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Abstract. In open networked systems, each node shares part of its in-
formational resources on the network and is responsible of providing
an ontological description for them. To enable semantic information in-
teroperability in networked contexts with a multitude of autonomous
ontologies, appropriate matching techniques are required to determine
semantic mappings between concepts of different ontologies. In this pa-
per, we describe H-Match, an algorithm for dynamically performing
ontology matching in open networked contexts. H-Match provides sev-
eral matching models and metrics to work at different levels of depth,
with different degrees of flexibility and accuracy, thus supporting seman-
tic interoperability in a flexible way.

1 Introduction

In open networked systems like Peer-to-Peer and Grid, informational resources
(e.g., datasets, documents) are provided by many different nodes generally
spanned across multiple organizations. Open networked systems provide sig-
nificant advantages in terms of flexibility, fault tolerance, and extensibility, but,
in order to allow resource sharing, they introduce the problem of coping with
the intrinsic dynamics of the system and with the need of a semantic descrip-
tion of resources [1,2,3]. Ontologies are generally recognized as an essential tool
for describing resources in order to allow communication and knowledge sharing
among distributed users and applications, by providing a common understand-
ing of a domain of interest [4]. However, in open networked systems, where
nodes are autonomous in terms of capabilities and resource management, infor-
mation resource sharing can not be based on a global ontology. In fact, each node
shares part of its resources on the network and is responsible of providing their
ontological description. To enable resource sharing and semantic information in-
teroperability in networked contexts with a multitude of autonomous ontologies,
appropriate ontology matching techniques are thus required to determine se-
mantic mappings between concepts of different ontologies that are semantically
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related [5,6,7]. In this paper, we describe H-Match, an algorithm for dynam-
ically performing ontology matching at different levels of depth, with different
degrees of flexibility and accuracy. H-Match performs the matching of two on-
tologies, and provides, for each concept of one ontology, a ranking of similarity of
the concepts in the other ontology. H-Match takes into account different levels
of richness in resource descriptions, and allows one to consider various metadata
elements of ontology descriptions separately or in combination. H-Match has
been developed in the framework of the Helios project, whose aim is to sup-
port dynamic knowledge sharing and ontology-addressable content retrieval in
peer-based systems [8].

The paper is organized as follows. In Section 2, we present the foundations
of our approach for ontology matching. In Section 3, we describe the matching
process. In Section 4, we discuss applicability issues in open networked contexts.
In Section 5, we discuss related work on ontology matching. Finally, in Section 6,
we give our concluding remarks.

2 Foundations for Semantic Information Interoperability

The problem of matching ontologies in multi-ontology contexts of open net-
worked systems introduces a number of challenging issues to be addressed for
semantic information interoperability. In this paper, we focus on three major
requirements:

– The advent of the Semantic Web has produced a large body of research
around ontology languages, and many standard proposals that can be used
for resource description in open networked systems have emerged (e.g., RDF,
DAML+OIL, OWL). Different ontologies can describe the same domain us-
ing different descriptions of the same resources, also using the same language.
An important requirement of ontology matching techniques is to capture
the elements that are relevant for matching purposes in ontology resource
descriptions in a language-independent manner, to be applicable in many
contexts. H-Match addresses this requirement by exploiting a reference on-
tology model (see Section 2.1).

– The meaning of ontology concepts depends basically on the names chosen for
their definition and on their contexts, namely on their properties and on the
relations they have with other concepts in the ontology. We are interested
in addressing the fact that these two features can have a different impact
in different ontology structures and can play a different relevance in the
matching process. In order to address this requirement, H-Match computes
a comprehensive value of matching of two concepts, by combining both their
linguistic and their contextual features. Furthermore, H-Match allows one
to set the relevance of the linguistic and contextual features in the matching
process.

– A key requirement of dynamic matching is the capability of coping with
different levels of detail and structuring in describing the resources of inter-
est, by considering various ontology elements separately or in combination.
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In the remainder of the paper, we will show how H-Match addresses this
requirement by providing four different matching models for dealing with
different levels of depth and different degrees of flexibility and accuracy of
results. These matching models are used for dynamically suiting the match-
ing process to different levels of richness in ontology descriptions.

