remainder
of the paper we shall discuss this notion based on a practical example involving
the documents shown in Figure 1. Both documents contain information about
people working at a University. In document (a) people is divided into several
groups depending on the department they belong. Then each department is
divided into technicians, administrative staff and research staff. Re-
searchers include both professors and Ph.D. students. Inside each professor or
student tag lie their respective name, surname, cv and office. The cv tag is
usually a large text blob. In document (b) the University is directly divided into
departments, each department containing two groups of people: employees and
students. Employees include administrative staff and professors. Each
professor’s (or student’s) personal details are enclosed in the tag name which
includes their name, surname, and cv.

3 FuzzyXPath

We are now ready to illustrate our approach to fuzzy XML querying in some
detail. According to the XML Infoset, XML documents can be represented as
a tree of typed nodes. XPath uses a pattern expression to identify nodes in an
XML document and retrieves portions of XML documents, namely the set of
nodes matching the pattern. Due to space constraints, in this context we focus
our attention on a subset of the XPath language informally defined as follows:
XPath*:= ε|l| ∗ |p1/p2| //p1|p[q] where p1 and p2 are XPath* expressions; ε, l, ∗
denote the empty path, a label and a wildcard, respectively; / and // stand for

4

Fig. 1. Two XML documents sharing the same content but with different structure

child-axis and descendant-or-self-axis; and finally, q is called a qualifier. Following
[6] we extend the XPath syntax with three classes of characteristics:

– Fuzzy Subtree Matching: namely NEAR, ABOUT, BESIDES and LIKE, providing
a ranked list of retrieved information items rather than the set oriented one
typical of XPath.

– Fuzzy Predicates: specifying flexible selection conditions.
– Fuzzy Quantification: allowing the specification of linguistic quantifiers as

aggregation operators.

XPath 1.0 presents two main features that are relevant to our approach:

– Path-based selection: the user formulates a search path, in the standard form
of XPath expressions, that must be exactly matched against the structure
of the target XML documents.

– Set-oriented query result: the selection mechanism retrieves the documents
sets of nodes that exactly match the user-provided path.

XPath assumes that the user is fully aware of the target schema. This assump-
tion is in itself debatable since most XML documents exist without schemas; even
worse, it requires the user to write a different query for each variation of the tar-
get schema. In other words, XPath does not tolerate data structure or content

5

diversity. In order to tackle this problem, we extend XPath in order to perform
approximate queries in which the search path only provides a loose example of
the information the user is interested in.

Fig. 2. Architecture of the approach

Our approach is based on three steps (Figure 2):

1. in the first step the query is analyzed to extract its keywords, and then
these keywords are searched in an inverted file (detailed in Section 3.1).
This operation reduces the cardinality of the document collection that will
be target of the query execution and extracts a ranked list of candidates on
the basis of the index term weights contained in the inverted file;

2. then, in order to ”easily” process the structural selection conditions, the
query is rewritten into a ranked set of queries that approximate the desired
information. The ranking of the approximate query is computed on the basis
of their distance from the user’s query. Each approximate query is computed
on the previously computed list of candidate documents by a common query
engine and the retrieved results, if any, will be ranked according to the weight
of the corresponding query’s (structure weight).

3. finally retrieved results are shown in a bi-dimensional space in which one
dimension is the content-based evaluation retrieval status value (index term

6

weight) and the other is the structure-based retrieval status value. The user
will choose which dimension he/she prefers to rank the results in the list of
retrieved items.

The proposed approach is based on exact tag matching; it would be interesting
to address the problem of approximate or semantics-based tag matching. To face
this issue, the use of a thesaurus/ontology is needed. At this stage of the work
we do not address this problem.

3.1 Content based constraints

Most of the operating IRSs are based on indexing functions which take into ac-
count only marginally the structure of documents, being mainly based on their
consideration as a monolithic object, thus providing their overall content syn-
thesis. This allows for the retrieval of a document as a unit of information; in the
case of structured documents this retrieval criterion can be in contrast with the
real users’ needs, as relevant information could be found in just some subparts
(fragments) of a document. The work developed in [5] is the basis of the approach
presented here. This model is based on the observation that the production of
an information surrogate, i.e., a document synthesis used for representing the
document content, is strongly subjective and depends on the personal view of
the interpreter of this information. Despite of this, most of the existing indexing
functions behave as a black box producing the same document representation to
all users. To overcome this limitation the indexing model proposed in [3] is able
to diversify the document representations, based on the users’ view. The pro-
posed indexing model is composed of two main components: a static component,
aimed at the pre-calculation of terms occurrence information within the para-
graphs (this information has to be stored in the inverted file), i.e., the building
bricks of the documents, and an adaptive component that, based on the user’s
indications computes the index terms weights used by the matching mechanism.
In [5] a flexible query language has been also proposed for expressing soft selec-
tion conditions on both the documents’ structure and contents. The evaluation of
these flexible queries makes it possible to select a fuzzy subset of semi-structured
documents from a heterogeneous collection. For example, if one is interested in
reading scientific papers he/she may filter documents having most of the follow-
ing sections: Title, abstract, authors, text references. The linguistic quantifier
most, that specifies the soft constraint on the document structure allows not to
disregard potential interesting documents whose structure is not complete with
respect to the specifications; for example documents lacking the abstract section.
Further, users can indicate preferences on the desired sections. The two levels of
soft conditions on the structure and on the content of documents are expressed
in two distinct phases but are evaluated in a unique step so that the Retrieval
Status Value reflects the satisfaction of the global query. In the extension of the
XPath query language that we propose in this paper, in order to be able to eval-
uate content-based query constraints, an file inverted structure for organizing
indexes has to be defined. Each term in this structure should point to blocks

