UNIVERSITA DEGLI STUDI DI MILANO

Facolta di Scienze Matematiche, Fisiche e Naturali
Dipartimento di Informatica

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
XXVIII CicLo

Active Techniques for Revealing and Analyzing the
Security of Hidden Servers

Ph.D. Candidate
Srdjan Matic

Adviser
Prof. D. Bruschi

Co-adviser
Dr. J. Caballero

Ph.D. Coordinator
Prof. P. Boldi

Academical Year 2015/2016

Copyright(©) September 2016 by Srdjan Matic (rev. 138)

Abstract of the dissertation

In the last years we have witnessed a boom in the use of techniques and tools
that provide anonymity. Such techniques and tools are used by clients that want
their communication to stay anonymous or to access censored content, as well as
by administrators to hide the location of their servers. All those activities can
be easily performed with the support of an anonymity network. An important
component of an anonymity network is the hidden server, a machine whose IP
address is kept secret. Such hidden servers are the target of research in this thesis.
More specifically, we focus on different types of hidden servers used in the Tor
anonymity network. Tor hidden services (HSes) are anonymous services hosted
in the Tor Network. The HS itself is a hidden server because users that connect
to it are not aware of its IP address, and thus its location. Another equally
important kind of hidden servers are Tor bridges. Bridges are entry nodes of
the Tor Network, whose IP address is not publicly disclosed to avoid blocking
traffic towards them. Bridges are meant to be used by clients that connect from
countries where governments perform selective filtering over the contents that
users can access, and for this reason governments try to block connections to
those nodes. In this thesis we develop novel approaches and we implement them
into techniques to analyze the security and reveal the location of hidden servers.
This thesis comprises two parts, one dealing with HSes and the other one with
bridges.

In the first part of the thesis, we develop a novel active approach for recovering
the IP address of hidden servers that are used for hosting HSes. To this end,
we design, implement, and evaluate a tool called CARONTE that explores the
content and configuration of a hidden service to automatically identify location
leaks. Later those leaks are leveraged for trying to unveil the IP address of the
hidden service. Our approach differs from previous ones, because CARONTE does
not rely on flaws in the Tor protocol and assumes an open-world model, i.e., it
does not require a list of candidate servers known in advance. A final validation

i

step guarantees that all the candidates that are false positives (i.e., they are not
hosting the hidden service) are discarded. We demonstrate CARONTE by running
it on real HSes and successfully deanonymizing over 100 of them.

In the second part of the thesis we perform the first systematic study of the
Tor bridge infrastructure. Our study covers both the public bridge infrastructure
available to all Tor users, and the previously unreported private bridge infrastruc-
ture, comprising private nodes for the exclusive use of those who know about their
existence. Our analysis of the public infrastructure is twofold. First, we examine
the security implications of the public data accessible from the CollecTor ser-
vice. This service collects and publishes detailed information and statistics about
core elements of the Tor Network. Despite the fact that CollecTor anonymizes
sensitive data (e.g., IP or emails of bridge owners) prior to its publication, we
identify several pieces of information that may be detrimental for the security of
public bridges. Then, we measure security relevant properties of public bridges,
including their lifetime and how often they change IP and port. Our results show
how the public bridge ecosystem with clients is stable and those bridges rarely
change their IP address. This has consequences for the current blocking policies
that governments are using to restrict access to the anonymity network, because
more aggressive strategies could be adopted. We also show how the presence of
multiple transport protocols could harm bridge anonymity (since the adversary
becomes able to identify the bridge through the weakest protocol). To study the
private bridge infrastructure, we use an approach to discover 694 private bridges
on the Internet and a novel technique, that leverages additional services running
on bridges, to track bridges across IP changes. During this process, we iden-
tify the existence of infrastructures that use private proxies to forward traffic to
backend bridges or relays. Finally, we discuss the security implications of our
findings.

il

Mojum nparuma,
OHU KOjU Cy jONTyBeK Ty W OHMMa KOjUX HeMa BUIIIE.

Contents

1 Introduction 1

1.1 CARONTE: A Tool For Deanonymizing Tor Hidden Services . . . 5

1.1.1 Problem Statement, 6

1.1.2 Approach 10

1.2 Security Analysis of The Tor Bridge Infrastructure 11

1.2.1 Problem Statement 12

1.2.2 Approach 14

1.3 Thesis Contributions 16

1.3.1 CARONTE: A Tool For Deanonymizing Tor Hidden Servers 16

1.3.2 Security Analysis of the Tor Bridges Infrastructure 17

1.4 Ethical Considerations 18

2 Related Work 20
3 CARONTE : Detecting Location Leaks for Deanonymizing Tor

Hidden Services 26

3.1 Introduction 26

3.2 Overview and Problem Definition 29

3.2.1 Hidden Services 29

3.2.2 Location Leaks 30

3.2.3 Approach Overview 32

3.3 Approach 32

3.3.1 Collecting Onion URLs 32

3.3.2 Exploring Hidden Services 33

3.3.3 Identifying Candidate Endpoints 34

3.3.4 Validation 37

3.4 Evaluation 41

3.4.1 Datasets 41

3.4.2 Candidate Pairs 42

3.4.3 Validation 44
3.4.4 Performance Lo 46
3.5 Defenses 46
3.6 Ethical Considerations 49
3.7 Related Work 49
3.8 Conclusion 51
3.9 Acknowledgments 51
4 Dissecting Tor Bridges: a Security Evaluation of Their Private
and Public Infrastructures 52
4.1 Introduction 52
4.2 OVerview 54
4.2.1 The Tor Network o4
4.2.2 Known Tor Issues o7
4.3 Public Data Sources 58
4.3.1 CollecTor 58
4.3.2 Scan Search Engines 0. 60
4.4 Security Analysis Description 60
4.4.1 Public Bridges Analysis 60
4.4.2 Private Bridges and Proxies Analysis 61
4.5 Public Bridges Analysis L. 64
4.5.1 Bridge Population.o 64
4.5.2 Bridge Stability 0oL 65
4.5.3 Pluggable Transports Deployment 67
4.5.4 OR Port Distribution 68
4.5.5 Bridge Importance 70
4.6 Private Bridges and Proxies Analysis 74
4.6.1 Discovering Private Bridges & Proxies 74
4.6.2 Bridge/Proxy Infrastructures 7
4.7 CoSts . . . o e 79
4.8 Security Discussion of Findings 79
4.8.1 Security Implications of Scan Search Engines 79
4.8.2 Security Implications of CollecTor Data 81
4.8.3 Security Implications of Bridge Properties 82
4.8.4 Security Implications of Uncovering Private Infrastructure 83
4.9 Related Work 84
4.10 Ethical Considerations 85
4.11 Conclusion 85
5 Conclusion and Future Directions 87
Bibliography 90

vi

Introduction

In modern society computers have become an essential part of our daily lives
and a plethora of tasks would be inconceivable without their support. Daily
communications with friends and relatives, shopping, money transactions, and
even medical diagnosis is now performed while comfortably sitting at our own
desk. This digitalization was achieved first by compacting our entire lives, in form
of pictures, musical preferences, notes about our political and sexual orientation,
and then uploading this information onto computers.

Because of this trend, it is not surprising that computers gradually started
converting into our digital alter egos, virtual impersonations that exchange our
personal information with other digital peers. What once upon a time used to be
face to face talks with friends, are now conversations taking place over chats and
emails. This situation in itself would not be so problematic, only if we had full
control over the information that we share, but unfortunately this happens very
rarely. Often, we do not have the power to choose where our data will be stored
or what route it should take when it is sent over the network. This impossibility
causes that, when the information is not encrypted, anyone having access to the
infrastructures where our data is stored or through which is flowing, could easily
examine and spy on it. And as a direct consequence of this, the amount of prying
eyes has grown up rampantly. For example, in the past an indiscreet confession
about an affair or a pregnancy shared only with a small bunch of close friends,
might have ended up as a rumor at the ears of the bartender in the restaurant.
Nowadays, the situation is completely different. This same confession, turned
into a digital message, and written while sitting alone in your own office, might
be intercepted and seen directly by your employer or a prying colleague.

Already a few decades ago, several start-ups identified great business oppor-
tunities in this continuous shift towards the digitalization of our lives. Some of
today’s biggest companies such as Google or Facebook, long time ago foresaw the
potential of massive data collection and people’s atavistic need to communicate.
One of the main reasons of their worldwide success is precisely the intuition to

Chapter 1. Introduction

grant users a place where to store, easily access, and share with others their data,
free from charges. These companies make money from ads, and the more data
they have on users the better they can target advertising. On the other side, the
considerable amount of collected data is also used to improve the various services
they provide. Unfortunately massive data collection is not a process that con-
cerned only companies. Several states and oppressive regimens decided to ride
the wave of fear generated by the numerous terrorist attacks that characterized
the last decade, and they started deploying a similar mechanism, for gathering in-
formation about their own citizens. Wielding a one-sided consensus, upon which
citizens never agreed, agencies either harvest users’ (meta-)data, or they tamper
with the contents users want to access. In contrast with commercial services,
where users purposefully upload and share their data, agencies tap information
about users, e.g., by passively inspecting the flows in networks to which they
are granted access. In case the information that is being transmitted is not en-
crypted, agencies will have access to the raw files that were sent. When content is
encrypted, still it is possible to squeeze some useful meta-information (e.g. “who
is sending data to whom?” or “how often the two entities communicate?”). Or
alternatively, if a warrant is available, agencies can simply request companies to
provide them with all the information they have about particular users.

In this scenario, concerns of many users, about a world that every day is
becoming more and more similar to the dystopic society depicted by Orwell in
his famous novel “1984”, started becoming a popular opinion, especially after
Snowden’s revelations about NSA secret surveillance program [48]. Longing to
protect their privacy and freedom of speech, many users started employing pri-
vacy enhancing technologies (PETs). The goal of these tools is to provide a set
of utilities that will allow online users to protect the privacy of their personally
identifiable information. Nevertheless, anonymous communication is not a re-
search field discovered only recently, and the groundwork for the development of
those tools dates back to 1981, when David Chaum proposed an anonymous email
system [17]. From the initial design, tools for anonymous communication have
significantly grown in popularity, especially in the field of anonymity networks.
Anonymity networks, allow users to access Web and other services while hindering
attempts to trace their identities online. This can be achieved by using overlay
networks and peer-to-peer communication among nodes. Overlay networks are
built on the top of the Internet and only can be accessed using a particular soft-
ware. Examples of popular overlay network used for anonymous communication
include Tor, Freenet, and 12P.

A core component of anonymity networks is a hidden server, i.e. a machine
whose IP address is kept secret. Hidden servers are the ploy that is leveraged both
to safeguard the identities of service owners and of the clients that interact with
applications, but also for allowing users to access the anonymity network. The
first step needed for making impossible to link a service to its owner is to keep its
location unknown. This can be easily achieved by hosting the application on a

Chapter 1. Introduction

hidden server. While the main goal of an anonymity network is to conceal users’
location and usage from attackers that conduct network surveillance, it is also
important to provide the same level of protection to service owners. Often, people
that make available a particular service might be interested in not disclosing
detailed information about themselves. One of the reasons is that some of the
contents offered by services could be considered “of doubtful moral” or even “illicit”
in some countries. But those are not concerns that affect only lone criminals
attempting to abuse anonymity to share pornographic material or to run drug
and guns markets. Groups fighting for transparency and human rights are both
owners and users of legitimate services that are hosted and reached through the
anonymity network [115].

