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We report on the possibility of describing the absorption and emission characteristics of an

ensemble of silicon nanocrystals (NCs) with realistic distributions in the NC size, by the sum of

the responses of the single NCs. The individual NC responses are evaluated by means of ab initio
theoretical calculations and the summation is performed by taking into account the trend of the

optical properties as a function of NC size and oxidation degree. The comparison with

experimental results shows a nice matching of the spectra, also without any tuning of the

parameters. Finally, the possibility of adapting the model in order to reproduce the experimental

data is explored and discussed. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4799394]

I. INTRODUCTION

Silicon nanocrystals (Si-NCs) have attracted a lot of in-

terest in the latest years, due to their large applicability. To

date Si-NCs have been employed in several fields like

nanophotonics,1–3 photovoltaics,4–6 thermoelectrics,7 medi-

cal screening,8 and others. One of the most challenging as-

pect of Si-NCs concerns the high sensitivity of the measured

response to the precise structural configuration of the NC

and of its surrounding environment. In fact, size, shape,

interface, defects, impurities, embedding medium, and crys-

tallinity level, among others, constitute a set of mutually

dependent parameters that drastically determine the opto-

electronic properties of the NCs. Many theoretical and

experimental works have contributed to characterize the con-

nection between the above parameters and the observed NC

response. While the theoretical approach is more suitable to

deal with single NCs, especially when making use of simula-

tions at the atomistic (ab-initio) level, experiments usually

make use of samples containing a large number of different

NCs, making the identification of the most active configura-

tions a non trivial task. Therefore, despite the tremendous

advances of the latest years, a direct comparison between

theoretical simulations and experimental observations is still

a complicated task.

In the present work, we try to fill up the gap by extend-

ing the theoretical calculations performed on individual

NCs to realistic ensembles made by a large number of NCs,

in order to provide a connection with the experimental data.

Following the superposition principle, we aim at evaluating

the optical absorption/emission of an ensemble of NCs as

the sum of the absorptions/emissions of the individual NCs.

The main approximation regards the absence of NC-NC

interaction mechanisms, that for H- or OH-terminated NCs,

or for embedded Si/SiO2 NCs implies NC-NC distances

larger than about 0.5 nm.6,9,10 The latter conditions can be

satisfied in real embedded or freestanding NC samples by

varying the silicon excess or the NC concentration,

respectively.

It is worth to note that embedded systems present

strained bonds at the interface region, of magnitude propor-

tional to the difference between the lattice spacing of Si and

that of the embedding medium. Such strain has been recog-

nized as a crucial factor, strongly concurring with others in

the determination of the NC properties. In particular, red-

shifts of as much as �1 eV have been calculated in the

absorption spectrum of Si-NCs embedded in a SiO2 matrix

with respect to their freestanding counterparts,11 while pho-

toluminescence (PL) experiments report red-shifts up to

0.2 eV.12 Clearly, an accurate description of an ensemble of

embedded NCs cannot ignore the influence of the matrix-

induced strain. For this reason, the results presented in this

work should only indirectly be interpreted in terms of em-

bedded NCs. In principle, a connection of strain with other

NC parameters is possible, as already tempted in Ref. 11,

and could easily be applied to the present method with the

purpose of describing ensembles of embedded NCs.

A. Structures and methods

Structural, electronic, and optical properties have been

obtained by full ab-initio calculations in the framework of

density functional theory (DFT) using the ESPRESSO package.13

Calculations have been performed using norm-conserving

pseudopotentials within the local-density approximation

(LDA). An energy cutoff of 60 Ry on the plane-wave basis

set has been considered. The optical properties have been cal-

culated within the random-phase approximation (RPA) using

dipole matrix elements.

The NCs have been generated starting from a betacristo-

balite-SiO2 matrix, by removing all the oxygen atoms inside a

sphere whose radius determines the NC size. The so-obtained

Si-NC, embedded in the SiO2, presents perfectly coordinated

atoms and the same Si-Si distance of betacristobalite,
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corresponding to about 3.2 Å. The NCs have been

de-embedded by removing all the external Si/O atoms, while

keeping the first shell of O atoms forming the interface.