2.1 A Reference Ontology Model

H-Match is based on a reference ontology model, called H-Model, capable
of representing the ontology features that are relevant for matching purposes
in a language independent way, in terms of concepts, properties, and semantic
relations. To describe H-Model, in the following we focus on the OWL language,
which provides three increasingly expressive sublanguages designed for use by
specific communities of implementers and users, with different needs in terms
of resource description accuracy [9]. Hereafter, we describe the constructs of H-
Model, by showing the correspondent elements of OWL that can be mapped
on them.

Concept. A concept c in H-Model is defined as a pair of the form c = (nc, Pc),
where nc is the concept name, and Pc is a set, possibly empty, of properties of c.
Each concept c in H-Model represents a class declaration in OWL. The concept
name nc is set by referring to the RDF ID associated with the class declaration
in OWL.

Property. A property p in H-Model is defined as a pair of the form p =
(np, PCp), where np is the property name, and PCp is a set of property con-
straints. Each property constraint associates a property p with a concept c, by
specifying the minimal cardinality and the property value vp of p in c. A prop-
erty constraint pcp ∈ PCp is a 3-tuple of the form pcp = (c, kp, vp), where c is
a concept, k ∈ {0, 1} is the minimal cardinality associated with p when applied
to c, and vp is the value associated with p when applied to c, and can be a
datatype dtp or a reference name. We call strong properties the properties with
k = 1, and weak properties the ones with k = 0. Each property p represents
a property declaration in OWL. The property name np is set by referring to
the RDF ID associated with the property declaration. The property cardinality
kp as well as the property value vp are enforced by exploiting OWL property
restrictions. In particular, OWL cardinality restrictions are exploited for setting
the cardinality of the property, while the AllValuesFrom, SomeValuesFrom, and has-
Value OWL clauses are exploited for setting the value of the property, that can
be a datatype, or a reference name representing the name of a concept or an
individual in OWL.

Semantic relations. A semantic relation sr in H-Model is defined as a binary
relation of the form sr(c, c′), where c and c′ are concepts and sr is the relation
holding between them. H-Model provides same-as, kind-of, and part-of semantic
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relations. In particular, the same-as and the kind-of relations represent the equiva-
lentClass and the subClassOf relations in OWL, respectively. Moreover, the kind-of
relation is exploited for the representation of the intersectionOf, and the unionOf
OWL operators. For an intersection clause of the form A ≡ B � C we set two
kind-of relations of the form A kind − of B and A kind − of C. For a union clause
of the form A ≡ B�C we set a two kind-of relations of the form B kind − of A and
C kind − of A. Finally, the part-of relation is used for representing an enumerated
class defined as a collection by means of the oneOf OWL clause. In particular, we
set a part-of relation between each H-Model element representing a component
of the collection and the H-Model concept representing the enumerated class.
A H-Model graphical representation of OWL ontologies is shown in Figure 1
(see Section 3).

2.2 Linguistic Features

Linguistic features refer to names of ontology elements and their meaning. To
capture the meaning of names in an ontology in the matching process, we refer
to a thesaurus Th of terms and terminological relationships among them. Th is
automatically derived from the lexical system WordNet [10]. For the thesaurus
construction, we note that in real ontologies, like OWL ontologies, ontology
element names can be composed by one or more terms. Terms and terminological
relationships to be stored in Th are selected as follows.

Basic terms. Given the set T of terms used as names of ontology elements, a
term t ∈ T is a basic term, denoted as bt, if an entry for bt exists in WordNet. In
the thesaurus construction, an entry is defined for each basic term bti ∈ T .

Compound terms. Given the set T of terms used as names of ontology elements,
a term t ∈ T is a compound term, denoted as ct =< bt1, bt2, . . . , btn >, if
ct is composed by more than one basic term bti and an entry for ct does not
exists in WordNet. For managing compound terms and their terminological re-
lationships, we follow an approach similar to [11]. In a typical compound term
ct, one of its constituent basic terms denotes the central concept represented
by ct, while the remaining basic terms denote a specification of such a central
concept. In particular in English, the basic terms appearing on the left side of
ct denote the specification of the meaning of term appearing on the right side.
Our thesaurus organization makes explicit these considerations for compound
terms, by introducing appropriate terms and terminological relationships entries
in Th necessary to: i) correctly capture the meaning of a compound term and ii)
to represent all terminological relationships of interest with other terms in Th.
Given a compound term ct =< bt1, bt2, . . . , btn >, an entry is defined in Th for
ct and for each constituent basic term bti, i = 1, 2, . . . , n.