However anonymity networks are not only used by privacy-concerned users,
but often they are the only way users have to access content that otherwise would
not be available. In many countries, such as China, Philippines or Iran, states
perform selective filtering on the contents that users are allowed to access |14,
65,112,123|. Solutions for accessing forbidden content are either to access it on
a different location or to hide the fact that censored material is accessed. In
this second case, users enter the network using a hidden server (which will not
reveal that they are joining the anonymity network) and then, from within the
anonymity network, they can freely connect to the service they are looking for.
This approach has become so popular that every day thousands of users access
news websites, email and social networks thorough anonymity networks [39].

In this dissertation we investigate the security of hidden servers in the Tor
anonymity network [28]. Tor is considered “the king of high-secure, low-latency
anonymity networks” [102], it consists of over 7,000 publicly known nodes and
supports millions of users [110]. Because of its widespread adoption, anonymity
networks and in particular Tor, have become a hot topic in the last years. Docu-
ments leaked by Snowden report about NSA running special programs to perform
digital surveillance on Tor users [6,101]. There are also reports about conspicuous
funding from the FBI to a university to deanonymize Tor users |77].

The Tor anonymity network was launched in 2002. The goal is to safeguard
users’ identities and their online activities from attackers conducting network
surveillance, by separating identification from routing. Thanks to this splitting,
for an attacker that has control over only one hand of the communication it be-
comes extremely hard to infer something about users’ interests and habits. This
is achieved by routing users’ traffic through a set of intermediate nodes, called
relays, that are distributed worldwide and run by volunteers. The core principle
of Tor was developed in 1995, under the name of the Onion Routing project,
by US military service. Differently from the its origins, nowadays Tor software
is now distributed under a free software license and is used by ordinary people,
whistleblower, media, political activists but also miscreants. While Tor is not ille-
gal anywhere in the world, the access to the network is blocked in some countries
(e.g., China, Iran, Philippines). Because Tor works as overlay over the Internet,

Chapter 1. Introduction

traffic is first split and then encapsulated into cells that are forwarded among two
Tor relays that have a public IP address. Once the transmission is completed,
the destination machine reassembles the cells into the original stream and pushes
it to the appropriate application layer. A wirtual circuit is a sequence of three
or more relays that forward traffic from a client to a destination server. In every
moment each element of the circuit knows only the source and the destination of
a cell and does not have a global visibility on the whole circuit built by the client.
This guarantees that, no matter what position in the circuit the node has, it
will not be able to correlate the client with the destination of its communication.
Furthermore, to achieve confidentiality, at each hop of the circuit, the data is
protected using multiple layers of encryption. Each time a cell reaches a new hop
of the circuit, a layer of encryption is removed, and only the last hop is able to
see the plaintext information that was sent.

In Tor, hidden servers play crucial roles in different contexts. The design of the
protocol allow users to offer an anonymous service by deploying it and making it
accessible through the Tor Network. The application, known as Hidden Service!,
is accessed using a DNS-like mechanism internal to the Tor Network and the IP
address of the server remains unknown to the users. In Section 1.1 we provide a
more detailed overview over Hidden Services and our approach to automatically
recovering of their IP addresses. We start by introducing what hidden services are
and how they work, then we illustrate our tool, CARONTE, that we developed and
that can be used for automatic deanonymization of hidden services. CARONTE
works in a way that is completely agnostic from the underlying protocol and
thus it can be easily adapted to work with other networks offering analogous
services (e.g. “eepSites” in the I2P network). CARONTE receives as input a list
of hidden services and automatically extracts potential location leaks that can
provide information about where the service is hosted. Then it uses an algorithm
for validating candidate IPs that it identified, in order to discard possible false
positives. Finally, we illustrate the results of what is the first measurement study
of prevalence of location leaks within hidden services.

Within Tor, another common use of hidden servers is to provide access to the
Tor Network itself. Several governments are aware of anonymity networks being
used for circumventing censorship, and to this end their agencies perform active
probing on machines that are suspected to belong to the Tor Network. Once a
host is confirmed being a Tor node, it is added to a blacklist in order to to not
allow users to connect to it and evade the censorship [126]. Because of this, it
is not convenient to have a publicly available list of all the entry points to the
Network. In the Tor context, those entry nodes whose IP address is unknown, are
called bridges. Users can contact directly the Tor Project and obtain a IP address
of a limited number of bridges. Tor Project replies to each request with three IP

Lanother name for these application is “Onion Service”. When referring to “Hidden Service”,
we will be considering both services that require the application to be hidden and those that
do not have this requirement (e.g., Facebook).

Chapter 1. Introduction

address that are currently running a bridge and that the client can use anyone of
them to enter the Tor Network. The reason why those nodes are considered so
highly sensitive and their IPs are kept secret, is because their number is limited
and they should be used only by people from countries where governments put
restrictions on the material that citizens can access.

In Section 1.2 we discuss more in detail the Tor bridge infrastructure and the
approach that we followed to obtain the IP addresses of those entry nodes. The
extensive security analysis we performed on bridges shows how it is possible to
deanonymize Tor bridges at large scale using publicly available datasets. Lever-
aging those datasets, it is possible to identify bridges even before they are used
by clients. Similarly, we also use this public information to measure the stabil-
ity of the bridge infrastructure, and our results could affect the current blocking
policies that governments use when they blacklist a bridge. We expose how it
is possible to perform ranking of bridges through the detailed information about
each node of the Tor network, that is daily published by the Tor Project. We
also show how and adversary can keep track of IP address changes of bridge, by
fingerprinting other services that might be running on the same machine. Finally
we investigate and measure a previously undocumented feature that we identified
in the Tor network and that is represented by proxy hosts. Proxies do not have
Tor software installed and they transparently forward connections to Tor relays
and bridges. Since they are not considered elements of the Tor Network, public
statistics about them are not available.

1.1 CARONTE: A Tool For Deanonymizing Tor Hid-
den Services

In 2004, only a few years after releasing Tor, Hidden Services (HSes) were in-
troduced in the Tor Network. Tor developers wanted to allow users to access a
service, without knowing its effective physical location. Recipient anonymity is
achieved by incorporating the service directly in the Tor Network. Applications
that ran as a hidden service, are identified by a unique name, generated randomly
and ending with an “.onion” suffix. To access the service, users resolve its name
using a mechanism similar to a distributed DNS, which is running in Tor Net-
work. Soon after their introduction attacks, that leveraged some design flaws of
hidden services, were proposed to identify the location of a HS [10,86|. Because
of those attacks, the protocol for accessing a HS was revised and guard nodes
were introduced [24,130].

The extended protocol, that includes guard nodes, requires the hidden service
to select a relay, called guard node, that will be used as the introduction point
for all communications with the HS. When a client resolves the “.onion” name
linked to a HS, she obtains the address of the guard node. Afterwards, the client
contacts the guard and asks it to forward connection information to the HS.

Chapter 1. Introduction

This initial message, containing connection information, notifies the HS what
was chosen as the rendezvous point. The rendezvous point, is a relay that acts
as an intermediary among the client and the server; its only goal is to connect
the anonymous virtual circuits built from each side. The guard node is used
exclusively for communicating information about the rendezvous point selected
by the client; all the following messages exchanged among the client and the HS
do not pass through the guard, but they directly go through the rendezvous point.

While hidden service were originally developed with the purpose of enabling
freedom of speech even in situations where powerful state-based adversaries might
be trying to suppress it, location privacy turned out being extremely attractive for
miscreants that were planning to run illicit services. Nowadays, hidden services
are used among others for storing whistle-blowing documents that corporations or
governments may not want to become public and for hosting political dissidents
blogs. In 2015, Facebook decided to make the social network available as a hid-
den service; the company also obtained a certificate for its onion domain, signed
by trusted Certification Authority, so that browsers would accept it [92]. As
mentioned earlier, in parallel with legitimate applications, we witnessed also the
blossoming of HSes that were abused for running malware command-and-control
servers [49,62,67|. Similar shady uses of these services include portals offering
pornography and black markets selling any kind of goods (drugs, guns, stolen
or counterfeit products). Taking into consideration this varied range of uses, it
is not surprising that hidden services quickly attracted the attention of censors
and law-enforcement agencies. What arguably happened to be the most famous
take-down of a hidden service, took place in July 2013, when law-enforcement
identified the location of the “Silk Road” marketplace and arrested the owner and
administrator of the hidden service. Users of this service were using Bitcoin pay-
ments for trading with products such as cocaine, LSD and counterfeit goods [20].
Soon after its take-down, other competitors quickly took his place. Only one year
later, in November 2014, an international joint force of law-enforcement agencies
successfully dismantled a network of over 400 HSes, including several drug mar-
kets [47].

1.1.1 Problem Statement

Since their introduction, numerous attacks have been proposed for trying to break
the recipient anonymity offered by hidden services [10,13,15,58,80,81,86|. Hidden
services protect only the location, i.e. the IP address, of the server hosting the
service. The protocol does not tamper with the data that is transmitted (except
opportunistically adding and removing encryption layers, in order to protect the
data transmitted among two nodes). For this reason, the configuration of the
service and eventual sanitization of its contents is left to the server owner [114].
If references to the identity of the owner or information about the location of the
service itself are available in the content of the hidden service, an attacker might

Chapter 1. Introduction

mydom.com mydd4xi.onion

Internet Tor

)
!
]
]
1
[]
]
]
[l
]
[}
)
.

“\ D mark@

*“-mydom.com

Host: myd4xi.onion

Figure 1.1: Example of a location leak in the content accessed by users of a hidden
service. The domain embedded in an email address corresponds to a machine, publicly
reachable through Internet, that is hosting the hidden service.

be able to leverage those leaks for revealing the real location of the server. When
the attacker is a state or an oppressive regime, after the IP address is revealed,
the host can be taken down, its content seized, and the owners identified and
eventually arrested.

Location leaks are introduced by service owners and for this reason they can-
not be centrally fixed by the Tor Project. The Tor Project advertises some
guidelines about how to set up your own hidden service [114], but users often
reuse content from other applications and it is not uncommon to forget to re-
move sensitive information. Figure 1.1 depicts an example of a location leak,
where a domain reachable from the Internet (“mydom.com”) and the hidden ser-
vice (“myd4xi.onion”) identify the same service. Since Tor Network is just an
overlay over the Internet, each hidden Web service is hosted on a Web server
with a public IP address. In presence of a location leak, once a candidate IP has
been identified as the Internet-counterpart of the hidden service, it is possible to
connect to it for confirming that is the same host. In the example in Figure 1.1,
the owner of the service simply decided to reuse a web page that previously was
accessible through “mydom.com”. However, before publishing this content, the
owner did not sanitize properly all the information contained in the page. The
attacker can parse the downloaded document and extract all domains that are
included in email addresses. As the next step the attacker tries to connect from

Chapter 1. Introduction

the Internet to each one of the domains that she identified; if the connection is
successful and she obtains the same content that was retrieved from the hidden
service, the attacker is able to confirm that a candidate domain is effectively
hosting the hidden service. Analogous problems can arise because of forgotten
configuration files that advertise sensitive information (e.g. owner, IP, phone
numbers) about the Web server.

Content and configuration leaks are a well-known problem for hidden services,
but their extent is currently unknown. Some of the most notorious take-downs
have been linked to those leaks: in 2013, in the case of the “Silk Road”, the
FBI claimed that they located the server because of a leak in its IP address
when visiting the site [46]. Despite some incongruities in the official explanation
provided by the FBI, security researchers still believe that the take-down was
possible thanks to a leak in the configuration of the server [63]. Unfortunately,
the same approaches and location leaks that law enforcement might be using to
deanonymize abusive services, can also be employed to obstruct freedom of speech:
oppressive governments are deeply interested in deanonymizing and censoring
hidden services that are linked to political activists and dissidents. If agencies
are able to link a service to its owner, the dissident could be condemned to
monetary fines or even end up in jail.

