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Abstract. We study the random variable Yn representing the number
of occurrences of a given symbol in a word of length n generated at
random. The stochastic model we assume is a simple non-ergodic model
defined by the product of two primitive rational formal series, which form
two distinct ergodic components. We obtain asymptotic evaluations for
the mean and the variance of Yn and its limit distribution. It turns out
that there are two main cases: if one component is dominant and non-
degenerate we get a Gaussian limit distribution; if the two components
are equipotent and have different leading terms of the mean, we get a uni-
form limit distribution. Other particular limit distributions are obtained
in the case of a degenerate dominant component and in the equipotent
case when the leading terms of the expectation values are equal.

1 Introduction

The analysis of the frequency of pattern occurrences in a long string of symbols,
usually called text, is a classical problem that is of interest in several research ar-
eas of computer science and molecular biology. In computer science for instance
it has been studied in connection with the design of algorithms for approximate
pattern-matching [13, 16] and the analysis of problems of code synchronization
[10]. The problem is particularly relevant in molecular biology to study prop-
erties of DNA sequences and for gene recognition [20]. For instance, biological
informations can be obtained from unexpected frequencies of special deviant mo-
tifs in a DNA text [7, 9, 15]. Moreover, the frequency problems in a probabilistic
framework are studied in [12, 1, 17, 14]. In this context a set of one or more pat-
terns is given and the text is randomly generated by a memoryless source (also
called Bernoulli model) or a Markovian source (the Markovian model) where the
probability of a symbol in any position only depends on the previous occurrence.

A more general approach, developed in the area of automata and formal
languages, is recently proposed in [3, 4], where the pattern is reduced to a single
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symbol and the text is randomly generated according to a stochastic model
defined by a rational formal series in two non-commutative variables. We recall
that there are well-known linear time algorithms to generate a random word in
such a model [6] which we call the rational model in this work. The frequency
problem in this model is also related to the ambiguity of rational grammars and
to the asymptotic form of the coefficients of rational and algebraic formal series
studied for instance in [21, 18].

It is proved that the symbol frequency problem in the rational model in-
cludes, as a special case, the general frequency problem of regular patterns in
the Markovian model (studied in [14]) and it is also known that the two models
are not equivalent [3]. The symbol frequency problem in the rational model is
studied in [3, 4] in the ergodic case, i.e. when the matrix associated with the
rational formal series (counting the transitions between states) is primitive. Un-
der this hypothesis, asymptotic expressions for the mean and the variance of the
statistics under investigation are obtained, together with their limit distributions
expressed in the form of both central and local limit theorems [3, 4].

In this work we study the symbol frequency problem in the rational model in
a simple non-ergodic case, that is when the rational series defining the stochas-
tic source is the product of two primitive rational series. This case is rather
representative of a more general situation where the matrix associated with the
rational model has two primitive components. We obtain asymptotic evaluations
for the mean and the variance of the number of symbol occurrences and its limit
distribution. It turns out that there are two main cases. In the dominant case
the main eigenvalue associated with one component is strictly greater than the
main eigenvalue associated with the other. In the equipotent case these two
eigenvalues are equal.

If one component is dominant and does not degenerate1, the main terms of
mean and variance are determined by such a component and we get a Gaussian
limit distribution. We also determine the limit distribution when there exists a
dominant degenerate component. Apparently, this has a large variety of possible
forms depending even on the other (non-main) eigenvalues of the secondary
component and including the geometric law in some simple cases.

If the two components are equipotent and have different leading terms of the
mean, then the variance is of a quadratic order showing there is not a concen-
tration phenomenon around the average value of our statistics. In this case we
get a uniform limit distribution between the constants of the leading terms of
the expected values associated with the two components.

