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 Preservation of genome integrity during cell division 
is one of the primary objectives for each organism, and, 
therefore, many mechanisms and structures have been 
developed to achieve this goal. One of the crucial points 
is the segregation of sister chromatids during mitotic ana-
phase, as an error during this step would cause a great 
imbalance of the genetic content in the daughter cells. For 
this reason, from early evolutionary stages, eukaryotic or-
ganisms have developed a structure able to fully lead this 
segregation: the centromere. Already in the first cytoge-
netic studies, this structure has been identified as the re-
gion of each chromosome in which the spindle apparatus 
is attached during chromosome segregation at mitosis 
and meiosis [Flemming, 1882]. We now know that the 
centromeric chromatin essentially consists of nucleo-
somes assembled in the presence of repetitive DNA se-
quences. In the nucleosome, a variant of the histone pro-
tein H3, called CenH3 (or CENP-A), is present and rep-
resents the key component of centromeres [Steiner and 
Henikoff, 2015]. The centromere is the coupling region 
for a protein complex, called the kinetochore, to which 
the mitotic spindle attaches [Pesenti et al., 2016]. In hu-
man, the repeated DNA sequences in the centromere of 
each chromosome are composed of tens of thousands of 
repetitions of alpha-satellite DNA that contains around 
400 copies of the CENP-A protein [Bodor et al., 2014].
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 Abstract 

 Eukaryotic organisms have developed a structure, called 
centromere, able to preserve the integrity of the genome 
during cell division. A young bull from the Marchigiana 
breed, with a normal external phenotype, underwent rou-
tine cytogenetic analysis to enter the reproduction center. 
All metaphases analyzed showed an unusual biarmed chro-
mosome of medium size despite a diploid set of chromo-
somes (2n = 60,XY). FISH analysis excluded a pericentric in-
version or a reciprocal translocation, but highlighted a repo-
sitioning of the centromere in BTA17. The satellite DNA was 
still in an acrocentric position. The telomeres were normally 
present. The primary constriction on the abnormal chromo-
some was C-band negative. Finally, the absence of a large 
genomic deletion in the BTA17 pericentromeric region was 
demonstrated by both array-CGH analysis and SNP array. To 
our knowledge, this is the first case of centromere reposi-
tioning reported in cattle.  © 2017 S. Karger AG, Basel 
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  The repositioning of the centromere in a chromosome 
and the subsequent appearance of a neocentromere, al-
ready observed in the early 1970s by comparing similar 
genomes in phylogenetic studies, was explained by the 
presence of pericentric inversions or other chromosomal 
rearrangements. In 1979, for the first time, a possible 
mechanism of centromere transposition was proposed 
[Dutrillaux, 1979]. Successively, this hypothesis has 
mainly been confirmed by fluorescence in situ hybridiza-
tion (FISH) that allows, through the use of appropriate 
probes, to verify the order of markers present on analo-
gous chromosomes of different species and exclude the 
presence of pericentric inversions as cause of the reposi-
tioning of the centromere [Wienberg et al., 1990]. From 
studies conducted in humans, we currently know that the 
formation of neocentromeres is the biological response to 
avoid the loss of genetic material, for example acentric 
chromosome fragments, which do not segregate properly 
during cell division. Acentric DNA fragments are excised 
to form linear or ring chromosomes. These kinds of neo-
centromeres are classified as type I and II [Marshall et al., 
2008], and they are usually identified in subjects showing 
clinical problems. Both types result from a rescue process 
of an acentric chromosome, but type I acentric chromo-
somes derive from unbalanced rearrangements, whereas 
those of type II derive from balanced rearrangements.

  However, there is a third type of neocentromeres: they 
are present in a different position than the expected one. 
They resume the function of the original centromere in 
the absence of any chromosomal rearrangement. These 
neocentromeres are very difficult to detect because they 
do not result in an altered phenotype. Therefore, they are 
often identified only during a routine screening program 
as amniocentesis [Warburton et al., 1997]. In the human 
population, more than 100 cases of type I and II neocen-
tromeres have already been identified [for a review, see 
Marshall et al., 2008], while only 8 cases of type III neo-
centromeres have been described [for a review, see Has-
son et al., 2011]. What happens to these neocentromeres 
once they appeared? Since they are not associated with 
gene imbalances and consequently with clinical pheno-
types, they are free to fix themselves in the population and 
thus become evolutionary new centromeres [Montefal-
cone et al., 1999]. The presence of these evolutionary new 
centromeres was observed in many species; it is recog-
nized as an important mechanism of genome evolution 
[Rocchi et al., 2012].

