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In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent
low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic
core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based
on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-
phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective
excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality
of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one
can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model
types like 2 particle–1 hole. We will report results for 49Ca and 133Sb and discuss future perspectives.
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I. INTRODUCTION

Finding a successful microscopic description for the low-
lying spectra of odd nuclei is, to a large extent, an open
question. A few of them can be reasonably described in
terms of an even-even core plus an extra particle, as is well
known from the early days of the introduction of the shell
model in nuclear physics; at the same time, state-of-the-art
applications of self-consistent mean field (SCMF) or density
functional theory (DFT) often fail in reproducing the ordering
of low-lying levels in the odd system (see, e.g., Ref. [1] and
references therein). The detailed spectroscopy of odd nuclei
can also be studied within theories that go beyond the simple
one-quasiparticle picture. The generator coordinate method
(GCM) and multireference DFT (MR-DFT), which include
the mixing of various DFT configurations and hence the
restoration of broken symmetries, have recently been applied
to odd nuclei [2]: At present, these calculations are still very
demanding from the computational point of view and thus have
limited applicability. Large-scale shell-model calculations are
certainly appropriate for spectroscopy and their success in
light nuclei is well documented [3]. Nonetheless, they become
increasingly difficult when the mass number increases. In
our paper, this will become evident as we will mention
shell-model calculations around 48Ca and point out that the
same calculations are not feasible around 132Sn or for even
larger nuclei.

All this points clearly to the need for complementary
theoretical approaches that can be transferable among different
mass regions and provide sound and transparent results.
Particle-vibration coupling (PVC) models are based on the
simple yet effective idea that particles (or quasiparticles)
outside a spherical core are mainly affected by the low-lying
core excitations, so that a proper description of the odd nucleus
should result from the treatment of the coupling between
particles and core vibrations. This picture has been introduced
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quite early in nuclear structure theory, both by the Copenhagen
[4] and Dubna [5] schools. Most applications have been purely
phenomenological (see Ref. [6] for a recent example). In
our work, we start instead from a microscopic Hamiltonian
of the Skyrme type. There is continuous interest in models
based on the interplay between fermionic and bosonic degrees
of freedom in nuclei: A novel method has been recently
introduced in Ref. [7].

Some of us have already studied single-particle states
around a magic core by using PVC based on the Skyrme
Hamiltonian [8–10], while similar calculations in the rela-
tivistic mean field (RMF) framework have been carried out
in Refs. [11,12]. However, the low-lying spectra of odd nuclei
are characterized by the simultaneous presence of states having
quite different physical nature. The aim of our work is making
steps towards complete spectroscopy, rather than focusing only
on states with a specific character, as we explain below.

Some of the states in the odd system have indeed mainly
particle-like character and accordingly possess large spectro-
scopic factors associated with stripping and pickup reactions.1

Some other states may instead have the largest component
which is associated with the coupling of a particle with a core
vibration. We take as a signature of such character the fact that
the reduced decay transition probability from these states to
the odd nucleus ground state is similar to the reduced transition
probability of the core vibration. In fact, in the weak coupling
scheme these reduced transition probabilities are equal, that
is,

B(Eλ,[j ′ ⊗ J = λ]j → j ′) = B(Eλ,J = λ → 0), (1)

where j ′ and J label, schematically, the particle state and
the core vibration coupled to angular momentum j (cf.
Eqs. (6.467) and (6.86) of Ref. [4]). Moreover, there might be

1We are well aware of the problems connected with a clean definition
of spectroscopic factors. However, such problems do not prevent
use of spectroscopic factors for a qualitative indication about the
nature of observed states discussed here.
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further states that have, for instance, 2p-1h (or 3p-2h) character
and do not fit the PVC scheme by definition. These states
appear, naturally, in shell-model calculations.

All these considerations have motivated the formulation of a
hybrid model that we shall call the hybrid configuration mixing
(HCM) model in what follows. In this model, we include
particle states together with states that for practical reasons
emerge from random phase approximation (RPA) calculations,
but can have either collective character or pure particle-hole
(p-h) nature. In either case, we should of course account at our
best for Pauli principle violations, the problem being certainly
more severe in the case of pure p-h states.

In practice, in this first work devoted to the basics of the
model and the first applications, we consider a magic core and
one active particle outside it, together with the core excitations
having either natural or non-natural parity. The particle states
will have the usual quantum numbers n,l,j,m but we shall
often use jm in what follows for the sake of simplicity. For
each spin and parity JπM the core excitations will be labeled
by an index N and we shall often simply write NJM , by
dropping the parity label. As explained above, in the model
space for the description of the A + 1 nucleus (where A is
even) we include single-particle states j together with coupled
states [j ′ ⊗ J ]j . We stress again that some of the latter states
are genuine particle plus phonon states while others have 2p-1h
or mixed character. In this respect, our model is not a simple
PVC implementation. We diagonalize in the given model space
the Hamiltonian, which includes the mean-field solutions
of the Skyrme Hamiltonian (particles and RPA solutions)
plus the residual interaction acting among them. Extensions
to nonmagic systems, in which pairing should be added and
the model is based on quasiparticles and QRPA states, can be
envisaged in future.

The details of the model will be elucidated in Sec. II.
Section II A deals with the calculation of the energy spec-
trum, while the determination of the electromagnetic tran-
sition probabilities is described in Sec. II B. The detailed

formulas for the overlap matrix and for the reduced transition
probability are actually derived in the two appendixes. Sec-
tion III is devoted to a discussion of our results for 49Ca and
133Sb. Conclusions and perspectives are drawn in Sec. IV.