Terminological relationships. Terminological relationships in Th are defined by
considering terminological relationships among synsets provided by WordNet.
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Terminological relationships considered in Th together with their correspond-
ing relationships in WordNet is shown in Table 1. In the thesaurus construction,
for each basic term entry bti ∈ Th, a terminological relationship entry is defined
in Th (i.e., SYN, BT/NT, or RT) if bti belongs to one of the WordNet synsets
associated with the other basic term entries btj by a terminological relationship,
according to the correspondences reported in Table 1. For each compound term
entry cti =< bti1 , bti2 , . . . , btin

>∈ Th, we define a terminological relationship
BT/NT between cti and btin

, to capture the fact that cti is a specification of btin
.

Furthermore, a RT terminological relationship between cti and each remaining
basic term btij , j = 1, 2, . . . , n − 1 is also defined in Th, for capturing the fact
that these terms qualify cti.

Table 1. Terminological relationships for ontology matching

Terminological relationship in Th Relationship in WordNet

SYN
(synonymy)

synonymy

BT/NT
(broader/narrower terms)

hyponymy
hypernymy

RT
(related terms)

meronymy
coordinate terms

Weighting terminological relationships. In H-Match, a weight Wtr is associated
with each terminological relationship tr ∈ {SYN, BT/NT, RT} in Th in order
to express its implication for semantic affinity. Different types of relationships
have different implications for semantic affinity. In particular, we set WSYN ≥
WBT/NT ≥ WRT. Synonymy is generally considered a more precise indicator
of affinity than other relationships, consequently WSYN ≥ WBT/NT. The lowest
weight is associated with RT since it denotes a more generic relationship than
BT/NT. Weights for terminological relationships are defined as shown in Table 2.

Table 2. Weights associated with terminological relationships

Terminological relationship Weight

SYN 1.0
BT/NT 0.8
RT 0.5

2.3 Contextual Features

Contextual features refer to the properties and concepts directly related to a
given concept in an ontology. The importance of considering contexts when
matching heterogeneous information is well-known [12]. In particular, the ap-
proach used for detecting the context of concepts influences the matching results.
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For ontology matching, a notion of context is essential, since semantic relations
and properties play a key role in ontology specification. Given a concept c, we
denote by P (c) the set of properties of c, and by C(c) the set of concepts that
participate in a semantic relation with c (in the following referred to as adja-
cents), respectively. The context of a concept in H-Match is defined as the
union of the properties and of the adjacents of c, that is, Ctx(c) = P (c) ∪ C(c).

Weighting contextual features. In H-Match, a weight Wsr is associated with
each semantic relation to denote the strength of the connection expressed by the
relation on the involved concepts for semantic affinity evaluation purposes. The
greater the weight associated with a semantic relation, the higher the strength of
the semantic connection between concepts. Furthermore, we associate a weight
Wsp to strong properties, and a weight Wwp to weak properties, respectively,
with Wsp ≥ Wwp to capture the importance of the property in characterizing
the concept for matching. In fact, strong properties are mandatory related to
a concept and are relevant to give its structural description. Weak properties
are optional for the concept in describing its structure, and, as such, are less
important in featuring the concept than strong properties. Weights considered
in H-Match for properties and semantic relations are summarized in Table 3 1.

Table 3. Weights associated with contextual features

Context element Weight

same as relation 1.0
kind of relation 0.8
part of relation 0.5
strong property 1.0
weak property 0.5

2.4 Basic Matching Functions

Term affinity function. The aim of the term affinity function A(t, t′) → [0, 1] is to
evaluate the affinity between two terms t and t′ with respect to Th. A(t, t′) of two
terms t and t′ is equal to the value of the highest-strength path of terminological
relationships between them in Th if at least one path exists, and is zero otherwise.
A path strength is computed by multiplying the weights associated with each
terminological relationship involved in the path, that is:
1 Weight definition relies on our previous experience in developing schema matching

techniques. In particular, terminological relationships weights have been extensively
experimented in the Artemis integration system [13]. Following similar considera-
tions, we have defined weights for contextual features, which have been tested on
a number of real ontologies, with satisfactory results. The matching support tool
under development allows the designer to modify such default values, by choosing
interactively different parameter setting, if necessary.
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A(t, t′) =
{

maxi=1...k {Wt→n
i t′} if k ≥ 1

0 otherwise (1)

where: k is the number of paths between t and t′ in Th; t →n
i t′ denotes the ith

path of length n ≥ 1; Wt→n
i t′ = W1tr

· W2tr
· · · · · Wntr

is the weight associated
with the ith path, where Wjtr

| j = 1, 2, . . . , n denotes the weight associated
with the jth terminological relationship in the path.

