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Abstract. The LLE was introduced in order to provide a paradigmatic model for spontaneous spatial
pattern formation in the field of nonlinear optics. In the first part of this paper we describe in details
its historical evolution. We underline, first of all, that the multimode instability of optical bistability
represents an important precursor of the LLE. Next, we illustrate how the original LLE was conceived in
order to describe pattern formation in the planes transverse with respect to the longitudinal direction of
propagation of light in the nonlinear medium contained in the optical cavity. We emphasize, in particular,
the crucial role of the low transmission limit (also called mean field limit or uniform field limit in the
literature) in determining the simplicity of the equation. In discussing transverse pattern formation in the
LLE, we underline incidentally the presence of very important quantum aspects related to squeezing of
quantum fluctuations and to quantum imaging. We consider not only the case of global patterns but also
localized structures (cavity solitons and their control). Then we turn to the temporal/longitudinal version
of the LLE, formulated by Haelterman, Trillo and Wabnitz, and to its equivalence with the transverse LLE
in 1D, discussing especially the phenomenon of temporal cavity solitons, their experimental observation
and their control. Finally for the first part we turn to the very recent topic of broadband frequency
combs, observed in a versatile multiwavelength coherent source (driven Kerr microcavity), which is raising
a lot of interest and of research activities because of its very favourable physical characteristics, which
support quite promising applicative perspectives. Kerr microcavities realize in an ideal manner the basic
assumptions of the LLE, and the spontaneous formation of travelling patterns along the microcavity is
the crucial mechanism which creates the combs and governs their features. Thus the LLE represents a
case of spontaneous pattern formation which is immediately linked to a promising applicative avenue. The
second part of the paper is devoted to the detailed derivation from the Maxwell-Bloch equations of the
temporal/longitudinal LLE which was proposed by ourselves many years ago without providing a complete
derivation. Such an equation is equivalent to the standard temporal/longitudinal version of the LLE in
the case of anomalous dispersion. Our derivation elucidates in the best way the connection between the
temporal/longitudinal version of the LLE and the multimode instability of optical bistability.

1 Introduction1

This article concerns the equation, proposed by one of2

us and R. Lefever nearly thirty years ago [1], that in the3

following we call LLE. From a mathematical standpoint,4

it can be defined as a driven, damped and detuned non-5

linear Schroedinger equation. With respect to commonly6

used equations such as, for example, the Ginzburg-Landau7

equation, a distinctive feature of the LLE is represented8

by the inhomogeneous driving term, which discloses a uni-9

verse of physical effects.10
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The original aim of the LLE was to provide a paradigm 11

for pattern formation á la Turing [2] in nonlinear optical 12

systems. Phenomena of spontaneous pattern formation, 13

both of spatial and temporal nature, are ubiquitous in 14

the vast domain of nonlinear dynamical systems, encom- 15

passing e.g. hydrodynamics, chemistry, biology, popula- 16

tion dynamics, social sciences. General disciplines such as 17

Haken’s synergetics [3] or Prigogine’s theory of dissipative 18

structures [4] have tried to unify this field and to identify 19

some general principles that govern these phenomena. As 20

already underlined in 1994 [5], the case of optics presents 21

two special features that are interesting and stimulating in 22

this connection. First, optical systems are fast and have 23

a large frequency bandwidth, therefore they lend them- 24

selves naturally to applicative perspectives, for instance in 25
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telecommunications and information processing. The sec-1

ond relevant feature is that optical systems display inter-2

esting quantum effects at room temperature and therefore3

they can play an important role in quantum technologies.4

The model [1] was constructed by following a criterion5

of simplicity, which led to the selection of a cubic Kerr6

nonlinearity, of an optical ring cavity driven by a cw co-7

herent input field and of conditions that, in the stationary8

states, ensure the uniformity of the electric field envelope9

along the cavity. As it is well known, the Kerr nonlinearity10

in a cavity leads to a dominant bistable scenario [6]. The11

combination of nonlinearity and diffraction gives rise to a12

variety of 1D and 2D patterns, and to cavity solitons, in13

the transverse planes orthogonal to the longitudinal direc-14

tion of propagation.15

Five years later Haelterman, Trillo and Wabnitz [7]16

formulated the temporal/longitudinal version of the LLE17

in which, basically, diffraction is replaced by group ve-18

locity dispersion or, from a mathematical viewpoint, the19

transverse Laplacian with respect to the transverse spatial20

variables is replaced by the second derivative with respect21

to the retarded time in the cavity. Even if the LLE in [7]22

is mathematically fully equivalent to the LLE in [1] in23

1D, the physical conditions are complementary because in24

the case of [7] the electric field envelope is uniform in the25

transverse plane, whereas it develops patterns and cavity26

solitons in the longitudinal direction. Such patterns prop-27

agate along the cavity with the light velocity (therefore28

they are longitudinal/temporal patterns) and, in the out-29

put of the cavity, they generate a periodic train of pulses.30

In this way, the LLE unifies spatial phenomena, that31

arise in the transverse planes, with spatio-temporal phe-32

nomena that occur in the longitudinal direction.33

On the other hand, the temporal/longitudinal version34

of the LLE is naturally linked to works by Bonifacio and35

one of us, appeared well before the LLE itself, which pre-36

dicted the same kind of phenomena in the framework of37

the multimode instability in the two-level model of opti-38

cal bistability [8,9]. The advantage of the LLE is, however,39

that it identifies conditions in which such phenomena are40

by far more accessible experimentally and display features41

much richer and promising for applicative perspectives.42

Frequency combs are sets of equidistant frequency lines43

in short-pulse mode-locked lasers. Their development by44

Hall [10] and Haensch [11] revolutionized the measure-45

ment of frequencies and opened out a vast scenario of ap-46

plications in fundamental and applied physics. Recently47

Kippenberg et al. demonstrated the realization of broad-48

band frequency combs using the whispering gallery modes49

in high-Q microresonators containing Kerr media [12]. The50

generation of such Kerr frequency combs occurs from the51

four-wave-mixing (FWM) processes activated by the inter-52

action between the monochromatic driving field, injected53

with a frequency resonant or nearly resonant with a cav-54

ity mode, and the Kerr medium. Microresonator Kerr fre-55

quency combs are foreseen to have a strong impact as a56

compact, low cost, low-power, chip compatible technol-57

ogy, which has stimulated a considerable worldwide effort58

in this approach.59

Chembo [13,14], Coen [15,16], and Matsko [17] (in al- 60

phabetical order) with their collaborators have demon- 61

strated that the LLE (or its generalizations which include 62

higher order dispersion terms) is the appropriate model for 63

the description of Kerr comb generation and can be con- 64

veniently utilized to explore and predict the comb charac- 65

teristics as a function of the system parameters. From the 66

spatio-temporal viewpoint, the spontaneous formation of 67

travelling patterns along the cavity, described by the LLE, 68

is the crucial mechanism which creates the combs and gov- 69

erns their features. The spectacular technological progress 70

in the field of photonics, leading to the discovery of Kerr 71

frequency combs, has implicitly realized all the rather ide- 72

alized conditions assumed in the formulation of the LLE. 73

Since the seventies, it is well known that a strong signal 74

field which saturates a two-level medium can induce gain 75

in a weak probe beam with a frequency different from that 76

of the signal field [18–20]. This concept is at the root of 77

the multimode instability of optical bistability. Even if the 78

system is passive, the strong driving field can induce gain 79

in sidemodes of the resonant mode, and this gain origi- 80

nates the instability, the traveling pattern and the pulsed 81

output [8,9,21]. Thus, with respect to the sidemodes the 82

system behaves as active, i.e. as a source. 83

The parametric conditions considered in [8,9] are un- 84

favourable from an experimental viewpoint and give rise 85

to narrowband frequency combs. Instead, Kerr frequency 86

combs as those generated in [12] and in many other ex- 87

periments (see e.g. [22–25]) are broadband and can arrive 88

at spanning an octave. Thus, the systems which generate 89

such combs can be regarded as novel coherent multiwave- 90

length sources, where all the lines, with the exception of 91

the central line corresponding to the driving frequency, 92

are created by the gain induced by the FWM processes. 93

Experimentally observed combs are compared with the 94

predictions of the LLE in [15,16,26,27]. In [26] universal 95

scaling laws of Kerr frequency combs are derived from the 96

LLE. 97

The investigations in the vast area of pattern forma- 98

tion, theoretical and experimental, have typically been of 99

purely fundamental character. The case of the LLE is spe- 100

cial because it is intimately linked to the realization of a 101

versatile multiwavelength coherent source, that brings im- 102

portant promises also to applied physics, especially to ul- 103

tradense optical fiber networks, because it provides several 104

independent but frequency locked subcarriers that can be 105

controlled precisely and individually. Each element of the 106

comb can be utilized as carrier for coherent data trans- 107

mission at long distance, with quite promising character- 108

istics [28,29]. A review of the field of Kerr combs, which 109

includes a discussion of applicative perspectives, can be 110

found in [30]. 111

The aim of this article is twofold. The first is to de- 112

scribe, in Section 2, the history centered around the LLE. 113

Many points have been already discussed in the introduc- 114

tion, but in Section 2 we add all the necessary details. 115

The second aim arises from the fact that several years 116

ago the same authors of the present article formulated [31] 117

a longitudinal version of the LLE which is equivalent to 118
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that introduced in [7] (in the case of anomalous disper-1

