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Abstract 

Colemanite (ideally CaB3O4(OH)3H2O, space group P21/a, unit-cell parameters: a ~ 8.74, b ~  

11.26, c ~ 6.10 Å,  ~ 110.1°) is one of the principal mineralogical components of borate 

deposits and the most important mineral commodity of boron. Its high-pressure behavior is 

here described, for the first time, by means of in situ single-crystal synchrotron X-ray 

diffraction with a diamond anvil cell up to 24 GPa (and 293 K). Colemanite is stable, in its 

ambient-conditions polymorph, up to 13.95 GPa. Between 13.95 and 14.91 GPa, an iso-

symmetric first-order single-crystal to single-crystal phase transition (reconstructive in 

character) toward a denser polymorph (colemanite-II) occurs, with: aCOL-II = 3aCOL, bCOL-II = 

bCOL and cCOL-II = 2cCOL. Up to 13.95 GPa, the bulk compression of colemanite is 

accommodated by the Ca-coordination and the tilting of the rigid three-membered rings of 

boron polyhedra. The phase transition leads to an increase of the average coordination number 

of both the B and Ca sites. A detailed description of the crystal structure of the high-P 

polymorph, compared to the ambient-conditions colemanite, is given. The elastic behaviors of 

colemanite and of its high-P polymorph are described by means of III- and II-order Birch-

Murnaghan equations of state, respectively, yielding the following refined parameters: KV0 = 

67(4) GPa and KV = 5.5(7) [V0 = 0.0149(9) GPa-1] for colemanite; KV0 = 50(8) GPa [V0 = 

0.020(3) GPa-1] for its high-P polymorph.     
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1. Introduction 

Colemanite, a calcium hydrous borate (ideal chemical formula: CaB3O4(OH)3H2O), is a main 

mineralogical component in natural borate deposits and likely the most important mineral 

commodity for boron worldwide, e.g.13.  

Colemanite can also be considered a material of technological and industrial relevance. 

Several studies have been focused on its use as an additive in concretes47  or epoxy-resins8, 

in order to improve the shielding efficiency of these materials for neutron radiations, as 

already suggested for other B-bearing materials, e.g.912. Other studies were addressed to 

investigate the feasibility and the effects induced by the addition of colemanite-rich wastes in 

the production of lightweight concretes1315, heavy clay ceramics16 or to improve the 

mechanical performances of epoxy-resins17. Similar studies were also performed in the fields 

of ceramics- and glass-production. Yildiz18 and Yildiz et al.19 report that calcined colemanite 

can be used as a starting material in the production process of CaB6, whereas the use of 

colemanite as source of boron in the production of borosilicate glasses and heatproof ceramics 

was reported by Pavlyukevich et al.20 and Kichkailo and Levitskii21, respectively. This 

interest in the use of colemanite in different production processes is triggered by the presence 

of large volumes of colemanite-rich tailings at the mining extraction sites15,16, which is the 

source for a low-cost material.  

In this light, and in view of the reported drawbacks following the use of colemanite as an 

additive in concretes4 and in ceramics production processes19, a detailed characterization of 

the structure-property relationships of this borate is advisable.  

Colemanite is monoclinic (space group P21/a) at ambient conditions, unit-cell parameters: a = 

8.743, b = 11.264, c = 6.102 Å,  = 110.116° and V = 564.27 Å3. Its crystal structure has long 

been known2226 and is characterized by the presence of infinite chains of corner-sharing B-
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coordination polyhedra running along the a crystallographic axis (Figure 1). These chains are 

built through the repetition of a ring made by three B-polyhedra: one BO3 triangle and two 

B4 tetrahedra ( = O or OH, following the notation of Burns and Hawthorne25, Figure 1). 

Neighboring rings are linked through an oxygen hinge shared between a B-triangle and a B-

tetrahedron (Figure 1). The borate chains are connected along the crystallographic c axis 

through chains of Ca-coordination polyhedra, with coordination number (CN) 8, which share 

an oxygen corner (Figure 1). As a result, heteropolyhedral layers are formed parallel to the 

(010) plane (Figure 1). The neighboring layers are staggered, so that a borate chain is 

followed in the previous and next layers by Ca-chains. These layers are bonded along the b 

axis only by few Ca-Oh-B links and by the network of H-bonds, which involves the OH 

groups and the H2O molecules24,25. This configuration gives rise to weak interlayer bonds, 

responsible for the perfect (010) cleavage. The H-bonding network has been described on the 

basis of neutron24 and X-ray25 diffraction data. However, the reported models show partially 

contrasting results. 