Datatype compatibility function. A datatype compatibility function is defined
to evaluate the compatibility of data types of two properties according to a
pre-defined set CR of compatibility rules. The datatype compatibility function
T (dt, dt′) → {0, 1} of two data types dt and dt′ returns 1 if dt and dt′ are
compatible according to CR, and 0 otherwise, that is:

T (dt, dt′) =
{

1 iff ∃ a compatibility rule for dt, dt′ in CR
0 otherwise (2)

For instance, with reference to XML Schema datatypes (which are relevant
for OWL ontology matching), examples of compatibility rules that hold are:
xsd:integer ⇔ xsd:int, xsd:integer ⇔ xsd:float, xsd:decimal ⇔ xsd:float, xsd:short ⇔
xsd:int.

Property and semantic relation closeness function. A closeness function
C(e, e′) → [0, 1] calculates a measure of the distance between two elements of
concept contexts (i.e., two properties, two semantic relations, or a semantic re-
lation and a property, respectively). C(e, e′) exploits the weights associated with
context elements and returns a value in the range [0,1] proportional to the ab-
solute value of the complement of the difference between the weights associated
with the elements, that is:

C(e, e′) = 1− | We − We′ | (3)

where We and We′ are the weights associated with e and e′, respectively. For
any pairs of elements e and e′, the highest value (i.e., 1.0) is obtained when
weights of e and e′ coincide. The higher the difference between We and We′ the
lower the closeness value of e and e′. We note that the closeness of a property
and a semantic relation can be evaluated in order to capture the structural
heterogeneity among different ontological descriptions.

3 Ontology Matching with H-Match

The general goal of ontology matching techniques is to find concepts that have a
semantic affinity with a target concept, by producing a measure of their affinity.
To satisfy the main requirements for ontology matching described in the intro-
duction, we have defined four matching models for H-Match, by exploiting the
basic matching functions of Section 2.4. The matching models have been con-
ceived to span from surface to intensive matching, with the goal of providing a
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wide spectrum of metrics suited for dealing with many different matching scenar-
ios that can be encountered in comparing real ontologies (e.g., OWL ontologies).
Each model calculates a semantic affinity value SAc,c′ of two concepts c and c′

which expresses their level of matching. SAc,c′ is produced by considering lin-
guistic and/or contextual features of concept descriptions. In a matching model,
the relevance of the linguistic and the contextual features of c and c′ in the
matching process can be established, by properly setting the linguistic affinity
weight Wla ∈ [0, 1] in the semantic affinity evaluation process.

3.1 Surface Matching

The surface matching is defined to take into account only the linguistic features
of concept descriptions. Surface matching addresses the requirement of dealing
with high-level, poorly structured ontological descriptions. Given two concepts
c and c′, surface matching provides a measure SAc,c′ of their semantic affinity
by exploiting the terminological affinity function (1), that is:

SAc,c′ = A(nc, nc′) (4)

where nc and nc′ are the names of c and c′, respectively.

3.2 Shallow Matching

The shallow matching is defined to take into account both concept names and
concept properties. With this model, we want a more accurate level of matching,
by taking into account not only the linguistic features but also information about
the presence of properties and about their cardinality constraints. For property
comparison, each property pi ∈ P (c) is matched against all properties pj ∈
P (c′) using (1) and (3), and the best matching value m(pi) is considered for the
evaluation of SAc,c′ , as follows:

m(pi) = max{A(npi , npj ) · C(pi, pj)}, ∀pj ∈ P (c′) (5)

where npi and npj denote the names of pi and pj , respectively. SAc,c′ is evaluated
by the shallow matching as the weighted sum of the linguistic affinity of c and
c′, calculated using (1), and of their contextual affinity, calculated as the average
of the property best matching values computed using (5), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|P (c)|

i=1 m(pi)
| P (c) | (6)