sion) and includes the group velocity dispersion term, but2

is derived from the multimode two-level model in the limit3

of large atomic detuning, which in turn implies the cu-4

bic approximation. In [31] such a longitudinal model was5

described as obtained from the direct generalization of6

the derivation of the three-mode model given in [32], but7

its detailed derivation was not provided there. We de-8

scribe it here, in Section 3, especially because it eluci-9

dates in the best way the connection between the tempo-10

ral/longitudinal version of the LLE, introduced in [7], and11

the multimode instability of two-level optical bistability.12

Some conclusions are drawn in Section 4.13

In the following, for uniformity of notations and of14

procedures we will systematically refer to the treatment15

of the book [21].16

2 The history around the LLE17

2.1 Pre-history18

The search for the multimode instability of optical bista-19

bility [8,9] (see also pages 291–296 in Ref. [21]) was in-20

spired by the multimode laser instability discovered by21

Risken and Nummedal [33] and Graham and Haken [34],22

but in this case the instability arises in a passive driven23

system, which represents a totally different physical24

context.25

The model describes a system of two-level atoms26

contained in a ring cavity and driven by a coherent,27

monochromatic, stationary field injected into the cavity.28

As a consequence of the instability, a periodic pattern29

forms in the slowly varying envelope of the electric field30

travelling along the cavity and generates, in the output,31

a regular train of pulses (self-pulsing). Thus, the system32

works as a converter of cw light to pulsed light [35]. The33

instability was first predicted under conditions of exact34

resonance between the frequency of the input field, a cav-35

ity frequency and the atomic transition frequency [8,9],36

and was then extended to the detuned configurations [36].37

For the parametric ranges examined in [8,9,35,36] the38

rise of the instability requires a long cavity. The first ex-39

perimental observation of this phenomenon was obtained40

by Segard and Macke under detuned conditions using41

a folded 182-m long cavity operated in the microwave42

regime [37]. The frequency comb in the output displayed43

four peaks around the central one (Fig. 1).44

2.2 The LLE and transverse spatial patterns45

The LLE was conceived with the aim of providing, in the46

framework of optics, a model which could play the same47

paradigmatic role as the Prigogine-Lefever model [38],48

usually called Brusselator, in nonlinear chemical reactions.49

The latter model consists in two coupled nonlinear equa-50

tions which govern the interaction of two reactants in an51

open environment. The formation of Turing patterns is52

Fig. 1. Frequency comb observed in the multimode instability
of optical bistability [37]. The different peaks correspond to
field frequencies equal to (0) ν0 = ω0/2π input field frequency,
(1) ν0−νsp, (2) ν0+νsp, (3) ν0−2νsp, (4) ν0+2νsp, where νsp is
the frequency of the spontaneous oscillations in the output in-
tensity, which arise from the instability. Reprinted figure from
reference [37], with permission by American Physical Society.

Fig. 2. Top: a transverse pattern may arise when a broad sec-
tion coherent beam interacts with a nonlinear medium. Bot-
tom: example of patterns observed in Na vapor by Lange,
Ackemann et al.

induced by the interplay of the nonlinearity with the dif- 53

fusion of the reactants. The pattern formation occurs in 54

2D, i.e. in a “large aspect ratio” configuration in which 55

the system is contained in a vessel that is large in the spa- 56

tial directions x and y and thin in the third direction z, 57

so that the variable z does not appear in the model. 58

In the case of optics, the role of diffusion is played by 59

diffraction and the coordinates x and y are those which 60

span the planes orthogonal to the longitudinal direction 61

z along which the light propagates (see Fig. 2). In the 62

paraxial approximation, diffraction is described by a term 63

proportional to the transverse Laplacian of the electric 64

field envelope, exactly as diffusion is described by terms 65

proportional to the transverse Laplacian of the concen- 66

tration of the reactants. A basic difference is that in the 67

case of diffraction the Laplacian is multiplied by the imag- 68

inary unit. The field envelope E(x, y, z, t) is related to the 69

electric field (assumed linearly polarized for simplicity) 70
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E(x, y, z, t) in the following way1

E(x, y, z, t) =
1
2
E(x, y, z, t) exp[−iω0(t − z/c)] + c.c., (1)

where ω0 is the frequency of the input field.2

On the other hand, by looking at Figure 2 one real-3

izes that in general optical systems are far from having4

a large aspect ratio, because the laser field which inter-5

acts with the nonlinear medium propagates along it in6

the longitudinal direction z and therefore the z variable7

cannot be ignored in general. A necessary step to solve8

this problem is to consider a configuration in which the9

nonlinear medium is contained in an optical cavity. In the10

following we consider a ring cavity with planar mirrors for11

definiteness.12

In the description of a two-level system interacting13

with a coherent field within the cavity, the key ele-14

ments are the Maxwell-Bloch equations (see Sect. 4.4 in15

Ref. [21]) and the field boundary condition in the ring cav-16

ity introduced in [39] (see Eq. (8.36) in Ref. [21]). Such a17

condition introduces a basic characteristic time, i.e. the18

cavity roundtrip time L/c̃, where L is the cavity length19

and c̃ is the light velocity in the material, and corresponds20

to the inverse of the free spectral range (apart from a fac-21

tor 2π). For the sake of simplicity, we assume that the22

length of the sample is equal to the cavity length, i.e. the23

material fills the whole cavity.24

In the rate equation limit, Ikeda [40] converted the25

Maxwell-Bloch equations and their boundary condition26

into a set of difference-differential equations and, in ap-27

propriate parametric conditions, into a set of difference28

equations (map) which govern the evolution of the field29

envelope and of an appropriate auxiliary variable at each30

roundtrip. The main virtue of this procedure is that it31

led to predicting the possibility of optical chaos in optical32

bistability [40]. The first models, which were used to de-33

scribe transverse pattern formation in optical systems [41],34

were a generalization of the Ikeda procedure to include35

diffraction, but far from the simplicity of the Brusselator.36

The limitation of the map approach is that it fails to37

identify the second basic characteristic time of the field38

envelope, i.e. the cavity decay time (or lifetime of photons39

in the cavity) L/c̃T , where T is the intensity transmis-40

sivity coefficient of the input and output mirrors of the41

cavity. Such a temporal scale emerges as soon as the mir-42

ror transmissivity becomes small. The cavity decay time43

corresponds to the inverse of the cavity linewidth.44

The limit which allows to capture the advantages45

linked to the second characteristic time is the so-called46

low transmission limit (also called mean field limit or uni-47

form field limit in the literature) first introduced in [39].48

This is the following multiple limit49

T � 1, α′L � 1 with C =
α′L
2T

arbitrary, (2)

where α′ is the field absorption coefficient, C is the bista-50

bility parameter, and51

|δ0| =
|ωc − ω0|

c̃/L � 1 with θ =
δ0

T
arbitrary, (3)

where ω0 is the frequency of the input field which is in- 52

jected into the cavity and ωc is the cavity frequency closest 53

to ω0. Condition (2) states that in a single pass through 54

the atomic medium the field envelope undergoes a neg- 55

ligible variation but, since the lifetime of photons in the 56

cavity corresponds to several roundtrips because T � 1, 57

the field envelope undergoes a sizable variation over the 58

long time scale L/c̃T . On the other hand condition (3) 59

states that the frequency difference between the resonant 60

cavity frequency and the input frequency is small with re- 61

spect to the free spectral range and on the order of the 62

cavity linewidth. Condition α′L � 1 can be realized ei- 63

ther using a short cavity or a weak nonlinearity. Condition 64

T � 1 implies that the cavity is high-Q. 65

In the low transmission limit the Maxwell-Bloch equa- 66

tions are conveniently rephrased in the form of equa- 67

tion (16) which appear in the following of this paper (see 68

also Sect. 12.2 in Ref. [21]) and the field boundary con- 69

dition in the ring cavity reduces to a periodic boundary 70

condition (see Sect. 12.1 in Ref. [21]). 71

If one assumes, in addition to conditions (2), (3), that 72

only the resonant cavity mode has a nonzero amplitude 73

(singlemode limit), one has that the field envelope is uni- 74

form along the cavity, so that the field envelope varies 75

only with respect to time (with the temporal scale of the 76

cavity decay time) and to the transverse variables x and 77

y (see Fig. 1), and this feature makes it possible to formu- 78

late a model for transverse optical pattern formation with 79

the same level of simplicity as the Brusselator. In order to 80

achieve this, the model must involve only the field enve- 81

lope, which is a complex variable, so that the model itself 82

amounts to two coupled real equations as the Brusselator. 83

This implies that atomic variables must not appear in the 84

model; this can be obtained by adiabatically eliminating 85

the atomic variables or by directly introducing a nonlinear 86

term (expressed in terms of the field envelope) in the field 87

envelope equation. 88

In the formulation of the LLE, the choice of the nonlin- 89

earity was dictated by the criterion of maximum simplic- 90

ity. Quadratic nonlinearities are not appropriate because 91

they involve two envelopes, one for the fundamental fre- 92

quency and one for the second harmonic. Therefore the 93

simplest choice is that of a cubic nonlinearity, i.e. the Kerr 94

nonlinearity. As a conclusion, the LLE involves the follow- 95

ing terms: the time derivative, the transverse Laplacian 96

which describes diffraction, the Kerr nonlinear term, a 97

term which describes the driving input field and two terms 98

related to the ring cavity 99

∂E

∂t̄
= EI − E − iθE + iη|E|2E + i∇2

⊥E, (4)

with 100

∇2
⊥E =

∂2E

∂x̄2
+

∂2E

∂ȳ2
. (5)