Despite the interest shown on the industrial and technological applications of colemanite, we 

have only a surprisingly incomplete knowledge on the behavior of this compound at non-

ambient conditions. In particular, very little is known on the structural modifications at the 

atomic scale. A second-order phase transition to a ferroelectric phase is long time known to 

occur at a temperature between 0 and -7 °C24,2729, which was suggested to be related to a 

P21/a-to-P21 symmetry transition30. Several thermogravimetric analyses of colemanite report 

its dehydration in a range of temperatures between 330 and 400 °C18,20,31,32. However, a model 

of the structural modifications induced by temperature is still missing and, to the best of our 

knowledge, nothing is known about the high-pressure behavior of this compound. 

In this light, we planned to investigate the behavior of this important borate mineral at non-

ambient temperature and pressure conditions. In this paper, we report the high-P behavior of 
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colemanite, on the basis of in situ synchrotron single-crystal X-ray diffraction data collected 

up to ca. 30 GPa. We will provide the refined elastic parameters, to be included in the 

thermodynamic databases, and we will describe the structural modifications induced by 

pressure at the atomic scale. In addition, a phase transition towards a high-pressure 

polymorph (hereafter colemanite-II) is reported and discussed. The study of the low- and 

high-T behavior of colemanite is in progress and will be discussed in a forthcoming paper 

along with the results of a single-crystal neutron-diffraction investigation.  

  

2. Materials and experimental procedure 

A natural gem-quality sample of colemanite from the borate deposits of the Bigadiç Mine 

(Balikesir Province, Marmara Region, Turkey), provided by the Museum of Mineralogy of 

the University of Padua (catalogue number MMP M14738), was selected for this study. The 

chemical formula was determined by a combination of titrimetric, CHN, Inductively Coupled 

Plasma – Atomic Emission Spectroscopy (ICP-AES), and Thermogravimetric (TG) analyses. 

Further details about the occurrence and the mineralogical description of the colemanite 

sample used in this study, along with the experimental protocol used for the chemical 

analyses, are given as supplementary material. 

The quality of a few single crystals of colemanite was initially checked by X-ray diffraction at 

the Earth Sciences Dept. of the University of Milan, using a four-circle Xcalibur diffractomter 

equipped with a point-detector and a CCD, and with the MoKα-radiation. The high-pressure 

experiment (at 293 K) was performed at the P02.2 “Extreme Conditions Beamline” at the 

Petra III synchrotron source at DESY, Hamburg (Germany), for which a description is given 

in Liermann et al.33, using a membrane-driven diamond anvil cell (DAC) and Ne as P-

transmitting medium. Pressure was measured on the basis of the shift of neon diffraction 
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peaks34 and of the ruby fluorescence line R1
35. An in-house software script36 was used to 

convert data in order to be processed by the Crysalis37 software. More details pertaining to the 

X-ray diffraction experiment and to the data reduction are reported in the supplementary 

material.  

The refinement of the (H-free) colemanite structure, at the different experimental pressures, 

was performed using the JANA2006 software38, starting from the model reported by Burns 

and Hawthorne25. In order to overcome the limited accessibility to reciprocal space (i.e. the 

reduced number of experimental diffraction data with respect to an ambient-conditions 

collection), which is due to the shadowing of the DAC metal components39, the number of 

refined variables was kept as low as possible by refining an isotropic displacement parameter 

(Uiso) for each atomic site. In addition, soft restraints to the B-O interatomic distances were 

applied to target values of 1.36  0.02 and 1.46  0.02 Å for [III]B and [IV]B, respectively. All 

refinements converged without any significant correlation among the refined parameters and 

any significant residual peak in the difference-Fourier maps of the electron density. Statistical 

details of the structure refinements and a selection of relevant structural parameters are 

reported in Tables 2 and 3, respectively. The refined site coordinates and displacement 

parameters of selected datasets are reported in Table S1 (supplementary materials). The full 

refined structure models (cif files) are deposited. 

 

3. Results and discussion 

 

3.1. High-pressure behavior of colemanite 
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Colemanite was found to be stable in its ambient-conditions polymorph at least up to 13.95 

GPa. Between 13.95 and 14.91 GPa, a single-crystal to single-crystal phase transition occurs, 

towards a new high-P polymorph (Figure 2, Table 2). 