3.3 Deep Matching

The deep matching model is defined to take into account concept names and the
whole context of concepts, in terms of properties and semantic relations. Each
element ei ∈ Ctx(c) is compared against all elements ej ∈ Ctx(c′) using (1) and
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(3) and the best matching value m(ei) is considered for the evaluation of SAc,c′ ,
as follows:

m(ei) = max{A(nei
, nej

) · C(ei, ej)}, ∀ej ∈ Ctx(c′) (7)

where nei
and nej

denote the names of ei and of ej , namely the names of a
property or of an adjacent, respectively. SAc,c′ is evaluated by the deep matching
as the weighted sum of the linguistic affinity of c and c′, calculated using (1),
and of their contextual affinity, calculated as the average of the matching values
for the elements of the context of c using (7), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|Ctx(c)|

i=1 m(ei)
| Ctx(c) | (8)

3.4 Intensive Matching

The intensive matching model is defined to take into account concept names,
the whole context of concepts, and also property values, for the sake of a highest
accuracy in semantic affinity evaluation. In fact, by adopting the intensive model
not only the presence and cardinality of properties, but also their values have an
impact on the resulting semantic affinity value. Given two concepts c and c′, the
intensive matching calculates a comprehensive matching value for the elements
of the context of c such as in (7) and, moreover, calculates a matching value v(pi)
for each property pi ∈ P (c). The matching value v(pi) is calculated as the highest
value obtained by composing the affinity of the name npi and the value vpi of pi

with the name npj
and the value vpj

of each property pj ∈ P (c′), respectively.
For property values comparison, we exploit the terminological affinity function
(1) in case of object properties, and the datatype compatibility function (2) in
case of datatype properties, that is:

v(pi) =
{

max{A(npi
, npj

) · A(vpi
, vpj

)}, ∀pj ∈ P (c′) iff vpi
is a reference name

max{A(npi , npj ) · T (vpi , vpj )}, ∀pj ∈ P (c′) iff vpi is a datatype
(9)

SAc,c′ is evaluated by the intensive matching as the weighted sum of the lin-
guistic affinity of c and c′, calculated using (1), and of their contextual affinity,
calculated as the average of the matching values for the elements of the context
of c using (7) and for the property values calculated using (9), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|Ctx(c)|

i=1 m(ei)+
∑|P (c)|

j=1 v(pj)
|Ctx(c)|+|P (c)| (10)

3.5 Example of Matching Two OWL Ontologies

As an example of the ontology matching problem, we consider two real OWL
ontologies describing the publications domain in different ways. In particular,
the first ontology (Ka) describes publications in the context of research projects,
while the second ontology (Portal) describes publications in the context of a Web
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Table 4. Features of the Ka and Portal ontologies

Ka Portal

Language OWL Lite OWL Full
# of concepts 251 291
# of properties 154 204
Average # of properties per concept 13 4
Average # of relations per concept 2 2

Table 5. Example of matching results with H-Match

Matching model SASpecial Issue Publication,Publication SAArticle In Book,Book

Surface 0.8 0.8
Shallow 0.6357 0.6435
Deep 0.6527 0.6435
Intensive 0.6175 0.6262

portal. These ontologies are heterogeneous in terms of language specification (i.e.,
OWL Lite and OWL Full, respectively) as well as in terms of contents, although
both of them provide a subset on concepts related to publications. Small portions
of Ka and Portal describing publications are shown in Figure 1(a) and Figure 1(b),
respectively. We show the H-Model representation of the OWL elements which
are relevant for H-Match by means of a graphical representation. In particular
in Figure 1, white ovals represent concepts, grey ovals represent properties, and
boxes represent datatypes. Arrows are used for representing kind-of relations,
double-stricken and stricken lines for representing strong and weak property
respectively, and dashed lines for representing property values. The main features
of Ka and portal are summarized in Table 4. We exploit H-Match for matching
Ka against Portal in order to automatically discover the affinity between the
concepts that describe publications, in spite of concept heterogeneity in the
two ontology descriptions. Moreover, we use H-Match also for providing, for
each concept of Ka, a measure of semantic affinity with the concepts of Portal.
In Table 5, we show the best results obtained from matching two concepts of
Ka (i.e., Special Issue Publication and Article In Book) against Portal using our four
matching models, with Wla = 0.6.