In equation (4) E and EI (the input field amplitude) are 101

appropriately normalized in order to reduce to a mini- 102

mum the number of parameters which appear in the equa- 103

tion (see [1] and Sect. 27.1 in Ref. [21]), the normaliza- 104

tion involves also the nonlinear susceptibility χ(3)). The 105
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quantities t, x, y are normalized coordinates defined as1

t̄ = κt =
c̃T

L t, x̄ =
x

xT
, ȳ =

y

xT
, with xT ∝

√
λL
T

,

(6)
where κ is the cavity decay rate, xT is the characteris-2

tic scale of transverse optical patterns and λ is the wave-3

length. The first term on the r.h.s. of equation (4) intro-4

duces the input field, which is assumed independent of the5

spatial variables and is usually assumed independent of t,6

but may also be time-dependent when a pulse is injected7

in the cavity in addition to the stationary field. The sec-8

ond term describes the escape of photons from the cavity,9

the third is the detuning term, where θ is defined in equa-10

tion (3). In the nonlinear term, the parameter η is equal to11

+1 in the self-focussing case, to −1 in the self-defocussing12

case. ∇2
⊥ is the transverse Laplacian.13

At this point two remarks are in order. First, in the low14

transmission limit in which the LLE is valid, the “map”15

procedure to calculate the time evolution roundtrip after16

roundtrip [41,42] is inconvenient because the roundtrip17

cavity time is not the correct time scale, and this method18

requires an exceedingly large number of iterations to19

converge.20

The second remark is that a realistic model for non-21

linear chemical reactions requires many more than two22

differential equations, as described in [43]. On the other23

hand, the LLE is a realistic model which, despite its rel-24

ative simplicity, captures the essential physical elements25

of the system it describes and is capable of governing a26

complex multimodal reality, a large variety of pattern for-27

mation phenomena not only transverse as in the case of28

equation (4) but also longitudinal as in the case of the29

following equation (13), and in the frequency domain.30

If we set θ = ηθ̄ the LLE (4) becomes31

∂E

∂t̄
= EI − E − iη

(
θ̄ − |E|2)E + i∇2

⊥E. (7)

If we define32

X = |E|2, Y = E2
I (8)

where EI is assumed real, the homogeneous (∇2
⊥E = 0),33

stationary (∂E/∂t = 0) solutions obey the cubic equation34

35

Y = X
[
1 +

(
θ̄ − X

)2]
, (9)

that was formulated in the paper [6] which reported on36

the first experimental observation of optical bistability.37

As a matter of fact, as it is well known for θ >
√

3 the38

stationary curve (9) of X as a function of Y is S-shaped,39

and the negative-slope segment of the steady-state curve40

is unstable (see Fig. 11.6 of Ref. [21]).41

The linear stability analysis of [1,44] showed that un-42

der appropriate conditions one or more segments of the43

homogeneous stationary curve with positive slope become44

unstable (modulational instability), so that there is the45

possibility of the formation of a stable stationary pattern.46

The calculation of the modulated solution was done ana-47

lytically in [1,44] in the case of one transverse dimension,48

and the result was that the bifurcation is supercritical49

Fig. 3. The lefthand figure indicates that the (unstable) sta-
tionary state corresponds to the origin of the Fourier plane (far
field). The righthand figure indicates the points in the Fourier
plane corresponding to the tilted plane waves emitted just be-
yond the spatial instability threshold.

Fig. 4. (a) In the four-wave mixing process, two symmetrically
tilted plane waves may be emitted just beyond the instability
threshold; (b) Fourier plane configuration of the field described
by (a).

(and therefore the modulated solution is stable near the 50

bifurcation point) when θ > 41/30, and has a typical si- 51

nusoidal configuration near the instability threshold. 52

In [45] Grynberg showed that nonlinear optics provides 53

a simple guideline to predict which kind of patterns arise 54

from a spatial modulational instability associated with a 55

certain optical nonlinearity. The field configuration be- 56

yond the instability threshold can be written in the form 57

58

E(x, y) = Estei0·x +
∑

j

bjeikj ·x, (10)

where Est is the value of E in the unstable stationary state 59

which is considered, x = (x, y) is the position vector in the 60

transverse plane and k = (kx, ky) is the transverse wave 61

vector. In the Fourier plane of the variables kx, ky, i.e. in 62

the far field, equation (10) corresponds to what shown in 63

Figure 3. The exponential factor in the first term in the 64

r.h.s. of equation (10), which is equal to unity, has been 65

introduced to indicate that this term corresponds to the 66

point k = 0 in the Fourier plane. The vectors kj lie on 67

the critical circle which is associated with the instability 68

(see Sect. 27.2 of Ref. [21]). 69

The Kerr nonlinearity corresponds to the process of 70

four-wave mixing. A possibility is that two pump pho- 71

tons which propagate in the longitudinal direction z are 72

absorbed by the medium, and that simultaneously two 73

photons which propagate symmetrically (transverse wave 74

vectors k, −k) are emitted (Fig. 4a). This kind of process 75

leads to a far field with a central spot corresponding to 76

the pump wave plus two symmetrical spots corresponding 77

to the two tilted waves (Fig. 4b). Expressing in formulas, 78
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Fig. 5. The generation of a hexagonal far field (see text).
Reprinted figure from reference [19], with permission from
Cambridge University Press.

this amounts to1

E(x) = Estei0·x + σeiφ+eik·x + σeiφ−e−ik·x

= Est + 2σ cos
(
k · x +

φ+ − φ−
2

)
ei

φ++φ−
2 . (11)

Due to the rotational symmetry any rotated version of2

Figure 4b is possible.3

Let us now consider for a while the case of one trans-4

verse dimension which can be realized, for example, in5

a waveguide configuration. In this case equation (11) re-6

duces to7

E(y) = Est + 2σ cos
(

ky +
φ+ − φ−

2

)
ei

φ++φ−
2 . (12)

A remark of paramount importance is now that the two8

photons, emitted in symmetrically tilted directions, are9

in a state of quantum entanglement (they are precisely10

correlated, for example, in energy and momentum). This11

fact is fundamental for the quantum aspects of optical pat-12

terns. For instance, the difference between the intensities13

of the two symmetrically tilted beams is squeezed, i.e. ex-14

hibits fluctuations below the shot noise level [46]. In turn,15

such quantum aspects are basic for the field of quantum16

imaging [47,48].17

Let us now turn the case of two transverse dimensions,18

in which equation (11) corresponds to a roll (i.e. stripe)19

pattern. However, as shown in [45], in 2D the stripe pat-20

tern created by the FWM process is unstable (Fig. 5). As21

a matter of fact, a second FWM process creates two pho-22

tons (2 and 6) from 0 and 1, and the pair 3 and 5 from 023

and 4, all with conservation of the total transverse photon24

momentum, and this gives rise to a hexagonal structure in25

the far field. Gomila and Colet [49,50] analyzed the com-26

plex scenario of hexagonal patterns which arise in the near27

field over the parameter space, in many cases the pattern28

exhibits a dynamical (and in some cases chaotic) behavior.29

2.3 Spatial cavity solitons30

In the field of spatial pattern formation one meets, in addi-31

tion to global patterns the elements of which are mutually32

well correlated, also the case of localized structures formed33

Fig. 6. A typical Kerr cavity soliton, showing a bright peak
on a darker homogeneous background with a few weak diffrac-
tion rings. The modulus of the normalized intracavity field is
plotted as a function of the transverse coordinates x and y.
Reprinted figure from reference [50] with permission from the
Optical Society of America.

