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ABSTRACT 16 

Antidepressants are one of the main pharmaceutical classes detected in the aquatic environment. 17 

Nevertheless, there is a dearth of information regarding their potential adverse effects on non-target 18 

organisms. Thus, the aim of this study was the evaluation of sub-lethal effects on the freshwater 19 

mussel Dreissena polymorpha of two antidepressants commonly found in the aquatic environment, 20 

namely Fluoxetine (FLX) and Citalopram (CT). D. polymorpha specimens were exposed to FLX 21 

and CT alone and to their mixture (MIX) at the environmental concentration of 500 ng/L for 14 22 

days. We evaluated the sub-lethal effects in the mussel soft tissues by means of a biomarker suite: 23 

the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione 24 

peroxidase (GPx) and the activity of the phase II detoxifying enzyme glutathione-S-transferase 25 

(GST). The oxidative damage was evaluated by lipid peroxidation (LPO) and protein carbonylation 26 

(PCC), while genetic damage was tested on D. polymorpha hemocytes by Single Cell Gel 27 

Electrophoresis (SCGE) assay, DNA diffusion assay and micronucleus test (MN test). Finally, the 28 

functionality of the ABC transporter P-glycoprotein (P-gp) was measured in D. polymorpha gills. 29 

Our results highlight that CT, MIX and to a lesser extent FLX, caused a significant alteration of the 30 

oxidative status of bivalves, accompanied by a significant reduction of P-gp efflux activity. 31 

However, only FLX induced a slight, but significant, increase in apoptotic and necrotic cell 32 

frequencies. Considering the variability in biomarker response and to perform a toxicity comparison 33 

of tested molecules, we integrated each endpoint into the Biomarker Response Index (BRI). The 34 
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data integration showed that 500 ng/L of FLX, CT and their MIX have the same toxicity on 35 

bivalves. 36 

 37 
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1 INTRODUCTION 41 

Pharmaceuticals and personal care products (PPCPs) are considered emerging aquatic 42 

contaminants, because they are not included in any regulatory framework and their effects on 43 

human and aquatic community are largely unknown (Deblonde et al., 2011). Among the plethora of 44 

PPCPs commonly found in the aquatic environment, antidepressants represent the 4% of total 45 

amount of pharmaceuticals (Santos et al., 2010) and are revealed at ng/L concentrations, similarly 46 

to other commonly used therapeutics, according to their worldwide use and the inability of 47 

traditional Wastewater Treatment Plants (WWTPs) in their removal from wastes (Heberer, 2002; 48 

Santos et al., 2010; Reungoat et al., 2011). A heterogeneous group of molecules belongs to the class 49 

of antidepressants, mainly used to contrast pathological phenomena such as dysthymia and 50 

depression. According to their mechanism of action (MOA), it is possible to distinguish different 51 

groups of antidepressants, as the selective serotonin reuptake inhibitors (SSRIs), tricyclic 52 

antidepressants (TCAs), selective serotonin-norepinephrine reuptake inhibitors (SSNRIs) and 53 

monoamine oxidase inhibitors (MAOIs; Fong and Ford, 2014). The SSRIs, blocking the serotonin 54 

(5-hydroxytryptamine, 5-HT) reuptake from the pre-synaptic cleft, are among the most used 55 

antidepressants (Fong and Ford, 2014). In particular, Fluoxetine (FLX), the active principle of the 56 

well-known Prozac
®
,
 

and to a lesser extent Citalopram (CT), are the most prescribed 57 

antidepressants worldwide. Although they are mainly metabolized in nor-fluoxetine and N-58 

desmethyl-citalopram, respectively, about 20-30% of FLX and 26% of CT swallowed dose is 59 

excreted unaltered (Dalgaard and Larsen, 1999; Fong and Molnar, 2008) and released into the 60 

aquatic environment, where they are measured at concentrations ranging from 0.6 to 540 ng/L and 61 

from 9.2 to 382 ng/L, respectively (Santos et al., 2010; Fong and Ford, 2014). Despite the overt 62 

presence of antidepressants in freshwater ecosystems, they are currently not included in regular 63 

monitoring surveys. However, an increasing number of studies is underlying the toxic effects of 64 

SSRIs on aquatic communities, since the modulation of 5-HT could have significant adverse effects 65 

on exposed organisms. As reported by Fong and Ford (2014), the antidepressants induce important 66 

alterations on aquatic invertebrates, interfering with major biological processes such as metabolism, 67 

feeding behavior, locomotion and reproduction. FLX has been also demonstrated to be an endocrine 68 
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disruptor: Fong (1998) observed an induction of spawning at FLX concentration of 50 nM in males 69 

of the freshwater mussel Dreissena polymorpha. Further research showed a decrease in oocytes and 70 

spermatozoa in D. polymorpha specimens after FLX exposure at concentrations as low as 20 ng/L 71 

(Lazzara et al., 2012), while Gonzalez-Rey and Bebianno (2013) reported effects on the endocrine 72 

system of Mytilus galloprovincialis exposed to 75 ng/L of FLX, accompanied by a tissue-specific 73 

antioxidant response. Regarding CT effects on mollusks, some studies reported the induction of foot 74 

detachment from the substrates in different species of snails. As showed by Fong and Hoy (2012), 75 

two different concentrations of CT caused foot detachment in Leptoxis carinata and Stagnicola 76 

elodes at 405 pg/L and 4.05 µg/L, respectively. Another study confirmed this effect of some 77 

antidepressants  (CT and FLX  included) in other species of snails (Fong and Molnar, 2013). In 78 

addition, Minguez and co-workers (2014) reported the cytotoxic and immunomodulatory effects of 79 

different antidepressants on hemocytes of Haliotis tuberculate, highlighting that CT was the less 80 

potent antidepressant in the alteration of immune mechanism. Thus, the aim of this study was the 81 

evaluation of sub-lethal effects induced by FLX and CT by means of the measure of biochemical 82 

endpoints, oxidative damage and genotoxicity on the zebra mussel D. polymorpha, one of the most 83 

useful biological models in freshwater ecotoxicology (Binelli et al., 2015). Bivalves were exposed 84 

to FLX, CT and their mixture (MIX) for 14 days at the environmental concentration of 500 ng/L 85 