In our first example, the term Special Issue Publication is a specification of the
term Publication (i.e., a BT/NT relationship is defined between them in Th). The
semantic affinity value calculated using the surface matching model is due to
this terminological relationship. Using other matching models, this affinity value
based only on linguistic features is revised, by exploiting also contextual features.
In particular, the shallow and intensive matching results are lower than the deep
one, due to the fact that in Ka Special Issue Publication has a large number of
properties which are different from the properties of Publication in Portal. Using
the deep matching model, the kind-of relation between Special Issue Publication and
Journal, which is a Publication in Portal has an important role in determining the
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Ka
http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

Portal
http://www.aktors.org/ontology/portal

Fig. 1. Ka and Portal ontology portions



226 S. Castano et al.

semantic affinity value. On the opposite, in our second example, Article in Book
does not have any semantic relation with Book in Ka. For this reason, we obtain
the same semantic affinity value with the shallow and the deep model. In this
case, the intensive model is more accurate, because property values are consid-
ered in the semantic affinity evaluation.

3.6 Considerations

The four different models are exploited for suiting ontology matching to different
application scenarios. The main features of the matching models and their cor-
responding suggested scenarios with respect to OWL ontologies are summarized
in Table 6.

The choice of the appropriate matching model depends on the level of detail
of the ontology description as well as on the expected degree of precision of the
results. The shallow model is useful when only concept names are to be consid-
ered. It requires few computational resources since neither concept properties
nor semantic relations are considered. This model is well suited, for example, to
perform an initial ontology comparison to decide wether it is worth to perform
a deeper analysis. If the ontology is constituted mainly by concepts with a few
number of properties and hierarchical relation among concepts, the shallow and
deep model allow a good degree of precision without requiring great amount of
computational resources. In presence of an articulated ontology, with rich re-
source descriptions and where relations among concepts are described through
property values, the intensive model guarantees the most accurate results, al-
though being the most expensive in term of computation.

Table 6. Applicability of the matching models

Surface Shallow/Deep Intensive

OWL sub-
language

Lite/DL/Full Lite/DL/Full Lite/DL/Full

Ontological
description

Poorly structured on-
tologies with very sim-
ple resource descrip-
tion

Schematic ontologies with
taxonomic resource descrip-
tion

Articulated ontologies
with rich resource de-
scription

Suggested
for

Linguistic-driven
matching

Linguistic and context-
driven matching

Linguistic, value, and
context-driven match-
ing

Advantages Less computation More accurate characteriza-
tion of matching concepts

Finest characterization
of matching concepts



Semantic Information Interoperability in Open Networked Systems 227

4 Applicability to Semantic Information Interoperability
in Open Networked Systems

In this section, we discuss the main applicability issues of our ontology matching
techniques for semantic information interoperability in open networked systems
based on the Peer-to-Peer (P2P) paradigm.

4.1 Resource Discovery

In schema-based P2P networks, where resources are described by means of an
ontology rather than being identified only by file names, H-Match can be ex-
ploited to find out resources semantically related to a given target request. In
a Grid environment, where different nodes expose different kind of services, H-
Match can be used to overcome the lack of agreement on the way resources
are described, and to help a node in finding nodes which have compatible re-
source descriptions. In general, a resource request is represented as a H-Model
description of the target concept(s) of interest. When a node receives an in-
coming request, this is compared against the node ontology, by applying the
H-Match algorithm. The matching evaluation depends on the expressiveness of
the ontological description contained in the request and on the desired level of
accuracy (i.e., surface, shallow, deep, or intensive matching). H-Match provides
a ranking of concepts, ordered by their semantic affinity value with the target.
A threshold-based mechanism is used for filtering the concepts to be returned
to the requesting node. A deeper description of ontology-based content retrieval
in P2P systems is described in [14].

4.2 Query Routing

In P2P networks, the query routing policy is one of the main factors that affect
the load of the entire network and the effectiveness of the query answers. A
semantic routing algorithm can be an alternative to the broadcasting of queries
and can reduce the need of a more or less centralized index of the resources
present in the network. H-Match results can be used to find the most relevant
peers with respect to a given resource. A peer can exploit these associations
among resources and peers to find the best recipients for future queries and
to forward appropriately incoming queries to other peers. This semantic routing
reduces both the network and the peers load, thus providing a greater scalability
than routing techniques based on the topology of the network. We are working
on the development of a semantic routing protocol which exploits H-Match
results in the framework of the FIRB WEB-MINDS project, and some initial
results on such topic are described in [15].