The Hidden Service protocol. The architecture of a Tor hidden service com-
prises the following components:

1. The hidden service.

2. A client, represented by user that has installed the Tor software and wants
to access the hidden service.

3. The Rendezvous (Rdp) point is a Tor relay, selected by the client, and used
to connect the virtual circuit built by the client with the one built by the
hidden service.

4. The Introduction Point (IP) is a Tor relay, selected by the hidden service
owner, which is used for forwarding to the hidden service information about
the Rendezvous point selected by the client.

5. The Hidden Service Directory (HSDir) is a Tor relay that received the
“HSDir” flag. Those relays are stable and long lived and are in charge
of storing information about which Introduction Point should the client
contact when trying to access a hidden service.

The process of setting up and connecting to a hidden service is depicted in
Figure 1.2. Steps @-@ are directly related to the configuration of the service;
steps ®-@ summarize the process for accessing the hidden service.

Chapter 1. Introduction

.’l {} Hidden Service

Figure 1.2: Configuration and access to a Tor hidden service.

While setting up a hidden service, the Tor software generates a new RSA
key pair. The identifier of the hidden service is the SHA-1 digest of the public
key. Then the software selects a small number of Tor relays that will be used
as Introduction Points and builds a circuit to each one of them (step @). As
next step descriptor, containing the ID of the descriptor, the list of Introduction
Points and hidden service’s public key. Finally this descriptor is uploaded to
a responsible Hidden Service Directories (step ®). The choice of the HSDirs on
which to upload the descriptor is performed depending on the ID of descriptor and
the fingerprint of the HSDir?. Every 24 hours descriptor identifiers are changed
in order to change periodically the HSDir responsible for a hidden service.

To connect to a hidden service, the client needs to know the identifier of the
service (i.e., its “.onion” unique name). Similarly how the hidden service identified
the responsible HSDirs, depending on the identifier the client knows which HSDir
it should contact to obtain the descriptor of the service (step ®). After this the
client chooses a Rendezvous point and builds a circuit to it (step @). Through the
Introduction Point, the client communicates to the hidden service the address of
the Rendezvous point that she selected (steps @-@®). As a result of this process,
also the hidden service builds a circuit to the same Rendezvous point used by
the client (step @). Finally the client and the hidden service can exchange data

2ecach relay can be identified through a fingerprint, represented by the SHA-1 over its public
key

Chapter 1. Introduction

using the Rendezvous as a point of connection of the respective circuits.

1.1.2 Approach

It is possible to run any kind of Internet service as a hidden services, but Biryukov
et al. [12| showed that the most popular services include Web and SSH servers.
The authors also notice how “The number of hidden services with illegal content
or devoted to illegal activities and the number of other hidden services (devoted to
human rights, freedom of speech, anonymity, security, etc.) is almost the same.”.
In this dissertation we study the extent of location leaks for Web-based hidden
services.

We develop a tool, called CARONTE, that automatically inspects a hidden
service looking for possible location leaks that could be used for deanonymizing
the service. Location leaks are used to generate “candidate Internet endpoints”,
which later are checked for verifying if the Internet endpoint corresponds to the
Web server hosting the hidden service. CARONTE is composed of the following
modules:

e FEzxploration: takes as input “onion” URLs, visits them using different pro-
tocols (HTTP, HTTPS), and collects the content of the hidden service and
the certificate chain.

e (landidate selection: processes the data harvested by the previous module
and produces as output a list of pairs in the following format: < “hidden
service”, “candidate Internet endpoint”>.

o Validation: after resolving each “candidate Internet endpoint” into a “can-
didate IP”, this module verifies if a candidate IP indeed hosts the hidden
services. This is achieved by sending identical requests to the hidden service
and to the candidate IP. Then it compares the responses received back: if
it finds a pair with similar content and served from a similar web server, it
outputs a location leak.

In 2011 Crenshaw proposed a similar approach, which leverages leaks at the
application layer for identifying the location of eepSites [22] (the equivalent of
hidden services in the I2P anonymity network). I2P is a peer-to-peer network;
for this reason the author sets up a node and considers as candidate IPs, that
could be hosting a service, all the nodes that belong to the network. This is a
so called “closed-world” model, since the adversary already has a list of potential
candidates and she only needs to verify if some of them are hosting the service.
Tor does not make available an exhaustive list of all nodes that participate in
the anonymity network and thus the previous approach does not work in this
context. For this reason we significantly differ from Crenshaw’s technique, since
we operate in an open-world model, where a list of possible candidates is not

10

Chapter 1. Introduction

available. Our approach shows how to move from an open-world to a closed-
world by generating candidates directly from the content of the hidden service
or HTTPS certificates. This significantly improves our deanonymization results:
using the closed-world assumption, and considering as candidates all Tor relays
(which have known IPs), 79% of the Hidden Services of the deanonymization
achieved by CARONTE could not have been possible. Furthermore the technique
proposed by Crenshaw relies only on comparison of server headers obtained from
the hidden service and the candidate Internet endpoint. A direct consequence of
this is that is possible generate an extremely high number of false positives. We
propose instead a more complete approach that performs comparison among both
headers and content obtained from the two hosts; this guarantees that during the
“validation” phase all-and-only the false positives are filtered out.

1.2 Security Analysis of The Tor Bridge Infras-
tructure

The Tor Network comprises more than 7,000 routers run by volunteers. Those
routers are used for building the virtual circuits through which clients will com-
municate with their destination, in an anonymous way. Each node of the network
is uniquely identified through a fingerprint, the 20-byte SHA1 hash of its public
key. All nodes are required to speak the “vanilla Tor” protocol and to listen on a
dedicated port for connections that use this protocol [27]|. Directory servers are
special routers acting as central authorities and they store the information about
all the elements of the Tor Network. When clients need to build a virtual circuit,
they will first query directory servers to obtain information about the relays that
are available.

The number of daily Tor users grows continuously. Recently Facebook esti-
mated that within a month, over 1 million people connect to their social network
through Tor [39]. In countries where governments censor access to particular
Internet services [14], Tor is often used for bypassing the filtering systems. This
long lived arms race among censors and circumventors led to the development of
even more sophisticated systems and techniques. Initially, censors simply blocked
access to the Tor Project website [26] or were filtering HTTP requests that had
the “/tor/” string embedded in the URL [84]. Furthermore, at its beginnings, all
the nodes of Tor Network were relays, so for an adversary was possible to block
the access to the whole network: by pretending that she is a legitimate client,
she could query the directory server and obtain back the IPs of all relays. To
overcome this issue, Tor Project decided to introduce bridges, special entry nodes
in the virtual circuits, which are not listed in the main Tor directory [113].

When a user decides to run a bridge, the Tor software configures the bridge
to automatically send configuration and contact details, including the IP and the
port to which to connect, to the Bridge Authority. These files sent to Bridge

11

Chapter 1. Introduction

Authority are known as “descriptor”. Information extracted from descriptors is
needed by clients that want to use the bridge. To retrieve information (IP and
port) how to connect to a public bridge, clients send requests to the Bridge Au-
thority. At any moment of time this authority makes available only a subset of
the entire pool of bridges. This strategy prevents an adversary from learning the
IPs of all active bridges. When configuring the router, bridge owners can choose
among making their bridges public or private. The only difference among the
two configurations is the fact that Tor software running on the bridge will upload
or not its descriptor to the Bridge Authority. When the bridge is configured as
public, the authority includes it in the pool of bridges that can be given out upon
clients requests. On the other hand this does not happen with private bridges:
in this case it is the owner that uses an out-of-band mechanism to distribute
connection information to the set of users he wants to connect to his bridge.
After the introduction of bridges, it become impossible to know in advance
the IP of all Tor routers and for this reason censors started developing more
advanced approaches that involve Deep Packet Inspection (DPI). For example,
numerous countries as Syria, Iran, Ethiopia, Philippines, Kazakhstan developed
techniques that identify Tor traffic by: either looking for Tor’s characteristic
TLS renegotiation [26] or for a specific Diffie-Hellman parameter used during key
negotiation [65], or checking for the presence of particular TLS cipher suites [43,
85,93|. Currently the most sophisticated approaches are those adopted by the
Great Firewall of China (GFC), which uses hybrid approaches that back up an
initial DPI inspection, with active probing on the candidate connections [127].
In 2012, after censors started deploying DPI, the Tor Project responded with
the introduction of Pluggable Transports (PTes) [108|. The idea was to develop
a wrapper for the “vanilla Tor” protocol, which should obfuscate the Tor traffic
flowing among clients and bridges. Over time several PTes have been proposed.
They differentiate because some of them try to imitate popular protocols (e.g.
fte [61]), while others encapsulate Tor traffic in popular protocol like TLS (e.g.
meek [41]), and others are designed to look as completely random traffic (e.g.
Scramblesuit [124], obfs4 [131]). Since censors are turning always more aggressive,
design choices for some of these protocols included also protection against active
probing (e.g. Scramblesuit, obfs4). A bridge can offer one or more PTs at the
same time, the only requirement is that each PT is bound to a different port.

1.2.1 Problem Statement

Even if multiple PTes can be deployed at the same time, bridges are always
required to be listening on a particular port for connections that use “vanilla
Tor”. This protocol is a customized version of TLS, with an initial handshake
phase, followed by transmission of chunks of data, encrypted using the session
key negotiated during the handshake. This protocol was designed to be as close
as possible to TLS, in order make Tor traffic harder to spot among other TLS

12

Chapter 1. Introduction

flows.

Because of a continuous patching process, where all the reported vulnerabili-
ties are fixed by the developers, features like unique cipher list or the character-
izing TLS renegotiation, cannot be leveraged anymore by attackers that want to
detect Tor traffic [8,26]. Other ones, like certificate lifetime or unique patterns
appearing in the “SubjectCN” and “IssuerCN” of the certificate, are instead still
linked to “open tickets” [68]. The reason for this discrepancy is that developers
come to the conclusion that efforts required for making “vanilla Tor” indistin-
guishable from TLS are not a priority, since more secure transports have been
introduced as PTes.

In recent years, tools for performing Internet-wide scans in a few minutes
have become available. The most famous example is Zmap, a modular open-
source network scanner developed at the University of Michigan [31]. Not only
tools, but also search engines, that scan on the entire IPv4 address space using
a particular port, exist. For example, Censys and Shodan [30, 72|, parse the
content that was retrieved using a specific protocol on a particular port, and
allow users to search for specific keywords or patterns. Both scanning tools and
search engines are publicly available and they allow users to access for free the
data that was collected. For this reason censors looking for IP addresses that
offer one of the protocols supported by bridges, are spoiled for choice. They can
choose among free tools, and eventually expand them with the support for the
popular protocols used by bridges, or they can query a scan search engine. This
has serious consequences for the bridge ecosystem: now not only the attacker
does not need anymore to interact with the bridge authority to learn the IPs of
public bridges, but by having access to publicly datasets, she becomes able to
identify also private bridges.

Also datasets that publish information about the Tor infrastructure, can be
abused in a similar fashion. The CollecTor service was launched in 2014 to provide
information about nodes and services that are part of the Tor Network [70,104].
The data that is made available contains information fetched from different nodes
that are part of the Tor Network. This data contains also the descriptors collected
from bridges. Since those files contain sensitive information, such as the IP
and the port to which to connect, before distributing them they undergo to a
sanitization process. During this step sensitive fields such as email of the owner
or the IP are replaced with a bogus value or removed. The final data that is
distributed to users is made available in the form of anonymized descriptors. The
anonymization process affects also bridge fingerprints, all the original values are
replaced with corresponding SHA1 hash. This stopgap hinders attackers that
want to brute-force this value for recovering the original fingerprint, and at the
same time owners that know the fingerprint of their bridge can gather historical
data. Unfortunately, this is valid also for attackers: if an attacker successfully
deanonymized a bridge and obtained its fingerprint, she can abuse CollecTor for
ranking the bridge and inspecting its history. This becomes possible, because the

13

Chapter 1. Introduction

published data includes bandwidth information, the number of clients, counted
per protocol or country, that connected to the bridge, uptime, and so on. There is
also other valuable information that attackers can extract from bridge descriptors
that are available in CollecTor: the port on which “vanilla Tor” is running indeed is
not sanitized. This gives extremely valuable hints for the attacker: by inspecting
the descriptors that are available on a particular day, she can discover what are
the most popular ports and then accordingly perform targeted scan on those
ports.