  In cattle ( Bos taurus ), all the autosomes are acrocentric 
elements. In fact, the centromere is located almost at one 
extremity of the chromosome, while the sex chromo-

somes are represented by a large submetacentric X and a 
small metacentric Y. Thus, the presence of an eventual 
biarmed chromosome is easily identified, also in meta-
phases not treated with a banding technique. Despite the 
thousands of subjects that are cytogenetically analyzed 
each year, until now all observed biarmed chromosomes 
were the result of robertsonian translocations [reviewed 
in De Lorenzi et al., 2008]. Some authors estimate the fre-
quency of these abnormalities at around 0.03% in the cat-
tle population [De Lorenzi et al., 2012]. The displacement 
of the centromere from the correct position can also re-
sult from a pericentric inversion, but so far only 2 cases 
have been reported, and the X and Y chromosomes were 
involved [Switonski, 1987; Iannuzzi et al., 2001]. In the 
present case, we identified an unusual biarmed chromo-
some of medium size in all metaphases observed despite 
a correct diploid set of chromosomes (2n = 60,XY). Fur-
ther analyses excluded a pericentric inversion, while they 
highlighted a repositioning of the centromere in BTA17. 
To our knowledge, this is the first case reported in cattle.

  Materials and Methods 

 Case Description 
 A young bull from the Marchigiana breed underwent routine 

cytogenetic analysis indispensable to enter the reproduction cen-
ter. At the time of analysis, the bull was 4 months old, and it showed 
a normal external phenotype corresponding to the Marchigiana 
breed standard.

  Cell Cultures 
 Peripheral blood lymphocyte cultures were performed following 

standard methods [Iannuzzi and Di Berardino, 2008] except for the 
final volume of the cell cultures (5.5 mL). The cultures were incu-
bated for 72 h, and colcemid was added 90 min before cell harvest.

Table 1.  BACs used in the FISH experiments

BAC Localization in BTA17, bp
(UMD3.1 cattle genome assembly)

Size, kb

200C01 73,170,929 – 73,298,742 127.3
810C12 532,117 – 629,425 97.3
395B01 4,665,621 – 4,730,196 64.6
480C01 6,146,376 – 6,227,566 81.2
357A10 7,810,266 – 7,958,744 147.5
712G03 8,104,719 – 8,221,777 117.1
671G02 8,518,201 – 8,616,445 98.2

 All BACs are from the INRA cattle BAC library. BAC 200C10 
maps to the terminal region of BTA17 and was used to verify the 
involvement of BTA17 in the anomaly.
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  FISH Experiments 
 As probes we used both BACs obtained from the INRA library 

[Eggen et al., 2001] and bovine satellite DNA previously employed 
by Chaves et al. [2003]. The localization of these BACs on BTA17 
(UMD3.1 genome assembly) is reported in  Table 1 . DNA for the 
FISH experiments was extracted according to the method de-
scribed at the CHORI web site (https://bacpacresources.org/) af-
ter overnight growth at 37   °   C in LB medium supplemented with 
chloramphenicol. For each FISH experiment, 300 ng of probe 
DNA was labeled, and FISH was performed as reported in De Lo-
renzi et al. [2007]. The bovine satellite DNA probes (Sat-I, -III, 
and -IV) were labeled with biotin or digoxigenin [Chaves et al., 
2003], following the hybridization protocols of Iannuzzi and Di 
Berardino [2008]. Finally, chromosomes were counterstained 
with Vectashield DAPI H1500 in Vectashield H 1000 antifade so-
lution (Vector Laboratories), and 50 cells were analyzed using Cy-
tovision software.

  Sequential Telomere and C-Banding Techniques 
 Chromosomes were treated with sequential telomere and C-

banding techniques. The telomere PNA probe, mapping on all 
telomeres, was hybridized on metaphase cells using the telomere 
PNA FISH kit/FITC (Dako Cytomation). At least 50 cells were 
analyzed using Cytovision software. After the analysis, the cover-
slip was removed, and the slide was washed in PBST solution, 
rinsed, and dried before C-banding (CBA). CBA followed the pro-
tocols reported in Iannuzzi and Di Berardino [2008], and the same 
cells as above were analyzed.