by one or more elements that are independent provided 34

that they are not too close to one another (see e.g. [51]). 35

In the framework of nonlinear optics, the possibility of 36

localized structures was first predicted by Tlidi, Mandel 37

and Lefever [52]; they are usually called with the name 38

of cavity solitons introduced by Firth and correspond to 39

isolated intensity peaks. 40

Cavity solitons in the framework of the LLE were an- 41

alyzed over the parameter space by Firth et al. [53] (see 42

Fig. 6). Their theoretical investigation showed also that, 43

when the driving field intensity is increased, the cavity 44

solitons may start breathing, i.e. their height and width 45

oscillate periodically in time. 46

Reviews of the topic of cavity solitons can be found 47

in [54,55] and in chapter 30 of reference [21]. Figure 7 il- 48

lustrates the standard procedure used to generate cavity 49

solitons by means of optical resonators containing nonlin- 50

ear materials. The energy is provided to the system by a 51

broad area, coherent and stationary holding beam that is 52

injected into the cavity. The system lies initially in a uni- 53

form stationary state. In order to create a cavity soliton, 54

one injects into the cavity a short and narrow “writing” 55

pulse. Provided the pulse is (approximately) in phase with 56

the holding beam, the intensity locally increases and, in 57

the output transverse profile, one has the formation of a 58

bright intensity peak. When the writing pulse goes out of 59

the cavity, the peak persists where it has been excited. 60

Therefore the cavity soliton remains in the memory of the 61

system. By injecting other writing pulses in different lo- 62

cations of the transverse section one can turn on as many 63

cavity solitons as one likes, provided that the distances 64

among them are larger than a minimal distance below 65

which they interact. In order to switch a cavity soliton 66

off, with no consequences for the other cavity solitons, it 67

suffices to shoot, at the location where a cavity soliton 68

lies, an “erasing” pulse similar to the “writing” one but 69
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Fig. 7. A coherent, stationary, quasi plane-wave holding beam
drives the optical cavity containing a nonlinear medium. The
injection of narrow laser pulses creates persistent localized in-
tensity peaks in the output (cavity solitons). Reprinted figure
from reference [21] with permission from Cambridge University
Press.

with (approximately) opposite phase with respect to the1

holding beam.2

A fundamental property of cavity solitons is that they3

move spontaneously when they are in presence of phase or4

amplitude gradients in the holding beam, or a temperature5

gradient in the material. For example, in a phase gradient6

a cavity soliton moves spontaneously towards the nearest7

local maximum of the phase profile, and remains there8

indefinitely. By exploiting this mechanism it is possible to9

introduce appropriate phase modulations in the holding10

beam and realize reconfigurable arrays of cavity solitons,11

serial-to-parallel converters etc.12

Because of its paradigmatic simplicity, the LLE has13

been extensively used by the optical community, and it14

has been even called the “hydrogen atom” of nonlinear15

cavities [56]. However, only recently Kerr cavities with a16

large aspect ratio have been realized, and transverse pat-17

terns and solitons observed [57,58]. For this reason cav-18

ity solitons have been analyzed theoretically mainly in19

a model which describes a semiconductor microresonator20

(see Sect. 30.3 of Ref. [21]). This model is substantially21

more complex than the LLE because it includes, in addi-22

tion to the time evolution equation for the field envelope,23

also a time evolution equation for a variable which is im-24

mediately linked to the carrier density in the semiconduc-25

tor. Another important difference is that this system is26

active, i.e. it has population inversion, even it works as an27

amplifier because it is kept slightly below the threshold28

for laser emission.29

Such a system has been realized experimentally using30

broad area (circular section with diameter of 150/200 μm)31

VCSELs below threshold, in a configuration which satisfies32

very well all the conditions of the low transmission and of33

the singlemode limit. This has led to the first experimental34

observation of cavity solitons [59] with their writing and35

erasing and, subsequently, of arrays of cavity solitons [60].36

2.4 The temporal/longitudinal version of the LLE37

In formulating the temporal/longitudinal version of the38

LLE the authors of [7] were inspired by the analogy be-39

tween two kinds of Hamiltonian solitons40

– temporal solitons, which propagate without deforma-41

tion in the longitudinal direction z and are governed42

by a nonlinear Schroedinger equation with a second 43

derivative with respect to the retarded time, which de- 44

scribes group velocity dispersion; 45

– spatial solitons, which are “tubes” of radiation de- 46

scribed by a similar Schroedinger equation, with dis- 47

persion replaced by diffraction, i.e. with the transverse 48

Laplacian; 49

and they extended this analogy to the dissipative case of 50

cavity solitons, proceeding in reverse order with respect 51

to the Hamiltonian configuration. 52

They considered [7] a nonlinear fiber loop with an in- 53

put/output mirror, in the practical realizations the mir- 54

ror is replaced by input and output fiber couplers They 55

started from the nonlinear Schroedinger equation with dis- 56

persion, combining it with the boundary condition of the 57

cavity. Using the low transmission limit but not the sin- 58

glemode limit, after a long sequence of steps one arrives at 59

the temporal/longitudinal version of the LLE 60

∂E

∂t̄
= EI − E − iθE + i|E|2E − iη

∂2E

∂τ̄2
(13)

where t is defined by equation (6), τ is also dimensionless 61

and proportional to the retarded time τ = t−z/vg, vg be- 62

ing the group velocity of light, η is equal to +1 in the case 63

of normal dispersion and to (−1) in the case of anoma- 64

lous dispersion. As in the case of the spatial LLE (4), E 65

and EI are normalized in such a way that the number 66

of parameters is reduced to the minimum. It is evident 67

that, apart from the presence of the parameters η and η, 68

the temporal/longitudinal version (13) corresponds to the 69

transverse version (4) with the diffraction term replaced 70

by the group velocity dispersion term. 71

While the transverse model involves the temporal vari- 72

able t̄ and the two spatial variables x, y, the temporal/ 73

longitudinal model involves two temporal variables. The 74

first one is the same slow variable t̄ as in the transverse 75

version, which describes phenomena occurring on the long 76

scale of the cavity decay time, the second one is the fast 77

temporal variable τ̄ , which describes phenomena occurring 78

on the short scale of the cavity roundtrip time. Therefore 79

the temporal/longitudinal version of the LLE is formally 80

identical to the transverse version in 1D. 81

The dependence on the retarded time corresponds to a 82

1D pattern in the longitudinal direction z, and the pattern 83

circulates in the ring fiber loop with the velocity of light. 84

More precisely, in the case of anomalous dispersion η = 85

−1 the temporal/longitudinal equation (13) is formally 86

identical to the transverse equation (4) in 1D in the self- 87

focussing case η = 1. In the case of normal dispersion 88

η = 1, the complex conjugate of the temporal/longitudinal 89

version equation (13) reads 90

∂E∗

∂t̄
= EI − E∗ − i

(|E∗|2 − θ
)
E∗ + i

∂2E∗

∂τ̄2
, (14)

where, as before, we have assumed that EI is real. Equa- 91

tion (14) is formally identical to the transverse 1D version 92

of equation (7) in the self-defocussing case η = −1, pro- 93

vided that E is replaced by E∗ and θ is replaced by θ. The 94

replacement of E by E∗ is immaterial for the intensity. 95
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Fig. 8. Intensity profile of a temporal cavity soliton. Reprinted
figure from reference [62] with permission from Optical Society
of America.

A key point is that the temporal/longitudinal version1

of the LLE can be easily realized experimentally, because2

standard silica fibers display a perfect Kerr nonlinearity3

and the ring cavity can be easily constructed using off the4

shelf optical components and fibers.5

The results that we have described before for the 1D6

case of the transverse LLE hold unaltered for the tempo-7

ral/longitudinal version, provided the transverse variable8

y is replaced by the retarded time τ and the spatial fre-9

quency k is replaced by the temporal frequency offset Ω.10

In particular this is true for the modulational instability11

and for the pattern (12) which arises near the instability12

threshold. Such sinusoidal patterns have been observed13

experimentally by Coen and Haelterman [61,62].14

A temporal cavity soliton is a narrow pulse which cir-15

culates indefinitely (with the velocity of light) in the fiber16

cavity without deformation, apart from fluctuations, with17

a period equal to the cavity roundtrip time (Fig. 8). In18

the case of the transverse LLE, cavity solitons sit on the19

pedestal of a stable homogeneous stationary solution, in20

the temporal/longitudinal version they sit on the pedestal21

of a stable stationary solution (stationary with respect to22

both t and τ). Temporal cavity solitons are excited by in-23

jecting into the cavity short address pulses that add to the24

stationary driving field.25

It is interesting to note [26] that for θ > 0 the function26

27

Ecs(τ̄ ) =
√

2θsech
(√

θτ̄
)