In order to describe the (isothermal) compressional behavior of colemanite, the unit-cell 

volume vs. pressure data were fitted to a Birch-Murnaghan equation of state truncated to the 

third order (hereafter III-BM EoS). The BM-EoS, which belongs to the group of the empirical 

equations of state formulated to describe the V-P relationship of a solid at a fixed temperature, 

relies on the assumption that the strain energy of a solid under compression can be expressed 

as a Taylor series in the finite strain. Further details on this EoS and on its widespread use for 

minerals can be found in Birch40, Duffy and Wang41 and Angel42. The unit-cell parameters 

refined at 13.95 GPa (P10) show a slight deviation, with respect to the general trend defined 

by the previous points (especially concerning the b and the c axes, Figure 2 and Table 2), 

likely in response to the impending phase transition. For this reason, only the data in the P1-P9 

range (Table 2) were used for the III-BM EoS fit, using the EoSFit7.0-GUI software43, 

yielding the following refined parameters: V0 =  556(1) Å3, KV0 = 67(4) GPa and KV = 5.5(7), 

where KV0 is the isothermal bulk modulus at ambient conditions (defined as the inverse of the 

volume compressibility, KV0 = V
-1) and KV is its P-derivative (KV = KV/P). In order to 

describe the anisotropy of the elastic behavior of colemanite, the components of the 

compressibility tensor were calculated between 3.54 (P1) and 13.59 GPa (P9) using the 

Win_Strain software44 and are reported in Table S2. These values show that the structure 

compressibility is higher along the c and the b crystallographic axes, whereas is significantly 

lower along a, which corresponds to the direction of the borate and Ca-polyhedra chains 

(Figure 1). 

A comparative analysis of the refined colemanite structure models up to 13.95 GPa was 

performed to describe the mechanisms of structure deformation. The volumes of the 
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coordination polyhedra of the B and Ca cations were calculated using the tools implemented 

in the Vesta software45 and are reported in Table 3. The values show the different behavior 

between the more rigid B-tetrahedra and the higher compressibility of the Ca-polyhedron, for 

which a fit with a II-BM EoS yields a KV0 = 81(6) GPa. At a first approximation, we can 

assume that the unit-cell volume not occupied by the coordination polyhedra is made by 

“structural voids” (note that this rough approximation does not take into account the H atoms 

and the related H-bonding). These “structural voids” can, therefore, be calculated as Vsv = 

Vcell-[(4VB2)+(4VB3)+(4VCa)]. Their values are reported in Table 3: the bulk modulus refined 

from a II-BM EoS fit is KV0 = 74(3) GPa. These elastic parameters, which resemble those 

refined for the bulk material, suggest that the accommodation of the P-induced strain in 

colemanite is almost equally shared by the compression of the Ca-polyhedron and by the 

tilting of the structural units. Unlike the Ca-polyhedron, the average <B-O> bond lengths, as 

well as the volumes of the B2 and B3 tetrahedra, show only a minor decreasing trend with 

pressure (Table 3). In addition, not only the single B-polyhedra, but the 3-membered ring is 

internally undeformed with increasing pressure, and, hence, it also behaves as a quasi-rigid 

unit. Table 3 reports the high-pressure evolution of the B1-O2-B2 angle (Figure 1), which 

shows a monotonic closing trend. This behavior suggests that the strain of the borate chain 

along the a-axis (i.e. the less compressible direction among the three crystallographic axes) is 

accommodated by the tilting of the 3-membered rings around the shared O2 hinges. This is a 

common mechanism of strain accommodation adopted by different classes of materials, as for 

example the open-framework silicates4648. 

 

3.2. Phase transition 
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A single-crystal to single-crystal first-order phase transition occurs between 13.95 and 14.91 

GPa, towards a new polymorph which retains the P21/a symmetry, but shows the tripling of 

the a-axis length and the doubling of the c-axis length (Table 2). At 14.91 GPa, the unit-cell 

parameters of the new high-pressure polymorph (i.e. colemanite-II) are: a = 25.27(3), b = 

10.2064(14), c = 11.726(11) Å,  = 112.45(10)° and V = 2795(5) Å3. As a result, colemanite-

II shows a unit-cell six times larger than that of colemanite, and every independent atomic site 

in colemanite generates six new independent sites in colemanite-II: 6 calcium sites, 18 boron 

sites and 48 oxygen sites (24 O, 18 OH and 6 H2O).  