(Santos et al., 2010; Fong and Ford, 2014) and sub-lethal effects were assessed through a biomarker 86 

suite every three days. To assess the biochemical alterations, we monitored on homogenates of the 87 

mussel soft tissue the activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) 88 

and glutathione peroxidase (GPx), as well as the activity of glutathione-S-transferase (GST), a 89 

phase II detoxifying enzyme, while the functionality of the P-glycoprotein (P-gp), an efflux pump 90 

acting as first defense towards contaminants, was measured in mussel gills. Moreover, we measured 91 

the amount of protein carbonylation (PCC) and lipid peroxidation (LPO) to evaluate the oxidative 92 

damage. Lastly, the genotoxicity was assessed on D. polymorpha hemocytes by Single Cell Gel 93 

Electrophoresis (SCGE) assay, DNA diffusion assay and micronucleus test (MN test). In order to 94 

compare and eventually rank the toxicity of FLX, CT and their MIX, the whole biomarker dataset 95 

was integrated into the Biomarker Response Index (BRI; Hagger et al., 2008). 96 

 97 

2 MATERIALS AND METHODS 98 

2.1 Sampling and maintenance of bivalves 99 

D. polymorpha specimens were collected in September 2015, during the post-reproductive period, 100 

from Lake Lugano (North Italy) that is considered a reference site according to its low level of 101 

PPCP contamination (Zuccato et al., 2008). Bivalves were then transported in bags filled with lake 102 
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water to laboratory and placed in tanks (15 L) with a mixture of tap and deionized water (50:50 v/v) 103 

and maintained at 20 ± 1 °C with a natural photoperiod, pH=7.5 and oxygen saturation. Water was 104 

changed every two days during the following two weeks to purify the bivalves by possible 105 

contaminants previously accumulated in their soft tissues. Bivalves were fed daily with a 106 

suspension of the blue-green alga Spirulina spp. Only animals attached to the tanks and with a shell 107 

length of about 15 ± 4 mm were selected for the subsequent exposure tests. 108 

 109 

2.2 Experimental design 110 

The standards of FLX (Fluoxetine hydrochloride solution; CAS number 59333-67-4) and CT 111 

(Citalopram hydrobromide solution; CAS number 59729-32-7) were purchased from Sigma-Aldrich 112 

(Steinheim, Germany); both standards were certified as single component solutions. Each standard 113 

(1 mg/mL in methanol) was diluted in ultrapure water to obtain the stock solutions (1 mg/L), which 114 

were then added in exact volume to exposure tanks to obtain the exposure concentrations of 500 115 

ng/L administered alone and in MIX (500 ng/L FLX + 500 ng/L CT) to bivalves (final methanol 116 

concentration: 0.5 µL/L). Before the exposure we evaluated the baseline levels for all considered 117 

endpoints on bivalves taken from a single tank. Subsequently, we placed 70 specimens per tank (4 118 

L) to perform the exposures (three tanks for each treatment). Exposures were performed in semi-119 

static conditions, feeding bivalves 1 h before the daily renewal of the exposure solutions, for 14 120 

days. We collected bivalves every three days (t=4, 7, 11 and 14 days) from each tank  to be used for 121 

biomarker analyses. We collected the hemolymph from 9 bivalves to evaluate genotoxicity on 122 

hemocytes and to contemporarily assess the cell viability through the Trypan blue exclusion 123 

method. Subsequently, the soft tissues from the same bivalves were frozen in liquid nitrogen and 124 

stored at -80 °C for further analyses of oxidative damage. In addition, the soft tissues of other 15 125 

bivalves for each treatment were frozen in liquid nitrogen and stored at -80 °C until the 126 

measurement of the enzymatic activities. Lastly, we dissected gills from other 9 bivalves per 127 

treatment, from which a 4 mm circular portion of tissue was removed using a skin biopsy punch 128 

(Acuderm
®
 inc., USA) to carry out the measurement of the P-gp efflux activity. Furthermore, 129 

during the first day of exposure (t=0), 1 h after the contaminant spike, we sampled a 100 mL aliquot 130 

of water from both the control and the exposure tanks, which were stored at -20 °C until the 131 

quantification of antidepressant concentrations. 132 

 133 

2.3. Identification and quantification of antidepressants in the exposure tanks 134 

2.3.1 Sample pretreatment and solid phase extraction  135 
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Chemicals used in this analyses were of LC-MS grade (Sigma-Aldrich), water was of Milli-Q grade 136 

(Merck Millipore). All water samples were filtered through 0.22 µm nylon filters (GVS) and stored 137 

at -20 °C until analysis. Extraction of the target compounds was performed by adjusting the Offline 138 

Solid Phase Extraction (Offline-SPE) procedures already described in literature (Schultz, 2008; 139 