Finally, each interface oxygen has been passivated by a

hydrogen atom. The resulting Si-NCs are OH-terminated,

with a number of OH groups variable and dependent on the

size of the spherical cutoff. In particular, the ratio of the

number of oxygen by the number of Si atoms to which they

are connected can vary from 1 to 3, and is named here the oxi-
dation degree, X.11 After the ionic relaxation, the Si-Si bond

length approached the bulk value of 2.34 Å, while the Si-O-H

bonds formed angles of about 115�. Examples of so-obtained

NCs are shown in Fig. 1(a). In addition to the OH-terminated

NCs, we have produced a set of H-terminated NCs by replac-

ing the OH groups with hydrogens and then re-relaxing

the structures (Fig. 1(b)). Following the procedure outlined

above, we have generated the following set of NCs:

Si17(OH)36, Si26(OH)48, Si29(OH)36, Si32(OH)56, Si35(OH)36,

Si47(OH)60, Si61(OH)66, Si71(OH)108, Si87(OH)76, Si109(OH)108,

Si147(OH)100. The H-terminated counterparts of the above

NCs set have been also generated, with the additional

Si293H172.

In common experiments, the samples are characterized

by a log-normal distribution in the NCs radius r expressed

by14

PðrÞ ¼ 1

Sr
ffiffiffiffiffiffi
2p
p exp

�
�

lnðrÞ �M
�2

2 S2

2
64

3
75; (1)

where the mean and the variance of the distribution can

be related to M and S by l ¼ expðM þ S2=2Þ and

r ¼ expðS2 þ 2MÞ½expðS2Þ � 1�, respectively.

Two realistic NC-radius distributions with mean radii of

1.7 nm and 1.1 nm obtained from fitting the experimental

data of Ref. 15 using Eq. (1) are reported in Fig. 2. Clearly,

by varying the silicon layer thickness and the annealing con-

ditions, it is possible to obtain samples with distributions of

different mean and variance. In the case of freestanding

NCs, it is possible to obtain narrower distributions by using

filters that determine the Si-NC diameter.3,16,17

When not specified, we assume eV and nm the default

units of energy and distance, respectively.

II. ABSORPTION

In this section, we aim at describing the absorption spec-

trum (here represented by the imaginary part of the dielectric

function) of the ensemble by summing the individual NC

spectra with weights given by Eq. (1).

First, the DFT-RPA complex dielectric function of the

NCs, e, has been calculated for all the relaxed structures. In

doing that, we have omitted the vacuum states, i.e., the con-

duction states of energy equal or above the vacuum energy

Evac. An estimate of Evac can be calculated by properly align-

ing the eigenvalues after applying the Makov-Payne correc-

tion to the total energy.18 In alternative, the vacuum states

are identifiable by an inverse-participation-ratio (IPR)19

value well-below a certain threshold. For each system, we

have evaluated e removing the vacuum states by a cross-

check of both the above methods.

Second, we must consider that the calculated absorption

is normalized over the volume of the simulation cell.

Therefore, by means of effective-medium approximation

(EMA), we have retrieved the NC-related dielectric function

enc from the calculated one

enc ¼
e� ð1� f Þ

f
; (2)

FIG. 1. Example of OH-terminated (a) and H-terminated (b) NCs after ionic relaxation. From left to right: Si147(OH)100, Si87(OH)76, Si147H100, Si87H76. Si, O,

and H atoms are represented in cyan, red, and white, respectively.

FIG. 2. NC-radius distributions expressed by Eq. (1), with parameters

obtained by fitting on the experimental data of Ref. 15 for two different sam-

ples. The legend reports the curve parameters.
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where the so-called filling factor, f, is given by the ratio of

the NC volume and the simulation cell volume

f ¼ VNC=Vcell: (3)

Given the spherical shape of the NC (by construction), we

may simply relate the NC volume to its diameter d by

VNC ¼
4p
3

d

2

� �3

: (4)

The problem of correctly define d is not trivial, especially for

small NCs, and requires some discussion. In a previous

work,20 we have demonstrated that the dielectric function of

the Si/SiO2 embedded system etot is separable through the

EMA into enc and the dielectric function of the hosting

dielectric matrix eh. From such calculation, we revealed that

the true inclusion is not formed by the sole NC but by the

NC þ interface system. Similarly to Eq. (2), the separation

of the dielectric function was possible provided that a correct

filling factor was introduced into the calculation. Therefore,

by using the EMA, it is possible to calculate an “effective” d
for a set of embedded NCs. Following this picture, we have

verified that the relationship

d� ¼ 2 � Na

q
4

3
p

0
B@

1
CA

1
3

(5)

returns the correct filling factor when q corresponds to the

atomic density of bulk silicon, q ¼ 8=ð5:43 ÅÞ3 ’ 0:05 Å
�3

,

and Na corresponds to the total number of atoms in the NC

(SiþOþH).