4.3 Semantic Communities

H-Match can be adopted to discover semantic mappings among nodes stor-
ing similar concepts in a networked system. The ability to define such semantic
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mappings among independent nodes, allows us to introduce the idea of semantic
communities of nodes on predefined topic of interests described by means of one
or more key-concepts. Given a topic of interest, each node applies H-Match
to its ontology searching for relevant concepts and semantic mappings to nodes
storing concepts semantically related to the topic (semantic neighbors). Exploit-
ing semantic neighbors ontologies, further mappings can be discovered. Following
the chain of mappings, a set of nodes constituting the semantic community on
the considered topic of interest is identified. Because of the absence of a central-
ized organization which provides a complete list of semantic mappings between
each pair of nodes, the community definition is a spontaneous process. As a con-
sequence more than one semantic community on the same topic of interest can
coexist, especially in large networks.

5 Related Work

Work related to ontology matching for multi-ontology networked systems can
be grouped into two main families of ontology matching approaches, namely
model-based and logic-based approaches. The model-based approach is based on
the idea of exploiting the ontology metadata model for working on the ontol-
ogy structure through a set of techniques of analysis, matching and learning. As
an example, the Glue [7] approach exploits machine learning techniques to find
semantic mappings between concepts stored in distinct and autonomous ontolo-
gies. Given two distinct ontologies, the mapping discovery process between their
concepts is based on the measure of similarity which is defined through the joint
probability distribution. The measure of similarity between two concepts is com-
puted as the likelihood that an instance belongs to both the concepts. Another
approach for model-based metadata matching in described in [16], where the
choice of metadata for classifying data sources according to the requirements of
a given application or task is discussed. In this approach, metadata information
is organized as a set of categories and concepts, and the matching is enforced
through fuzzy metrics.

The logic-based approach is based on the idea of exploiting the semantics
associated with ontological descriptions for defining and analyzing mappings
through automatic reasoning techniques. In particular, mapping discovering is
reduced to the problem of checking a set of logical relations. For instance, in [6]
the Ctx-Match algorithm is defined in order to point out semantic mapping be-
tween concepts stored in distinct peers of a Peer-to-Peer system. This algorithm
compares the knowledge contained in different contexts looking for semantic
mappings denoting peers interested in similar concepts. Ctx-Match is based on a
semantic explication phase where concepts are associated with the correct mean-
ing with respect to their context, and on a semantic comparison phase where
concepts are translated in logical axioms and matched. As another example,
in [17] the meaning of mappings is formally defined. The semantics provides a
basis for reasoning about mappings (e.g., determining whether two mappings are
equivalent or if a certain mapping formula is entailed by a mapping), combin-



Semantic Information Interoperability in Open Networked Systems 229

ing evidence to propose likely mappings, and learning mappings. In particular,
the reasoning is used for determining whether two mappings are equivalent, and
whether a mapping is minimal (i.e., removing any formula from the mapping
loses information).

With respect to these approaches, a main advantage of H-Match is the ca-
pability of dealing with different levels of accuracy in ontological descriptions by
considering both the linguistic and the contextual features of ontology concepts.
H-Match is suitable for dynamic scenarios like Peer-to-Peer and Grid, where
ontologies evolves quickly and are characterized by different levels of accuracy
in resource description.

6 Concluding Remarks

In this paper, we have presented the H-Match approach to the problem of
ontology matching in multi-ontology contexts such as in open networked sys-
tems. H-Match has been implemented in the framework of the Helios project
for supporting dynamic knowledge sharing and ontology-addressable content re-
trieval in peer-based systems [8]. Our future work will be devoted to the intensive
experimentation on H-Match on real ontology matching cases in order to ad-
dress the following issues: i) extensively testing the approach actually adopted
for compound term management in the thesaurus; ii) optimizing the matching
process, by further reducing the number of matches performed in the deep and
intensive model; iii) revising the notion of concept context, by detecting concept
contexts in a dynamic fashion. In particular, a promising research direction can
consider the so-called focus + context or fisheye techniques for context detection
in the ontology matching process. These techniques allow context detection by
dynamically distorting the information structure according to the varying inter-
ests levels of its parts. The fisheye techniques have been developed originally for
addressing the problem of displaying large information structures [18], and have
been applied more recently to a large set of context detection problems, such as
the node neighborhood detection in the World Wide Web [19].
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