II. THEORETICAL FORMALISM

A. Calculation of the energy spectrum

In our model we solve the Hamiltonian

H = H0 + V,

H0 =
∑
jm

εja
†
jmajm +

∑
NJM

h̄ωNJ �
†
NJM�NJM, (2)

V =
∑

jmj ′m′

∑
NJM

h(jm; j ′m′,NJM)ajm[a†
j ′ ⊗ �

†
NJ ]jm,

where part of the notation has been already introduced. a and
a† are the usual fermion annihilation and creation operators,
while the notations � and �† are used for boson operators.
ε and h̄ω are, respectively, the energies of single particles
and of RPA solutions. The coupling matrix elements h have
been already defined in Eq. (A1) of Ref. [8]. Our calculation
is self-consistent in the sense that all basis states come out of
HF and RPA calculations [13] performed with a Skyrme force,
together with the coupling matrix elements. In this sense, there
are no free parameters to adjust.

This Hamiltonian can be diagonalized separately in dif-
ferent Hilbert subspaces with good quantum numbers. The
basis states in these subspaces have been discussed in the
introduction. More precisely, there are either

|jm〉 = a
†
jm|0〉, (3)

where |0〉 is the even-even core, or

|[j ′ ⊗ NJ ]jm〉 =
⎧⎨
⎩
∑
ph

∑
m′Mmpmh

〈j ′m′JM|jm〉X(NJ )
ph (−1)jh−mh〈jpmpjh − mh|JM〉a†

j ′m′a
†
jpmp

ajhmh
|0〉

−
∑
ph

∑
m′Mmpmh

〈j ′m′JM|jm〉Y (NJ )
ph (−1)jh−mh+J+M〈jpmpjh − mh|J − M〉a†

j ′m′a
†
jhmh

ajpmp
|0〉
⎫⎬
⎭, (4)

that are particles coupled to a RPA solution.
The matrix elements h between configurations (3) and (4) are written as 〈j ||V ||j ′J 〉/ĵ (cf. Eq. (A9) of Ref. [8]). Thus, the

Hamiltonian in each of the subspaces has the typical form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εn1lj 0 〈n1lj ||V ||n′
1l

′
1j

′
1N1J1〉

ĵ

〈n1lj ||V ||n′
2l

′
2j

′
2N2J2〉

ĵ

0 εn2lj
〈n2lj ||V ||n′

1l
′
1j

′
1N1J1〉

ĵ

〈n2lj ||V ||n′
2l

′
2j

′
2N2J2〉

ĵ

〈n1lj ||V ||n′
1l

′j ′
1N1J1〉

ĵ

〈n2lj ||V ||n′
1l

′j ′
1N1J1〉

ĵ
εn′

1l
′
1j

′
1
+ h̄ωN1J1 0

〈n1lj ||V ||n′
2j

′
2N2J2〉

ĵ

〈n2lj ||V ||n′
2l

′j ′
2N2J2〉

ĵ
0 εn′

2l
′
2j

′
2
+ h̄ωN2J2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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We can label the basis states [either of the type (3) or (4)]
with |i〉, so that the above matrix is Hii ′ . The corresponding
eigenvalue equation is then

H |α〉 = Eα|α〉, |α〉 =
∑

i

ξ
(α)
i |i〉. (6)

The main issue when solving this equation is that the basis
in second subspace [the one spanned by the states (4)] is in
general nonorthogonal and overcomplete.

We overcome this problem by using the technique of Ref. [14].
For this aim, we need the overlap matrix between the basis
states in the Hilbert subspace under study. The matrix of the
overlaps is clearly diagonal in the subspace of states (3), and
zero if matrix elements between states of the type (3) and
(4) are considered. On the other hand, we do have nontrivial
overlaps between states of the type (4). We calculate them by
assuming TDA and label them as n. This calculation is carried
out in Appendix A. Then, the overlap matrix N is

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 . . .

0 1 . . . 0 0 . . .

. . . . . . . . . . . . . . . . . .

0 0 . . . n(j ′
1n1J1,j

′
1n1J1) n(j ′

1n1J1,j
′
2n2J2) . . .

0 0 . . . n(j ′
2n2J2,j

′
1n1J1) n(j ′

2n2J2,j
′
1n1J1) . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Having defined the matrices H and N we can now follow the
steps of Ref. [14]:

(1) We diagonalize the overlap matrix N so that it assumes
a diagonal form 	 with eigenvalues λβ . The unitary
transformation that is associated with this transforma-
tion is written as S, so that

	 = S†NS, (8)

with S†S = 1 (cf. p. 1775 of Ref. [14]).
(2) If some eigenvalue λβ is zero or negative it means

that the basis is overcomplete and the corresponding
eigenvector |β〉 must be eliminated.

(3) We then solve Eq. (19) of Ref. [14], that is,

HX = EX , (9)

H = 	−1/2S†HS	−1/2, (10)

in the reduced space.
(4) The solution provides the physical energies of the

system, that is, the eigenvalues Eα .
(5) The eigenvectors can be expressed in terms of the

original basis by inverting Eq. (20) of Ref. [14], namely
if α is an element of it:

Xα =
∑

β

Sαβλ
−1/2
β Xβ. (11)

This procedure provides the result for the excitation energy
spectrum. We now turn our attention to the transitions between
these states.