Demeestere et al., 2010). Waters Oasis
®
 HLB (150 mg, 6 mL) cartridges were firstly washed with 5 140 

mL of methanol and preconditioned with 5 mL of milli-Q water acidified with 0.1% (v/v) formic 141 

acid. Acidified water samples (100 mL + 0.1% (v/v) formic acid) were loaded onto each cartridge 142 

and then washed with 1 mL of 70% methanol in 2% (v/v) ammonium acetate. The analytes of 143 

interest were eluted with 4 mL methanol in 2% (v/v) acetic acid; each extract was dried under a 144 

gentle nitrogen stream and then reconstituted with 1 mL of acetonitrile/water 15/85 + 0.1% (v/v) 145 

formic acid containing 15 ppb of the internal standard fluoxetine-D6. 146 

 147 

2.3.2 Detection of antidepressant by high performance liquid chromatography-electrospray 148 

ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) analysis 149 

An LC-MS instrument composed of a micro-HPLC (Finnigan Surveyor Plus) interfaced to a LTQ-150 

XL linear ion-trap MS detector (Thermo Scientific) was used for all measurements. HPLC 151 

separation was performed on a Symmetry C18 column (2.1 x 150mm, 3.5µm, Waters) at 30 °C with 152 

mobile phase A water + 0.1% (v/v) formic acid and B acetonitrile + 0.1% (v/v) formic acid and at a 153 

flow rate of 0.15 mL/min. The chromatographic run was set as follows:  154 

0-8.00 min: gradient from A/B 85/15 (v/v) to 20/80 (v/v)  155 

8.10-10.00 min: isocratic A/B 5/95 (v/v) 156 

10.10- 18.00 min: isocratic 85/15 (v/v) 157 

An electrospray ionization interface in positive mode ESI(+) was employed for detection of all 158 

compounds. The capillary voltage was set to 31.97 V and the source temperature was 275 °C. For 159 

the quantification of the analytes the transition between the precursor ions [M+H]
 +

 and the most 160 

abundant product ions was observed, as summarized in table S1 (see supplementary information). 161 

The calibration curves, expressed as the ratio between the peak areas of the two antidepressant and 162 

that of the internal standard, fluoxetine-D6, versus the concentration of each drug, exhibited 163 

linearity, with  R
2
>0.99 for both analytes, over the concentration range 0-50 μg/L. All the samples 164 

were injected twice and the measured analytes concentration were adjusted with the offline-SPE 165 

estimated percentage of recovery (65% and 89% FLX and CT respectively).  166 

 167 

 168 

 169 
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2.4 Biochemical biomarkers 170 

Since the methods and procedures of enzymatic biomarkers applied in the present study are 171 

described in detail elsewhere (Parolini et al., 2010), we reported here just their brief description. We 172 

measured the activity of antioxidant enzymes SOD, CAT and GPx, as well as the activity of phase 173 

II detoxifying enzyme GST in homogenates from D. polymorpha whole soft tissues. These 174 

endpoints were measured in triplicate on cytosolic fraction from a pool of 3 mussels for each tank 175 

(n=3 pools of three specimens per treatment). The soft tissue of bivalves was homogenized in 100 176 

mM of phosphate buffer (pH=7.4) containing KCl 100 mM, EDTA 1 mM, dithiothreitol (DTT) 100 177 

mM and a protease inhibitors cocktail (1:100 v/v). The homogenate was ultra-centrifuged at 20,000 178 

g for 1 h at 4 °C. The obtained supernatant was processed for protein determination according to 179 

Bradford (1976), while the enzymatic activity was measured following the methods reported by 180 

Orbea et al. (2002). Briefly, CAT activity was determined evaluating the consumption of 50 mM 181 

hydrogen peroxide (H2O2) at 240 nm. SOD activity was determined evaluating the reduction of 182 

cytochrome c (10 µM) inhibition by the superoxide anion (•O2
-
) at 550 nm generated by the reaction 183 

of xanthine oxidase (1.87 mU/mL) and hypoxanthine (50 µM). The GPx activity was evaluated 184 

measuring the NADPH consumption at 340 nm using H2O2 0.2 mM as substrate with glutathione (2 185 

mM), sodium azide (NaN3; 1 mM), glutathione reductase (2 U/mL), and NADPH (120 µM). Lastly, 186 

the activity of GST was measured at 340 nm in presence of reduced glutathione (1 mM) and 1-187 

chloro-2,4-dinitrobenzene (CDNB) as co-substrate. The efflux functionality of P-gp was evaluated 188 

in gills as described by Navarro et al. (2012). 12 gill biopsies from 3 animals per each tank, were 189 

placed in Petri dishes with tap and deionized water mixture (50:50 v/v) and the fluorescent substrate 190 

rhodamine B (RhB; 1 µM). Samples were then incubated for 90 min at room temperature in dark 191 

condition with gentle shaking. The P-gp inhibitor verapamil (10 µM) was used as positive control. 192 

After the incubation, the biopsies were washed twice and stored at -80 °C. Subsequently, 300 µL of 193 

tap and deionized water mixture (50:50 v/v) were added to each biopsy, which were then 194 

homogenized and centrifuged for 10 min at 14,000 rpm. The amount of RhB in biopsies was 195 

measured in fluorescence through the multi-well reader Infinite
®
 F200 PRO from Tecan Trading 196 