(15)

is an exact stationary (with respect to the slow time t̄,28

i.e. for ∂E/∂t = 0) solution of the LLE (13) when the29

input field envelope EI is not stationary but is a function30

of τ equal to ECS , as it is easy to verify. The curve (15)31

is a good approximation of the numerical curve for the32

cavity soliton (even if it does not reproduce correctly the33

pedestal of the soliton). This is a further motivation for34

the use of the name “cavity soliton”. Of course the same35

holds for the 1D case of the transverse LLE.36

The first experimental observation of temporal cavity37

solitons has been attained in 2010 [63] using a 380 m long38

fiber cavity under conditions of anomalous dispersion and39

a cw driving field of 1551 nm. The cavity roundtrip time40

was 1.86 μs and the cavity soliton width on the order of41

4 ps. Using an acusto-optic modulator one can inject into42

the cavity, instead of a single pulse, a binary data stream.43

In this way some data are stored in the cavity in the form44

of a sequence of solitons, and the input data stream is45

sent into the cavity just once. Following this procedure the 46

authors of [63] have been able to store the acronym ULB of 47

Universitè Libre Bruxelles into a sequence of 15 bits, and 48

the fiber cavity operates as an all-optical memory [64]. 49

It is claimed that, using appropriate techniques, there is 50

a potential of 45 kbits memory at 25 Gbits/s. A later 51

experiment [65] reported on the observation of breathing 52

cavity solitons which oscillate periodically over the slow 53

time scale t. 54

Recent experiments have shown that by introducing 55

appropriate phase modulations in the driving field it is 56

possible to 57

– write and erase temporal cavity solitons at desired 58

temporal locations [66]; 59

– operate a “temporal tweezing” of light through 60

the trapping and manipulation of temporal cavity 61

solitons [67]. 62

Pattern formation in fiber ring cavities is analyzed also in 63

reference [68]. 64

It is interesting to observe that 3D pattern formation, 65

i.e. simultaneously in the longitudinal and in the trans- 66

verse directions, in the framework of the LLE has been 67

studied theoretically in [69]. On the other hand 3D cavity 68

solitons are not possible in the LLE [70]. 69

2.5 Broadband Kerr frequency combs 70

The microresonators which have demonstrated Kerr fre- 71

quency combs (see e.g. [12–17,22–25]) realize ideally the 72

assumptions on which the LLE is based, especially the 73

Kerr nonlinearity and the high-Q condition, reaching Q 74

values on the order of 106 or even 109 or more [30]. A 75

main advantage of the high-Q condition is that it allows 76

to obtain important nonlinear effects even with a weak 77

nonlinearity, in accord with the low transmission limit. 78

The technological progress in the field of photonics 79

achieved from the time of reference [1] to nowadays has 80

been spectacular, and the pattern formation in the longi- 81

tudinal direction of ring cavities, associated with the ex- 82

perimental observation of broadband frequency combs, oc- 83

curs in microcavities with a length on the order of 10 mm 84

or less, a drastic difference from the long cavity of [37]. 85

Such Kerr microcavities are operated with driving fre- 86

quencies convenient for telecommunication, can be em- 87

bedded on chip, can be integrated in fiber networks and 88

are compatible with CMOS/metal oxide semiconductors. 89

Such properties make this approach quite promising for 90

applications. In optical coherent telecommunications one 91

can use each element of the comb to transmit data [28,29]. 92

Other examples of possible fields of application are ultra- 93

stable microwave generation, spectroscopy with mid-IR 94

combs, quantum technologies [30], and this scenario mo- 95

tivates the noteworthy worldwide effort which supports 96

such an approach. 97

Since Kerr microcavities are operated as a passive sys- 98

tem without population inversion, they can represent a 99

system which is less noisy then, for example, a mode- 100

locked laser, a feature which can be beneficial for the 101
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stability of the combs. Very important in this connection1

is the fact that the frequencies of the comb are robustly2

phase locked [71], a property that arises spontaneously to-3

gether with the instability that creates the spatial pattern4

and the frequency comb.5

In the case of frequency combs associated with a cavity6

soliton, the frequency spacing between adjacent elements7

of the comb is equal to the free spectral range of the cavity;8

for combs associated with Turing patterns the frequency9

spacing is a multiple of the free spectral range [26,30].10

Noteworthy is also the recent progress in the field of11

quantum effects in frequency combs, theoretical [72] and12

experimental. In the paper [73] Lipson, Gaeta and col-13

laborators report on the first experimental observation of14

“on-chip squeezing”, i.e. of sub-shot noise fluctuations in15

the intensity difference between two modes of the comb16

symmetrically positioned with respect to the central mode17

corresponding to the laser frequency which is injected into18

the cavity. This effect closely corresponds to that theoret-19

ically predicted in [32,46] (see also [72]). Therefore the20

results of [73] represent the first experimental observation21

of a quantum effect associated with a spatial pattern in a22

microcavity (and in frequency combs as well).23

3 Derivation of the temporal/longitudinal24

LLE from the Maxwell-Bloch equations25

In the low transmission limit, the Maxwell-Bloch equa-26

tions read (see Chap. 11 in Ref. [21])27

∂F

∂t
+ c̃

∂F

∂z
= −κ [(1 + iθ)F − y + 2CP ] (16a)

∂P

∂t
= −γ⊥ [(1 + iΔ)P − FD] (16b)

∂D

∂t
= −γ‖

[
1
2

(FP ∗ + F ∗P ) + D − 1
]

(16c)

where F , y, P and D are proportional to the field enve-28

lope E of equation (4), to the input field amplitude EI , to29

the atomic polarization and to the population difference,30

respectively (see Sect. 4.3 and Eq. (8.15) in Ref. [21]). γ⊥31

and γ‖ are the transverse and longitudinal atomic relax-32

ation rates, respectively. The atomic detuning parameter33

is defined as Δ = (ωa −ω0)/γ⊥, with ωa being the atomic34

Bohr transition frequency of the two-level atoms. Note35

that in reference [31] the atomic detuning Δ is defined36

with reverse sign.37

Again, the length of the atomic sample is assumed38

equal to the cavity length. The symbol c̃ is defined as39

c̃ = c/nB, where c is the light velocity in vacuum and40

nB accounts for the possible presence of a background41

medium different from the two-level atoms described by42

the variables P and D.43

We will derive the temporal/longitudinal LLE from44

equation (16) following two different paths. One is more45

heuristic and direct, and more in line with common pro-46

cedures used in nonlinear optics; it is described in Ap-47

pendix A. The other one is more rigorous because it takes48

into account precisely the order of magnitude of the quan- 49

tities in play, which must be assumed to arrive at the LLE; 50

it is described in this section. 51

Equation (16) admit the homogeneous stationary 52

solution 53

y2 = x2

[(
1 +

2C

1 + Δ2 + x2

)2

+
(

θ − 2CΔ

1 + Δ2 + x2

)2
]

,

(17)
where x = |F |, which is the well-known input-output re- 54

lation for optical bistability [21]. Let us consider the dis- 55

persive limit of such an equation, heuristically defined as 56

the limit in which the frequency of the input field is so far 57

from the atomic resonance frequency that |Δ| � 1 and 58

x2/Δ2 � 1. In that limit the stationary equation can be 59

approximated as 60

y2 = x2

[(
1 +

2C

Δ2
− 2Cx2

Δ4

)2

+
(

θ − 2C

Δ
+

2Cx2

Δ3

)2
]

.

(18)
We can now define more precisely the dispersive limit 61

through a smallness parameter ε such that [32] 62

Δ = O(ε−3), x, y = O(ε−2),

2C = O(ε−5), θ = θ0 +
2C

Δ
, (19)

with θ0 = O(1), θ = O(ε−2) and we define the scaled 63

quantities 64

ỹ =

√
2C

|Δ|3 y = O(1), x̃ =

√
2C

|Δ|3 x = O(1), (20)

and the parameter 65

η = −|Δ|
Δ

. (21)

It turns out that the stationary equation at order 0 in ε is 66

67

ỹ2 = x̃2
[
1 +

(
θ0 − ηx̃2

)2]
, (22)

which coincides with equation (9) if we set θ0 = ηθ̄, X = 68

x̃2, and Y = ỹ2. On the basis of these considerations we 69

rewrite equation (16) in terms of the new variables1 70

F̃ =

√
2C

|Δ|3 F, P̃ =

√
2C

|Δ|3 ΔP, (23)

1 In reference [21], Section 13.3, the normalization factor is√|θ|/Δ2, instead of
√

2C/|Δ|3 which appears in equation (23),
but it is easy to check that they basically coincide because,
in the limit (19), 2C can be replaced by Δθ = |Δθ| because

2C > 0, hence
√

2C/|Δ|3 �√|θ|/Δ2.
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and of the parameters θ0, ỹ, and η as1

∂F̃

∂t
+ c̃

∂F̃

∂z
= −κ

[
(1 + iθ0) F̃ − ỹ +

2C

Δ

(
P̃ + iF̃

)]
,

(24a)

∂P̃

∂t
= −γ⊥

[
(1 + iΔ) P̃ − ΔF̃D

]
, (24b)

∂D

∂t
= −γ‖

[
−η

2
Δ2

2C

(
F̃ P̃ ∗ + F̃ ∗P̃

)
+ D − 1

]
.