Bridge owners can deploy multiple pluggable transports on their bridges, with
the only condition to bind each PT to a dedicated port. Unfortunately, not all
PTes offer the same levels of protection and only the most recent transports are
equipped with protection against active probing. This is achieved by requiring
clients and bridge to have a shared secret; if the client does not succeed authen-
ticating to the bridge, the bridge will not send back any data to client’s requests.
Older PTes have weaknesses [37| that can be exploited for identify particular
PTes with a negligible number of false positives. Furthermore works have shown
how difficulties of supporting all the features of the protocol the PT is trying to
mimic, can be used for deanonymizing bridges with high confidence [51,119]. In
case multiple PTes, with different levels of protection are available on a bridge,
the attacker can focus on the weakest protocol for verifying that particular host
is a Tor bridge. The censor that we consider is a state-level entity that wants
to identify communications with Tor bridges for monitoring or blocking the traf-
fic [37,100,129]. This powerful adversary has access and full control over the data
flowing from the monitored network to Internet; thus she can tamper with the
traffic, drop and inject packets or even impersonate legitimate Tor users trying
to connect to the Tor Network. Finally, this adversary can also perform Internet-
wide scans and query public public information sources as search engines scan
search engines or CollecTor.

1.2.2 Approach

In this section we discuss the steps that an adversary needs to take in order to
deanonymize bridges, how she can evaluate how successful she is and how she
keeps track of address changes of bridges.

The first, essential, step of the entire process is an Internet-wide scan on a par-
ticular port, followed by the collection of the TLS handshake for those hosts that
had the port open. The unique patterns used for “SubjectCN” and “IssuerCN”
that appear in each Tor certificate guarantee that any IP found serving those
certificates has to be a Tor router. The CollecTor data is a useful guidelines
for performing targeted scans on the most popular ports, since it contains infor-
mation about the OR port on which routers are offering “vanilla Tor” protocol.
Otherwise, the adversary can also decide to opt for a lightweight approach and
to do not perform any scans on his own and simply query existing search engines

14

Chapter 1. Introduction

such as Shodan or Censys [30, 72].

As the next step the adversary has to distinguish relays from bridges. Since
the data published by CollecTor contains non-sanitized descriptors for relays,
they can be used for generating a list of all the IPs linked to relays. Any other
IP, that is serving a Tor-alike certificate and does not appear in the list of relays,
is a bridge.

Thanks to the previous two steps the adversary has successfully identified all
the addresses that were bridges when the TLS handshake was collected. Now
she can verify that that the candidate IP that was identified is still hosting a
bridge. During this phase, she uses the “vanilla Tor” protocol to connect to
a deanonymized IP and collect the non-sanitized descriptor directly from the
bridge. This third optional step on one hand guarantees that a bridge is still
running on the IP that was identified, on the other one it is needed for obtaining
the bridge’s descriptor. Later on, from the descriptor the adversary can extract
contact information about the owner of the bridge or the fingerprint.

Hashing the fingerprint allows the adversary to obtain historical data about
the bridge, just by searching in the CollecTor data for a particular sanitized fin-
gerprint. This is not useful only for performing a ranking of the deanonymized
bridges, but also for deciding upon the type of a bridge. If the value for the
sanitized-descriptor is available in CollecTor, the bridge is public. In case of pri-
vate bridges, the adversary learns that any Tor users connecting to a private
bridge could be a member of the same organization or group, and she can geo-
graphically locate them.

Ranking deanonymized bridges is an extremely important step for the adver-
sary because it is the only way to answer fundamental questions: “what coverage
am [achieving?” and “did I identify all the bridges that are available for my
country?”. To evaluate her deanonymization coverage, the adversary extracts
information from the CollecTor data and ranks bridges with respect to their im-
portance according to different metrics. For example, the adversary can decide
to focus only on bridges that are popular in a particular country, or on bridges
offering high bandwidth and that have the highest number of users.

In case bridges are linked to dynamic addresses, the adversary needs a way
for keeping track of the bridge each time it changes its IP. To this end, after she
has identified the IP of a bridge, she can perform a vertical scan on all ports on
that host. The goal of the adversary is now to enumerate other known services
that are offered by that address. If a service has a unique identifier (e.g. SSH
keys, certificate identifiers), this information can be used for keeping track of
address changes. Shodan regularly scans over 200 ports with popular protocols
and indexes the information that it collects. The unique identifier obtained from
a bridge can be used in Shodan to generate the list of IPs that were found serving
that identifier; then the adversary will connect to each candidate using “vanilla
Tor” protocol and confirm if it is a bridge.

15

Chapter 1. Introduction

1.3 Thesis Contributions

In this dissertation we design and evaluate techniques for identifying the IP ad-
dress of hidden servers and use them to analyze the security of two kinds of hidden
servers in the Tor anonymity network: hidden services and bridges. Despite our
experiments being conducted on Tor, several of our techniques and findings can
be generalized to other anonymity networks. This dissertation comprises the
following works:

I. CARONTE: Detecting Location Leaks for Deanonymizing Tor
Hidden Services
Srdjan Matic, Platon Kotzias, and Juan Caballero
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, USA, October 2015.

II. Dissecting Tor Bridges: a Security Evaluation of Their Private
and Public Infrastructures
Srdjan Matic, Carmela Troncoso, and Juan Caballero
Proceedings of the Network and Distributed System Security Symposium,
San Diego, CA, USA, March 2017.

An overview of the contributions of the first work is available in Section 1.3.1.
The full description including implementation, technical details, and discussion
is available in Chapter 3. An overview of the contributions of the second work is
available in Section 1.3.2. The full description including implementation, techni-
cal details and discussion is available in Chapter 4.

1.3.1 CARONTE: A Tool For Deanonymizing Tor Hidden
Servers

We design, implement, and evaluate techniques for automatic recovery of the IP
address of Tor Hidden Services. Our approach extracts leaks from the application
layer of a HS, and uses them for trying to identify the location the machine hosting
the service. To this end, our work makes the following contributions:

e We propose a novel approach to deanonymize hidden services through lo-
cation leaks, extracted from the application layer of a HS. Our approach
assumes an open-world model, i.e., no prior knowledge of candidate servers
where the HS could be hosted. To move from an open-world to a closed-
world we propose techniques to identify candidate servers directly from the
content and configuration downloaded from the hidden service. Our ap-
proach comprises a validation step for eliminating possible false positives.

e We implement our approach into CARONTE, a tool that automatically at-
tempts to deanonymize the location of hidden services through location

16

Chapter 1. Introduction

leaks. CARONTE can be used by service owners to check to perform audit-
ing of their HS, or by law-enforcement agencies that want to identify the
location of a particular hidden service.

Using CARONTE we perform the first measurement study on the prevalence
of location leaks in hidden services. CARONTE analyzes 1,974 input hidden
services, successfully recovering the TP address of 101 (5%) of them. It also
uncovers that 21% of the deanonymized hidden services are running on Tor
relays.

1.3.2 Security Analysis of the Tor Bridges Infrastructure

We perform the first systematic study of the public and private bridge infrastruc-
ture in the Tor Network from a security point of view. We study security-relevant
properties of bridges using publicly available datasets such as Collector [104] and
scan search engines. To this end, our work makes the following contributions:

We perform the first in-depth study of the security implications of the data
publicly available through CollecTor. We demonstrate how an adversary
can leverage CollecTor to measure the coverage of its blocking and to select
OR ports to scan next in order to disable highly valuable target bridges. We
also show that the adversary can measure security-relevant bridge properties
such that default bridges are used by bulk of users (despite being trivial to
deanonymize), and that bridges carrying users are stable and rarely change
their IP address, and thus can be blocked for a long time.

We identify a security issue in the deployment of Pluggable Transports
where bridges offer a mix of PTes with different security properties. For
example, the most recent PTs include reply protection, which guarantees
that the bridge will allow connections, and transmit data, only for users
that are able to authenticate. We identify several bridges mixing older and
newer protocols with and without this kind of protection. This enables an
adversary to identify the bridge through the weaker PT and disable the
stronger PTes by blocking its IP.

We present the first study of private bridges that are not known by the
Tor Network, nor appear in Collector. Private bridges comprise 35% of all
bridges we discover and deanonymize.

We propose a novel technique for the adversary to track bridges across
IP address and OR port changes by leveraging that hosts running bridges
can be running also additional service, which may provide trackable unique
identifiers.

We identify a previously unreported element of the Tor Network represented
by proxies, i.e., private IP addresses that forward traffic to a backend bridge
or relay. We study the infrastructures built using proxies and bridges using

17

Chapter 1. Introduction

a novel clustering approach to group ORs owned by the same entity based
on their configuration and IP addresses.

e We provide an extensive security discussion on the security implications of
our findings, summarizing all the issues that we identified and we propose
possible counter measures.

1.4 Ethical Considerations

While there exist tools like Shadow [57] to simulate attacks against Tor, they can-
not be used in our work. The application layer leaks we studied, cannot be easily
simulated because they are caused by erroneous configurations by administrators
of hidden services. Analogously, any tool for simulations cannot be used neither
for assessing the security of Tor bridges, since we use public data repositories that
contain information about elements of the network. Similarly to Biryukov [13]
we deem experiments on the live Tor network worthwhile and necessary to en-
hance the scientific understanding of hidden service and the anonymity network
itself, as long as those experiments to not cause degradation of the network or its
services.

To deanonymize the hidden services that we analyzed, we did not take into
account possible software vulnerabilities, despite often, just by by inspecting some
content generated automatically, we were able to identify the software that was
used and look for vulnerabilities in case outdated or unpatched versions of a
particular software were involved. We decided to do not explore this approach
because even if we were able to correctly identify the software and the version
used by a specific service, the only way that we could gather information about
the location of the server would be by effectively exploiting the vulnerability. All
the information that we collected is obtained through legitimate interaction with
the service and without forcing any unwanted behavior of the application. All the
certificates and content have been downloaded because the service was explicitly
configured to provide those files upon a request to a web page. Finally, during
the exploration of hidden services, to prevent downloading copyrighted material
and offensive content (e.g., pornography), we limit our tool to collecting textual
and HTML content, ignoring other content such as images, videos, or documents.

The bridge deanonymization techniques we propose only leverage known lim-
itations of Tor Network, and only use leaks present in publicly accessible reposi-
tories, such as Shodan, Censys or CollecTor. We purposefully avoid adding relays
or bridges into Tor Network, as well as exploiting any software vulnerability. We
have no access to any traffic that is not ours, and hence we can no threaten the
privacy of any Tor user. However, the data we collect contains the IP addresses
and contact information of both public and private bridges that must be kept
private to preserve the security provided by Tor Network. Thus, we do not dis-
close any bridge/proxy/hidden service IP address, nor any personal information

18

Chapter 1. Introduction

we may learn about its owners, but we illustrate important steps and findings
only through aggregated data and fake examples.

All works have been approved by by the ethics review board of our institution,
which has mandated that due to its sensitive nature all the data must be protected
with diligence, must not be be disclosed to third parties, and must be deleted
when the paper is published.

After each submission, we have sent a copy of this draft to Tor Project to
notify them of the work. Specifically in the case of the work about Tor bridges,
The Tor Project already started taking countermeasures [69] to prevent bridge
targeting based on CollecTor public information.