AG (excitation=545 nm; emission=575 nm). A higher RhB accumulation within the biopsies 197 

indicates lower efflux functionality. 198 

 199 

2.5 Biomarkers of oxidative damage  200 

We measured in triplicate the levels of LPO and PCC in homogenates of 3 D. polymorpha 201 

specimens collected from each exposure tank (n=3 pools of three specimens per treatment), 202 

obtained pottering mussel soft tissues in phosphate buffer 100 mM (pH=7.4) containing KCl 100 203 
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mM, EDTA 1 mM, DTT 1 mM and a protease inhibitors cocktail (1:100 v/v). The obtained 204 

homogenate was processed for protein quantification and for measurement of LPO and PCC levels. 205 

The PCC was evaluated exploiting the reaction between the 2,4-dinitrophenylhydrazine (DNPH) 206 

with the carbonyl groups of protein and reading the absorbance at 370 nm (Mecocci et al., 1999), 207 

while LPO content was assessed by the measurement of thiobarbituric acid-reactive substances 208 

(TBARS) at 535 nm according to Ohkawa (1979). 209 

 210 

2.6 Biomarkers of genotoxicity  211 

The SCGE assay was performed on hemocytes of D. polymorpha according to Parolini et al. (2010). 212 

50 cells for each slide (8 slides for each treatment) were analyzed using a specific software (Comet 213 

Score
®

). Two endpoints were evaluated: the ratio between  length and comet head diameter (LDR) 214 

and the percentage of DNA in the comet tail. The apoptotic and necrotic frequencies were evaluated 215 

using the method suggested by Singh (2000); we considered 300 cells for each slide (5 slides for 216 

each treatment). Lastly, the MN test was conducted as described in Pavlica et al. (2000): 400 cells 217 

were counted for each slide (8 slides for each treatment). The micronuclei were identified according 218 

to the criteria purposed by Kirsch-Volders et al. (2000).  219 

 220 

2.7 Statistical analyses and data elaboration 221 

The statistical analyses were performed using STATISTICA 7.0 software package. Data normality 222 

was verified using Shapiro-Wilk test while homoscedasticity was evaluated through the Levene 223 

tests. To identify the difference between treated samples and related controls we conducted a two-224 

way analysis of variance (two-way ANOVA), where time (t=4; t=7; t=11 and t=14), treatment 225 

(control, FLX 500 ng/L, CT 500 ng/L and their MIX) and their interaction were categorical 226 

predictor factors, while the measured biomarkers were considered as dependent variables. This 227 

analysis was followed by a Fisher LSD post-hoc test to evaluate significant differences (*p<0.05; 228 

**p<0.01) between treated samples and the corresponding controls (time versus time). To make a 229 

toxicity comparison between tested molecules and other psychotropic substances, we calculated  the 230 

percentage of alteration level (AL) compared to the corresponding control for each biomarker and 231 

for considered exposure times (t=4, t=7, t=11 and t=14); according to the obtained AL value, we 232 

attributed a score to each endpoint and multiplied this value for the biological weigh of considered 233 

biomarkers (score=1 for biochemical alteration; score=2 for oxidative and genetic damage; Hagger 234 

et al., 2008; Parolini et al., 2013; Magni et al., 2016). Subsequently, we calculate the BRI according 235 

to the following algorithm: 236 

 237 
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BRI=Σ(AL biomarkerx score t=4 + … + biomarkerx score t=14)*biomarkerx  weighting/Σ biomarkerx 238 

weighting 239 

 240 

where AL=alteration level; x=considered endpoint; t=time of exposure (days). 241 

 242 

3 RESULTS 243 

During the 14 days of exposure we found a comparable and low mortality of bivalves in the control 244 

and exposure tanks, showing that the antidepressants did not induce acute toxicity at the tested 245 

environmental concentration, nor individually neither in MIX. Furthermore, the percentage of 246 

hemocytes viability found in bivalves from the control tanks during the 2 weeks of exposure was 247 

always higher than 70%, with a mean (± standard error of the means; SEM) of 80.2 ± 8.4%, as 248 

required to perform genotoxicity tests (Kirkland et al., 2007). Mean baseline levels for each 249 

considered endpoint, obtained at the beginning of the exposure (t=0 day), were as follows: 13.4 ± 250 

1.2 U mg prot
-1

 (SOD), 26.8 ± 1.2 mM min
-1

 mg prot
-1

 (CAT), 11.3 ± 2.8 µM min
-1

 mg prot
-1

 251 

(GPx), 90.8 ± 2.1 mM min
-1

 mg prot
-1

 (GST), 3021.2 ± 187.4 fluorescence arbitrary units (P-gp), 252 

9.5 ± 1.6 nM g
-1

 w.w.
-1

 (LPO), 5.7 ± 0.9 nM mg
-1

 prot
-1

 (PCC), 2.1 ± 0.2% (DNA in the comet tail), 253 

1.03 ± 0.01 (LDR), 0.7 ± 0.1‰ (MN frequency), 0.2 ± 0.1% (apoptotic cell frequency) and 0.3 ± 254 

0.2% (necrotic cell frequency). 255 

 256 

3.1 FLX and CT in the exposure tanks  257 

To verify stability of FLX and CT stock solutions over the whole period of the exposures (14 days), 258 

we measured the concentration of both the antidepressants at the moment of the dilution of FLX and 259 

CT standard solutions in ultrapure water (t=0) and after 14 days. The concentration of FLX stock 260 

solution at the beginning (t=0 day) and the end (t=14 day) of this period of time was 1.01 ± 0.02 261 

mg/L and 0.97 ± 0.05 mg/L, respectively, while the concentration of CT stock solution was 0.97 ± 262 