(24c)

The quantities F̃ , P̃ and D obey the periodic boundary2

condition F̃ (z = 0, t) = F̃ (z = L, t) etc. Hence we can3

introduce the modal expansion [21,32]4

⎧
⎪⎪⎨

⎪⎪⎩

F̃ (z, t)

P̃ (z, t)

D(z, t)

⎫
⎪⎪⎬

⎪⎪⎭
=
∑

n

⎧
⎪⎨

⎪⎩

fn(t)

pn(t)

dn(t)

⎫
⎪⎬

⎪⎭
e−inα(t−z/c̃)

5

where the index n runs over the values n = 0,±1,±2, . . .,6

d∗−n = dn, and α = 2πc̃/L is the free spectral range.7

Introducing this expansion into equations (24), we obtain8

the following system of coupled equations9

dfn

dt
= −κ

[
(1 + iθ0) fn − ỹδn,0 +

2C

Δ
(pn + ifn)

]
,

(25a)

dpn

dt
= −γ⊥

[

(1 + iΔn) pn − Δ
∑

n′
fn−n′dn′

]

, (25b)

ddn

dt
= γ‖

[
η

2
Δ2

2C

∑

n′

(
f∗
−n′pn−n′ + fn′p∗n′−n

)
+ δn,0

]

− dn

(
γ‖ − inα

)
, (25c)

where we have introduced the atomic detuning at the fre-10

quency ω0 + nα11

Δn = Δ − n
α

γ⊥
=

ωa − (ω0 + nα)
γ⊥

. (26)

The stationary solutions, obtained by setting dfn/dt =12

dpn/dt = ddn/dt = 0 are singlemode, i.e. only the mode13

n = 0 contributes.14

If equations (25) are linearized around an exact sta-15

tionary solution one obtains the linearized equations that16

govern the multimode instability of optical bistability17

studied in [8,9] and in Sections 24.1.1 and 24.1.2 of [21].18

We complete the definition of the dispersive limit by19

assuming20

|n|α
γ⊥

,
|n|α
γ‖

= O(ε−2). (27)

This allows to determine which are the effective variation21

rates of the dynamical variables. In the equation for the22

fn’s all the terms in the square bracket are of order 1 but23

the large coefficient 2C/Δ = O(ε−2) which, however, mul-24

tiplies (pn+ifn). Since we shall show that in the dispersive25

limit pn = −ifn + O(ε), the temporal variation rate for 26

the fn’s is O(κε−1). 27

On the other hand, the actual variation rates for 28

the variables pn’s and dn’s are, respectively, γ⊥|Δ| = 29

O(γ⊥ε−3) for the pn’s, and γ‖Δ2/(2C) = O(γ‖ε−1) for 30

d0, nαγ‖ = O(γ‖ε−2) for dn�=0. Since we have assumed in 31

equation (27) that γ⊥ and γ‖ have the same magnitude, 32

an adiabatic elimination of the atomic variables is justified 33

if κ/γ‖ ≈ κ/γ⊥ = O(ε) or smaller. 34

By imposing zero time derivatives at the l.h.s. of equa- 35

tions (25b) and (25c) we obtain 36

pn =
Δ

1 + iΔn

∑

m

fn−mdm, (28)

dn

(
1 − in

α

γ‖

)
=

η

2
Δ2

2C

∑

l

(
f∗
−lpn−l + flp

∗
l−n

)

+ δn,0, (29)

and, by inserting equation (28) in equation (29), we can 37

write 38

dn

(
1 − in

α

γ‖

)
=

η

2
Δ3

2C

∑

l,m

(
f∗
−lfn−l−mdm

1 + iΔn−l

+
flf

∗
l−n−md−m

1 − iΔl−n

)
+ δn,0. (30)

Let us now consider the double sum at the r.h.s of this 39

equation. It can be rewritten as 40

∑

l,m

(
f∗
−lfn−l−mdm

1 + iΔn−l
+

flf
∗
l−n+mdm

1 − iΔl−n

)

=
∑

m,j

(
f∗

m+jfn+jdm

1 + iΔn+m+j
+

fn+jf
∗
m+jdm

1 − iΔj

)

=
∑

m,j

f∗
m+jfn+jdm

2 − i(n + m)α/γ⊥
(1 + iΔn+m+j)(1 − iΔj)

≈ 2
Δ2

∑

m,j

f∗
m+jfn+jdm

[
1 − i(n + m)

α

2γ⊥

]
, (31)

where in the first line we have replaced m with −m in the 41

second sum, in the second line we have replaced l with 42

−m− j in the first sum and with n+ j in the second sum, 43

in the third line we have used the definition (26) of Δn, 44

and in the last line we have approximated Δn+m+j and 45

Δj with Δ. By replacing equation (31) in equation (30) 46

we obtain 47

dn

(
1 − in

α

γ‖

)
= δn,0

+ η
Δ

2C

∑

m,j

f∗
m+jfn+jdm

[
1 − i(n + m)

α

2γ⊥

]
. (32)

For n = 0 the leading terms of this equation are d0 and δn.0 48

which is of order ε0, while the nonlinear term is O
(
ε2
)
. For 49

n �= 0 the leading term is the second term on the lefthand 50
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side, which is O
(
ε−2
)
, so that dn = 0 at order ε0. Hence1

we look for solutions up to order ε22

dn = d
(0)
0 δn,0 +

Δ

2C
d(2)

n + O(ε4), (33)

where we have chosen conveniently Δ/2C as a term of3

order ε2 and d
(2)
n = O(1). By inserting this trial solution4

in equation (32) we obtain up to order ε25

d
(0)
0 δn,0 +

(
1 − i

nα

γ‖

)
Δ

2C
d(2)

n

= δn,0 + η
Δ

2C

∑

j

f∗
j fn+jd

(0)
0

(
1 − i

nα

2γ⊥

)
. (34)

For n = 0 we get6

d
(0)
0 = 1, d

(2)
0 = η

∑

j

|fj |2, (35)

and for n �= 07

d(2)
n = η

γ‖
2γ⊥

∑

j

f∗
j fn+j . (36)

The two expressions for the second order corrections have8

the same form if we assume the non-radiative limit γ‖ =9

2γ⊥. We note incidentally that this condition on γ‖ and10

γ⊥ is the most convenient for squeezing [74]. With this11

assumption we can write12

dn = δn,0 + η
Δ

2C

∑

j

f∗
j fn+j , (37)

and inserting this expression in equation (28) we find an13

expression of the pn’s in terms only of the fn’s14

pn =
Δ

1 + iΔn

⎡

⎣fn + η
Δ

2C

∑

m,j

fn−mf∗
j fm+j

⎤

⎦ . (38)

We want to evaluate this quantity consistently up to order15

O(ε2) since in equation (25a) pn is multiplied by 2C/Δ =16

O(ε−2). To this aim we expand the pre-factor in the linear17

term of equation (38) as18

Δ

1 + iΔn
≈ Δ

iΔn
= − i

1 − n α
γ⊥Δ

≈ −i

(
1 +

nα

γ⊥Δ
+

n2α2

γ2
⊥Δ2

)
, (39)

while in the nonlinear term, which is O(ε2), we keep only19

the dominant term −i. Therefore20

pn = −ifn − i
nα

γ⊥Δ
fn − i

n2α2

γ2
⊥Δ2

fn

− iη
Δ

2C

∑

m,j

fn−mf∗
j fm+j + O(ε3) (40)

and the modal equations (25a) reduce to 21

dfn

dt
= −κ

[(
1 + iθ0 − i

2C

Δ

nα

γ⊥Δ
− i

2C

Δ

n2α2

γ2
⊥Δ2

)
fn

−ỹδn,0 − iη
∑

m,j

fn−mf∗
j fm+j

⎤

⎦ . (41)

It is important to observe that the third and fourth terms 22

in the square bracket of equation (41), which are func- 23

tions of nα, arise from the fact that the linear part of 24

the atomic polarization (38) depends on the modal fre- 25

quencies, i.e. they express the phenomenon of light dis- 26

persion. In our treatment we have kept only the linear 27

and quadratic terms, which is in accord with the standard 28

treatment of dispersion. 29

Let us now define 30

f̄n(t) = fn(t)e−inα 2C
Δ2

κ
γ⊥ t

, (42)

so that equation (41) becomes 31

df̄n

dt
= −κ

[
−ỹδn,0 +

(
1 + iθ0 − i

2C

Δ

n2α2

γ2
⊥Δ2

)
f̄n

−iη
∑

m,j

f̄n−mf̄∗
j f̄m+j

⎤

⎦ . (43)