Thus, enc for each NC of the set has been calculated

using Eq. (2) with the respective filling factor derived from

Eqs. (3) to (5).

Note that the diameter resulting from Eq. (5) is larger

than the maximum distance between two atoms belonging to

the same NC, widely used in literature to represent the NC

diameter. Therefore, for the sake of comparison with other

works, we distinguish the “optical” d� defined to correctly

evaluate enc, by the “physical” d that characterize the NC

size, entering Eq. (1).

Another crucial aspect of optical absorption in nanostruc-

tures concerns the effect of local fields (LF). While previous

many-body calculations on Si-NCs have shown that self-

energy corrections and electron-hole Coulombic corrections

nearly cancel out each other21 yielding fundamental gaps and

absorption spectra close to the independent-particle calcu-

lated ones, the effect of LF has been reported to severely

modify the absorption profile, as for embedded like as for

freestanding NCs of every size.22 Unfortunately, the ab-initio
calculation of the full dielectric response requires a computa-

tional effort that increases dramatically with the system size,

setting a strong limit on the maximum processable NC d.

To circumvent the above limitation, we make use of the

EMA in order to easily include the LF correction to the

dielectric function. Since in NCs the LF are mostly given by

surface polarization effects,22 we make use of the Clausius-
Mossotti equation in order to describe the polarizability a of

a dielectric sphere with dielectric constant e and volume V,

embedded into a background with dielectric constant e0

a ¼ 3 V e0 ðe� e0Þ=½4pðeþ 2e0Þ�: (6)

Then, the LF-corrected e is given by

eLF ¼ e0 þ
4pa
V
¼ e0

4 enc � e0

enc þ 2 e0

: (7)

Finally, since our NCs are embedded in vacuum, by posing

e0 ¼ 1, we get

eLF ¼
4 enc � 1

enc þ 2
: (8)

The validation of the Eq. (8) is performed by a comparison

with e calculated by full-response ab-initio techniques, as

described in Ref. 22. In Fig. 3, such comparison is reported

for the Si32(OH)56 case. We observe that Eq. (8) is able to

produce a LF correction nicely matching the “exact” one,

confirming the idea that LF are mainly due to classical polar-

ization effects.23

Therefore, by applying Eq. (8) on the enc of all the NC

set, we have obtained the final corrected spectra whose

(weighted) superposition shall describe the absorption of the

ensemble (see Fig. 4).

Since for our OH-terminated NC set we obtain

1.26 nm� d� 2.11 nm while for the H-terminated NCs we

have 0.87 nm� d� 2.24 nm, in order to describe the ensem-

ble we have set l¼ 0.84 nm and r¼ 0.01 nm.

Then, given N NCs of increasing d from d1 to dN, the

weight Wi for the i-th NC is expressed by

Wi ¼
ððdiþdiþ1Þ=2

ðdiþdi�1Þ=2

PðrÞ dr; (9)

in which d0¼�d1 and dNþ1 ¼ 1.

Finally, the absorption of the ensemble is simply given

by the weighted sum of the individual absorptions, through

FIG. 3. Imaginary part of dielectric function of Si32(OH)56 NC without LF

(solid curve), with LF correction calculated by ab-initio (dashed curve), and

with LF correction calculated by Eq. (8) (dotted curve).
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etot ¼
XN

i¼1

Wi e
i
LF: (10)

The so-obtained spectra for the H- and OH-terminated NC

ensembles are reported in Fig. 5. The calculated absorption

is characterized by a triangular-like main peak centered at

about 5.7 eV for the H-terminated NCs, and at about 5.0 eV

for the OH-terminated ones. The �0.7 eV shift is due to the

well-known difference in the confinement capability of H

with respect to OH passivation.11,24

The calculated spectrum profile of OH-terminated NCs

is in general agreement with experimental observations on

NCs embedded in SiO2 with average d of 1 nm,25 apart of a

red-shift in the maximum of the experimental spectra that

should be associated to the strain induced by the embedding

matrix on the NCs.11

III. EMISSION

In this section, we aim at evaluating the optical emission

spectrum of the NC ensemble as sum of the emissions of the

individual NCs.