19

Related Work

Interest toward anonymous communication and services is a topic that has been
explored in academia for several decades. The first work toward this direction
dates back to 1981, when David Chaum presented “Untraceable Electronic Mail,
Return Addresses, and Digital Pseudonyms” where the author discusses features
and possible implementation of an anonymous email system [17]. His technique
was based on cryptography and allowed the correspondents of email messages
to remain anonymous to each other while communicating via untraceable return
addresses. This could be achieved through mizes, intermediate nodes in charge
for reordering, padding and delaying users’ data in order to complicate traffic
analysis. Following analogous research questions, in 1996 Goldschlag et al. [44]
introduced the concept of onion routing. The proposed approach separates the
anonymity for the connection, from the anonymity of the communication that is
flowing over the connection. Onion routing suited for real-time communication
and would protect Internet services against passive and actives attackers attempt-
ing to eavesdrop the communication or perform traffic analysis attacks. To this
end the authors leveraged a layered data structure called onion, that relies upon
IP routing to reach the destination. According to a similar naming convention,
routers in charge of forwarding these data structures are called onion routers.
The anonymous connection is obtained by chaining together a sequence of onion
routers from an initiator to the responder, in a way that each router can only
identify the previous and the next hop along the route. Furthermore, the data
that is sent over the anonymous channel is encrypted with several layers of en-
cryption, and as it moves through the anonymous connection, each onion router
removes one layer of encryption such that what is delivered to the responder is
only the plaintext. Independence from the application layer and real-time con-
straints were respectively both pros and cons of the onion routing compared to
Chaum’s work. The separation from the application layer offered better flexibil-
ity and more use cases for the anonymous channel. On the other side, requiring
to deliver data in real-time limited considerably the freedom in mixing. In 1998

20

Chapter 2. Related Work

Reed et al. [90] implemented a prototype with the specifications of onion routing.
The prototype allowed remote login requests, offered possibility to proxy HTTP
requests and exchange electronic emails.

By keeping unknown the physical location of a website it becomes possible to
protect the service from seizure orders. This design principle is the core of the
storage medium service that Anderson [3] designs for offering resistance to denial
of service attacks. The proposed system leverages redundancy and scattering
techniques to replicate data across several machines. Anonymity is then used to
protect this information from selective service denial attacks. A similar idea is
also the basics for the design of hidden services, as proposed by Dingledine et al.in
2004 [28]: a service for which the location is unknown can resist to censorship,
physical and Dos attacks [25]. Starting from that moment several works focused
on breaking the sender-recipient anonymity achieved using virtual circuits and
rendezvous points [24].

The first work toward this direction was proposed by verlier and Syver-
son [86] who show how a hidden service could be rapidly located because the
HS selects nodes at random when building connections. By having control over
a single node of the network, the attacker can report a false higher uptime and
maximum network bandwidth, in order to be selected by the HS. Once an at-
tacker’s node is the one closest to the hidden service, by correlating input and
output traffic, the attacker can discover the effective IP address of the server.
Bauer et al. [10] extended Syverson’s attack to general purpose circuits. They
study possible impacts of Tor routing optimizations on the ability to provide
strong anonymity. The authors demonstrate how a lying adversary, that simply
exaggerates on her resource claims, can compromise an unfair percentage of both
entry and exit nodes. By advertising an extremely high bandwidth and uptime,
the adversary induces clients to select her nodes for building circuits. An attacker
controlling entry and exit node, can then compromise the anonymity of a path
even before any data is transmitted.

The solution for the attacks mentioned above was the introduction of Entry
Guard Nodes as proposed by Wright [130]. This guarantees that the hidden
service will always use the same node, or a small subset of trusted nodes, as
the first node in a communication. Elahi et al. [34] introduce improvements
to reduce the guard compromise rate, developing a simulation-based research
framework that is used for studying Tor’s entry guard design. With the support
of their framework, the authors demonstrate how short term entry guard churn
and explicit time-based entry guard rotation contribute to clients using more entry
guards than they should, and this situation increases the likelihood of profiling
attacks. In 2013, Biryukov et al. [13] are the first ones to perform a large scale
study on the hidden services at that time. The authors show how an attacker can
exploit design and implementation flaws both in the design of hidden services to
measure the popularity of a particular service and make the service unreachable.
This is achieved by injecting malicious relays in the Tor Network, and forcing

21

Chapter 2. Related Work

them to be selected as the hidden server directories. Furthermore, the authors
also illustrate how an attacker can leverage correlation attacks for both verifying
if her relay was selected as the guard node of a hidden service, and for identifying
the guard node in case the relay that belongs to the attacker is used as a middle
node.

The attacks previously mentioned rely both on vulnerabilities in the Tor speci-
fication and on adding malicious relays to the network. Our approach differs from
the previous techniques since it does not require the attacker to add nodes to the
Tor Network and leverages only location leaks for large-scale deanonymization of
hidden services. Since those leaks are introduced by service owners, they can not
be centrally addressed by the Tor Project.

Project OnionScan [95], was started in April 2016 and leverages on a approach
similar to ours for identifying possible information leaks within hidden services.
The proposed tool is able to identify a broader class of leaks that the one of
which we focus and that are useful only for recovering the IP address of the
server. PGP identities or metadata obtained from images can provide information
about owners of the service. Unfortunately these kind of leaks are hard to validate
automatically and might require investigations or even manual police work. More
in general, OnionScan limits it capabilities to leak detection and does not have a
rigorous validation step as the one that we propose. Our validation step instead
ensures that each candidate IP address that was identified, is effectively hosting
the hidden service that we were looking for. Finally, compared to OnionScan,
we also identify candidates and deanonymize hidden services using information
from TLS certificates. On the other side, OnionScan supports other protocols in
addition to HTTP and HTTPS.

Another approach similar to ours also was proposed by Crenshaw et al. for
deanonymizing I2P eepSites [22]|. Crenshaw sets up an I12P router and uses the TP
addresses of the peers known to his router as candidates for hosting the eepSites.
This approach works for the closed-world model of I2P, where it is possible to
know in advance the list of all the nodes participating in the network. In Tor,
which is not peer-to-peer based, this approach is similar to considering the list
of all Tor relays as candidates for hosting a hidden service. Using this closed-
world approach we would be able to deanonymize only 21% of hidden services
that we deanonymized. Our approach in contrast shows how to move from an
open-world to a closed-world scenario, by obtaining candidates from the content
and configuration downloaded from the hidden services.

Other closed-word approaches use clock information for deanonymizing hid-
den services. Murdoch [80] investigates how clock skew changes can be leveraged
for recovering the IP address of a hidden service. The attacker accesses the hid-
den service and vary traffic over time in order to cause the server to heat up or
cool down, according to a specific pattern. The list of candidates available to the
attacker, is then used to verify if any of them is hosting the service that she is try-
ing to deanonymize. The presence of load pattern induced in the hidden service,

22

Chapter 2. Related Work

observed in one of the candidates, is used to verify that the candidate is hosting
the service. In his work, Zander et al. [132| improve the previous technique to
require less network traffic and achieve higher accuracy. The extended approach
estimates the clocks skew directly from the anonymous channel and works with
low-frequency clocks.

Several authors explore also the risks of deanonymization attacks that leverage
DoS. Jansen et al. [58] propose a low cost attack against Tor, that an adversary
can use to disable anonymously any Tor relay. The idea is to build a circuit
and then to stop reading that data that is sent over the circuit. In this way, the
target relay will keep buffering cells until it runs out of memory. Tests on live Tor
network proved how, after only half of an hour, the attack successfully disabled all
of the top 20 exit relays, reducing overall Tor’s bandwidth by 35%. The approach
proposed can be extended also to deanonymize hidden services. To this end, it
first requires to identify the guards of a hidden service, for example following
the technique proposed by Biryukov et al. [13] and then to systematically disable
the guards. As a final step, the attacker can test if the hidden services selected
one of her malicious relays as a guard node. A similar method relying on DoS
is proposed also by Borisov et al. [16]. In this case, the authors investigate the
dangers of selective DoS attacks, where attackers aim at compromising reliability
of the system in those states that are hardest to compromise. This approach has
a twofold advantage, on one hand it is much cheaper than a DoS on the entire
system, and on the other the attack could cause the system to enter in less secure
states. Faced with poor reliability, many users (and a lot of software solutions)
will attempt the communication again, presenting more opportunities for attack.
As a countermeasure, Overlier and Syverson [87] propose Valet Service nodes to
improve the resilience by introducting points against DoS attacks.

A separate line of work considers the forensics problem of proving that a
confiscated machine hosted a hidden service [36,96]. Those approaches propose
to leave a timing channel fingerprints in the confiscated machine’s log file. These
fingerprints are later used as an evidence that the server was hosting a particular
content.

Syverson et el. [99] study how an attacker, able to observe encrypted traffic
from a client to the first relay and from the final relay to the destination, can
link the client his destination by correlating traffic patterns. Other more general
works, show how powerful adversaries that can establish themselves in that posi-
tion both at the Internet exchange [82] and the AS [2,33,40, 59, 130] levels, also
represent a serious threat for users’ anonymity.

Finally, several works propose traffic analysis attacks for linking the initia-
tors of connections with their respective communication partners and vice versa.
Murdoch and Danezis [81] show how an attacker can identify which relays are on
a target Tor user’s path, by building paths one at a time through every Tor relay
and introducing congestion. Evans et al. [38] improve the previous approach, by
introducing a novel bandwidth amplification attack. Hopper et al. [50] show the

23

Chapter 2. Related Work

amount of information that can be inferred using round-trip time and how ma-
licious web sites that receive multiple connections from the same exit node, can
predict if the two connections are using the same Tor circuit. Mittal et al. [75]
use traffic analysis to identify guard relays of users and to break unlinkability by
determining if two Tor connections belong to the same user.

One of important features Tor is known being used for is to bypass censor-
ship [103]. Generally this is achieved first by connecting to a bridge and then by
requesting the forbidden content through the Tor Network. For this reason aca-
demic community has dedicated also much work and attention to Tor bridges and
their circumvention capabilities. One of the research lines, deals with proposal of
new Pluggable Transports to protect the communication from attacks that rely
on traffic analysis [32,76,120,128]. Weinberg et al. [120] develop a novel encrypted
transport protocol which is implemented in a tool called StegoTorus. The idea
is to leverage steganography and to hide Tor traffic within an innocuous covert
protocol such as HT'TP. To foil analysis of packet contents, traffic originated from
the Tor circuit is distributed over many shorter-lived connections with per-packet
characteristics that mimic the cover-protocol traffic. Moghaddam et al. |76] pro-
pose a new technique for embedding messages, sent to Tor bridges, in a protocol
that is widely adopted over Internet. To this end they develop a prototype for of a
Pluggable Transport that encapsulates Tor traffic in Skype video calls. To morph
Tor streams into Skype video calls, the authors propose two different methods
that use traffic shaping for emulating the distribution. Winter et al. [124] design
and implement Scramblesuit, that relies on protocol obfuscation for hiding the
Tor traffic. By using a secret previously exchanged out-of-band, ScrambleSuit can
defend against active probing and other fingerprinting techniques such as proto-
col classification and regular expressions. Studies for techniques that can be used
for circumventing DPI technologies include also the work by Dyer et al. [32]. The
authors develop a tool able to bypass both enterprise and governments DPI sys-
tems, using format-transforming encryption. This technique provides a generic
and flexible mechanisms for turning arbitrary application-layer protocol messages
into ciphertexts that DPI will classify as messages from a known protocol.