0.03 mg/L and 0.85±0.03 mg/L, respectively. In the control tanks the concentrations of FLX and CT 263 

were below the detection limits. The FLX and CT concentrations measured in the exposure tanks 1 264 

h after the spike of stock solutions were close to the nominal concentrations of 500 ng/L, since we 265 

obtained mean values of 484.62 ± 1.17 ng/L for FLX and 595.95 ± 0.67 ng/L for CT. In the MIX 266 

the concentrations of FLX and CT were 457.15 ± 2.66 ng/L and 575.81 ± 1.77 ng/L, respectively. 267 

Since the method of quantification has a coefficient of variation of ± 20%, these data confirm the 268 

reliability of our exposure conditions. 269 

 270 

 271 
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3.2 Toxicity of FLX 272 

SOD activity (Fig. 1A) showed a particular trend characterized by a significant (p<0.01) decrease in 273 

early exposure times (t=4 and 7 days) compared to corresponding control, followed by a clear raise 274 

at the end of exposure, where a significant (p<0.05) difference with control level was measured. We 275 

also recorded a significant effect of time (F3,63=44.40; p<0.01) and interaction time to treatment 276 

(F3,63=8.00; p<0.01). CAT activity (Fig. 1B) highlighted a significant  increase (p<0.01) at the end 277 

of exposure up to about 27% compared to control. Significant effects of treatment (F1,64=20.84; 278 

p<0.01), time (F3,64=43.95; p<0.01) and their interaction (F3,64=5.34; p<0.01) were found. The 279 

activity of GPx (Fig. 1C) showed a significant effect of treatment (F1,62=19.80; p<0.01), time 280 

(F3,62=32.00; p<0.01) and their interaction (F3,62=11.51; p<0.01), with a significant (p<0.01) 281 

increase only at the end of experiment (t=14 day). Although a significant effect of FLX (F1,63=5.00; 282 

p<0.05) and time (F3,63=11.27; p<0.01) on GST activity was noticed, we did not obtained a 283 

significant effect of their interaction (Fig. 1D). A significant inhibition of RhB efflux comparing to 284 

control by the inhibitor verapamil (-36%) was observed, confirming the P-gp functionality in our 285 

experimental model. A significant effect of treatment (F1,88=4.58; p<0.05), time (F3,88=3.08; 286 

p<0.05) and their interaction (F3,88=4.44; p<0.01) was observed in the modulation of P-gp efflux 287 

functionality, which resulted significantly inhibited (-38%; p<0.01) compared to control after 11 288 

days of FLX exposure (Fig. 2). Regarding the oxidative damage, no increase in protein 289 

carbonylation and lipid peroxidation (Fig. 3A, B) was found. The SCGE assay did not show any 290 

increase of primary DNA damage due to FLX exposure (Table 1). Despite no increase in MN 291 

frequency was found (Table 1), we observed a significant (p<0.01) enhancement of apoptotic and 292 

necrotic cells after 4 and 7 days of exposure, respectively (Table 1).  293 

 294 

3.3  Toxicity of CT 295 

An alteration of oxidative status in the bivalves exposed to CT was observed; in particular, each 296 

considered enzyme activity showed a bell-shaped trend (Fig. 1A, B, C, D). SOD activity (Fig. 1A) 297 

showed a significant effect of treatment (F1,64=57.80; p<0.01), time (F3,64=86.11; p<0.01), and their 298 

interaction (F3,64=33.14; p<0.01), with a significant inhibition (p<0.01) at 4 days of exposure 299 

followed by a significant increase (p<0.01) compared to control from 7 days. A significant effect of 300 

time (F3,64=58.71; p<0.01) and interaction time to treatment (F3,64=23.98; p<0.01) on CAT activity 301 

was observed (Fig. 1B), highlighting a significant increase at 7 and 11 days of exposure, with a 302 

significant inhibition (p<0.01) after 4 days of exposure and at the end of treatment (t=14 days). GPx 303 

activity (Fig. 1C) showed a significant effect of time (F3,61=23.61; p<0.01) and time per treatment 304 

interaction (F3,61=76.02; p<0.01), with a significant inhibition (p<0.01) at 4 days of exposure and a 305 
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significant increase (p<0.01) at 11 days of exposure. A significant effect of treatment (F1,64=21.87; 306 

p<0.01), time (F3,64=33.44; p<0.01) and their interaction (F3,64=8.61; p<0.01) was observed for GST 307 

(Fig. 1D), which also showed a significant inhibition (p<0.01) at 4 and 14 days. The efflux activity 308 

of P-gp (Fig. 2) showed a significant effect of treatment (F1,88=11.50; p<0.01), time (F3,88=3.59; 309 

p<0.05) and their interaction (F3,88=3.88; p<0.05), with a significant reduction of pump 310 

functionality (-43%; p<0.01) after 4 days compared to control. Furthermore, despite no significant 311 

increase of lipid peroxidation was found (Fig. 3B), a significant effect of time (F3,64=8.50; p<0.01) 312 

and interaction time to treatment (F3,64=8.79; p<0.01) was measured, resulting in a significant 313 

increase (27%; p<0.01) of protein carbonylation at 11 days of exposure (Fig. 3A). Regarding the 314 

genotoxicity, no significant increase on the considered endpoints were found (Table 1). 315 

 316 

3.4 Combined effects of FLX and CT 317 

As obtained for the CT exposure, in the bivalves exposed to MIX we observed for all enzyme 318 

activities a bell-shaped trend (Fig. 1A, B, C, D). SOD activity (Fig. 1A) showed a significant 319 

inhibition (p<0.01) after 4 days followed by a significant increase (p<0.01) from the seventh day of 320 

exposure, with a significant effect of treatment (F1,63=58.71; p<0.01), time (F3,63=77.82; p<0.01) 321 

and their interaction (F3,63=40.29; p<0.01). A significant effect of treatment (F1,64=24.74; p<0.01), 322 

time (F3,64=132.52; p<0.01) and interaction time to treatment (F3,64=31.76; p<0.01) on CAT (Fig. 323 