Recently, some studies on the PL spectra of individual

Si NCs have reported linewidths of 2 meV at T’ 35 K,

clearly below kBT at this temperature, demonstrating true

quantum dot PL emission characteristics.26,27

This very important step permits us to modellize the PL

of single NCs using an atomic-like response. Following the

above assumption, we have described the emission of a sin-

gle NC through a gaussian profile

GðEÞ ¼ IðEgÞ=ðc
ffiffiffiffiffiffi
2p
p
Þ 	 exp � 1

2

E� Eg

c

� �2
" #

; (11)

in which the intensity I and the position Eg of the emission

peak can be associated to the radiative recombination rate

(RR) of the NC and to its energy gap, respectively. The line-

width of the peak, c, is fixed to 150 meV following experi-

mental observations.26,28

Differently than Sec. II, by expressing I and Eg as a

function of the NC size, in this case we can perform the sum-

mation using any kind of NC distribution. The assumption is

that the analytic expressions of I(d) and EgðdÞ are applicable

also outside the fitting range.

In the simplest picture, the NC energy gap, Eg, is deter-

mined by the diameter d following the quantum confinement

(QC) picture:

Eg ¼ 1:1þ a d�b: (12)

Equation (12) corresponds to the particle-in-the-box model

in which b assumes the maximum value of 2 in the case of

an infinite potential barrier.14 However, in the presence of

strongly polar interface terminations (e.g., OH), the inter-

face has a major impact on the electronic structure of Si

NCs.11,24 In this case, the above model no longer works and

one must take into account the specific configuration of the

interface in order to correctly estimate Eg. In Ref. 11, we

demonstrated the presence of a strong correlation between

Eg and X in the case of OH-terminated NCs. As a conse-

quence, for such systems we must derive a Egðd;XÞ rela-

tionship, while for H-terminated NCs a simpler EgðdÞ can

be employed.

Therefore, we have calculated the Eg of all the systems

and fitted the data as a function of the NC size (see Fig. 6).

For the H-terminated NCs, we have obtained

FIG. 4. Absorption spectra, calculated using Eq. (8), of the H (top panel)

and OH (bottom panel) NCs set.

FIG. 5. Calculated absorption spectrum of the NC ensemble made by

H-terminated (red curve) and OH-terminated (blue curve) with radius distri-

bution parametrized by l¼ 0.84 nm and r¼ 0.01 nm.
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EgðdÞ ¼ 0:53þ 3:0=d; (13)

while for the OH-terminated NCs we have derived the

expression

Egðd;XÞ ¼ 0:53þ 1:5=d þ 1:8 ðX� 1:41Þ=d2; (14)

in which the last term produces the correction due to the var-

iation of X. We note that such term vanishes out rapidly at

large d, suggesting that this effect is limited to small NCs. In

agreement with other works,29–31 this term becomes negligi-

ble at d ’ 3 nm, a threshold above which the gap can be con-

sidered purely QC driven.

Equations (13) and (14) tend to 0.53 eV for asymptoti-

cally large NCs, being the DFT-LDA energy gap of

bulk-silicon. In principle, one may apply a so-called scissor
operator of 0.6 eV in order to force the calculated bulk

value to the experimental one. Besides, since in our case we

work very far from the bulk limit (i.e., small NCs), no such

correction to the computed gap has been applied at this

stage.

The d�1 trend of the gap has been chosen in agreement

with other calculations,32 while the reason for the value of

1.41 in Eq. (14) will be clarified in the following. All the

remaining parameters resulted from data fitting.

By looking at Fig. 6, it is possible to compare the com-

puted Eg with the ones given by the fit. Clearly, Eqs. (13)

and (14) are able to estimate with good precision the Eg

value of each NC.