The crystal structure of colemanite-II was solved ab initio, based on the integrated intensities 

of the diffraction peaks, using initially the Superflip software49 implemented in JANA200638 

and, subsequently, by several cycles of Fourier-syntheses and least-squares refinement to 

locate the missing atomic positions. The final cycles of structure refinement were conducted 

using the same restrictions used for the ambient-conditions polymorph reported in section 2 

and, in addition, all the B and all the O sites were restrained to share the same isotropic 

displacement parameter (Uiso), respectively. The refined structure model is reported in Table 

S3. In the colemanite structure, the alternation of the borate chains and Ca-polyhedra occurs 

along the c-axis (Figure 1). The doubling of this unit-cell parameter in colemanite-II is 

reflected by the doubling of these structural components: i.e., (borate chain)-(Ca-polyhedra)-

(borate chain)-(Ca-polyhedra), as shown in Figure 3. In colemanite, the borate chain is built 

by the repetition, along the a-axis, of the same ring unit made by one B in triangular 

coordination and two B sites in tetrahedral coordination, whereas the Ca chain shows the 

repetition of the same Ca-polyhedron. In colemanite-II, every borate chain, or sequence of 

Ca-polyhedra, is made by the repetition of three independent units: i.e. three 3-membered 

rings of B-polyhedra and three independent Ca sites, respectively (Figures 4 and 5). The 

principal structural change in response to the phase transition is based on the average 
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coordination number of the B atoms. In colemanite, two of the three independent B sites show 

a tetrahedral coordination (66.6%), whereas in colemanite-II fifteen of the eighteen 

independent B sites are tetrahedrally coordinated (83.3%): i.e. among the six new boron sites 

in colenanite-II, which are generated by the B1 site of colemanite, only three keep the 

triangular coordination, while the remaining three increase their coordination number to four 

(Figure 4). A detailed description of the independent borate chains and sequences of Ca-

polyhedra, of the two polymorphs, is given below. 

- (Borate chain): In colemanite-II, this chain is topologically identical to the borate 

chain of colemanite, with the tripling of the independent 3-membered rings along the 

a-axis. Each of the three independent rings is made by a B in triangular coordination 

(B4, B12 and B17, respectively) and two B-tetrahedra (Figure 4, Table S3). The rings 

are connected through oxygen hinges shared between a [III]B of a ring and a [IV]B of the 

next ring, as in colemanite. 

- (Ca-polyhedra): The configuration of the first sequence of Ca-polyhedra in 

colemanite-II is similar to that in colemanite. The polyhedra build a chain running 

along the a-direction, where the tripling of the unit-cell edge is reflected by the 

tripling of the independent Ca sites: Ca4, Ca5 and Ca6 (Figure 5). All of these Ca are 

coordinated to nine O atoms, showing, therefore, an increase of the coordination 

number (from 8 to 9) with respect to the Ca site in colemanite. 

- (Borate-chain): The second borate chain in colemanite-II is also made by the 

repetition of three independent 3-membered rings of B-polyhedra, but, in this case, all 

the B sites show a tetrahedral coordination (Figure 4). Namely, the three B sites 

generated from the parent B1 in colemanite all form an additional bond to an oxygen 

and the  coordination number increases from three to four. Deducing the mechanisms 

that lead to the formation of the new B-O bonds is not straightforward. However, if we 
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assume that no break of the intra-chain B-O-B links occurs, this can be accomplished 

by the migration of a hydroxyl group from the sites generated from the parent B3 (i.e. 

B2, B9 and B15) to the sites generated from the triangular B1, giving rise to the new 

bonds: B6-Oh21, B8-Oh7 and B14-Oh23 (Figure 4). According to this hypothesis, the 

sites B2, B9 and B15 keep their tetrahedral coordination by forming a bond to a H2O-

oxygen site: in fact, three Ow sites generated from the Ow8 site of colemanite (i.e., 

Ow43, Ow44 and Ow45, respectively) act, in colemanite-II, as the vertices of the 

previously reported B-tetrahedra (Figure 4). In contrast, the remaining three H2O-

oxygen sites (Ow46, Ow47 and Ow48), excluding the H-network, are only bonded to 

Ca4, Ca6 and Ca5, respectively (Figure 5), with the same configuration of Ow8 in 

colemanite. The potential H-bonding network of Ow43, Ow44 and Ow45 is reported 

in Table S4. The suggested mechanism of structural rearrangement as a consequence 

of the phase transition, although not unambiguous, would imply that the internal B-O-

B links of the borate chains stay intact (i.e. no break on the chain itself) and relatively 

small spatial displacements are responsible, which fits well the single-crystal to single-

crystal nature of the phase transition. It is worth to note that the OH-groups and H2O 

sites distribution in the structural model of colemanite-II reported here is also 

supported by bond valence calculation. 