B. Electromagnetic transition probabilities

We define the reduced transition probabilities in the
standard way as

B(Xλ) ≡ 1

2jf + 1
|〈αf jf ||Ô(Xλ)||αiji〉|2, (12)

where the label X can be either E or M . The reduced matrix
element becomes

〈αf jf ||Ô(Xλ)||αiji〉
=
∑
if

ξ
αi

i ξ
αf

f 〈fjf ||Ô(Xλ)||iji〉

=
∑
if

ξ
αi

i ξ
αf

f 〈jf ||Ô(Xλ)||ji〉

+
∑
if

ξ
αi

i ξ
αf

f

〈[
j ′
f ⊗ J ′

f

]
jf

∣∣|Ô(Xλ)||ji〉

+
∑
if

ξ
αi

i ξ
αf

f 〈jf ||Ô(Xλ)|∣∣[j ′
i ⊗ Ji]ji

〉

+
∑
if

ξ
αi

i ξ
αf

f

〈
[j ′

f ⊗ J ′
f ]jf

∣∣|Ô(Xλ)|∣∣[j ′
i ⊗ J ′

i ]ji

〉
, (13)

where we have schematically separated the sum over i,f into
four terms, namely the case in which both indices correspond to
states (3), the case in which the first index is associated to a state
(3) and the second index is associated to a state (4), the case
in which i and f are interchanged with respect to the previous
case, and finally the case in which both indices correspond to
states of the type (4). The electromagnetic operator is the sum
of a part acting on single-particle states, Ôsp, and a part acting
on phonons, Ôph (for simplicity we drop the label Xλ in what
follows).
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We treat separately the four matrix elements appearing in the last four lines of Eq. (13). Their detailed calculation is discussed
in Appendix B. By using them, Eq. (13) becomes

〈αf jf ||Ô(Xλ)||αiji〉

=
∑
if

ξ
αi

i ξ
αf

f 〈jf ||Ô(Xλ)||ji〉 +
∑
if

ξ
αi

i ξ
αf

f δ(J ′
f ,λ)δ(j ′

f ,ji)
ĵf

λ̂
〈J ′

f ||Ôph||0〉

+
∑
if

ξ
αi

i ξ
αf

f δ(J ′
i ,λ)δ(j ′

i ,jf )
ĵi

λ̂
〈J ′

i ||Ôph||0〉(−)ji−jf +λ+(+1 for M
+0 for E ) +

∑
if

ξ
αi

i ξ
αf

f ĵf ĵi

{
(−)jf +J ′

i +λ+j ′
i

{
ji jf λ

J ′
f J ′

i j ′
f

}
δ(j ′

f ,j ′
i )

×
∑

ph,p′h′

[
X

f
phX

i
p′h′ + (−)J

′
f −J ′

i +λY
f
phY

i
p′h′
](

δ(h,h′)Ĵ ′
f Ĵ ′

i (−)jh+jp+J ′
i +λ

{
jh J ′

i jp′

λ jp J ′
f

}
〈jp||Ôsp||jp′ 〉

−δ(p,p′)Ĵ ′
f Ĵ ′

i (−)jh+jp+J ′
f

{
jp J ′

i jh′

λ jh J ′
f

}
〈jh′ ||Ôsp||jh〉

)
+ (−)ji+j ′

f +λ+J ′
f

{
jf ji λ

j ′
i j ′

f J ′
f

}
δ(J ′

f ,J ′
i ) 〈j ′

f ||Ôsp||j ′
i 〉
}
. (14)

III. RESULTS

We will discuss results obtained for 49Ca and 133Sb, namely
48Ca plus one neutron and 132Sn plus one proton. In all
cases, we use accordingly the HF and RPA states of the core
nucleus. The calculations are based on the use of two Skyrme
interactions, namely SkX [15] and SLy5 [16]. We do not want
to explore all possible choices of a Skyrme set. These two may
be considered quite representative for the following reasons.
While the latter is a standard Skrme force with effective mass
m∗ around 0.7m, so that it has been built without special
attention to the single-particle shell structure around the Fermi
energy, the former has been built by including in the fit protocol
the single-particle energies of a few magic nuclei (as far as they
are experimentally known), including 48Ca and 132Sn.

We first provide some numerical details. The HF equations
are solved in coordinate space by using a radial mesh that
extends up to 15 fm in the case of 48Ca and 20 fm in the case
of 132Sn. The mesh size is 0.1 fm. Then, the RPA basis is built
by considering all occupied states and unoccupied states that
span 8 values of the radial quantum number n for each value
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FIG. 1. Low-lying levels of 49Ca. In both panels, in the first column at right the lowest unoccupied single-particle states of the 48Ca
are displayed, while the lowest multipole excitations of the same core (below 5.5 MeV) are shown in the second column. The result of the
diagonalization described in Sec. II, that is, the lowest states of 49Ca obtained within our model, are presented in the third column and compared
with the experimental data in the fourth and last column. The panel at left (right) corresponds to results obtained with the force SkX (SLy5).

of l and j . This space is large enough so that the appropriate
sum rules are fulfilled and the properties of the low-lying states
have converged [13].

Finally, a few HF states (typically, the valence shell) and
phonon states (up to about 5- or 6-MeV excitation energy) are
selected to make up the model space in which the equations
that have been laid down in the previous section are solved.

A. 49Ca

For this nucleus, few unoccupied states of 48Ca are selected,
namely the neutron orbitals 2p3/2, 2p1/2, 1f5/2, and 1g9/2. The
lowest three are displayed in the first column (from left) of
both panels of Fig. 1. The left (right) panel displays the results
obtained with the interaction SkX (SLy5). In both cases, the
level 1g9/2 lies above the scale of the figure, that is, more than
5.5 MeV above the ground state of 49Ca. The core excitations
obtained by means of the self-consistent RPA are shown in the
second column of Fig. 1. We have in fact considered the states
having angular momentum between J = 0 and 8, either with
positive or negative parity, and selected those below 5.5 MeV.
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TABLE I. Experimental and RPA multipole states of 48Ca. Theoretical prediction for the B(E/M) values refer to the transitions to the
ground state. All the theoretical calculation are performed with the two SkX and SLy5 interactions.