  Array-CGH Analyses 
 Array-CGH was performed using the SurePrint G3 Bovine Ge-

nome CGH Microarray Kit, 4x180k, with 11.0 kb overall median 
probe spacing, according to the manufacturer’s protocol (Agilent 
Technologies, Santa Clara, CA, USA). The positions of oligomeres 
refer to the Cow Genome October 2007 assembly (bosTau4). Qual-
ity of experiments was assessed using Feature Extraction QC Met-
ric v10.1.1 (Agilent), and the derivative log ratio (DLR) spread val-
ue was calculated using the Agilent Genomics Workbench soft-
ware. The experiment has an excellent (0.17) DLR spread value. 
DLR measures the standard deviation of the probe-to-probe dif-
ference of the log ratios and is a measure of array quality: <0.20 is 
considered as excellent. The bull and his mother were tested, and 
DNA from a normal male subject was used as control.

  SNP Analyses 
 SNP analyses were performed using GeneSeek Genomic Pro-

filer Bovine 150K (NeoGen) following the producer’s instructions. 
The bull and both parents were tested.

  Results and Discussion 

 All 98 metaphases analyzed showed an abnormal chro-
mosome with a short p arm. Considering that the diploid 
number was 2n = 60, we first excluded the presence of a 

b

c d

a

  Fig. 1.  Characterization of the abnormal 
BTA17 with the repositioned centromere. 
 a  Giemsa-stained metaphase.  b  C-banded 
metaphase.  c ,  d  Metaphase plate after se-
quential telomere FISH ( c ) and CBA stain-
ing ( d ). Telomeric signals are present in 
all chromosomes including the abnormal 
BTA17. Sequential CBA staining con-
firmed the presence of a positive C-band in 
the telomeric region of the BTA17. Red ar-
rows indicate the sex chromosomes, blue 
arrows the abnormal BTA17. 
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robertsonian translocation ( Fig. 1 a). In order to ascertain 
if the abnormal chromosome arose de novo, we analyzed 
the bull’s parents and found that the mother was also a 
carrier of the abnormal chromosome (not shown). Con-
sidering that the centromere appears displaced from an 
almost terminal to a less distal position, we performed C-
banding to highlight this constriction. Surprisingly it re-
vealed that the primary constriction actually present on 
this abnormal chromosome was C-band negative ( Fig. 1 b). 
Finally, considering that the short arm of the chromosome 
was involved, we studied the presence of telomeric se-
quences. The telomeres were normally present ( Fig. 1 c, d).

  In order to identify unequivocally the involved chro-
mosome, we preferred a FISH approach rather than con-
ventional banding techniques. Once we identified the 

chromosome with the neocentromere (using BAC 
200C01, not shown), we proceeded with the selection of 
several specific BACs of BTA17 as previously reported 
[De Lorenzi et al., 2015]. All BACs tested were on the 
“new” BTA17p arm ( Fig.  2 a–f, h) except BAC 671G02 
( Fig. 2 g) which is located on the newly formed q arm of 
the abnormal BTA17. Thus, considering the FISH results, 
we established that the new centromere position is locat-
ed at around 8.4–8.5 Mb in BTA17 ( Fig. 2 i; UMD3.1 cat-
tle genome assembly). Moreover, we clearly showed that 
no inversion was present since the order of the markers 
was the same in both the abnormal and the normal chro-
mosome 17 ( Fig. 2 a, h). From these results, we can state 
that the abnormal BTA17 originated by repositioning of 
the centromere.
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  Fig. 2.  Characterization of the abnormal 
BTA17 by FISH with different BAC clones. 
 a ,  h  Co-hybridization of BACs 810C12 (red 
signal) and 395B01 (green signal) ( a ) and 
712G03 (green signal) ( h ), respectively, in 
order to determine the order of the BACs 
on both the normal chromosome 17 and 
the chromosome 17 with centromere repo-
sitioning.  b–f  FISH with BACs 480C01, 
357A10, and 712G03 (red signal) proving 
the positioning of the BACs on the newly 
formed p arm of the abnormal BTA17. 
 g  FISH with BAC 671G02 (red signal) 
showed preservation of the BAC on the q 
arm of both the normal BTA17 and the 
BTA17 with centromere repositioning. 
The neocentromere, therefore, is located 
between BAC 712G03 and BAC 671G02. 
The white arrows indicate the abnormal 
BTA17.  i  Schematic presentation of the po-
sition of the BACs on BTA17. 
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  Regarding the satellite DNA, normally present in the 
centromeres of cattle, we performed FISH analyses using 
probes for Sat-I, Sat-III, and Sat-IV sequences, and the 
results are shown in  Figure 3 . BTA17 is characterized by 
the presence of Sat-I and Sat-III DNA only [Chaves et al., 
2000, 2003]. We could clearly show that the neocentro-
mere position does not coincide with the satellite DNA 
which is still in an acrocentric position. This result also 
perfectly complies with that reported for neocentromeres 

in other species, in which the creation of a new centro-
mere does not require the presence of satellite DNA [Bur-
rack and Berman, 2012].