Next, we must determine the X value to be used in

Eq. (14). To do that, we have generated a large number of NCs

using cutoff-spheres of different d, and with different centering

sites: on a Si-atom or on two different Td-interstitials. In this

way, we have calculated the X value of a large number of NCs

with d� 7 nm, as reported in Fig. 7. Clearly, at large d the

oxidation degree tends to a well defined value of about

1:41 ’
ffiffiffi
2
p

(used in Eq. (14)), while at very small d it tends to

increase on the average, in agreement with the experimental

observations.29 A fit of the maximum-possible and minimum-

possible XðdÞ yields

XminðdÞ ¼ 1:41� 0:225=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � 0:7
p

XmaxðdÞ ¼ 1:41þ 0:477=ðd � 0:7Þ

)
; d 
 1 nm

XminðdÞ ¼ 1

XmaxðdÞ ¼ 3

)
; d < 1 nm:

(15)

As depicted by solid curves of Fig. 7, XminðdÞ and XmaxðdÞ
limit the possible value of X that a randomly generated NC

of given d can assume.

Next, to determine the amplitude of the emission peak,

we make use of the RR calculated in Ref. 33. For the H-

terminated NCs, we get

IðEÞ ¼ 7:7 � 106 ðE� 2:47Þ1:19; E > 2:47 eV (16)

while for the OH-terminated ones

IðEÞ ¼ 3:7 � 105 ðE� 0:71Þ2:94; E > 0:71 eV: (17)

We have finally generated a large set of NCs (N¼ 106),

with d distributed using P(x) with realistic parameters (see

Fig. 2) and randomly generated X ¼ ½Xmin::Xmax�. For each

NC, the G(E) has been calculated using Eg from Eqs. (13)

and (14), and IðEgÞ from Eqs. (16) and (17). Finally, the sum

over the N G(E) has been performed, forming the emission

spectrum (i.e., PL) of the ensemble, as reported in Fig. 8.

The emission spectra of the OH-terminated NC ensem-

bles are characterized by broad profiles peaked at about

850 nm (1.45 eV) and 1090 nm (1.15 eV), to be compared

with the measured 800 nm (1.55 eV) and 900 nm (1.38 eV) of

experimental samples with corresponding distributions.15

The small peak at about 200 nm present in the emission

(green curve) relative to the OH terminated ensemble is

clearly related to the wide variation of X in small NCs, being

not present in the sample with larger NCs.

The calculated spectra are slightly red-shifted with

respect to the measured ones, with the largest red-shift

appearing on the ensemble containing larger NCs, suggesting

that the used equations may loose accuracy when applied far

from the fitting range. In particular, while in the strong QC

FIG. 6. Calculated Eg for the hydrogenated (upper panel) and OH-

terminated (lower panel) NCs. Solid lines report the fit of the data, expressed

by Eqs. (13) and (14).

FIG. 7. X values for a set of NCs generated with random d and centered on

a Si-atom or on two different Td-interstitials. Upper and lower curves define

the maximum and minimum achievable X at each d.
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regime the gap value of bulk-Si in Eq. (14) plays a minor

role in determining Eg (since also other mechanisms concur,

e.g., electron-hole interaction),21 at large d it becomes a criti-

cal parameter, and its underestimation generates as a red-

shift that increases with l.

The latter effect is also expected to contribute to the ex-

cessive linewidth affecting the spectra. Besides, the sharp-

ness of the peaks of H-terminated NC ensembles indicates a

connection between the broadening and the dependence of

Eg with X in OH-terminated NCs. In fact, since the emission

intensity increases at smaller d, the large variation of EgðXÞ
at small d produces NCs strongly emitting in a wide energy

range. This is not the case of hydrogenated NCs, presenting

Eg with very small dispersion in energy at low d, and a corre-

spondingly narrow PL peak.

A second possible motivation of the oversized line-

widths could arise from the NC-NC interaction mechanisms,

completely neglected in the present work. For example, we

expect that the inclusion of F€orster and tunneling “energy

migration” interactions in the model would consistently

reduce the PL linewidths.14

To better understand the role of the mechanisms in play,

we have introduced an additional corrective term to Eq. (14)

in order to reproduce the experimental bulk-Si value at large

d. The proposed corrective function is

CðdÞ ¼ 0:6 ½1� e�d=3�; (18)

in which the exponential argument has been chosen so that

Egðd;XÞ þ CðdÞ returns a trend of the gap comparable to the

experimental one24 when X is set to its asymptotic value.

The inset of Fig. 9 reports Egðd; 1:41Þ, C(d), and their

sum, while the main figure reports the spectra of the OH-

terminated NC ensembles corrected using Eq. (18).