However, in the equipotent case, if the leading terms of the two means are
equal then the variance reduces to a linear order of growth and we have again
a concentration phenomenon. In this case the limit distribution depends on the
main terms of the variances associated with the two components: if they are
equal we obtain a Gaussian limit distribution again; if they are different we

1 i.e., considering the series of the dominant component, both symbols of the alphabet
appear in some words with non-null coefficient.



obtain a limit distribution defined by a mixture of Gaussian random variables
of mean 0 and variance uniformly distributed in a given interval.

The main contribution of these results is related to the non-ergodic hypoth-
esis. To our knowledge, the pattern frequency problem in the Markovian model
is usually studied in the literature under ergodic hypothesis and Gaussian limit
distributions are generally obtained. On the contrary, here we get in many cases
limit distributions quite different from the Gaussian one.

We think our analysis is significant also from a methodogical point of view:
we adapt methods and ideas introduced to deal with the Markovian model to a
more general stochastic model, the rational one, which seems to be the natural
setting for these techniques.

Due to space constraints, in this paper all proofs are omitted. They can be
found in [5] and rely on singularity analysis of the bivariate generating functions
associated with the statistics under investigation.

The computations described in our examples are executed by using Mathe-
matica [22].

2 Preliminary notions

2.1 Perron–Frobenius theory

The Perron–Frobenius theory is a well-known subject widely studied in the lit-
erature (see for instance [19]). To recall its main results we first establish some
notation. For every pair of matrices T = [Tij ], S = [Sij ], the expression T > S
means that Tij > Sij for every pair of indices i, j. As usual, we consider any
vector v as a column vector and denote by v′ the corresponding row vector. We
recall that a nonnegative matrix T is called primitive if there exists m ∈ N such
that Tm > 0. The main properties of such matrices are given by the following
theorem [19, Sect.1].

Theorem 1 (Perron–Frobenius) Let T be a primitive nonnegative matrix.
There exists an eigenvalue λ of T (called Perron–Frobenius eigenvalue of T )
such that:

1. λ is real and positive;
2. with λ we can associate strictly positive left and right eigenvectors;
3. |ν| < λ for every eigenvalue ν 6= λ;
4. if 0 ≤ C ≤ T and γ is an eigenvalue of C, then |γ| ≤ λ; moreover |γ| = λ implies

C = T ;
5. λ is a simple root of the characteristic polynomial of T .

2.2 Moments and limit distribution of a discrete random variable

Let X be an integer valued random variable (r.v.), such that Pr{X = k} = pk
for every k ∈ N. Consider its moment generating function ΨX(z) =

∑
k∈N pke

zk;
then the first two moments of X can be computed by

E(X) = Ψ ′X(0) , E(X2) = Ψ ′′X(0) . (1)



Moreover, the characteristic function of X is defined by

ΦX(t) = E(eitX) = ΨX(it)

ΦX is always well-defined for every t ∈ R, it is periodic of period 2π and it
completely characterizes the r.v. X. Moreover it represents the classical tool
to prove convergence in distribution: a sequence of random variables {Xn}n
converges to a r.v. X in distribution2 if and only if ΦXn(t) tends to ΦX(t) for
every t ∈ R. Several forms of the central limit theorem are classically proved in
this way [8].

3 The rational stochastic model

Here we define the rational stochastic model. According to [2] a formal series in
the non-commutative variables a, b, with coefficients in the semiring R+ of non-
negative real numbers, is a function r : {a, b}∗ −→ R+. For any word w ∈ {a, b}∗,
we denote by (r, w) the value of r at w and a series r is usually represented as
a sum in the form

r =
∑

w∈{a,b}∗
(r, w)w

The set of all such series is denoted by R+〈〈a, b〉〉. It is well-known that R+〈〈a, b〉〉
forms a semiring with respect to the traditional operation of sum and Cauchy
product.

Now, given r ∈ R+〈〈a, b〉〉, we can define a stochastic model as follows. Con-
sider a positive n ∈ N such that (r, w) 6= 0 for some string w ∈ {a, b}∗ of length
n. For every integer 0 ≤ k ≤ n set

ϕ
(n)
k =

∑
|w|=n,|w|a=k

(r, w)

and define the random variable (r.v.) Yn such that

Pr{Yn = k} =
ϕ
(n)
k∑n

j=0 ϕ
(n)
j

.