In this same research track we can include also works that focus on detection
of the new Pluggable Transports that were proposed. Wang et al. [119] provide
an in-depth investigation of the detectability of in-use protocol obfuscators by
DPI. They show how novel attacks that leverage entropy information and machine
learning can be used for detecting obfuscated traffic. They first build a framework
that is then tested on live network and with five different Pluggable Transports,
and they show how their framework generates a sufficiently low number of false
positives to be used in many censorship settings. Houmansadr et al. [51] show that
Pluggable Transports that mimic other protocols, e.g., [76,120], fail to achieve
unobservability. Since those system mimic only part of the communication, the
authors provide dozens of passive and active methods that recognize even a single
imitated session.

24

Chapter 2. Related Work

A second line of work focus on the approaches censors use to confirm that
suspicious nodes are bridges. Wilde [121] investigates the active probing mech-
anism Great Firewall of China adopts to identify Tor connections. The author
shows how DPI performs probes in near-real-time right after a Tor connection,
including a TLS handshake on port 443, happens. Furthermore, his analysis indi-
cates also that the Tor TLS cipher list turned out being a significant component
for the detection mechanism that triggers the active probing. Winter et al. [126]
perform an exhaustive investigation on the blocking mechanism that are applied.
To this end they evaluate the policies which are used for blocks, the location
of the scanners that the firewall is using to identify bridges, the frequency on
which scanners connect as well as attempts to use spoofed IP addresses. Finally
the authors discuss how the firewall can be bypassed using packet fragmentation.
Further details about the censorship mechanisms used in China is disclosed by
Ensafi et al. [37]. Their work focuses on identifying the different types of probing,
the development of fingerprinting techniques to infer the physical structure of the
system and the localization of the sensors that trigger probing. The authors test
probers’ efficacy using different versions of Tor and their results show how the
censoring system is updated regularly, it operates in real time and that blocks to
Tor nodes are lifted every 25 hours.

Finally, another research line is dedicated to the discovery of bridges. McLach-
lan et al. [74] investigate weaknesses of the current bridge architecture and show
that, when bridges run in clients, it is possible to deanonymize bridge operators
and that Tor exit nodes can be used for enumerating a larger set of bridges. Ling
et al. [66] propose a different active approach, where the attacker can either di-
rectly interact with the distributor, and obtain the addresses of bridges through
email, or she can set up a relay and passively that bridges connect to her node.
Their test on the real network proves how after only a few weeks is possible to
collect information about thousands of bridges. However, main limitation of these
works is fact the distributor advertises only a small subset of all bridges that are
available. Furthermore, since the proposed technique relies also on the introduc-
ing of a relay controlled by the attacker, this step requires first to passively wait
for bridges to build a circuit to the malicious node, before being able to identify
them.

25

CARONTE : Detecting Location Leaks for
Deanonymizing Tor Hidden Services

This chapter reproduces the work “CARONTE : Detecting Location Leaks for
Deanonymizing Tor Hidden Services” published at CCS 2015. This paper shows
a new and general approach for deanonymizing hidden services in an open-world
scenario leveraging only location leaks. This work was realized together with
people from the IMDEA Software Institute.

3.1 Introduction

The increasing surveillance of communications have made anonymity networks
a critical privacy-enabling technology. Tor [28] is arguably the most popular
anonymity network. It provides both sender anonymity and recipient anonymity
for hidden services. Hidden services protect the location (i.e., IP address) of
the server hosting the hidden service. In addition, they further protect against
network-level eavesdropping by providing encryption all the way from the client
to the hidden service. This includes the communication between the last Tor
relay and the hidden service, even when the application traffic is not encrypted.

Deanonymizing the location of a hidden service, i.e., recovering the TP address
of the server hosting the hidden service, enables taking down the hidden service,
seizing its content, and possibly identifying the owners. Prior work has proposed
attacks to deanonymize Tor hidden services through flaws on the Tor proto-
col [13,86] and clock-skew fingerprinting 80, 132|. Attacks on the Tor protocol
are promptly fixed by the Tor Project. For example, the attack by Overlier and
Syverson [86] was fixed by introducing guard nodes and the more recent attack
by Biryukov et al. [13] has also been fixed [12]|. Attacks leveraging clock-skew fin-
gerprinting assume a closed-world where a short list of possible candidate servers
is known and the fingerprinting validates which candidate is the hidden server.
Deanonymization attacks have also been proposed for the equivalent of hidden

26

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

services in I2P (called eepSites) [22]. These attacks also assume a closed-world,
where the IP addresses of I2P peers are candidate servers for eepSites.

This paper studies the problem of location leaks, i.e., information in the con-
tent or configuration of a hidden service that gives away its location. Location
leaks are introduced by the hidden service administrators and cannot be centrally
fixed by the Tor Project. Deanonymizing hidden services through location leaks
does not require the attacker to be part of the anonymity network, but only to
access the hidden services.

Such content and configuration leaks are a well-known problem for hidden
services, but their extent is currently unknown. In fact, some notorious take-
downs of hidden services by law enforcement have been linked to such leaks. For
example, in July 2013, law enforcement identified the location of the Silk Road
marketplace, where products such as cocaine, heroin, LSD, and counterfeit cur-
rencies were traded [21]. The FBI claimed in court that they located the server of
the original Silk Road through a leak of its IP address when visiting the site [46].
The FBI story has been disputed [46, 63|, but researchers still believe it is likely
that the takedown was due to a leak in the server’s configuration [46]. After
the Silk Road takedown other similar hidden services took its place. In Novem-
ber 2014, an international law-enforcement operation codenamed Onymous, took
down over 400 hidden services including the Silk Road 2.0, Cloud 9, and Hydra
drug markets [47]. The deanonymization method used by law enforcement in
Onymous remains unknown [109]. Unfortunately, the same location leaks that
law enforcement may be using to deanonymize abusive hidden services can also
be used by oppressive governments to deanonymize and censor hidden services of
political activists.

In this paper we propose a novel approach to deanonymize hidden services
using a subset of location leaks in an open-world, i.e., without previous knowledge
of a set of candidate servers. Our approach includes two steps. First, we propose
techniques to extract candidate Internet endpoints (i.e., domains and IP addresses
that may correspond to the hidden server) from the content and configuration
of a hidden service. Our techniques examine endpoints and unique identifiers in
the content and the HTTPS certificates. This step allows moving from an open-
world to a closed-world. Then we validate each candidate pair (hidden_ service,
Internet_endpoint), checking if the Internet endpoint corresponds to the Web
server hosting the hidden service. Previous work that leverages leaks on a server’s
clock skew [80, 132] or software version [22] assume a closed-world and use the
leaks only for validation. In contrast, our approach leverages location leaks to
obtain also the candidate servers.

We implement our approach in a tool called CARONTE, which takes as input
the URL of a hidden service and tries to deanonymize it through location leaks.
CARONTE could be used by law enforcement agencies to automate the currently
manual process of deanonymizing abusive hidden services, and also by political
activists presumably so they can detect and remove potential leaks that risk

27

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

being censored. CARONTE checks a hidden service for a subset of content and
configuration errors that can lead to deanonymization. CARONTE has no false
positives. If it recovers the hidden service’s IP address, it proves the need to
improve operational security. However, it only tests for a subset of location leaks
whose detection can be automated and may fail to validate some leaks. Thus, it
cannot guarantee the hidden service is free of location leaks.

To test CARONTE’s effectiveness we have applied it to 1,974 live HTTP and
HTTPS hidden services, of which CARONTE recovers the IP address of 101 (5%).
Our results can be considered the first measurement study of location leaks in
Tor hidden services. Since CARONTE only tests for some types of location leaks
and may fail to validate some leaks its results are conservative, i.e., some services
not deanonymized could still be vulnerable.

Our results also show that 21% of the deanonymized services are hosted on
Tor relays. Hidden services on Tor relays can easily be deanonymized, even
in the absence of location leaks, assuming a closed-world where relays’ IP ad-
dresses are candidate locations for a hidden service. This result also highlights
the importance of assuming an open-world, as 79% of hidden services CARONTE
deanonymizes cannot be deanonymized under the closed-world assumption.
CARONTE also identifies 9 hidden services that redirect their users to Internet
sites through HTTP, negating the benefit of encryption in the last hop.

This work makes the following contributions:

e We propose a novel approach to deanonymize hidden services through loca-
tion leaks. Our approach assumes an open-world, i.e., no prior knowledge
on candidate servers. To move from an open-world to a closed-world we
propose techniques to identify candidate servers from the content and con-
figuration of a hidden service.

e We implement our approach into CARONTE, a tool that attempts to dea-
nonymize the location of hidden services through location leaks.

e Using CARONTE we perform the first measurement study on the prevalence
of location leaks in hidden services. CARONTE analyzes 1,974 input hidden
services, recovering the IP address of 101 (5%). It also uncovers that 21%
of the deanonymized hidden services are running on Tor relays.

The rest of this paper is structured as follows. Section 4.2 introduces hidden
services, location leaks, and our approach. Section 4.4 details the approach and
CARONTE’s implementation. Section 3.4 presents the measurements. Section 3.5
discusses defenses against location leaks and Section 4.10 ethical considerations.
Section 4.9 describes related work and Section 4.11 concludes.

28

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

3.2 Overview and Problem Definition

In this Section we first briefly describe hidden services (Section 3.2.1), then we
detail the type of leaks that CARONTE looks for (Section 3.2.2), and finally we
provide an overview of our approach (Section 3.2.3).

3.2.1 Hidden Services

The Tor network provides hidden services as a mechanism for users to anony-
mously offer services accessible by other users through Tor. Hidden services
provide recipient anonymity, i.e., they hide the IP address of the server hosting
the hidden service. Hidden services can offer different functionality, e.g., Web
services and Bitcoin mining. This paper focuses on hidden Web services.

The creation of a hidden service picks a public key and a secret key and
creates an onion identifier by doing a SHA1 hash of the public key truncated
to 80 bits. The onion identifier is encoded in base32 producing a 16 charac-
ter string, which is appended the suffix “.onion” to produce an onion address,
e.g., niazgxevgzlrbpvqg.onion!. Some hidden services generate large numbers
of onion addresses until they find one containing a desired substring. For example,
Facebook’s official hidden service has onion address facebookcorewwwi.onion.
For Web services, hidden services are advertised as onion URLs, where the DNS
domain is replaced by an onion address, e.g., http://niazgxevgzlrbpvqg.onion/
content.html. The distribution of onion URLs happens out-of-band: there is
no central repository that lists all the hidden Web services available in a given
moment and thus users can access only those for which they know an onion URL.

Rendezvous protocol. The hidden service chooses a set of 3 Tor relays as
introduction points and creates circuits (i.e., encrypted tunnels) to each of them.
The hidden service then produces a signed descriptor that lists the service’s public
key and its introduction points. The descriptor is published in a distributed hash
table on the Tor relays using as index the onion identifier and time period.

To use a hidden service a Tor client establishes a circuit to a Tor relay ran-
domly chosen as rendezvous point. Then, it retrieves the hidden service’s descrip-
tor using the onion identifier and current time. Next, it creates another circuit
to one of the introduction points, and communicates the rendezvous point to the
hidden service through it. The hidden service creates a circuit to the rendezvous
point and communication between client and hidden service happens over their
respective circuits to the rendezvous point.

With hidden services all hops between client and hidden service are encrypted,
compared to visiting an Internet domain through Tor where communication be-
tween last Tor relay and the service is not encrypted, unless the application layer
is encrypted (e.g., with HTTPS).

1Fake onion address for illustration.

29

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

3.2.2 Location Leaks

Hidden services hide the location of the server hosting them, but they do not
protect against administrators unintentionally leaking information in the content
or configuration of their hidden services that may lead to deanonymizing them
(identity leaks) or the IP address of the hidden server (location leaks). The Tor
Project describes the risks of content and configuration leaks [114] but it is not
clear to what extent hidden services administrators are taking precautions against
them and how prevalent they are.