J π Energy [MeV] B(E/Mλ) [W.u.]

Exp. Theory (SkX) Theory (SLy5) Exp. Theory (SkX) Theory (SLy5)

2+
1 3.83 2.87 3.02 1.71 1.31 1.12

4+
1 4.50 3.12 3.60 0.43 0.70

3−
1 4.51 4.43 4.75 5.0 6.77 6.12

3+
1 4.61 3.22 3.92 6.6 × 10−4 6.6 × 10−3

4−
1 5.26 5.11 5.01 0.07 1.80

3−
2 5.37 5.37 0.05

3+
2 5.02 7.6 × 10−4

4+
2 4.70 5.20 1.02 0.86

5+
1 3.51 3.90 5.0 × 10−3 0.01

There is a clear similarity, but not a close identity, between
the results obtained with the two Skyrme sets. In order to let
the reader judge about the quality of our reproduction of the
experimentally known properties of the core excitations, we
display their energies and transition probabilities in Table I.

The results of our calculations are in the third column and
can be directly compared with the experimental states of the
fourth column. All excitation energies are with respect to
the 3/2− ground state of 49Ca, which is set at zero energy.
Note that we have chosen to display, besides the ground state,
the lowest states of each multipolarity that appear between 0
and 5 MeV, provided an experimentally known state is found
and its spin and parity are identified without ambiguities.

The 3/2− ground state has, as expected, mainly a particle
character. The overlap between this state and the unperturbed
2p3/2 is 93% for SkX and 92% for SLy5. A similar statement
can be made for the lowest 1/2− state. In this case, the overlap
with the unperturbed 2p1/2 is about 85% for SkX and 87%
for SLy5. The energies of the 1/2− state and those of the pure
2p1/2 state are quite similar for both Skyrme sets. On the other
hand, the 5/2− state is practically a pure 1p3/2 coupled to the
2+ phonon of 48Ca in the case of SkX, but in the case of SLy5
such component decreases to 51% and the state has admixtures
of single-particle 1f5/2 (plus other smaller components). From
the figure, one understands this is related to the smaller energy
difference between the 2+ phonon and the 1f5/2 state in the
case of SLy5. The state 7/2− is to a large extent, in our model,
a member of the 1p3/2 ⊗ 2+

1 multiplet for both Skyrme forces
and is very close to the 5/2− (although one can note a level
inversion in the case of SLy5). Finally, the 9/2+ state has a
large percentage in its wave function, of about 87% for SkX
and 90% with SLy5, associated with the 1p3/2 ⊗ 3−

1 compo-
nent (where 3−

1 is the lowest collective octupole phonon of the
core).

In summary, the model is able to predict states of different
characters that reproduce the sequence that is experimentally
observed. In almost all the cases, the results do not depend sig-
nificantly on the chosen Skyrme set except when some case of
quasidegeneracy creates some difference. The theoretical spec-
trum is somehow more stretched than the experimental one, in
a more pronounced manner for SLy5 than for SkX. The rms
difference between experimental and theoretical energies is
0.429 MeV for SkX and 0.661 MeV for SLy5: We stress again

that we do not adjust any parameter to obtain these results. We
now turn to the analysis of the electromagnetic transitions.

The transition from the 9/2+ excited state to the 3/2−
ground state has been evidenced and discussed in Ref. [17]. In
that work, some of us have used the lowest order perturbative
estimate for the E3 transition, based on the weak-coupling
model of Ref. [4] and accordingly on the above Eq. (1). The
9/2+ is taken in this case as a member of the 2p3/2 ⊗ 3−

1
multiplet. Within that framework, the E3 decay transition
probability is equal to that of the 3−

1 lowest phonon of 48Ca,
which was reported to be 7.0 W.u. [17,18] if the interaction
SLy5 [16] is used.

We have come back to this analysis in the present work.
Within the framework of the fully microscopic, nonpertur-
bative model, at variance with the assumption of the weak
coupling model, the overlap between the ground state (g.s.)
and the pure 2p3/2 particle state is 93% as already said and
the overlap between the 9/2+ state and the pure 2p3/2 ⊗ 3−

1
state is also smaller than 100%. Due to this, and to the
presence of other small components in the wave functions,
we obtain the results for the E3 transition probability that
are reported in Table II, namely 5.7 W.u. in the case of
SLy5 and 6.4 W.u. in the case of SkX. The latter is in full
agreement with the experimental value, while the former is
slightly underestimated.

In the table, we also show the result for the E2 transition
between the states 7/2− and 3/2−. In our model, the 7/2−
state is essentially a pure 2p3/2 ⊗ 2+

1 state. Thus, we obtain a
value of the B(E2) which is close to the B(E2) of the lowest
2+

1 phonon of the core, that is, 1.3 W.u. in the case of SkX
and 1.1 W.u. in the case of SLy5: These values compare rather
well with the experimental one of 1.7 W.u. Experiment seems
to indicate some more mixing with other components than the
simple 2p3/2 ⊗ 2+

1 state.
The analysis of the electromagnetic transitions confirms

that there are quantitative but not qualitative differences be-
tween the results obtained with the two different Skyrme sets.
We shall display results obtained with SkX in what follows.

B. 133Sb

Concerning the 133Sb nucleus, few unoccupied states of
132Sn are selected, namely the proton orbitals 1g7/2, 2d5/2,
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TABLE II. Reduced electromagnetic transition probabilities that
have been experimentally measured for 49Ca in Ref. [17], compared
with the result from the present model.

Theory Exp.

SkX SLy5

B(E3,9/2+ → 3/2−) 6.4 5.7 7.9 ± 2.0 W.u.
B(E2,7/2− → 3/2−) 1.4 1.0 0.05 ± 0.02 W.u.