Roughly speaking, Yn represents the number of occurrences of a in a word of
length n randomly generated according to the stochastic model defined by r.
This model is of particular interest in the case of rational series. We recall that
a series r ∈ R+〈〈a, b〉〉 is said to be rational if for some integer m > 0 there exists
a monoid morphism µ : {a, b}∗ −→ Rm×m+ , a pair of (column) vectors ξ, η ∈ Rm+
such that (r, w) = ξ′µ(w)η for every w ∈ {a, b}+. The triple (ξ, µ, η) is called
linear representation of r.

2 I.e. limn→∞ FXn(τ) = FX(τ) for every point τ ∈ R of continuity for FX , where
FXn(τ) = Pr {Xn ≤ τ} and FX(τ) = Pr {X ≤ τ}.



We say that {Yn} is defined in a rational stochastic model if the associated
series r is rational. It turns out that classical probabilistic models as the Bernoulli
or the Markov processes, frequently used to study the number of occurrences of
regular patterns in random words [12, 14], are special cases of rational stochastic
models [3].

4 The primitive case

The asymptotic behaviour of Yn is studied in [3, 4] when r is rational and admits
a primitive linear representation, i.e. a linear representation (ξ, µ, η) such that
the matrix M = A+ B is primitive, where A = µ(a) and B = µ(b). Under this
hypothesis, let λ be the Perron–Frobenius eigenvalue of M ; from Theorem 1,
one can prove that, for each n ∈ N,

Mn = λn (uv′ + C(n))

where C(n) is a real matrix such that, for some c > 0 and 0 ≤ ε < 1, |C(n)ij | ≤
cεn (for any i, j and all n large enough) and v′ and u are strictly positive left
and right eigenvectors of M/λ corresponding to the eigenvalue 1, normed so that
v′u = 1. Moreover, the matrix C =

∑∞
n=0 C(n) is well-defined and v′C = Cu =

0.
Using these properties, it is proved in [3] that the mean and the variance of

Yn satisfy the relations

E(Yn) = βn+
δ

α
+ O (εn) , Var(Yn) = γn+ O(1) (2)

where α, β, γ and δ are constants defined by

β =
v′Au

λ
, γ = β − β2 + 2

v′ACAu

λ2

α = (ξ′u)(v′η) , δ =

(
ξ′C

A

λ
u

)
(v′η) + (ξ′u)

(
v′
A

λ
Cη

)
.

Notice that B = 0 implies β = 1 and γ = δ = 0, while A = 0 implies β = γ =
δ = 0; on the other side, if A 6= 0 6= B then β > 0 and it turns out that also
γ > 0.

Relations (2) is proved from (1) observing that ΨYn(z) = hn(z)
hn(0)

, where

hn(z) =

n∑
k=0

ϕ
(n)
k ezk = ξ′(Aez +B)nη ,

and studying the asymptotic behaviour of hn(0), h′n(0) and h′′n(0). This analysis
is essentially based on Theorem 1 and on a sort of simple differential calculus
for matrices.



Finally, the characteristic function ΦYn(t) = hn(it)
hn(0)

is used in [3] to prove

that, if M is primitive and A 6= 0 6= B, then the distribution of Yn approximates
a normal distribution, i.e. for every x ∈ R

lim
n−→+∞

Pr

{
Yn − βn√

γn
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2

2 dt .