Equation (43) generalizes to all modes the three-mode 32

model derived in [32]. By combining the expression of 33

F̃ (z, t) given in the equation after equations (24c) and (42) 34

we obtain the following expression for F̃ (z, t) 35

F (z, t) =
∑

n

f̄n(t)e−inα
(
1− 2C

Δ2
κ

γ⊥

)(
t− z

vg

)

=
∑

n

f̄n(t)e−inᾱ
(

t− z
vg

)

, (44)

where 36

vg = c̃

(
1 − 2C

Δ2

κ

γ⊥

)
, (45)

and 37

ᾱ = α

(
1 − 2C

Δ2

κ

γ⊥

)
. (46)

Therefore the linear dispersive correction leads to a re- 38

definition of the light velocity c̃ into a group velocity 39

vg as usual and a redefinition of the free spectal range 40

from α to ᾱ. Note that vg 	 c̃ and ᾱ 	 α because 41

(2C/Δ2)(κ/γ⊥) = O(ε2). 42

A simple glance at equation (44) shows that one can 43

express F̃ as a function of t and τ = t− z/vg instead of z 44

and t. Then, by making the change of independent vari- 45

ables (t, z) −→ (t, τ), using the final expression in equa- 46

tions (44) and (43) one can check that F̃ (t, τ) obeys the 47
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equation1

∂

∂t
F̃ (t, τ) = −κ

[
−ỹ + F̃ (t, τ) + iθ0F̃ (t, τ)

+i
2C

γ2
⊥Δ3

c̃2

v2
g

∂2

∂τ2
F̃ (t, τ)−iη

∣
∣
∣F̃ (t, τ)

∣
∣
∣
2

F̃ (t, τ)
]
.

(47)

If we now introduce the normalized variables t̄ = κt as2

usual, and τ̄ =
√|Δ|3/(2C)(vg/c̃)γ⊥τ we arrive at3

∂

∂t̄
F̃ (t̄, τ̄ ) = ỹ − F̃ (t̄, τ̄ ) − iθ0F̃ (t̄, τ̄ )

+ iη
∂2

∂τ̄2
F̃ (t̄, τ̄ ) + iη

∣
∣
∣F̃ (t̄, τ̄)

∣
∣
∣
2

F̃ (t̄, τ̄), (48)

which in the case η = +1 is formally identical to equa-4

tion (13) for anomalous dispersion (η̄ = −1) with E re-5

placed by F̃ and θ replaced by θ0. On the other hand, for6

η = −1 the complex conjugate of equation (48) is formally7

identical to equation (13), again for anomalous dispersion,8

with θ replaced by −θ0. If, instead, one uses the variable9

z̄ = −τ̄ = γ⊥/c̃
√|Δ|3/(2C)(z − vgt), equation (48) can10

be rephrased in the form11

∂

∂t̄
F̃ (t̄, z̄) = ỹ − F̃ (t̄, z̄) − iθ0F̃ (t̄, z̄)

+ iη
∂2

∂z̄2
F̃ (t̄, z̄) + iη

∣
∣
∣F̃ (t̄, z̄)

∣
∣
∣
2

F̃ (t̄, z̄), (49)

where we use the variables t̄, z̄ instead of t̄, τ̄ , and equa-12

tion (49) basically coincides with the longitudinal LLE13

formulated by ourselves in reference [31].14

Finally, when the cavity is circular of radius R, as15

in the experiments which display Kerr frequency combs,16

we can use as a variable the angle ϕ = (z − vgt)/R =17

z̄(c̃/Rγ⊥)
√

2C/|Δ|3, so that the LLE can be reformulated18

in the form19

∂

∂t̄
F̃ (t̄, ϕ) = ỹ − F̃ (t̄, ϕ) − iθ0F̃ (t̄, ϕ)

+ iη
β

2
∂2

∂ϕ2
F̃ (t̄, ϕ) + iη

∣
∣∣F̃ (t̄, ϕ)

∣
∣∣
2

F̃ (t̄, ϕ),

(50)

with20

β =
4Cc̃2

γ2
⊥|Δ|3R2

, (51)

which basically coincides with that used in [13,14,28,29].21

In the general case γ‖ �= 2γ⊥ the LLE is recovered in22

at least the following two opposite cases:23

– When the resonant mode is dominant, so that the am-24

plitudes fn for n �= 0 are negligible. In this case F̃25

becomes independent of τ and the second order deriva-26

tive term in equation (47) drops.27

– When the contribution of the resonant mode is negli-28

gible. In this case, by using equation (36) one arrives29

at an equation identical to equation (47) but with the30

nonlinear term multiplied by γ‖/(2γ⊥). The LLE in31

normal form (47) holds for the the field ˜̃F such that32

F̃ = ˜̃F
√

γ‖/(2γ⊥).33

4 Conclusions 34

The derivation of the temporal/longitudinal LLE from the 35

two-level Maxwell-Bloch equations, shown in Section 3, 36

explicits in the best way the connection of the LLE itself 37

with the multimode instability of optical bistability, previ- 38

ously predicted [8,9] in the framework of such equations. 39

The parametric conditions that correspond to the LLE 40

identify an optimal configuration for the multimode in- 41

stability, which becomes easily accessible experimentally. 42

In particular, the long cavity requirement disappears and 43

the multimode instability, which gives rise to a travelling 44

longitudinal pattern in the cavity, can be observed even 45

in microcavities. A point of key importance is that the 46

four-wave-mixing process, which takes place in the Kerr 47

medium assumed by the LLE, offers the possibility of gen- 48

erating broadband frequency combs, as observed in refer- 49

ences [12–17,22–25]. This happens because the FWM scat- 50

ters photons from the cavity mode quasi-resonant with 51

the driving field to a number of symmetrical pairs of ad- 52

jacent cavity modes (see e.g. [46]) and, next, the FWM 53

process absorbs photons from any pair of modes (possi- 54

bly, from the same mode) and generates photons in other 55

pairs symmetrically positioned with respect to the first 56

pair (see e.g. [30]) . The total photon momentum is pre- 57

served in the process, which thus generates a vast multi- 58

modal configuration. 59

The LLE provides an outstanding example of phenom- 60

ena of spontaneous pattern formation that are intimately 61

linked to a much promising applicative avenue, which has 62

been opened by the experimental observation of broad- 63

band Kerr frequency combs [12]. 64
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Appendix A: Alternative derivation 71

of the LLE from the Maxwell-Bloch equations 72

In this appendix we sketch an alternative derivation of 73

the temporal/longitudinal LLE, which does not make use 74

of the adiabatic elimination of the atomic variable. The 75

derivation is actually similar to the one in Section 3, the 76

main difference being that the atomic Bloch equations are 77

first approximately solved in the continuum frequency do- 78

main, and then the result is inserted into the Maxwell 79

equation for the field. 80

The starting point are the Maxwell-Bloch equa- 81

tions (16). Let us focus on the two atomic equations (16b) 82

and (16c). In order to simplify the notation, we introduce 83

the quantity 84

H(t, z) = D(t, z) − 1, (A.1)
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which describes the offset of the inversion from its un-1

saturated equilibrium value. Equations (16b) and (16c)2

become then3

∂P

∂t
= −γ⊥ [(1 + iΔ)P − F (H + 1)] , (A.2)

∂H

∂t
= −γ‖

[
1
2

(FP ∗ + F ∗P ) + H

]
. (A.3)

Next, let us turn to the frequency domain setting4

X(t, z) =
∫

dΩ√
2π

X(Ω, z)e−iΩt, (A.4)

where X is any of the functions F , P , and H . In the chosen5

reference frame, Ω is a frequency offset from the carrier6

ω0. Omitting for simplicity the argument z, the solutions7

of equations (A.2) and (A.3) in the frequency domain read8

P (Ω) =
1

1 + iΔ(Ω)

[
F (Ω) +

∫
dΩ1√

2π
F (Ω − Ω1)H(Ω1)

]
,

(A.5)

H(Ω) = − 1
2(1 − i Ω

γ‖
)

∫
dΩ1√

2π
[F (Ω1)P ∗(Ω1 − Ω)

+F ∗(Ω1 − Ω)P (Ω1)] , (A.6)

where9

Δ(Ω) =
ωA − (ω0 + Ω)

γ⊥
= Δ − Ω̃ with Ω̃ =

Ω

γ⊥
(A.7)

is the atomic detuning of the field component oscillating10

at frequency ω0 + Ω.11

Let us assume the dispersive limit, where |Δ(Ω)| � 112

for all the populated frequency components of the field,13

i.e. the whole bandwidth of emitted light is far away from14

atomic resonance. In particular, we shall assume that the15

central frequency is far off resonance,16

|Δ| � 1 (A.8a)

and the frequency bandwidth of the field is small com-17

pared to the central detuning18

|Ω̃| � |Δ|. (A.8b)

Next, we search an approximate solution as a power ex-19

pansion in series of the field amplitude F . Precisely, we20

will find a perturbative power expansion in terms of F/Δ,21

assuming |F/Δ| � 1. Clearly, the first order term for the22

polarization (the linear part of the polarization) is deter-23

mined by the equation24

PL(Ω) =
F (Ω)

1 + iΔ(Ω)
. (A.9)

By replacing P with PL in equation (A.6) we get a solution25

for the inversion correct up to second order in F26

H2(Ω) = −1 − i Ω
2γ⊥

1 − i Ω
γ‖

×
∫

dΩ1√
2π

F (Ω1)F ∗(Ω1 − Ω)
[1 − iΔ(Ω1 − Ω)] [1 + iΔ(Ω1)]

.