Using a leak in the content or configuration of a hidden service to deanonymize
their administrators or its location involves two steps. First, find some candidate
identity (e.g., the owner of a phone number embedded in the hidden services
content) or candidate Internet endpoint (e.g., an IP address or DNS domain in an
error page). Then, validate that the candidate identity truly corresponds to the
administrators or the candidate Internet endpoint to the IP address. In this work
we focus exclusively on location leaks that provide candidate Internet endpoints
for the TP address of the hidden service, by simply visiting the hidden service,
without adding any nodes to the Tor network or compromising the hidden service.
Identity leaks as well as leaks that an attacker can induce by exploiting the hidden
service’s code (e.g., SQL injections) are considered out of scope.

We do not focus on location leaks because they are more important, but
rather because we know a way to automatically validate candidate Internet end-
points to confirm that they are hosting the hidden service. Validation of identity
leaks is better suited for manual police work than for an automated tool. Of
course, deanonymizing the location of a hidden service may be a first step towards
deanonymizing its owner’s identity, e.g., by checking server registration records
or monitoring accesses to the server. Note that location leaks are a problem for
any type of anonymous services. While we focus on Tor hidden services, our ap-
proach is independent of Tor and can be applied to deanonymize the equivalent
of hidden services in other anonymity networks, e.g., I2P eepSites [55].

There exist many different types of location leaks that can lead to deanonymiz-
ing the hidden server’s location. CARONTE automatically identifies 3 types of
location leaks due to endpoints (i.e., IP addresses, domains) and unique strings
(i.e., Google Analytics ID, Google AdSense ID, Bitcoin wallets, page titles) em-
bedded in the content of the hidden service, and the HTTPS certificate of the
hidden service. Obviously, many other types of location leaks may exist and thus
CARONTE may not find all location leaks.

Validating location leaks. Our candidate selection techniques output candi-
date pairs (onion_ address, Internet endpoint), where the Internet endpoint is
a DNS domain or IP address that may host the hidden server of the onion ad-
dress. If the candidate pair contains an IP address, validation connects to the
IP address through the Internet but requests the content of the hidden service,

30

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

i.e., sets the HTTP Host header to the onion address. If the Web server delivers
the hidden service’s content, it confirms that the hidden service is hosted on the
candidate IP address. Note that the Tor network is an overlay of the Internet.
Thus, hidden Web services are hosted on a Web server with a public IP address.
The (hidden) Web server will reply to a request from the Internet to its public IP
address unless a firewall allows only connections from certain IP addresses. Even
when a firewall is used, the firewall will often be configured to allow connections
through Tor (i.e., from Tor relays), in which case we can run validation through
Tor (or from a Tor relay).

When the candidate pair contains a DNS domain, validation works the same
by first resolving the domain to an IP address. The main reason why an Internet
domain may resolve to the public IP address of the hidden Web server is when
the domain identifies an Internet service hosted on the same Web server as the
hidden service. Thus, if the hidden service runs on its own Web server CARONTE
will probably fail to validate a candidate domain, even if the candidate domain
belongs to the hidden service owners. For example, CARONTE could identify
from the content of the hidden service an Internet site owned by the hidden
service’s owners, but hosted on a separate Web server. While CARONTE cannot
validate that location leak, network-level attackers could monitor connections to
the Internet site the hope that the hidden service owners relax protections when
accessing it. For that reason, CARONTE still outputs the candidate domains it
found even if they are not validated, so that the hidden service administrator can
check them.

In summary, after the final validation step, CARONTE does not generate false
positives since all leaks were inspected and confirmed. All leaks output after
the validation step, indicate not just that CARONTE successfully downloaded
the same content from the hidden service and the Internet Endpoint, but also
that the two servers are co-located on the same physical machine. On the other
hand, CARONTE may have false negatives due to unsupported classes of leaks
and leaks it cannot validate. We discuss how to safely configure hidden services
in Section 3.5.

Unintentional leaks. Hidden services often contain sensitive content and need
to protect their location to avoid censorship or legal prosecution. However, not
all hidden services are like that. Some hidden services advertise an Internet clone,
i.e., an Internet site that provides the same content, and explicitly link to it, e.g.,
Facebook. Similarly, an Internet site may explicitly link to its hidden service
clone, indicating its availability to privacy-concerned users. In Section 3.4 we
describe 3 automatic checks that CARONTE performs to classify location leaks
leading to deanonymizations as unintentional or not.

31

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

INTERNET

e 4
Sonar Search
Engines

- -

\4 \4

1. Tor Exploration 2. Candidate Selection 3. Validation
Onion - Onion URL | Fetch Onion q 9 ‘ Certificates Identifiers - Internet Location
URLs expansion Page) Exploration Leaks
DB Candidate

Page Titles Endpoints Pairs

Response
Similarity

Figure 3.1: Approach overview.

3.2.3 Approach Overview

Figure 3.1 summarizes our approach. It comprises three main steps: exploration,
candidate selection, and wvalidation. Exploration takes as input a set of initial
onion URLs (Section 3.3.1), creates an extended set of onion URLs and visits
them through HTTP and HTTPS to collect the content of the hidden service
and its certificate chain (Section 3.3.2). All the information of the exploration is
stored in a central database.

Candidate selection takes as input the information in the database and out-
puts a list of candidate pairs (onion_address, Internet_endpoint), where the
Internet endpoint is a DNS domain or IP address considered a candidate to be
hosting the hidden server of the onion address (Section 3.3.3). To select candi-
dates, it examines the endpoints (i.e., URLs, email domains, IP addresses) and
unique strings (i.e., Google Analytics ID, Google AdSense ID, Bitcoin wallets,
page titles) in the onion pages collected from the hidden service, as well as its
HTTPS certificate. It searches the unique strings on Internet search engines to
find if they are embedded in the content of Internet sites and queries certificate
stores (i.e., Sonar [64]) to find Internet sites using the same certificates as the
hidden service.

Validation takes as input the candidate pairs and verifies if a candidate In-
ternet endpoint indeed hosts the hidden service (Section 3.3.4). It visits the
Internet endpoints to collect their content and certificates. Then, it compares
pairs of HTTP responses: one from the candidate Internet endpoint and the
other from the hidden service. If it finds a pair with similar content and served
from a similar Web server it outputs a location leak.

3.3 Approach

3.3.1 Collecting Onion URLSs

CARONTE takes as input a list of onion URLs corresponding to a hidden service to
deanonymize. These may be provided by an administrator that wants to check its

32

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

hidden service or come from external means. However, for evaluating CARONTE
we need to collect onion URLSs for a large number of hidden services.

Obtaining onion URLs is a challenging process because there is no centralized
repository and valid onion addresses are difficult to predict being a SHA1 hash
of the hidden service’s key truncated to 80-bit. Owners of hidden services obtain
their onion address during installation and are in charge of advertising their
onion URLs. Given the nature of some hidden services, their onion URLs may
not be publicly advertised, but only disclosed in private forums. In addition,
many hidden services do not link to other hidden services, which limits crawling.
Furthermore, onion addresses exhibit high churn, as the same hidden service
may change onion addresses over time. In 2013, Biryukov et al. [13| presented a
technique to list all onion addresses leveraging a flaw in Tor. However, that flaw
was fixed after version 0.2.4.10-alpha [12].

As a consequence of these challenges, many sites exist that list onion URLs of
hidden services with a description of their content such as “Deepweb links” [23]
and “The Hidden Wiki” [111|. There are also specialized search engines for hid-
den services, typically accessible both from the Internet and through a hidden
service [1,29]. In addition, many onion addresses can be found by querying Web
search engines such as Google and Bing.

We have developed scripts that periodically visit the above resources, scrape
their links, perform searches on common terms, and feed the identified onion
URLs to CARONTE. In addition, as CARONTE explores the hidden services, it
adds any new onion URLs found in their content to the list, so that they are
visited in the next round of exploration. Overall, CARONTE explores 15 K onion
URLs on 6 K onion addresses. On February 2013, Biryukov et al. obtained a
complete listing of hidden services and scanned them for open ports [12]. They
found 3,741 HTTP hidden services listening on 80/tcp, while CARONTE finds
1,965. Assuming the number of HI'TP hidden services has remained relatively
constant since then, our sample would cover 52% of them, with popular hidden
services being better represented.

3.3.2 Exploring Hidden Services

Given the initial list of onion URLs, CARONTE first creates an extended set of
onion URLs that includes for each onion address: the root page, all resources
for that onion address in the initial set, and one random resource. The random
resource is added to trigger a not found error page, which may leak configuration
information specific to the hidden server.

The exploration visits each onion URL in the extended set through Tor eight
times: using HTTP and HTTPS, two Host header values (i.e., the onion address
and a random onion address), and requesting the resource identified during the
collection and a random one. The intuition behind using a random onion address
is that the hidden service’s Web server may also host other sites. If the hidden

33

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Method Description

Endpoints Extract IP addresses, Internet domains in email addresses,
and Internet domains in URLs embedded in onion pages.

Identifiers Use search engines to locate Internet domains embedding

Google Analytics, Google AdSense, and Bitcoin wallet iden-
tifiers found in onion pages.

Titles Use search engines to locate Internet domains with similar
title as onion page.

Certificates (1) Extract DNS domains and IP addresses from leaf certifi-
cate of hidden service. (2) Search leaf certificate of hidden
service in Sonar [64] to obtain IP addresses where observed.
(3) Search public key of hidden service certificate in Sonar
to obtain IP addresses where observed. (4) Search Sonar
for certificates on the Internet with onion addresses and the
IP addresses where observed.

Table 3.1: Description of candidate endpoints.

service is not the default site, the Web server may return the default site to the
random onion address, and that site may leak some candidate Internet endpoints.
For each request, the exploration collects the response, pre-processes it, and
stores both request and response in a database. We limit CARONTE to download
only textual and HTML responses (i.e., onion pages) to avoid storing copyrighted
software and offensive multimedia content (e.g., explicit videos and pictures).
This restriction means that CARONTE cannot identify leaks in other content
types, e.g., EXIF data in images, although we do not expect they contain many
candidate endpoints. For HTTPS, it also stores the certificate chain provided by
the hidden server. The exploration is multi-process and runs from a single host;
furthermore this step is rerun over time as new onion URLs are collected.

3.3.3 Identifying Candidate Endpoints

After the exploration finishes one round, the next step is to extract for each onion
address a list of candidate Internet endpoints, i.e., DNS domains and IP addresses,
which may point to the hidden server. For this, CARONTE examines the endpoints
(Section 3.3.3) and unique strings (Section 3.3.3) contained in the onion pages
collected through Tor, as well as the HT'TPS certificate of the hidden server
(Section 3.3.3). Table 3.1 summarizes the methods used to obtain candidate
endpoints that are detailed in this section.

The input to this step is the information from the exploration stored in the
database. This step does not require interacting with the hidden service, but
it interacts with some public Internet Web services. The output is a list of
candidate pairs (onion address, Internet endpoint) where each pair indicates

34

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

that the hidden service at the onion address could be hosted at the Internet
endpoint. The same onion address may appear in multiple candidate pairs with
different Internet endpoints.

Internet Endpoints in Onion Pages

Internet endpoints contained in the onion pages of a hidden service are good
candidates for the hidden server. While we expect hidden service administra-
tors to be careful about Internet URLs they link to, there exist several cases in
which such leaks can happen, e.g., links or email addresses pointing to other sites
of unrelated content but hosted on the same Web server, IP addresses and do-
mains leaked in error pages, and endpoints in comments not visible and possibly
forgotten.