- (Ca-polyhedra): In this structural unit, three independent Ca-polyhedra (Ca1, Ca2 

and Ca3, respectively) are linked along the a-axis, but the link among subsequent Ca-

triplets is missing, therefore breaking the chain (Figure 5). However, every triplet is 

linked to the neighboring triplets along b according to the 21/a symmetry, giving rise 

to a corrugated two-dimensional layer of Ca-polyhedra, where Ca1 and Ca2 are 

characterized by a coordination number (CN) equal to 8, while Ca3 has CN= 9 (Figure 

5).   
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The structure of colemanite-II confirms that the first-order phase transition between 13.95 and 

14.91 GPa is reconstructive in character.  

 

3.3. High-pressure behavior of colemanite-II 

The diffraction patterns collected up to 30.43 GPa show that the high-P polymorph 

colemanite-II retains crystallinity up to the highest pressure investigated. However, due to a 

continuous decrease in the intensity of the diffraction spots, the refinement of the crystal 

structure of colemanite-II was possible only up to 23.29 GPa (P18). In addition, the unit-cell 

parameters refined at higher pressures showed a strong scattering. Therefore, for both the 

elastic and the structural analyses only the data collected up to 23.29 GPa (P18) were 

considered and reported.  

The fit of the V-P data to a III-BM EoS was first used, but unsuccessfully, due to an unstable 

refinement. Therefore, a II-BM EoS (for which KV is fixed to 4, e.g.41) was fitted to the 

experimental data, leading to the following elastic parameters of colemanite-II: V0 = 3413(87) 

Å3 and KV0 = 50(8) GPa. The components of the compressibility tensor, based on the unit-cell 

parameters at 14.91 (P11) and at 23.29 GPa (P18), were calculated using Win_Strain44 and are 

reported in Table S2. The elastic data show that the phase transition involves an increase in 

compressibility, as can be observed in Figure 2, being e.g the calculated bulk moduli at 13.95 

and 14.91 GPa: KV-13.95(COL)  = 137(4) GPa and KV-14.91(COL-II) = 104(8) GPa, respectively. The 

calculated components of the compressibility tensor (Table S2) reveal that, even though any 

significant difference can be observed for the linear compressibility along b, a drastic change 

affects the elastic behavior on the (010) plane. On this basis, it can be concluded that the 

phase transition influences not only the bulk compressibility of colemanite, but also its elastic 

anisotropy.  
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The comparative structural analysis, based on the structure refinements performed up to 23.29 

GPa, is affected by moderately large uncertainties and scattering of the refined variables, due 

to the combined effect of the intrinsic structural complexity of colemanite-II and of the 

decreasing intensity of the diffraction peaks at high pressure, with a consequent reduction of 

the number of observed reflections (Table 2). Although a moderate scattering occurs, II-BM 

EoS fits of the VCa-P (where VCa are the volumes of Ca coordination polyhedra) data were 

performed, leading to the refined ambient-conditions bulk moduli reported in Table 4. These 

data, though affected by large uncertainties, provide, at least at a first approximation, a 

qualitative description of the role played by the Ca-polyhedra at increasing pressure. The 

higher refined bulk moduli of Ca4, Ca5 and Ca6 suggest that the Ca-chain (the first 

component described in section 3.2, Figures 3 and 5) is apparently less compressible than the 

Ca-polyhedra layer (Figure 5), which appears to be the most compressible unit able to 

accommodate the bulk strain. A II-BM EoS fit of the “structural voids” (see section 3.1) led to 

refined KV0 = 46(10) GPa. From these values, it can be concluded that the P-induced 

compression in colemanite-II is likely accommodated by both the compression of the Ca-

polyhedra and by the re-arrangement of the structural units possibly governed by a tilting 

mechanism, even though the quality of the structure refinements, as discussed at the 

beginning of this section, prevents a more detailed description of the mechanisms of structure 

deformation. 

The diffraction data collected in decompression at 8.24 GPa show that the colemanite-to-

colemanite-II phase transition is completely reversible. 

 

4. Summary 
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 The polyborate colemanite is stable, in its ambient-conditions polymorph, up to 13.95 

GPa. It shows an anisotropic elastic behavior, where the less compressible direction is 

parallel to the borate and Ca-polyhedra chains axes (Figure 1, Table S2). The refined 

bulk compressibility (V = 0.0149(9) GPa-1) is comparable to that shown by, for 

example, common framework rock-forming minerals as K- and Na-feldspars50. The P-

induced strain is accommodated by both the compression of the Ca-polyhedra and the 

tilting of the structural units, whereas the B-polyhedra and the rings, building up the 

borate chain, show a more rigid behavior. The borate-chain deformation is mainly 

accommodated by the tilt of the rings around the shared O hinges. 

 Between 13.95 and 14.91 GPa, a first-order phase transition (reconstructive in 

character) occurs towards a new polymorph, colemanite-II, with the same P21/a 

symmetry, but a six times larger unit-cell volume.  