1B) was induced by MIX, showing a significant inhibition after 4 days followed by an activity 324 

increase at 7 and 11 days of exposure compared to control. A significant effect of time (F3,63=30.73; 325 

p<0.01) and interaction time to treatment (F3,63=100.58; p<0.01) was observed on GPx (Fig. 1C), 326 

disclosing a significant inhibition (p<0.01) at 4 days of exposure and a significant increase (p<0.01) 327 

at 11 days of treatment. The GST activity (Fig. 1D) showed a significant inhibition (p<0.01) at 4 328 

days and the end of exposure (t=14), but a significant increase (p<0.01) at 11 days of treatment. A 329 

significant effect of time (F3,63=22.79; p<0.01) and interaction time to treatment (F3,63=7.06; 330 

p<0.01) was observed for GST. As in bivalves exposed to CT, a significant effect of treatment 331 

(F1,87=4.24; p<0.05), time (F3,87=5.15; p<0.01) and their interaction (F3,87=3.19; p<0.05) was 332 

observed for P-gp efflux activity; we registered a significant reduction in its activity (-30%; p<0.01) 333 

compared to control after 4 days of exposure (Fig. 2). Whilst LPO did not show significant 334 

differences between treated and control, except at 7 days (Fig. 3B), a significant effect of time 335 

(F3,64=11.10; p<0.01) and treatment per time interaction (F3,64=5.69; p<0.01) on PCC was noted, 336 

reaching a 24% significant increase (p<0.01) at t=11 days (Fig. 3A). No significant genotoxic effect 337 

was found in zebra mussel MIX-treated specimens compared to controls, with the exception of a 338 

single significant increase of MN frequency (p<0.05) at 7 exposure days (Table 1). 339 
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 340 

4 DISCUSSION 341 

Pharmaceutical compounds, being synthesized to affect specific cellular structures and metabolic 342 

processes on specific targets, may also cause adverse effects on non-target organisms. In this 343 

context, it is important to bearing in mind that  biological processes conserved in many organism, 344 

often target of pharmaceuticals, could increase the potential toxicity associated with the 345 

environmental presence of these pollutants (Huggett et al., 2003; Gunnarsson et al., 2008). In 346 

particular, the SSRIs, interfering with the 5-HT metabolism, modulate important biological 347 

activities in aquatic invertebrates (Fong and Ford, 2014; Ford and Fong, 2016). Results from the 348 

present study revealed a significant depression of cellular response already at 4 days of exposure, 349 

mainly in mussels exposed to CT and MIX, as pointed out by the significant inhibition of the 350 

activity of SOD, CAT, GPx, GST, as well as in P-gp functionality, compared to background levels 351 

(Figs. 1 and 2). Considering that neurotransmitters, such as 5-HT and noradrenaline, are implicated 352 

both in depression and chronic pain, antidepressants are also used in medicine as analgesics 353 

(Rodieux et al., 2015); for this reason, the early inhibition of cellular response could be associated 354 

to the analgesic effect of considered molecules. In fact, although the analgesic potential have been 355 

especially observed for SSNRIs and TCAs (Fishbain, 2000; Fishbain et al., 2000; Dworkin et al., 356 

2010), it cannot be excluded that some SSRIs may act in the same way also in non-target 357 

organisms. Therefore, this pharmacological effect, in non-target species, can be consider a potential 358 

toxic effect, which is manifested already in early days of exposure. Protracting the exposure, we 359 

observed a raise of antioxidant activity for all treatments (Fig. 1), as already reported in previous 360 

studies aimed at assessing the effects of FLX on Mytilus galloprovincialis (Gonzalez-Rey and 361 

Bebianno, 2013; Franzellitti et al., 2014) and Crassostrea gigas (Di Poi et al., 2014). In spite of 362 

increasing trends in SOD and CAT activities after FLX exposure, a clear non-monotonic response 363 

was observed for all enzyme activities in bivalves exposed to CT and MIX (Fig. 1A, B, C, D). The 364 

significant inhibition of CAT at the end of treatment in the bivalves exposed to CT suggests a 365 

substrate inhibition phenomenon caused by an excess of H2O2 (Vlahogianni and Valavanidis, 2007). 366 

Other bell shaped trends (Fig. 1A, B, C, D) could then confirm the overproduction of reactive 367 

oxygen species (ROS) and it should not be excluded that, prolonging the exposure time, a 368 

significant inhibition in treated mussels compared to relative controls could be achieved. In 369 

addition, the significant (p<0.01) increase of protein carbonylation after 11 days noticed only for 370 

bivalves exposed to CT and MIX, when antioxidant enzymes showed bell-shaped trends (Fig. 3A), 371 

could be induced by the •O2
-
 and H2O2 overproduction. In fact, these pro-oxidant molecules, as well 372 

as the hydroxyl radical (•OH) formed in the Fenton and Haber-Weiss reaction, are able to cause an 373 
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elevated protein oxidation, as suggested by Verlecar and co-workers (2008). The lack of significant 374 

protein carbonylation in mussels exposed to FLX could be associated to the complete lack of non-375 

monotonic response in the antioxidant enzyme activities (Fig. 1A, B, C, D). Similar results were 376 

also obtained by Di Poi and co-workers (2014) in the mollusk Crassostrea gigas exposed to 1, 10 377 

and 100 ng/L of FLX that did not produce significant oxidative damage probably because of the 378 

efficacy of the cellular antioxidant mechanisms. At the same time, in all treatment, we did not 379 

observed a significant increase in LPO levels. In this context, the P-gp is one of the most relevant 380 