2d3/2, 1h11/2, and 3s1/2. These five single particle states are
displayed in the first column (from left) of Fig. 2. As in the
previous case, the core excitations are obtained by means of the
self-consistent RPA and they are shown in the second column
of Fig. 2. We have in fact considered the states having angular
momentum between J = 0 and J = 12, either with positive
and negative parity, and selected those below 5.5 MeV. We
show the properties of these states in Table III. We do not
simply show the energies and transition probabilities, but also
the main components of the wave function as they emerge from
the RPA calculation. The collective or noncollective nature of
these excitations is quite evident.

The results of our calculations are in the third column of
Fig. 2 and can be directly compared with the experimental
states of the fourth column. All excitation energies are with
respect to the 7/2+ ground state of 133Sb which is set at
zero energy. Note that we have chosen to display, besides
the ground state, the lowest states of each multipolarity that
appear between 0 and 5 MeV, provided an experimentally

known state is found and its spin and parity are identi-
fied without ambiguities. We now discuss the theoretical
results.

The 7/2+ ground state has, as expected, mainly a single-
particle character. The overlap between this state and the
unperturbed 1g7/2 is 97%. A similar statement can be made for
the lowest three excited states below 3 MeV, the 5/2+, 3/2+,
and 11/2− states. In this case, the overlap with the unperturbed
2d5/2, 2d3/2, and 1h11/2 are, respectively, about 94%, 83%,
and 92%. The energies of these states are accordingly
quite similar to those of the single-particle states calculated
with SkX.

The scenario starts to change considering the 11/2+ state.
In this case, the wave function has a quite large percentage, of
about 77%, associated with the 1g7/2 ⊗ 2+

1 (where 2+
1 is the

lowest collective quadrupole phonon of the core) component.
A non-negligible part of the wave function is composed by 2p-
1h states, mainly the π1g7/2νh−1

11/2f7/2. In our representation,
these components manifest themselves as 1g7/2 ⊗ 3+

1 and
1g7/2 ⊗ 8+

1 . An evolution in the wave function composition
can be observed with increasing spin; indeed the 13/2+ and
the 15/2+ states show a fragmented wave function involving
the coupling of the valence proton 1g7/2 to both the 4+

1 phonon
(33%) and noncollective p-h excitations. Finally, the highest
spin states 17/2+ and the 21/2+ are dominated by the valence
proton coupled to the neutron h−1

11/2f7/2 noncollective core
excitation (67% and 92% respectively).

In summary, the model provides a very good overall
description of this spectrum in which states of different nature
coexist. As in 49Ca, the theoretical spectrum is somehow
more stretched than the experimental one. The negative-parity
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FIG. 2. The same as Fig. 1 for the case of 133Sb, except that here only the results corresponding to the force SkX are shown.
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TABLE III. Experimental and RPA multipole states of 132Sn. The main components are those associated with RPA amplitudes X that are
larger than 0.3 in absolute value, and are listed together with the value of X2 in parentheses.

J π Energy [MeV] B(E/Mλ) [W.u.] Main components

Exp. Theory Exp. Theory Theory

2+
1 4.041 3.87 7 4.75 νh−1

11/2f7/2 (0.56), πg−1
9/2d5/2 (0.19),

πg−1
9/2g7/2 (0.14)

3−
1 4.352 5.02 >7.1 9.91 νs−1

1/2f7/2 (0.40), νd−1
3/2f7/2 (0.12),

πp−1
1/2g7/2 (0.12)

4+
1 4.416 4.42 4.42 5.10 νh−1

11/2f7/2 (0.63), πg−1
9/2g7/2 (0.21)

6+
1 4.716 4.73 1.65 νh−1

11/2f7/2 (0.86), πg−1
9/2g7/2 (0.11)

8+
1 4.848 4.80 0.28 νh−1

11/2f7/2 (0.98)
5+

1 4.885 4.77 0.20 νh−1
11/2f7/2 (0.99)

7+
1 4.942 4.80 0.30 νh−1

11/2f7/2 (0.98)
(9+

1 ) 5.280 4.99 0.04 νh−1
11/2f7/2 (0.99)

1+
1 4.97 7.95 πg−1

9/2g7/2 (0.76), νh−1
11/2h9/2 (0.24)

2+
2 5.37 <10−2 πg−1

9/2g7/2 (0.72), νh−1
11/2f7/2 (0.18)

2−
1 5.44 0.47 νd−1

3/2f7/2 (0.79)
3+

1 4.79 0.13 νh−1
11/2f7/2 (0.96)

3+
2 5.40 1.99 πg−1

9/2g7/2 (0.96)
4+

2 5.25 1.01 πg−1
9/2d3/2 (0.56), νh−1

11/2f7/2 (0.32)
5+

2 5.45 0.61 πg−1
9/2g7/2 (0.99)

6+
2 5.32 2.67 πg−1

9/2g7/2 (0.74), νh−1
11/2f7/2 (0.13)

7+
2 5.42 0.50 πg−1

9/2g7/2 (0.99)

states 13/2− and 15/2− constitute the only exceptions to
the excellent performance of our model in reproducing the
experimental energies. In fact, the rms deviation between
experimental and theoretical energies is 0.869 MeV but drops
dramatically to 0.246 MeV if these two states are excluded.
This latter number is in harmony with the result from 49Ca,
if one takes into account the overall scaling of the energy
of the nuclear levels that goes like A−1/3. The 13/2− state
is too high, as it lies at 5.56 MeV while experimentally it
is found at 4.2 MeV. It turns out to be completely made up
with the 2g7/2 ⊗ 3−

1 configuration and, as a consequence, the
fact that the 3− state in 132Sn is too high with respect to the
experimental finding certainly has an impact. At the same time,
the inclusion in our model space of higher energy states, and/or
of the coupling with other configurations, may also eventually
help to push down its energy. The other state which is too
high in energy (6.71 MeV whereas the experimental value is
4.36 MeV) is the 15/2− one and one may think in similar
terms. Note that these two states are above the scale of the
figure.