5 The product model

Given two primitive linear representations (ξ1, µ1, η1) and (ξ2, µ2, η2) over the
alphabet {a, b}, let r be the formal series defined by

(r, w) =
∑
w=xy

[ξ′1µ1(x)η1] · [ξ′2µ2(y)η2]

for every w ∈ {a, b}∗. It turns out that r admits a linear representation (ξ, µ, η)
given by

ξ =

(
ξ1
0

)
, µ(x) =

(
µ1(x) η1ξ

′
2µ2(x)

0 µ2(x)

)
, η =

(
η1ξ
′
2η2
η2

)
(3)

Using the notation introduced in the previous section, from now on we refer
the terms M , A, B and hn(z) to the product series r. To avoid trivial cases,
throughout this work we assume A 6= 0 6= B. We also use the obvious extension of
appending indices 1 and 2 to the values associated with the linear representation

(ξ1, µ1, η1) and (ξ2, µ2, η2), respectively. Thus, for each i = 1, 2, the values Y
(i)
n ,

Mi, λi, Ai, Bi, h
(i)
n (z), βi, γi are well-defined and associated with the linear

representation (ξi, µi, ηi).
From the decomposition (3) it is easy to see that hn(z) is given by

hn(z) =

n∑
i=0

ξ′1(A1e
z +B1)iη1ξ

′
2(A2e

z +B2)n−iη2 =

n∑
i=0

h
(1)
i (z)h

(2)
n−i(z) (4)

which is the convolution of h
(1)
n (z) and h

(2)
n (z). Since (ξ1, µ1, η1) and (ξ2, µ2, η2)

are primitive, we can consider the Perron-Frobenius eigenvalues λ1, λ2 of M1 and
M2, respectively. The properties of Yn now depend on whether these two values
are distinct or equal. In the first case the rational representation associated with
the largest one determines the main characteristics of Yn. We say that (ξi, µi, ηi)
is the dominant component if λ1 6= λ2 and λi = max{λ1, λ2}. On the contrary,
if λ1 = λ2, both components give a contribution to the asymptotic behaviour of
Yn and hence we say they are equipotent.

6 Main results

In this section we summarize the main results concerning the product model.
We consider separately the case λ1 > λ2 (the case λ1 < λ2 is symmetric) and
the case λ1 = λ2. In both cases, we first determine asymptotic expressions for
mean and variance of Yn and then we study its limit distribution.



6.1 Dominant case

Using (4) and the results of the primitive case, one can determine asymptotic
expressions for hn(0) and its derivatives, which yield the following theorem.

Theorem 2 Assume λ1 > λ2. Then the following statements hold:
i) if A1 6= 0 6= B1, then E(Yn) = β1n+O(1) and Var(Yn) = γ1n+O(1);
ii) if A1 6= 0 and B1 = 0, then E(Yn) = n+O(1) and Var(Yn) = c1 +O(εn);
iii) if A1 = 0 and B1 6= 0, then E(Yn) = c2+O(εn) and Var(Yn) = c3+O(εn);

where β1 > 0, γ1 > 0 and ci and ε are constants such that ci > 0 and |ε| < 1.

As far as the limit distribution of {Yn} is concerned, if the dominant com-
ponent does not degenerate (i.e. A1 6= 0 6= B1) the analysis is similar to the
primitive case and gives rise to a Gaussian limit distribution [3]. On the con-
trary, if the dominant component degenerates, the limit distribution may assume
different forms, depending on the second component. In both cases the proof is
based on the analysis of the characteristic function of Yn.

Theorem 3 Let λ1 > λ2. If A1 6= 0 6= B1 then Yn−β1n√
γ1n

converges in distribution

to the normal random variable of mean 0 and variance 1.

If either A1 = 0 or B1 = 0 then γ1 = 0 and the previous theorem does not
hold.

Theorem 4 Let λ1 > λ2. If A1 = 0, then the random variables Yn converges in
distribution to the random variable Z of characteristic function

ΦZ(t) =
ξ′2(λ1I −A2e

it −B2)−1η2
ξ′2(λ1I −M2)−1η2

(5)

If B1 = 0, then the random variables n − Yn converges in distribution to the
random variable W of characteristic function

ΦW (t) =
ξ′2(λ1I −A2 −B2e

it)−1η2
ξ′2(λ1I −M2)−1η2

.