 The colemanite-to-colemanite-II phase transition leads not only to an increase of the 

average coordination number of the Ca sites, but also of the B sites. In particular, three 

of the six independent B sites (generated from the B1 site of the low-P polymorph) 

gain a bond with an additional oxygen, increasing their coordination from triangular to 

tetrahedral. A mechanism, based on the migration of hydroxyl groups among three 

different couples of B-coordination polyhedra and their replacement by H2O 

molecules, is suggested.   

 The high-pressure polymorph colemanite-II is characterized by a higher 

compressibility and by a different elastic anisotropic pattern with respect to the low-P 

polymorph. A similar behavior, though not so common, was already observed in other 

classes of minerals, in particular in open-framework silicates10,5153. Although the 

quality of the experimental data prevents a detailed comparative structural analysis, 
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we can, at a first approximation, infer that the P-induced strain in colemanite-II is 

accommodated by the same general structural mechanisms observed in colemanite.  
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Figure Captions 

Figure 1. A) The crystal structure of colemanite viewed along the b-axis. The (010)-layers of 

alternated borate and Ca-polyhedra chains are shown. B) The borate chain is built by the 

repetition, via corner-sharing, of a 3-membered ring made by one BO3 triangle and two B4 

tetrahedra ( = O, OH). C) The Ca-chain is built by the repetition, along the a-axis, of one 

symmetry-independent polyhedron (coordination number = 8). Ow8 represents the only H2O-

molecule oxygen site. 

Figure 2. The P-induced evolution of the unit-cell parameters of colemanite, and of its high-P 

polymorph (colemanite-II), are shown. The Birch-Murnaghan equations of state, fitted to the 

experimental V-P data, are also reported, along with the refined elastic parameters. For a 

comparative analysis, the unit-cell parameters of colemanite-II have been normalized to the 

colemanite unit cell (i.e., Vn = 1/6V; an = 1/3a; cn = 1/2c, see section 3.2 for further details). 

Figure 3. The crystal structure of the high-pressure polymorph colemanite-II viewed down 

the b-axis. The alternation of two symmetry-independent borate chains and two independent 

sequences of Ca-polyhedra is shown. 

Figure 4. (Top). The first borate chain in colemanite-II is made by the repetition of three 

independent 3-membered rings, each made of one BO3 triangle and two B4 tetrahedra ( = 

O, OH). (Bottom). The second borate chain is made by the repetition of three independent 3-

membered rings, all made by three B4 tetrahedra ( = O, OH, H2O). 

Figure 5. (A). The first sequence of Ca-polyhedra in colemanite-II is a chain made by the 

repetition, via edge-sharing, of three independent Ca-polyhedra (Ca4, Ca5 and Ca6, all with 

coordination number = 9). B). The second sequence of Ca-polyhedra is based on the triplet 

made by the coordination polyhedra of Ca1, Ca2 (both with CN = 8) and Ca3 (CN = 9), 

linked via corner- and edge-sharing. C) Every triplet is linked to the neighboring triplets along 
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the b-axis (see section 3.2 for further details), giving rise to an irregular and corrugated (001)-

layer. 
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Table 1. Chemical composition (determined by a combination of titrimetric, CHN, 
chromatographic, ICP-AES, and TG analyses) of the natural sample of colemanite used in 
this study. 

 

 wt% 

B2O3 50.8(4) 

CaO 27.2(2) 

SrO 0.30(5) 

SiO2 0.03(1) 

H2O 21.8(4) 

Total 100.13 
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Table 2. Unit-cell parameters and details of the structure refinements of colemanite, and of the high-P polymorph colemanite-II, at different 
pressures 

P (GPa) 
P1 

3.54(5) 
P2 

4.99(5) 
P3 

6.57(5) 
P4 

6.87(5) 
P5 

8.50(5) 
P6 

9.65(5) 
P7 

12.17(5) 
P8 

12.93(5) 
P9 

13.59(5) 
P10 

13.95(5) 
Pdec 

8.24(5) 

a (Å) 8.6249(10) 8.6195(10) 8.5818(10) 8.5788(12) 8.5494(12) 8.5297(12) 8.4834(12) 8.4750(12) 8.4627(14) 8.4556(11) 8.5776(14) 

b (Å) 10.9643(12) 10.9097(13) 10.8331(13) 10.8252(12) 10.7639(13) 10.7248(13) 10.6593(12) 10.6381(12) 10.6204(12) 10.6352(13) 10.8217(18) 

c (Å) 5.968(8) 5.917(8) 5.873(8) 5.872(9) 5.831(8) 5.801(8) 5.740(6) 5.731(7) 5.719(7) 5.689(9) 5.882(7) 

 (°) 109.94(2) 109.93(3) 109.85(3) 109.85(3) 109.76(3) 109.71(3) 109.53(2) 109.53(2) 109.46(3) 109.49(3) 109.88(3) 

V (Å3) 530.5(7) 523.1(7) 513.6(7) 512.9(7) 504.9(6) 499.5(7) 489.2(5) 486.9(6) 484.7(6) 482.3(8) 513.4(5) 

Unique refls. 800 640 624 767 665 672 652 707 670 657 506 

Observed refls.