TABLE IV. Reduced electromagnetic transitions, which are
reported in Table IV probabilities that have been recently experi-
mentally measured in Ref. [19] in 133Sb, compared with the results
from the present model.

Theory Exp.

B(M1,15/2+ → 13/2+) 0.021 >0.24 W.u.
B(M1,13/2+ → 11/2+) 0.001 0.0042 ± 0.0015 W.u.

We now turn to the analysis of the electromagnetic
transitions, which are reported in Table IV.

From the experimental point of view, the transition from
the 15/2+ to the 13/2+ state and from the 13/2+ to the 11/2+
state have been recently measured and discussed in Ref. [19];
in that work, some of us have pointed out a large difference
(≈60) between the B(M1) values of the 15/2+ → 13/2+
and the 13/2+ → 11/2+ transitions. This large ratio can be
understood in a very transparent way within the framework
of the current model. Our theory provides the values of 0.021
μ2

N and 0.001 μ2
N , in the case of the 15/2+ → 13/2+ and

13/2+ → 11/2+ transition, respectively. In fact, the 15/2+
and 13/2+ states have a similar wave functions, and its
largest component is the 2p-1h configuration πg7/2 νh−1

11/2f7/2,
with an amplitude of the order of 0.4. The transition matrix
element 〈13/2+||O(M1)||11/2+〉 would be 4.86 μN if a pure
(πg7/2 νh−1

11/2f7/2) component were assumed for both states,
leading to a B(M1) of 1.69 μ2

N . Including the product of
the two amplitudes of the order of 0.4, we obtain a B(M1)
around 0.04 μ2

N , close to the value of the full calculation.
However, if we assumed the same purity for the 11/2+ state,
the transition matrix element would remain approximately
the same. Instead, in our model, the compositions of 13/2+
and 11/2+ states are very different, leading to a much more
quenched value of the B(M1). In particular, the 11/2+ state
has a significant particle-phonon configuration and thus a
poor overlap with the simple (πg7/2 νh−1

11/2f7/2) component.
In conclusion, theory provides a ratio of 20 between the two
values of the transition probability, which is in qualitative
agreement with the experimental value and, more impor-
tantly, can be understood from the point of view of this
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model. The measurement of such transition probabilities is
a unique signature of the nontrivial change of configuration
mixing in the 11/2+, 13/2+, and 15/2+ states of the 133Sb
nuclues.

IV. CONCLUSIONS

In this work, we have undertaken a first step to generalize
the concept of PVC calculations, in a nonperturbative way,
for the case of odd nuclei made up with a particle around a
magic core. We have coupled single-particle states from HF
calculations, not only with genuine vibrations of the core but
with all the excitations emerging from RPA calculations that
include both collective and noncollective states. The problem
is formulated in terms of a generalized eiganvalue problem: A
norm matrix is introduced that corrects for the fact that states
made up with one particle and one core excitation may not
form an orthonormal basis.

We have applied this model to 49Ca and 133Sb. We have
compared the energy of the states at low energy, and some
electromagnetic transitions, with experimental values. The
model in its simplicity can account well for the ordering and
the absolute energy of the low-lying states, with discrepncies
of the order of few hundreds of keV on the scale of 0–5 MeV.
It has to be noted that no parameter is specifically adjusted,
and HF states, RPA core excitations, as well as the matrix
elements that couple them, come out from the use of a Skyrme
interaction like SkX or SLy5.

There are open problems, though. The spectra are more
stretched in theory than in the experimental findings. Some
states, as has been discussed above, deviate more from

experiment than the average. Clearly, the picture should be
made more complete and the model must be improved by
including both the interaction between the particle plus core
excitation states, and the contribution of more complicated
configurations. We envisage to consider some specific case,
starting from well-known nuclei like 209Bi where PVC cal-
culations have been performed in the past [20,21], and test
the model convergence as more configurations and/or more
mutual interaction terms are added.

Eventually, the model can be applied to other cases of cur-
rent interest. The nuclei that have been discussed in this work
have been object of quite recent experimental studies aimed
at completing the spectroscopic information which was so far
quite scarce. They are interesting neutron-rich systems but not
weakly bound ones. Our model can be eventually applied to
more neutron-rich systems where continuum coupling plays a
relevant role, thanks to the possibility of performing RPA cal-
culations. Other interesting cases may be spherical nuclei close
to a shape phase transition as our model may shed new light
on this phenomenon. In general, we deem that it can provide
a transparent picture that complements shell-model or GCM
calculations, or it may be of great usefulness in mass regions
where such calculations are computationally too demanding.
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APPENDIX A: CALCULATION OF NONTRIVIAL OVERLAPS

We want to calculate the nontrivial overlaps between stated defined by Eq. (4):

〈[j ′
1 ⊗ n1J1]jm|[j ′

2 ⊗ n2J2]jm〉 =
∑

p1h1p2h2

∑
m′

1M1mp1 mh1

∑
m′

2M2mp2 mh2

〈j ′
1m

′
1J1M1|jm〉〈j ′

2m
′
2J2M2|jm〉X(n1J1)

p1h1
X

(n2J2)
p2h2

× (−)jh1 −mh1 +jh2 −mh2 〈jp1mp1jh1 − mh1 |J1M1〉〈jp2mp2jh2 − mh2 |J2M2〉
× 〈0|a†

jh1 mh1
ajp1 mp1

aj ′
1m

′
1
a
†
j ′

2m
′
2
a
†
jp2 mp2

ajh2 mh2
|0〉. (A1)