Some comments on the random variables Z and W are now necessary. First
observe that, when the matrices M2, A2 and B2 have size 1, Z and W are
geometric random variables. Indeed, in this case M2 = A2 + B2 = λ2 < λ1 and
we get

ΦZ(t) =
1− A2

λ1−B2

1− A2

λ1−B2
eit

and ΦW (t) =
1− B2

λ1−A2

1− B2

λ1−A2
eit

which are the characteristic functions of geometric random variables of parameter
A2

λ1−B2
and B2

λ1−A2
respectively. However, the range of possible behaviours of these

random variables is much larger than what these examples show. To see this fact
consider the function ΦZ(t) in (5); it can be expressed in the form

ΦZ(t) =

∞∑
j=0

ξ′2 (M2/λ2)
j
η2 · (λ2/λ1)j∑∞

i=0 ξ
′
2 (M2/λ2)

i
η2 · (λ2/λ1)i

Φ
Y

(2)
j

(t)



and hence it describes the random variable Y
(2)
N , where N is the random variable

defined by the law

Pr{N = j} =
ξ′2 (M2/λ2)

j
η2 · (λ2/λ1)j∑∞

i=0 ξ
′
2 (M2/λ2)

i
η2 · (λ2/λ1)i

. (6)

If B2 = 0 then by (5) Z reduces to N , and an example of the rich range of its
possible forms is shown by considering the case where (A1 = 0 = B2) λ1 = 1.009,
λ2 = 1, and the second component is represented by a generic (2 × 2) - matrix
whose eigenvalues are 1 and µ such that −1 < µ < 1. In this case, since the two
main eigenvalues have similar values, the behaviour of Pr{N = j} for small j
depends on the second component and in particular on its smallest eigenvalue µ.
In Figure 1 we plot the probability law of N defined in (6) for j = 0, 1, . . . , 200
in three cases: µ = −0.89, µ = 0.00001 and µ = 0.89; the first picture compares
the curves in the cases µ = −0.89 and µ = 0.00001, while the second picture
compares the curves when µ = 0.00001 and µ = 0.89. Note that in the second
case, when µ is almost null, we find a distribution similar to a (lengthy) geometric
law while, for µ = −0.89 and µ = 0.89, we get a quite different behaviour which
approximates the previous one for large values of j.

50 100 150 200
j

Pr{N=j}

50 100 150 200
j

Pr{N=j}

Fig. 1. Probability law of the random variable N defined in (6), for j = 0, 1, . . . , 200.
In the first picture we compare the case µ = 0.00001 and µ = −0.89. In the second one
we compare the case µ = 0.00001 and µ = +0.89.

6.2 Equipotent components

In this section we consider the random variable Yn assuming λ1 = λ2. Under this
hypothesis two main subcases arise, depending on whether β1 and β2 are equal.
First, we present the following theorem concerning the mean and the variance
of Yn, which can be obtained from equation (4) by singularity analysis.



Theorem 5 If λ1 = λ2, then the mean and the variance of the random variable
Yn are given by

E(Yn) =
β1 + β2

2
n+O(1)

Var(Yn) =


(β1 − β2)2

12
n2 +O(n) if β1 6= β2

γ1 + γ2
2

n+O(1) if β1 = β2

In the case β1 6= β2 it is clear from the previous theorem that the variance
is of a quadratic order. Hence, by using the characteristic function of Yn/n one
can prove the following result.

Theorem 6 If λ1 = λ2 and β1 6= β2 then Yn/n converges in law to a random
variable having uniform distribution in the interval [min{β1, β2},max{β1, β2}].