The corrected spectra show much reduced linewidths,

and peaks with maximum at 780 nm (1.59 eV) and 880 nm

(1.41 eV), very close to the experimental counterparts. This

indicates that NC-NC interaction mechanisms play a second-

ary role in the samples of Ref. 15.

Besides, the comparison with PL of hydrogenated NCs

supports the idea of addressing the broadness of the PL peak

observed in experiments to the sensitivity of Eg to the oxida-

tion level at the interface, in particular for small NCs. The

latter aspect emerges by comparing the present model with

that of Ref. 34, parametrized by the experimental data.

While at large d the latter model shows a nice agreement

with the emission profiles of corresponding NC samples, it

cannot reproduce the PL of the sample with the smallest

NCs, presenting a very broad peak with much increased

emission at high energy. In our opinion, such feature is

related to the large variation of X at small d, and to the fact

that the smallest NCs present the highest radiative rates,34 as

expressed by Eq. (17). Therefore, a comprehensive model

for optical emission should comprise the oxidation character-

istics of the sample, as suggested by early experimental

works.35

At last, we compare, in Fig. 10, the absorption and

emission spectra of the OH-terminated sample with radius

distribution parametrized by l¼ 0.84 nm and r¼ 0.01 nm.

In the figure, both absorption and emission have been calcu-

lated by including the C(d) correction term. The absorption

spectrum has been plotted following Tauc,36 and a Tauc

gap ET¼ 3.19 eV has been obtained by a linear fitting

(ET¼ 2.96 eV for the uncorrected spectrum of the OH-

terminated sample of Fig. 5). The maximum of the emission

peak is positioned at 1.82 eV.

Despite the several assumptions, the depicted results are

in good agreement with the experimental outcomes showing

that a very weak absorption exists in the region where lumi-

nescence peaks.37–40 The origin of the large Stokes shift

between absorption and emission peaks has been subject of

intense debate from twenty years to date. While contribu-

tions from tunneling between NCs (Ref. 14) and from struc-

tural deformation of the excited NCs (Refs. 41–43) have

been proposed, the most acknowledged contribution to the

Stokes shift comes from associating emission and absorption

to interface states and to quantum-confined states in the NC,

FIG. 8. Optical emission spectra of NC ensembles with radius distributions

parametrized by l¼ 1.7 nm, r¼ 0.65 nm (red curves) and l¼ 1.1 nm,

r¼ 0.10 nm (green curves). Solid (dashed) curves represent spectra of OH-

terminated (H-terminated) NC ensembles.

FIG. 9. Optical emission spectra of OH-terminated NC ensembles with ra-

dius distributions parametrized by l¼ 1.7 nm, r¼ 0.65 nm (red curves) and

l¼ 1.1 nm, r¼ 0.10 nm (green curves) obtained using Eg corrected through

Eq. (18). The inset reports Egðd; 1:41Þ (dashed curve), C(d) (dotted curve),

and their sum (solid curve).
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respectively.37,41,44 Within the latter picture, the Tauc gap

helps in distinguishing the absorption due to interface (sur-

face) states (E<ET) and due to NC states (E>ET).

Evidently, since in our model the atomic-like emissions of

the individual NCs are centered at Eg, the emission peak

occurs entirely at E<ET. This result is consistent with that

of Ref. 38, in which they report a Tauc gap of about 2.5 eV

and a PL peak centered at about 1.7 eV for experimental

samples made by SiO2-embedded NCs with average d
smaller than 2 nm. As already discussed in Sec. II, the differ-

ence between the experimental and computed ET should be

addressed to the SiO2-induced strain on the NCs.11

IV. CONCLUSIONS

First, by performing DFT calculations on a set of Si-

NCs, either passivated by H or OH, we have demonstrated

the possibility of simulating the optical absorption spectrum

of an ensemble of NCs with a realistic distribution in the

size. The calculated spectrum is validated by a comparison

with the experimental absorption of a corresponding sample.

Second, a purely analytical model for the optical

emission of NC ensembles has been parametrized by DFT

calculations and has been successively validated using

experimental samples made by NCs with average radii of

1.1 nm and 1.7 nm. The presented model takes into account

the oxidation degree of the NC, which appears particularly

important for correctly describing the emission of the small

NCs in the ensemble. Also, an important role of the SiO2-

induced stress has been confirmed, especially on the absorp-

tion, while a marginal role of the NC-NC interaction is

deduced by the comparison with the experiments.
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