7

of information, each block containing: docId (document identifier), field-Id
(textual field corresponding to a leaf node), path to reach that field in docId, n
number of occurrences of that term in that field, a normalization parameter np
(or two normalization parameters: number of occurrences of the most occurring
term in that field and number of total occurrences of words in that field). When a
query which specifies both structural and content-based constraints is evaluated,
we propose a first pre-processing based on the consideration of terms specified in
the query for content based constraints. This pre-processing consists in selecting,
based on the information contained in the inverted file, only paths related to the
fragments pointed by a given query term (i.e. those which indexed by the term)
thus pruning the paths which possibly satisfy the user query. Then on those
selected paths the evaluation of structure-based constraints can be performed.

3.2 Enforcement of structure constraints

Once the document collection has been restricted to a finite set of candidate doc-
uments by the content based analysis, the query is analyzed on the basis of its
structure. FuzzyXPath ([6]) constraints are used to indicate a degree of desired
approximation in the query structure. In this step each FuzzyXPath constraint
is used to create a set of queries that simulates the degree of approximation spec-
ified in the user query. Each of these queries is labeled by a structure weight that
indicates the distance between the original query structure and the current one.
Then, the resulting set of query structures is used to eliminate the documents
that do not match at all (not even approximately) the user query from the set of
candidate documents. Finally this set of queries is executed by a common query
engine (this time the match is computed exactly) and each retrieved result is
ranked on the basis of the structure weight of the query that produced it. For
example, for the user query:

university//department{NEAR}/professor[CV cw "Information
Retrieval"]/name

the approach follows these steps:

– We separate the path that carries the desired information (called
info path) from the path that carries the matching condition
(called match path). In our example, we obtain the info path
university//department {NEAR}/professor/name and the match
path university//department{NEAR}/professor[CV cw "Information
Retrieval"].

– We identify the approximate clauses. In the example, the info path con-
tains the clause NEAR, which means that the output node set will be ranked
with respect to the number of steps from department to professor. The
matching path contains the construct cw (contains word/s) that is resolved
by means of standard retrieval procedures creating a set of candidate doc-
uments by filtering the collection’s weighted inverted file. The result of this

8

step is a set of candidate documents represented by their inverted file tuples
(docId, field-Id, path, dw2).

– The info path is then transformed in a set of weighted query
paths. This translates our FuzzyXPath NEAR clause into standard
XPath constructs. Again in our example we obtain the set of paths
Q ={(university//department/professor/name,1),
(university//department/*/professor/name, 0.5),(university
//department/*/*/professor/name, 0.34), . . . }. In our example we com-
pute the structure weight as w = 1/(1 + n) where n is the number of steps
between department and professor, but different functions could be used
on the basis of the desired approximation ranking. We can stop the gen-
eration of new paths in Q just by selecting a matching threshold mt and
stopping when w < mt.

– Paths ∈ Q are used to filter again the candidate documents inverted file
eliminating those documents whose path does not match any path ∈ Q.

– The match path is used to construct a set of queries Q′ where each query q′

is composed by the match path and one info path ∈ Q.
– Finally, queries belonging to Q′ are executed on the set of candidate doc-

uments identified by the filtered inverted file and results are ranked in a
bidimensional space that considers both weights w and dw.

4 Conclusions

While fostering application interoperability by providing a common data model,
XML Infoset poses unique challenges. Diverse modeling choices may cause dif-
ferences in XML schemata, leading to heterogeneous XML structure and con-
tent. In this paper, information retrieval and database-related techniques have
been jointly applied to effectively tolerate this diversity by supporting flexible
queries. Fuzzy/approximate matching is supported via a straightforward exten-
sion to standard XPath syntax. Also, our indexing technique represents a first
step toward efficiently addressing structural pattern queries jointly with pred-
icate support over textual content of XML elements. We plan to address this
issue in a future paper.

References

1. S. Abiteboul. Querying semi-structured data. LECTURE NOTES IN COM-
PUTER SCIENCE, 1186:1–18, 1997.

2. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In Springer,
editor, Proceedings of EDBT, 2002.