ABC transporters, involved in the defense mechanism towards a wide variety of anthropogenic 381 

contaminants (Della Torre et al., 2014). The P-gp activity and its role in the tolerance to 382 

environmental pollution has been well characterized in D. polymorpha (Faria et al., 2011; Navarro 383 

et al., 2012). Our results showed a significant reduction of the efflux functionality, similar to that 384 

produced by the inhibitor verapamil, by CT and MIX after 4 days and by FLX after 11 days of 385 

exposure probably due to the analgesic effects mentioned above. Several pollutants including 386 

PPCPs, pesticides and hydrocarbons are known to suppress the activity of P-gp, through a chemo-387 

sensitization mechanism (Smital et al., 2004). Such effect has severe ecotoxicological consequences 388 

as it might reduce the detoxifying capacity of the organism, thereby increasing the accumulation 389 

and toxicity of other pollutants. Either FLX and CT are well known substrates of P-gp in vitro, 390 

while their interaction in vivo is still controversial (O’Brien et al., 2012). The observed inhibitory 391 

effect suggested a potential chemo-sensitizing effect for FLX, CT and their MIX to D. polymorpha, 392 

which might affect the susceptibility of bivalves towards other toxic chemicals. The low effect of 393 

FLX, CT and MIX on oxidative stress and cellular biomarkers was also confirmed by genotoxicity 394 

assays, as shown by the lack of DNA damage to zebra mussel hemocytes (Table 1). These results 395 

could be probably due to the inability of these chemicals to directly induce DNA injuries and/or to 396 

the slight oxidative stress situation experienced by zebra mussels, which was efficiently 397 

counteracted by the activation of antioxidant defense mechanism. Since the adverse effects 398 

observed in bivalves exposed to MIX were similar and showed overlapping trends to those from CT 399 

exposure, we could suppose that CT was the main responsible of MIX toxicity. However, the wide 400 

variability in biomarker responses prevents to accurately support this suggestion. For this reason, 401 

each biomarker response for each molecule was integrated into the BRI, to make a toxicity 402 

comparison of tested antidepressants. The BRI results (Fig. 4A) suggested that FLX, CT and MIX 403 

had the same toxicity on D. polymorpha. Considering the contribution of each single biomarker in 404 

the toxicity BRI values (Fig. 4B), it was possible to point out that the toxicity of FLX is exactly 405 

divided between genotoxicity and biochemical alterations/oxidative damage (Fig. 4B). In contrast, 406 

the toxicity induced by CT and MIX was mainly associated to biochemical alterations and oxidative 407 
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damage (for 60% of the total effect), confirming the main role played by CT in the MIX toxicity, as 408 

previously suggested. Considering that in aquatic environment, in addition to antidepressants, there 409 

are other psychotropic substances as illicit drugs, to rank their potential toxicity we made a 410 

comparison between FLX, CT and the following compounds previously tested at the same 411 

concentration of 500 ng/L: the two main cocaine metabolites benzoylecgonine (BE; Parolini et al., 412 

2013) and ecgonine methyl ester (EME; Parolini and Binelli, 2013), ∆-9-tetrahydrocannabinol (∆-9-413 

THC; Parolini and Binelli, 2014), morphine (MOR; Magni et al., 2016), 3,4-414 

methylenedioxymethamphetamine (MDMA; Parolini et al., 2014) and amphetamine (AMPH; 415 

Parolini et al., 2016). Therefore, we recalculated the BRI considering only biomarkers used in 416 

common to all abovementioned studies. The BRI approach (Fig. 4C) highlighted that FLX 417 

(BRI=5.43) and CT (BRI=5.79) were, with AMPH, the molecules showing the lowest toxicity 418 

towards the zebra mussel, while ∆-9-THC and BE were the most toxic ones. However, it is 419 

important to consider that the evaluation of other endpoints could modify this toxicity ranking. In 420 

fact, some evidences showed that FLX negatively affected endocrine (Fong and Ford, 2014) and 421 

nervous systems (Munari et al., 2014), as well as control and storage of energy in non-target 422 

organisms (Franzellitti et al., 2014; Hazelton et al., 2014). Therefore, it is possible that the toxicity 423 

of FLX, and likely of CT, can be mostly associated to these effects, rather than to endpoints 424 

described in the present study. 425 

 426 

5 CONCLUSIONS 427 

This study attempted to investigate the potential sub-lethal effects of antidepressants, whose effects 428 

on non-target organisms are still poorly understood. The obtained results suggest that FLX, CT and 429 

their MIX at environmental concentration of 500 ng/L did not cause evident damage on exposed 430 

organisms, despite the significant alteration of the bivalve oxidative status.  Indeed, the integration 431 

of single biomarker results into the BRI showed how these molecules can be placed at the end of a 432 

decreasing toxicity scale in comparison with other psychotropic substances. However, taking into 433 

account that aquatic organisms are exposed to contaminants throughout their life, it is plausible that, 434 

by increasing time of exposure, oxidative and genetic damage could also be enhanced. Despite the 435 

results obtained in this research, further studies are needed to define the mechanism of toxicity of 436 

FLX and CT on non-target organisms, confirming the importance to use a wide battery of 437 

biomarkers to obtain an exhaustive toxicity data not subject to a reductionist approach of single or 438 

few endpoints. 439 
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Figure Captions: 583 