The latter expectation value is

δ(h1,h2)δ(p1,p2)δ(j ′
1,j

′
2)δ(m′

1,m
′
2) − δ(h1,h2)δ

(
jp1 ,j

′
2

)
δ
(
mp1 ,m

′
2

)
δ
(
j ′

1,jp2

)
δ
(
m′

1,mp2

)
,

so that the overlap becomes

〈[j ′
1 ⊗ n1J1]jm|[j ′

2 ⊗ n2J2]jm〉

=
⎡
⎣∑

p1h1

∑
m′

1M1mp1 mh1 M2

〈j ′
1m

′
1J1M1|jm〉〈j ′

1m
′
1J2M2|jm〉X(n1J1)

p1h1
X

(n2J2)
p1h1

〈
jp1mp1jh1 − mh1

∣∣J1M1
〉〈
jp1mp1jh1 − mh1

∣∣J2M2
〉
δ(j ′

1,j
′
2)

−
∑
h1

∑
m′

1M1mh1

∑
m′

2M2

〈j ′
1m

′
1J1M1|jm〉〈j ′

2m
′
2J2M2|jm〉X(n1J1)

j ′
2h1

X
(n2J2)
j ′

1h1

〈
j ′

2m
′
2jh1 − mh1

∣∣J1M1
〉〈
j ′

1m
′
1jh1 − mh1

∣∣J2M2
〉⎤⎦
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=
⎡
⎣∑

p1h1

∑
m′

1M1

δ(J1,J2)〈j ′
1m

′
1J1M1|jm〉〈j ′

1m
′
1J1M1|jm〉X(n1J1)

p1h1
X

(n2J1)
p1h1

δ(j ′
1,j

′
2)

−
∑
h1

∑
m′

1M1mh1

∑
m′

2M2

〈j ′
1m

′
1J1M1|jm〉〈j ′

2m
′
2J2M2|jm〉X(n1J1)

j ′
2h1

X
(n2J2)
j ′

1h1

〈
j ′

2m
′
2jh1mh1

∣∣J1M1
〉〈
j ′

1m
′
1jh1mh1

∣∣J2M2
〉⎤⎦

=
∑
p1h1

X
(n1J1)
p1h1

X
(n2J1)
p1h1

δ(j ′
1,j

′
2)δ(J1,J2) −

∑
h1

(−)J1+J2+j ′
1+j ′

2 Ĵ1Ĵ2

{
j ′

2 jh1 J1

j ′
1 j J2

}
X

(n1J1)
j ′

2h1
X

(n2J2)
j ′

1h1

= δ(j ′
1,j

′
2)δ(n1,n2)δ(J1,J2) −

∑
h1

(−)J1+J2+j ′
1+j ′

2 Ĵ1Ĵ2

{
j ′

2 jh1 J1

j ′
1 j J2

}
X

(n1J1)
j ′

2h1
X

(n2J2)
j ′

1h1

= δ(j ′
1,j

′
2)δ(n1,n2)δ(J1,J2) −

∑
h1

(−)j+jh1 Ĵ1Ĵ2 W (j ′
1J1J2j

′
2; jjh1 )X(n1J1)

j ′
2h1

X
(n2J2)
j ′

1h1
. (A2)

This quantity will be called as n(j ′
1n1J1,j

′
2n2J2) in the main text.

Just for the sake of understanding, the second term can be looked at in the case J1 = J2 = 0. It becomes

∑
h1

(−)j
′
2+jh1 +J1

1

ĵ 2
h1

δ
(
jh1 ,j

′
1

)
δ
(
jh1 ,j

′
2

)
δ
(
jh1 ,j

)
X

(n1J1)
j ′

2h1
X

(n2J2)
j ′

1h1
= −

∑
h1

1

ĵ 2
X

(n1)
jh1

X
(n2)
jh1

. (A3)

If we have only one hole state h1 and one particle state j , with the same degeneracy, we expect only one phonon n and the
overlap becomes

n = 1 − 1

2j + 1
, (A4)

which seems quite intuitive as the state cannot have norm one but just one of the 2j + 1 magnetic substates is occupied by a
particle.

APPENDIX B: CALCULATION OF THE MATRIX ELEMENTS THAT ENTER THE REDUCED
ELECTROMAGNETIC TRANSITION PROBABILITY

We discuss here the four matrix elements appearing in the last four lines of Eq. (13): They correspond to the possible
transition amplitudes appearing in the electromagnetic transitions between coupled states made up with a single particle and a
core excitation.

The first matrix element of Eq. (13) corresponds to the standard single-particle transitions and can be found in textbooks.
The second one is finite only in the case of a phonon transition, and becomes, using Eq. (28) at p. 479 of Ref. [22] and other
properties of 9j and 6j symbols,

〈[j ′
f ⊗ J ′

f ]jf
||Ô||ji〉 = 〈

[j ′
f ⊗ J ′

f ]jf

∣∣|[1̂sp ⊗ Ôph]λ|
∣∣[ji ⊗ 0i]ji

〉

= λ̂ĵi ĵf

⎧⎪⎨
⎪⎩

0 λ λ

j ′
f J ′

f jf

ji 0 ji

⎫⎪⎬
⎪⎭ĵiδ(j ′

f ,ji)〈J ′
f ||Ôph||0〉

= λ̂ĵ 2
i ĵf

(−)jf +λ+ji

λ̂ĵi

{
ji jf λ

J ′
f 0 ji

}
δ(j ′

f ,ji)〈J ′
f ||Ôph||0〉

= ĵi ĵf (−)jf +λ+ji δ(J ′
f ,λ)