Fo
2/( Fo

2)>3 
595 513 499 642 528 532 498 474 520 475 383 

Rint (obs) 0.0247 0.0287 0.0264 0.0241 0.0241 0.0279 0.0309 0.0273 0.0261 0.0434 0.0501 

Rint (all) 0.0258 0.0297 0.0276 0.0251 0.0251 0.0291 0.0332 0.0308 0.0274 0.0458 0.0531 

Refined param. 49 49 49 49 49 49 49 49 49 49 49 

R1 (obs) 0.0496 0.0733 0.0799 0.0619 0.0796 0.0824 0.0885 0.0762 0.0899 0.0957 0.1111 

R1 (all) 0.0643 0.0879 0.0976 0.0707 0.0942 0.0984 0.1094 0.1011 0.1077 0.1192 0.1389 

wR1 (obs) 0.0513 0.0777 0.0807 0.0682 0.0800 0.0806 0.0848 0.0729 0.0868 0.0897 0.1036 

Residuals 
(e-/Å3) 

+ 0.44 
- 0.49 

+ 0.51 
- 0.51 

+ 0.59 
- 0.52 

+ 0.88 
- 0.87 

+ 0.75 
- 0.70 

+ 0.94 
- 0.86 

+ 0.96 
- 0.91 

+ 1.06 
- 1.16 

+ 1.23 
- 1.12 

+ 0.92 
- 0.89 

+ 0.39 
- 0.54 

            

P (GPa) P11 

14.91(5) 
P12 

15.79(5) 
P13 

17.14(5) 
P14 

18.05(5) 
P15 

19.23(5) 
P16 

20.57(5) 
P17 

21.97(5) 
P18 

23.29(5) 

a (Å) 25.27(3) 25.10(3) 25.06(3) 24.99(3) 24.85(2) 24.85(4) 24.81(4) 24.74(3) 

b (Å) 10.2064(14) 10.1862(13) 10.1410(14) 10.1068(14) 10.0822(12) 10.0383(14) 9.9893(12) 9.9393(13) 

c (Å) 11.726(11) 11.663(12) 11.692(10) 11.664(11) 11.579(12) 11.578(14) 11.595(11) 11.547(10) 

 (°) 112.45(10) 112.64(10) 112.44(10) 112.81(11) 113.18(10) 113.24(14) 113.33(11) 113.50(10) 

V (Å3) 2795(5) 2752(5) 2746(5) 2716(5) 2667(4) 2654(6) 2639(5) 2604(4) 

Unique refls. 1814 1799 1771 1753 1736 1651 1645 1613 
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Observed refls.

Fo
2/( Fo

2)>3 
972 930 959 934 909 817 733 612 

Rint (obs) 0.0438 0.0457 0.0480 0.0488 0.0993 0.0731 0.0972 0.1038 

Rint (all) 0.0508 0.0532 0.0558 0.0571 0.1086 0.0892 0.1202 0.1322 

Refined param. 225 225 225 225 225 225 225 225 

R1 (obs) 0.0806 0.0711 0.0713 0.0699 0.0962 0.0918 0.1050 0.1274 

R1 (all) 0.1256 0.1171 0.1154 0.1199 0.1511 0.1579 0.1880 0.2431 

wR1 (obs) 0.0758 0.0650 0.0665 0.0645 0.0864 0.0778 0.0859 0.1017 

Residuals 
(e-/Å3) 

+ 1.30 
- 0.75 

+ 1.09 
- 0.66 

+ 0.85 
- 0.69 

+ 0.65 
- 0.56 

+ 0.80 
- 0.74 

+ 0.78 
- 0.66 

+ 0.93 
- 0.73 

+ 0.98 
- 1.02 

Rint = |F2
obs-F2

obs(mean)|/ (F2
obs); R1 = (|Fobs - Fcalc|)/|Fobs|; wR1 = ((w(F2

obs – F2
calc)2)/ (w(F2

obs)2)0.5), w = 1/(2(F2
obs)) 
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Table 3. High-pressure evolution of selected structural parameters of colemanite. 