If β1 = β2 then, since A 6= 0 6= B, we have Ai 6= 0 6= Bi for i = 1 or i = 2.
This implies γi 6= 0 and hence the variance is linear in n (see Theorem 5). In
this case we get a concentration phenomenon of Yn around its mean and we get
two different limit distributions according to whether γ1 = γ2 or not. In the
following, β and γ are defined by

β = β1 = β2, γ =
γ1 + γ2

2
.

First, we consider the case where the main terms of the variances are equal.

Theorem 7 If λ1 = λ2, β1 = β2 and γ1 = γ2 then Yn−βn√
γn converges in distri-

bution to the normal random variable of mean 0 and variance 1.

At last, we consider the case where the main terms of the variances are not
equal.

Theorem 8 If λ1 = λ2, β1 = β2 and γ1 6= γ2 then Yn−βn√
γn converges in distri-

bution to the random variable of characteristic function

Φ(t) =
2
(
e−

γ2
2γ t

2

− e−
γ1
2γ t

2
)
γ

(γ1 − γ2)t2
(7)

One can prove that the probability density corresponding to the character-
istic function (7) is a mixture of Gaussian densities of mean 0, with variances
uniformly distributed in the interval with extremes γ

γ1
and γ

γ2
. Indeed, it is easy

to see that

Φ(t) =
1(

γ2
γ −

γ1
γ

) ∫ γ2
γ

γ1
γ

e−
1
2 vt

2

dv

In Figure 2 we illustrate the form of the limit distributions obtained in this
section (i.e. when λ1 = λ2 and β1 = β2). We represent the density of the random



variable having characteristic function (7), for different values of the ratio p =
γ2/γ1. When p approaches 1, the curve tends to a Gaussian density according to
Theorem 7; if γ2 is much greater than γ1, then we find a density with a cuspid
in the origin corresponding to Theorem 8.

50

100

150

200

p -2

0

2

0

0.2

0.4

50

100

150p

0

0.2

Fig. 2. The first picture represents the density of the random variable having character-
istic function (7), according to the parameter p = γ2/γ1. The second picture represents
some sections obtained for p = 1.0001, 5, 15, 50, 20000.

7 Examples

In this section we present an example which compares the limit distributions
obtained in the non-degenerate dominant case and in the equipotent case, with
different leading terms of the mean associated with each component.

      

( a, 1/4 )

( b,1) ( b,1)

1, 1 1/2, 6
      

( a, 1)

( b, 1 )

( a, 5)

( b,1)

1, 19  1/2, 3

Fig. 3. Two weighted finite automata over the alphabet {a, b}, defining two primitive
linear representations (ξi, µi, ηi), i = 1, 2. The matrices Ai = µi(a) and Bi = µi(b)
are defined by the labels associated with transitions in the pictures. The values of the
components of the arrays ξi and ηi are included in the corresponding states.



k

Pr{Y50=k}

Fig. 4. Probability functions of Y50, corresponding to a formal series derived from the
automata of Figure 3 with weighted expanded by a constant factor, in the case where
(λ1, λ2) are equal to (2,1), (1,2) and (1,1). The vertical bars have abscissas 50β1 and
50β2, respectively.

This example is based on the automata represented in Figure 3. They define
two ergodic components with matrices Mi, Ai, Bi, i = 1, 2. The arrays ξi and
ηi are given by the values included in the states.

Multiplying the matrices Ai and Bi (for i = 1, 2) by suitable factors, it
is possible to build a family of primitive linear representations where we may
have λ1 = λ2 or λ1 6= λ2. In all cases, it turns out that β1 = 0.146447 and
β2 = 0.733333 (and hence β1 6= β2).

Figure 4 illustrates the probability function of the random variable Y50 in
three different cases. If λ1 = 2 and λ2 = 1 we find a normal density of mean
asymptotic to 50 β1. If λ1 = 1 and λ2 = 2 we have a normal density of mean
asymptotic to 50β2. Both situations correspond to Theorem 3. If λ1 = λ2 = 1, we
recognize the convergence to the uniform distribution in the interval [50β1, 50β2]
according to Theorem 6.
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