(−)ji+J ′
f +jf

ĵi λ̂
δ(j ′

f ,ji)〈J ′
f ||Ôph||0〉

= ĵf

λ̂
δ(j ′

f ,ji)δ(J ′
f ,λ)〈J ′

f ||Ôph||0〉. (B1)
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The same formula holds in the case of the matrix element of the third line. We finally work out the matrix element in the fourth
line. 〈

[j ′
f ⊗ J ′

f ]jf

∣∣|[1̂sp ⊗ Ôph]λ + [Ôsp ⊗ 1̂ph]λ|
∣∣[j ′

i ⊗ J ′
i ]ji

〉

= ĵf ĵi λ̂

⎛
⎜⎝
⎧⎪⎨
⎪⎩

0 λ λ

j ′
f J ′

f jf

j ′
i J ′

i ji

⎫⎪⎬
⎪⎭δ(j ′

f ,j ′
i )ĵ

′
f 〈J ′

f ||Ôph||J ′
i 〉 +

⎧⎪⎨
⎪⎩

λ 0 λ

j ′
f J ′

f jf

j ′
i J ′

i ji

⎫⎪⎬
⎪⎭δ(J ′

f ,J ′
i )Ĵ ′

f 〈j ′
f ||Ôsp||j ′

i 〉

⎞
⎟⎠

= ĵf ĵi

(
(−)jf +J ′

i +λ+j ′
i

{
ji jf λ

J ′
f J ′

i j ′
f

}
δ(j ′

f ,j ′
i )〈J ′

f ||Ôph||J ′
i 〉

(−)ji+j ′
f +λ+J ′

f

{
jf ji λ

j ′
i j ′

f J ′
f

}
δ(J ′

f ,J ′
i )〈j ′

f ||Ôsp||j ′
i 〉
)

. (B2)

The quantity 〈J ′
f ||Ôph||J ′

i 〉 can be found, e.g., in Ref. [23] in terms of the RPA amplitudes. From Eq. (11.286), in fact,

〈J ′
f ||Ôph||J ′

i 〉 =
∑

ph,p′h′

[
X

f
phX

i
p′h′ + (−)J

′
f −J ′

i +λY
f
phY

i
p′h′
]〈

[ph−1]J ′
f

∣∣|Ôph|
∣∣[p′h′−1]J ′

i

〉
. (B3)

The latter matrix element is given by〈
[ph−1]J ′

f M ′
f

∣∣Ôph

∣∣[p′h′−1]J ′
i M

′
i

〉 = 1√
2J ′

f + 1
〈J ′

i M
′
iλμ|J ′

f M ′
f 〉〈[ph−1]J ′

f

∣∣|Ôph|
∣∣[p′h′−1]J ′

i

〉
〈
[ph−1]J ′

f

∣∣|Ôph|
∣∣[p′h′−1]J ′

i

〉 = ∑
M ′

iM
′
f μ

1√
2J ′

f + 1
〈J ′

i M
′
iλμ|J ′

f M ′
f 〉〈[ph−1]J ′

f M ′
f

∣∣Ôph

∣∣[p′h′−1]J ′
i M

′
i

〉

=
∑

M ′
iM

′
f μ

∑
mpmhmp′mh′

1√
2J ′

f + 1
(−)jh−mh+jh′ −mh′ 〈J ′

i M
′
iλμ|J ′

f M ′
f 〉

× 〈jpmpjh − mh|J ′
f M ′

f 〉〈jp′mp′jh′ − mh′ |J ′
i M

′
i〉〈jpmp,jhmh|Ôph|jp′mp′ ,jh′mh′ 〉. (B4)

The latter matrix element reads∑
αβ

Oαβ〈0|a†
hap : a†

αaβ : a
†
p′ah′ |0〉 = δ(h,h′)Opp′ − δ(p,p′)Ohh′

= δ(h,h′)√
2jp + 1

〈jp′mp′λμ|jpmp〉 〈jp||Ô||jp′ 〉 − δ(p,p′)√
2jh′ + 1

〈jhmhλμ|jh′mh′ 〉 〈jh′ ||Ô||jh〉 .

(B5)

Thus, we obtain〈
[ph−1]J ′

f

∣∣|Ôph|
∣∣[p′h′−1]J ′

i

〉 = ∑
M ′

iM
′
f μ

∑
mpmhmp′mh′

1√
2J ′

f + 1
〈J ′

i M
′
iλμ|J ′

f M ′
f 〉

× 〈jpmpjh − mh|J ′
f M ′

f 〉 〈jp′mp′jh′ − mh′ |J ′
i M

′
i〉

δ(h,h′)√
2jp + 1

〈jp′mp′λμ|jpmp〉 〈jp||Ô||jp′ 〉

−
∑

M ′
iM

′
f μ

∑
mpmhmp′mh′

1

2J ′
f + 1

(−)jh−mh+jh′ −mh′ 〈J ′
i M

′
iλμ|J ′

f M ′
f 〉

× 〈jpmpjh − mh|J ′
f M ′

f 〉 〈jp′mp′jh′ − mh′ |J ′
i M

′
i〉

δ(p,p′)√
2jh′ + 1

〈jhmhλμ|jh′mh′ 〉 〈jh′ ||Ô||jh〉

= δ(h,h′)Ĵ ′
f Ĵ ′

i (−)jh+jp+J ′i+λ

{
jh J ′

i jp′

λ jp J ′
f

}
〈jp||Ô||jp′ 〉

−δ(p,p′)Ĵ ′
f Ĵ ′

i (−)jh+jp+J ′
f

{
jp J ′

i jh′

λ jh J ′
f

}
〈jh′ ||Ô||jh〉 . (B6)
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