(A.10)

Finally, taking the radiative limit 2γ⊥ = γ‖2 and inserting 27

this second order perturbative solution into equation (A.5) 28

we obtain an approximate solution for the polarization, 29

valid up to third order in F 30

P (Ω) = PL(Ω) + PNL(Ω) (A.11)

with 31

PNL(Ω) = − 1
1 + iΔ(Ω)

∫
dΩ1√

2π
F (Ω − Ω1)H2(Ω1)

= − 1
1 + iΔ(Ω)

∫
dΩ1√

2π

×
∫

dΩ2√
2π

F (Ω − Ω1)F (Ω2)F ∗(Ω2 − Ω1)
(1 − iΔ(Ω2 − Ω1))(1 + iΔ(Ω2))

.

(A.12)

This relation can be greatly simplified by retaining only 32

the leading order term in the dispersive limit (A.8), 33

PNL(Ω) ≈ i

Δ3

∫
dΩ1√

2π

∫
dΩ2√

2π

× F (Ω − Ω1)F (Ω2)F ∗(Ω2 − Ω1), (A.13)

which amounts to neglecting any dispersive effect of the 34

third order nonlinear susceptibility, i.e. assuming that χ(3)
35

depends slowly on the frequency inside the bandwidth of 36

the light. This approximation simplifies a lot the equation, 37

because coming back to the temporal domain, one has 38

PNL(t) 	 i

Δ3
|F (t)|2F (t) (A.14)

i.e. the usual Kerr-like term for the nonlinear part of the 39

polarization. 40

We now turn again our attention to the linear part of 41

the polarization, with the aim of writing it in the temporal 42

domain. First of all, we apply the dispersive limit (A.8) to 43

the linear polarization 44

PL(Ω) =
F (Ω)

1 + iΔ(Ω)
=

F (Ω)
iΔ

1

1 − Ω̃
Δ + 1

iΔ

≈ − i

Δ
F (Ω)

(

1 +
Ω̃

Δ
+

Ω̃2

Δ2
. . .

)

, (A.15)

where we kept only the first two leading orders in Ω̃/Δ, 45

in order to retain in the description the effects of group 46

velocity dispersion. We remark that, rigorously speaking, 47

we neglected small real terms which could be on the same 48

order of magnitude as those retained, and represent the 49

unavoidable absorption of light. As typically done in the 50

2 Notice that for small enough bandwidths the radiative limit
is unnecessary since

1 − i Ω
2γ⊥

1 − i Ω
γ‖

≈ 1 − i
Ω

2γ⊥
+ i

Ω

γ‖
= 1 + i

Ω

γ‖

(
1 − γ‖

2γ⊥

)
≈ 1

when |Ω| � γ⊥, γ‖.
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treatment of Kerr-like nonlinearity, we thus are assum-1

ing the medium is basically transparent in the frequency2

bandwidth of interest. Notice also that when inserting the3

medium inside the resonator, the frequency continuum is4

replaced by the discrete set of cavity modes, and with5

the more rigorous assumption (27) of Section 3, the ex-6

pansion in equation (39) (which is the analogous of what7

done here) is strictly valid.8

Coming back to the temporal domain9

PL(t) =
∫

dΩ√
2π

PL(Ω)e−iΩt

≈ −i

∫
dΩ√
2π

F (Ω)e−iΩt

[
1
Δ

+
Ω̃

Δ2
+

Ω̃2

Δ3

]

= − i

Δ
F (t) +

1
Δ2γ⊥

∂

∂t
F (t) +

i

Δ3γ2
⊥

∂2

∂t2
F (t).

(A.16)

Inserting this result into Maxwell equation (16a) and con-10

sidering again the variable z, we obtain11

(
1 +

2Cκ

Δ2γ⊥

)
∂F

∂t
+ c̃

∂F

∂z

= −κ

[
(1+iθ0)F−y+2CPNL(t)+i

2C

Δ3γ2
⊥

∂2F

∂t2

]
,

(A.17)

where θ0 = θ − 2C
Δ is the corrected cavity detuning (in12

accord with the definition in Eq. (19) of Sect. 3) which13

reflects the shift of the cavity resonances due the refractive14

index of the two-level medium at the reference frequency,15

κθ0 = ωc − κ2C
Δ −ω0. This equation can be also written as16

(
1 +

2Cκ

Δ2γ⊥

)(
∂F

∂t
+ vg

∂F

∂z

)

= −κ

[
(1 + iθ0)F − y + 2CPNL(t) + i

2C

Δ3γ2
⊥

∂2F

∂t2

]
,

(A.18)

where17

vg = c̃

(
1 +

2Cκ

Δ2γ⊥

)−1

≈ c̃

(
1 − 2Cκ

Δ2γ⊥

)
(A.19)

is the group velocity, which coincides with the defini-18

tion (45) of Section 3, once one recognizes that 2Cκ
Δ2γ⊥

� 1.19

The next step consists in introducing a field modal20

expansion as21

F (z, t) =
∑

n

fn(t)e−iΩn

(
t− z

vg

)

, (A.20)

where22

Ωn = n
2πvg

L = nᾱ (A.21)

are approximated expressions for the cavity resonances,23

which partially account for the linear propagation into24

the two-level medium (partially, because dispersion, i.e 25

the quadratic term in frequency is not considered in the 26

determination of cavity resonances). As a result, the cav- 27

ity modes are equally spaced by the free spectral range 28

ᾱ = 2πvg

L , in accord with equation (46) of Section 3. 29

By substituting into equation (A.18), one than recog- 30

nizes easily that in the low transmission limit T � 1 the 31

modal amplitudes fn(t) have indeed a slow variation in 32

time, because
∣∣
∣dfn

dt

∣∣
∣ is on the order of |κfn(t)|, where κ is 33

the small cavity linewidth. 34

Considering now the dispersion term at the r.h.s of 35

equation (A.18), we introduce the following approximation 36

∂2F

∂t2
=
∑

n

[
d2fn

dt2
− 2iΩn

dfn

dt
− Ω2

nfn(t)
]

e
−iΩn

(
t− z

vg

)

≈
∑

n

−Ω2
nfn(t)e−iΩn

(
t− z

vg

)

=
∂2F

∂(z/vg)2
, (A.22)

where we made use of the slow variation of the f ′
ns in time, 37

38∣
∣
∣∣
dfn

dt

∣
∣
∣∣� |Ωnfn(t)|. (A.23)

Note that for the modes n �= 0 (i.e. the side-bands with re- 39

spect to the central frequency), this statement amounts to 40

requiring that the cavity linewidth of each mode is much 41

smaller than the free spectral range, which is indeed cor- 42

rect in the low transmission limit. For the central mode 43

n = 0, it amounts simply to neglecting the effects of dis- 44

persion of the group velocities inside the cavity linewidth, 45

which is again correct in that limit. On the other side, it 46

is worth remarking that when a large number of modes 47

are populated, the temporal dispersion over the full band- 48

width can be relevant, and it is indeed taken into account 49

by the terms ∝Ω2
nfn. 50

With this approximation equation (A.18) becomes 51

∂F

∂t
+ vg

∂F

∂z
= −κ̄

[

(1 + iθ0)F − y + 2CPNL(t)

+ i
2C

Δ3γ2
⊥

∂2F

∂(z/vg)2

]

, (A.24)

where κ̄ = κ/(1 + 2Cκ
Δ2γ⊥

) ≈ κ. Finally, we make the last 52

cosmetic addition to equation (A.24) by introducing the 53

change of independent variables t′ = t, τ = t−z/vg, which 54

implies ∂/∂t = ∂/∂t′ + ∂/∂τ, vg∂/∂z = −∂/∂τ , so that 55

equation (A.24) becomes 56

∂F̃

∂t′
= −κ

[

(1 + iθ0) F̃ − ỹ

− iη|F̃ (t)|2F̃ (t) + i
2C

Δ3γ2
⊥

∂2F̃

∂τ2

]

, (A.25)

where we have also inserted the explicit expression of the 57

cubic nonlinearity obtained in equation (A.14), and the 58

scaling (23) of the field amplitude. Clearly this equation 59
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coincides with equation (47) apart from the term ∝c̃2/v2
g1

which is in any case very close to one and can be incorpo-2

rated in the rescaling of the time τ .3
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