3. G. Bordogna and G. Pasi. Controlling retrieval through a user adaptive represen-
tation of documents. Int. J. of Apporximate Reasoning, 12:317–339, 1995.

4. G. Bordogna and G. Pasi. Flexible representation and querying of heterogeneous
structured documents. Kibernetika, 36(6):617–633, 2000.

2 Note that dw = n
np

9

5. G. Bordogna and G. Pasi. Personalized indexing and retrieval of heterogeneous
structured documents. Information Retrieval, 8(2):301–318, 2005.

6. D. Braga, A. Campi, E. Damiani, G. Pasi, and PL. Lanzi. FXPath: Flexible
querying of xml documents. In Proceedings of EuroFuse 2002, Varenna, Italy, Sep.
2002.

7. Patrice Buche, Juliette Dibie-Barthèlemy, and Fanny Wattez. Approximate query-
ing of XML fuzzy data. In Springer, editor, Proceedings of the 7th International
Conference FQAS 2006, Milan, Italy, 2006.

8. J. Callan. Passage-level evidence in document retrieval. In ACM, editor, Proceed-
ings of SIGIR 94, Dublin, Ireland, 1994.

9. A. Campi, S. Guinea, and P. Spoletini. A fuzzy extension for the XPath query
language. In Springer, editor, Proceedings of the 7th International Conference
FQAS 2006, Milan, Italy, 2006.

10. Y. Chiaramella. Information retrieval and structured documents. In F. Crestani
M. Agosti and G. Pasi, editors, Lectures on Information Retrieval, Lecture Notes
in Computer Science. Springer Verlag, 2000.

11. Y. Chiaramella, P. Mulhem, and F. Fourel. A model for multimedia information
retrieval. Technical Report Fermi ESPRIT BRA 8134, University of Glasgow, 1996.

12. P. Ciaccia and W. Penzo. The collection index to support complex approximate
queries. In Springer Verlag, editor, Proceedings of XSym 2003, volume 2824, pages
164–179.

13. Ernesto Damiani, Barbara Oliboni, and Letizia Tanca. Fuzzy techniques for XML
data smushing. In Proceedings of the International Conference, 7th Fuzzy Days
on Computational Intelligence, Theory and Applications, pages 637–652, London,
UK, 2001. Springer-Verlag.

14. Ernesto Damiani and Letizia Tanca. Blind queries to XML data. In Database and
Expert Systems Applications, pages 345–356, 2000.

15. M. Frisse. Searching for information in a hypertext medical handbook. Commu-
nication of the ACM, 31(7):880–886, 1988.

16. N. Fuhr and K. Grobjohann. XIRQL: A query language for information retrieval in
xml documents. In ACM, editor, Proceedings of SIGIR’01, New Orleans, Luisiana,
USA, 2001.

17. M. Kaszkiel and J. Zobel. Passage retrieval revisited. In N.J. Belkin,
D. Narasimhalu, and P. Willett, editors, Proceedings of the 20th SIGIR, 1994.

18. M. Lalmas. Dempster-shafer’s theory of evidence applied to structured documents:
modelling uncertainty. In Proceedings of ACM SIGIR, Philadelphia., 1997.

19. M. Lalmas and I. Ruthven. Representing and retrieving structured documents
using the dempster-shafer theory of evidence: Modelling and evaluation. Journal
of Documentation, 54(5):529–565, 1988.

20. Hua-Gang Li, S. Alireza Aghili, Divyakant Agrawal, and Amr El Abbadi. FLUX:
Fuzzy content and structure matching of XML range queries. In Proceedings of
WWW 2006, May 23-26, 2006, Edinburgh, Scotland, 2006.

21. I. Macleod. Storage and retrieval of structured documents. Information Processing
and Management, 26(2):197–208, 1990.

22. F. Mandreoli, R. Martoglia, and P. Tiberio. Approximate query answering for a
heterogeneous XML document base. In Springer, editor, Proceedings of the 5th Int.
Conf on Web Information Systems Engineering, Brisbane, Australia, November
22-24, 2004.

23. S. Myaeng, D.H. Jang, M.S. Kim, and Z.C. Zhoo. A flexible model for retrieval of
sgml documents. In Proceedings of the 21st ACM SIGIR, Melbourne, Australia.,
pages 138–145, 1998.

10

24. G. Navarro and R Baeza-Yates. A language for queries on structure and content
of textual databases. In Proceedings of ACM SIGIR, Seattle., pages 93–101, 1995.

25. T. Schlieder. Schema-driven evaluation of approximate tree-pattern queries. In
Springer, editor, Proceedings of EDBT, 2002.

26. W3C. Xquery 1.0: An xml query language, November 2006.
27. R. Wilkinson. Effective retrieval of structured documents. In Proceedings of the

17th ACM-SIGIR, Dublin., pages 311–317, 1994.
28. XML:DB. Xupdate, November 2006.

11