  Finally, array-CGH and SNP arrays demonstrated that 
no loss or gain occurred in the centromeric region of 
BTA17 or in other BTA17 regions. Depending on the ge-
nome position investigated, the log2 ratio intensity certi-
fied the absence of a deletion or duplication, whereas for 
the genome positions investigated by SNP array, the het-

a b

Table 2.  Position of the probes in the centromeric portion of BTA17 (first 100,000 bp; Bos_taurus_UMD_3.1.1 genome assembly) and 
data obtained for the bull and its mother

Probe name Probe position on 
BTA17, bp

Analysis  SNPa log2 ratiob

bull mother bull mother

BovineHD1700000004 5,375 SNP AA AC – –
BovineHD1700000008 23,517 SNP TT TC – –
A_63_P12881776 24,129 array – – 0.769 0.766
A_63_P12881813 38,078 array – – 0.227 0.058
A_63_P12881837 56,032 array – – 0.056 0.098
BovineHD1700000025 59,578 SNP TG TG – –
ARS-USDA-AGIL-
chr17-59818-000317

59,818 SNP GG TG – –

A_63_P12881863 70,304 array – – 0.177 0.373
BovineHD1700000028 74,064 SNP AC AA – –
A_63_P12881889 82,133 array – – 0.337 0.103
A_63_P12881912 96,122 array – – 0.158 0.026
BTB-01851867 111,319 SNP AG GG – –
A_63_P12881958 123,944 array – – 0.418 0.338

 a Nucleotides present at the position investigated by SNP.
b The normal condition would correspond to a log2 ratio of 0. A log2 ratio intensity of a single-copy loss would be –1, and a single-

copy gain would be 0.58. A shift from the normal value of at least 3 consecutive probes is necessary to call an aberration.

  Fig. 3.  FISH with satellite DNA probes. 
 a  Sat-IV (red signal) is not present in 
BTA17.  b  Dual-color FISH with Sat-I
(red) and Sat-III (green) probes. Both Sat-I 
and -III are present on BTA17. Red arrows 
show the sex chromosomes, while the blue 
arrow indicates the abnormal BTA17.           
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erozygous status of the bull (or the mother, as it carries 
the same anomaly) certified the absence of a deletion ( Ta-
ble  2 ). Array-CGH identified several CNVs already re-
ported as polymorphic in previous studies [Bae et al., 
2010; Fadista et al., 2010; Liu et al., 2010; Seroussi et al., 
2010; Hou et al., 2011; Kijas et al., 2011; Bickhart et al., 
2012; Cicconardi et al., 2013].

  Moreover, considering that this displacement is not 
associated with any structural rearrangements, it is also 
possible that it represents an evolutionary event of creat-
ing new centromeres. The appearance of type III neocen-
tromeres is such a rare event that only 8 human cases have 
been described earlier [Hasson et al., 2011]. The same 
condition reported here has been observed in several 
mammals [Cardone et al., 2006], but never before in cat-
tle. In our case, the abnormal BTA17 was inherited from 
the mother, excluding a de novo event. Considering that 
the evolutionary new centromeres are not associated with 
chromosome rearrangements that can jeopardize the vi-
ability of cells, they have the possibility to fix themselves 
and to spread in the population. Thus, assuming no selec-
tive effect, the older an anomaly is, the more it is expected 
to spread in the population. From our 20 years of experi-
ence in the laboratory, analyzing more than 2,200 subjects 
belonging to the Marchigiana breed (as the bull described 
here), we can assert that no similar case has been report-
ed. It is thus possible that the present neocentromere has 
a very recent origin and represents the first step of an evo-
lutionary neocentromere path. Since the bull was exclud-
ed from reproductive activity, we will not be able to ob-
serve the capacity of the abnormal BTA17 to spread in the 
population nor the eventual phenotypic effect. Since the 
subject is heterozygous, it would be interesting to observe 

the behavior of the normal and the mutant BTA17 during 
meiosis. Up to date, we can only report the data about the 
reproductive history of the bull’s mother as it carries the 
same anomaly. She required 5 fecundations to generate 2 
calves, not a normal condition for the breed considered. 
As reported for the human cases, the new centromeres are 
C-band negative, and the DNA is composed of alphoid 
sequences. Regarding the present case, the C-band is still 
located in the terminal portion of the chromosome where 
the centromeric constriction is usually found in the wild-
type chromosome.

  Therefore, in conclusion, in this report we presented 
the first case of a centromere repositioning in cattle, and 
we showed the contemporary absence of large genomic 
rearrangements.
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