 584 

Figure 1: Effects of 500 ng/L of FLX, CT and their MIX on the activity (mean ± SEM) of SOD (A), 585 

CAT (B), GPx (C) and GST (D) in D. polymorpha soft tissues (n=3 pools of three specimens per 586 

treatment) during 14 exposure days. Asterisks indicate the significant differences (two-way 587 

ANOVA, Fisher LSD post-hoc test: *<0.05, **<0.01), time versus time, between treated and 588 

control. The red lines indicate the baseline level of each biomarker calculated as the mean of values 589 

measured at t=0 (see results). 590 

 591 

Figure 2: Effects of 500 ng/L of FLX, CT and their MIX on the efflux activity (mean ± SEM) of P-592 

gp in D. polymorpha gills (n=12 gill biopsies per treatment) during 14 exposure days. RhB retained 593 

into gill biopsies is expressed as arbitrary fluorescence units; higher RhB is indicative of reduced 594 

efflux activity. Asterisks indicate the significant differences (two-way ANOVA, Fisher LSD post-595 

hoc test: *<0.05, **<0.01), time versus time, between treated and control. The red line indicates the 596 

baseline level of P-gp calculated as the mean of values measured at t=0 (see results). 597 

 598 

Figure 3: Measure (mean ± SEM) of protein carbonylation (A) and lipid peroxidation (B) levels in 599 

D. polymorpha soft tissues (n=3 pools of three specimens per treatment). Asterisks indicate the 600 

significant differences (two-way ANOVA, Fisher LSD post-hoc test: *<0.05, **<0.01), time versus 601 

time, between treated and control. The red lines indicate the baseline level of each biomarker 602 

calculated as the mean of values measured at t=0 (see results). 603 

 604 

Figure 4: Toxicity comparison, through integration of considered endpoints into the BRI, between 605 

FLX, CT and their MIX in D. polymorpha (A); schematic contribution of each considered endpoint 606 

in the histogram of antidepressant toxicity (B); toxicity comparison between FLX, CT and other 607 

psychotropic substances as ∆-9-tetrahydrocannabinol (∆-9-THC), ecgonine methyl ester (EME), 608 

benzoylecgonine (BE), morphine (MOR), 3,4-methylenedioxymethamphetamine (MDMA) and 609 

amphetamine (AMPH) tested on D. polymorpha at the same concentrations of 500 ng/L (C). For 610 

this comparison we considered only common endpoints used for the toxicity evaluation of 611 

abovementioned molecules as SOD, CAT, GPx and GST activities, PCC and LPO levels, 612 

percentage of DNA in the comet tail and apoptotic and MN frequencies. 613 











Time (Days) CTRL FLX CT MIX 
% Necrosis         

4 0.70 ± 0.34 1.60 ± 0.45 0.90 ± 0.27 1.40 ± 0.19 
7 1.40 ± 0.22 **

3.20 ± 0.70 1.80 ± 0.31 1.40 ± 0.19 
11 2.00 ± 0.68 1.40 ± 0.22 *

0.90 ± 0.25 1.40 ± 0.29 
14 0.73 ± 0.34 0.27 ± 0.12 0.87 ± 0.27 0.53 ± 0.08 

% Apoptosis         
4 3.30 ± 0.80 **

6.10 ± 0.95 1.70 ± 0.67 3.10 ± 0.70 
7 4.90 ± 0.36 3.50 ± 0.72 4.60 ± 1.37 4.10 ± 0.79 
11 4.27 ± 0.74 4.10 ± 0.57 3.50 ± 1.12 3.50 ± 1.08 
14 1.67 ± 0.45 0.33 ± 0.18 2.27 ± 0.71 1.40 ± 0.43 

‰ Micronuclei (MN)         
4 0.63 ± 0.41 0.63 ± 0.41 0.31±0.31 0.63 ± 0.41 
7 0.31 ± 0.31 0.31 ± 0.31 0.30±0.30 *

1.25 ± 0.67 
11 0.94 ± 0.46 3.13 ± 1.48 2.19±0.88 0.31 ± 0.31 
14 0.90 ± 0.50 1.25 ± 0.70 0.30 ±0.30 0.90 ± 0.70 

Length and comet head 

diameter (LDR)         
4 1.04 ± 0.00 1.06 ± 0.01 1.05 ± 0.00 1.07 ± 0.01 
7 1.06 ± 0.01 1.05 ± 0.01 1.06 ± 0.01 1.05 ± 0.01 
11 1.05 ± 0.00 *

1.07 ± 0.02 1.06 ± 0.01 1.07 ± 0.02 
14 1.04 ± 0.00 *

1.07 ± 0.02 1.06 ± 0.01 *
1.07 ± 0.01 

% DNA in comet tail         
4 3.16 ± 0.71 3.34 ± 0.81 2.52 ± 0.69 3.56 ± 0.63 
7 2.94 ± 0.34 3.08 ± 1.01 3.18 ± 1.04 3.08 ± 0.54 
11 1.95 ± 0.39 2.05 ± 1.08 1.51 ± 0.59 1.68 ± 1.09 
14 0.89 ± 0.42 1.53 ± 1.07 1.14 ± 0.70 1.51 ± 0.93 

 

Table 1: Genotoxic effects (mean ± SEM) of 500 ng/L of FLX, CT and their MIX on D. 

polymorpha hemocytes. Asterisks indicate the significant differences (two-way ANOVA, Fisher 

LSD post-hoc test: *<0.05, **<0.01), time versus time, between treated and control. 