 P 
(GPa) 

<Ca-O> 
(Å) 

VCa 

(Å3) 
<B1-O> 

(Å) 
<-B2-O>

(Å) 
VB2 

(Å3) 
<B3-O> 

(Å) 
VB3 

(Å3) 
Vsv 

(Å3) 
B1-O1-B2

(°) 
*Vpoly/Vcell 

P1 3.54(5) 2.468(8) 25.11(8) 1.361(9) 1.459(8) 1.588(9) 1.471(8) 1.626(9) 417.2(11) 135.9(5) 0.212 

P2 4.99(5) 2.447(4) 24.30(4) 1.366(10) 1.464(8) 1.605(9) 1.466(8)) 1.608(9) 413.1(9) 135.3(5) 0.210 

P3 6.57(5) 2.431(6) 24.04(6) 1.361(10) 1.461(9) 1.596(10) 1.461(8) 1.592(9) 404.7(10) 135.1(5) 0.210 

P4 6.87(5) 2.432(5) 24.08(5) 1.357(10) 1.459(8) 1.588(9) 1.461(8) 1.592(9) 403.9(10) 135.1(5) 0.211 

P5 8.50(5) 2.422(6) 23.79(6) 1.354(10) 1.454(9) 1.571(10) 1.459(8) 1.585(9) 397.1(9) 135.1(5) 0.212 

P6 9.65(5) 2.411(6) 23.47(6) 1.353(10) 1.454(9) 1.570(10) 1.457(8) 1.580(9) 393.0(10) 133.7(6) 0.212 

P7 12.17(5) 2.395(7) 23.04(7) 1.347(12) 1.448(9) 1.550(10) 1.451(9) 1.558(10) 384.6(9) 134.1(6) 0.214 

P8 12.93(5) 2.392(7) 22.98(7) 1.345(12) 1.449(10) 1.555(11) 1.454(9) 1.570(10) 382.5(10) 133.3(6) 0.214 

P9 13.59(5) 2.384(7) 22.69(7) 1.349(12) 1.447(10) 1.545(10) 1.453(9) 1.562(10) 381.5(10) 133.9(6) 0.212 

P10 13.95(5) 2.378(8) 22.61(8) 1.355(13) 1.449(12) 1.552(13) 1.456(11) 1.577(12) 379.4(12) 132.2(6) 0.213 

Pdec 8.24(5) 2.436(6) 24.18(6) 1.358(9) 1.456(9) 1.578(9) 1.455(9) 1.571(9) 405.4(9) 136.2(5) 0.213 

**KV0 

(GPa) 
  81(6)   282(63)  219(61) 74(3)   

* Fraction of unit-cell volume occupied by Ca- and B-coordination polyhedra 

** Isothermal bulk moduli refined from II-BM EoS fits using the EoSFit7.0-GUI software42, see section 3.1 for further details 
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Table 4. Selected structural parameters of colemanite-II at different pressures. 

 P 
(GPa) 

VCa1 
(Å3) 

VCa2 
(Å3) 

VCa3 
(Å3) 

VCa4 
(Å3) 

VCa5 
(Å3) 

VCa6 
(Å3) 

Vsv 
(Å3) 

*Vpoly/Vcell

P11 14.91(5) 23.7(2) 22.8(2) 27.0(2) 26.0(2) 27.5(3) 27.1(2) 2086(12) 0.254 

P12 15.79(5) 23.07(17) 22.27(17) 26.63(18) 26.2(2) 26.9(2) 26.8(2) 2052(11) 0.254 

P13 17.14(5) 23.01(18) 22.45(19) 26.40(19) 26.2(2) 27.1(2) 26.2(2) 2048(11) 0.254 

P14 18.05(5) 22.45(19) 22.08(17) 26.28(19) 25.6(2) 26.6(2) 26.3(2) 2026(10) 0.254 

P15 19.23(5) 21.9(2) 21.68(2) 26.0(3) 25.6(3) 26.3(3) 25.6(3) 1987(13) 0.255 

P16 20.57(5) 21.9(2) 21.3(2) 25.6(3) 25.0(3) 26.0(3) 25.8(2) 1981(14) 0.254 

P17 21.97(5) 22.3(3) 21.2(3) 24.7(3) 25.1(3) 26.1(3) 25.3(3) 1968(14) 0.254 

P18 23.29(5) 21.6(3) 20.7(3) 25.5(4) 24.6(3) 26.7(4) 25.4(3) 1934(15) 0.257 

**KV0 

(GPa) 
 18(12) 25(9) 34(13) 49(20) 50(32) 42(14) 46(10)  

* Fraction of unit-cell volume occupied by Ca- and B-coordination polyhedra 

** Isothermal bulk moduli refined from II-BM EoS fits using the EoSFit7.0-GUI software42, see section 3.3 for further details and for a 
discussion on these values and their large uncertainties 

 