For each onion page in the database, CARONTE applies regular expressions
to extract URLs, email addresses, and IP addresses in the page. If an extracted
URL contains an onion address, it is discarded since we are interested in Internet
endpoints, but the onion URL is added to the database if previously unknown.
If the URL contains a DNS domain, the domain is checked against the Alexa
list of one million most popular domains. Alexa domains are discarded since
very popular domains do not typically have a hidden service or publicly advertise
it when they do (e.g., Facebook). Non-Alexa domains are added to the list of
candidate Internet endpoints for the onion address of the page examined. For
email addresses, if the email domain is in a list of popular email providers, it is
discarded, otherwise it is a candidate.

IP addresses in the onion page are added as candidates, except when the onion
page contains more than 5 TP addresses. In that case, all IP addresses in the page
are discarded to prevent large directories of IP addresses unrelated to the hidden
server (e.g., lists of Tor relay nodes) to be added as candidates.

Unique Strings in Onion Pages

A general technique to identify candidate Internet endpoints is to first extract
some distinctive string from the content of the onion pages of the hidden ser-
vice and then look up those strings in Internet search engines. Search engines
will return Internet sites where they have observed those strings, and their DNS
domains can be used as candidate Internet endpoints. This technique can be
applied to any unique string that appears in the content of a hidden service. The
more unique the string is, i.e., the less it appears in unrelated hidden and Internet
services, the better the candidates produced. In any case, candidate pairs from
non-unique strings are removed during validation. So far, we have added support
for two classes of such unique strings: identifiers and page titles. We detail them
below and leave as future work applying this technique to other classes of unique
strings in the onion pages.

35

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Identifiers. Onion pages may contain identifiers unique to the owners of the
hidden service. CARONTE queries dedicated search engines to find Internet sites
that also contain those identifiers. Such Internet sites likely belong to the owners
of the hidden service and are good candidates for being hosted on the same Web
server as the hidden server. Even when they are not, such leaks are dangerous, as
those other Internet sites can be monitored by an adversary. If the owners of the
hidden service connect to those other Internet sites they own (e.g., to configure
them or change their content) without precautions (e.g., without a VPN) their
identity could be revealed.

For each onion page, CARONTE applies regular expressions to extract Google
Analytics and Google AdSense identifiers, as well as Bitcoin wallets. Google Ana-
lytics identifiers are unique to a Google Analytics account and are often embedded
in pages to collect statistics. Google AdSense identifiers are less frequently in-
cluded in pages but are unique for a publisher’s account. Bitcoin wallets are
often added to ask for donations. An onion page could add the Bitcoin wallet of
some other user to encourage donations to that user’s site and could even spoof
the Google Analytics identifier of an unrelated account. This is not an issue, as
unrelated candidates will be discarded during validation.

For each unique identifier extracted from at least one onion page, CARONTE
queries dedicated identifier search engines that index Internet pages where iden-
tifiers have been observed (e.g., SamelD [94]). DNS domains where the identifier
has been observed are added as candidates for the onion addresses of the onion
pages from where the identifier was extracted.

Titles. Page titles are often specific to the content of a page. Thus, they can
also be used as distinctive strings to be looked up in Internet search engines.
To reduce the number of queries to search engines, CARONTE first removes any
title served by more than 10 hidden services, which removes generic titles such as
those of default error pages. Each unique title is then queried on a search engine.
DNS domains of the top 10 Internet sites where the title has been observed are
added as candidates for the onion address of the onion page with that title.

HTTPS Certificates

CARONTE uses four methods to select candidate pairs from the collected leaf
certificate of each HTTPS hidden service. The first method is to extract from
the hidden service’s certificate the Subject’s Common Name (CN) and the Subject
Alternative Name (SAN) extension. DNS domains and IP addresses in those fields
are added as candidates for any onion address that provided that certificate. The
intuition is that Web servers hosting multiple sites often reuse the same leaf
certificate for all sites. While it is possible to configure separate certificate chains
for each site this relies on the client sending the SNI header. Thus, hidden
services’ certificates may contain the domains or IP addresses of other Internet

36

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

sites hosted on the same Web server.

Even if the certificate of a hidden service does not contain any Internet end-
points, a leak may happen if that certificate (or its public key) is also used by
an Internet site on the same Web server. The other 3 methods leverage recently
created certificate repositories that store information about certificates that have
been observed in Internet traffic (passively, by crawling, or by scanning the Inter-
net). These include Rapid7’s Sonar project [64], ICSI’s Certificate Notary [56],
and Google’s Certificate Transparency [45]. ICSI’s notary does not provide the
IP addresses that served a certificate and Certificate Transparency only allows
querying for extended validation (EV) certificates. CARONTE uses Sonar, which
contains 35 M unique certificates obtained by periodically scanning the Internet.

The second method computes the SHA1 hash of the DER format of the hid-
den service’s certificate. Then, it uses the hash to search in Sonar whether this
certificate has been served by any Internet site. If so, the IP addresses from
where the certificate was served are added as candidates for the onion addresses
from where CARONTE collected the certificate. Interestingly, some researchers
have recently hypothesized that the Silk Road takedown could have been done
by correlating the Silk Road’s HTTPS certificate with an Internet HT'TPS scan
as we do [46].

The third method extracts the public key of the hidden service’s certificate
and searches in Sonar for certificates served by Internet sites that use the same
public key. Public keys are left unchanged in many certificate replacements [83].
Thus, it could happen that Sonar observed an older certificate with the same
public key in the same IP address still hosting the hidden service.

The fourth method searches in Sonar for any certificate whose Subject’s CN or
SAN extension contains an onion address. Intuitively, a certificate that contains
an onion address but is observed on the Internet likely corresponds to a Web
server that hosts both hidden services and Internet sites. This is a wide search
for any certificate with an onion address, even if the certificate was not seen
during exploration. This method is unlikely to deanonymize a specific target
hidden service, but is included for completeness of the measurement study. The
onion address and each TP address that served the certificate form a candidate
pair. If the onion address was previously unknown, it is queued for exploration.

3.3.4 Validation

Given the list of candidate pairs (onion address, Internet endpoint) validation
first resolves the candidate domain endpoints to candidate IP addresses. For
each candidate pair, it sends eight HT'TP requests to the candidate IP address
through the Internet. It fetches both the root page and a random resource using
HTTP and HTTPS. In addition, it uses two different values of the Host header:
the Internet endpoint (domain or IP) and the onion address. The responses and
certificate chains are stored in the database. Then, CARONTE computes the

37

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

distance between pairs of responses, where one response comes from the Internet
endpoint and the other was received through Tor from the hidden service. We
detail this distance in Section 3.3.4. If it finds a pair of similar, non-generic,
responses the leak is confirmed.

If the candidate endpoint corresponds to a site on the same Web server as
the hidden service, that site can serve similar content as the hidden service or a
completely unrelated site. If the candidate site is similar, when providing the can-
didate endpoint in the Host header, the similarity with the hidden service content
will manifest. If the sites are different, when provided with the onion address in
the Host header the Web server will serve back the hidden service content through
the Internet, and the similarity will manifest. The Web server may be configured
to serve the hidden service only through Tor, which prevents validation through
the Internet. However, validation can also contact the Internet candidate end-
point through Tor, which would bypass this protection. Validation could also be
performed using the clock-skew fingerprinting technique from Murdoch [80]. We
leave these as future work.

The rest of this section describes the HT'TP response similarity metric (Sec-
tion 3.3.4), classifying leaks as intentional or unintentional (Section 3.3.4), and
clustering confirmed leaks on the same servers (Section 3.3.4).

HTTP Response Similarity

Our HTTP response similarity metric takes as input two HTTP responses (one
from the hidden service, the other from the candidate Internet endpoint) and
outputs one if both responses have similar content and come from a similar server,
zero otherwise. When the output is one, the candidate pair is flagged as a location
leak.

One challenge is that the similarity should ignore generic pages, e.g., “It works”
pages and default error pages, which do not indicate a leak even if observed in
both responses. Another challenge is that the similarity needs to handle dynamic
content, which may make two equivalent responses be different.

CARONTE uses a simple, yet effective, blacklisting mechanism to identify
generic pages. To populate the blacklist, it hashes the body of every page in
the database. Hashes that were retrieved from at least 5 different DNS domains
or were associated to at least 5 status codes are added to the blacklist. When
computing similarity, if any of the two responses has a body whose hash is in the
blacklist, the similarity is considered zero and no leak is flagged.

The similarity metric uses 7 features. For each response, it computes the hash
of the body and extracts the values of the E-Tag, Last-Modified, Content-Length,
Server, and X-Powered-By headers. In addition, it computes the similarity of the
two HTML documents using an off-the-shelf package [54|, which compares the
HTML tag structure of the documents, but not the tag contents. The HTML
similarity is high even if both documents contain different dynamic content, as

38

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

[HWP RESPONSESJ

-
>

X-Powered-By

Yes

Server
Similarity

Page_Size >1KB
and
HTML Sim. >0.75

Body
0 Similarity
'

Figure 3.2: HTTP response similarity algorithm

long as the structure of the HTML has not changed significantly.

The similarity metric computation is summarized in Figure 3.2. First, it
determines if the content is served from similar servers. For this, it checks whether
the Server and X-Powered-By header values are identical. If either the Server or
X-Powered-By headers are missing in both responses it considers them identical.
If those headers are not identical, it considers the responses different (i.e., outputs
zero). Then, it determines that the body of both pages are similar if: they have
the same hash and the hash is not in the blacklist, or if they have the same E-Tag
value, or the same Last-Modified value, or if both pages are larger than 1 KB
and their HTML similarity is greater than 0.75. This threshold allows for small
changes in the HTML structure of the pages because the two pages may have
been collected at different points in time.

39

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Determining Leak Intention

Next, our approach determines if the leaks are unintentional or not. Clearly
we cannot know for sure whether the leak was unintentional, but there exist
some indications that the hidden service owners may not be trying to protect
their service’s location. CARONTE uses 3 automatic checks to classify a leak as
intentional.

First, it compares the onion address and the Internet endpoint. If their longest
common substring is larger or equal to 4 characters, they are considered similar.
Since the onion address comes from a truncated hash, an onion address with a
common substring with an Internet domain indicates brute-forcing on the onion
address generation (e.g. facebookcorewwwi.onion and www.facebook.com).

Second, if the Internet site contains the onion address of the hidden service, the
leak is also intentional. For example, the Internet site could advertise: “Hidden
service available at niazgxevgzlrbpvqg.onion”. This check is only applied to
connections where we do not spoof the Host header to prevent errors from servers
that echo back the domain provided.

Third, it compares the Internet endpoint with the title of the onion page where
the leak was validated. If the title of the page retrieved from the hidden service is
embedding the Internet endpoint, likely the owner of the service is intentionally
reminding users that the hidden service is also reachable through the Internet.
This check is not applied to connections where CARONTE spoofs the Host header.

If none of these 3 conditions is satisfied, CARONTE considers the leak unin-
tentional.

Clustering Leaks

A leak comprises of an onion address and an Internet endpoint (DNS domain
or IP address). Multiple leaks may correspond to the same hidden service, e.g.,
a hidden service may change onion address over time or multiple DNS domains
may match an onion address. To simplify the analysis of leaks, CARONTE clusters
them based on their onion address, endpoint, and IP addresses.

First, for each leak with a domain endpoint, CARONTE resolves the domain
and outputs a tuple (onion addr, endpoint, IP) for each IP address the domain
resolves to. A similar tuple is created for IP endpoints. The clustering uses a
distance function that given two tuples returns zero if the onion address, the IP
address or the effective second-level domain (ESLD) are the same, otherwise it
returns one. The ESLD of a domain is the SLD unless the SLD enables third
parties to obtain a subdomain, in which case it is the 3LD. For example, for
www.google.com the ESLD is google.com, and for books.amazon.co.uk it is
amazon.co.uk. To obtain a domain’s ESLD CARONTE uses Mozilla’s Public
Suffix List [78].

The clustering starts with zero clusters and iterates on the list of tuples. For
each tuple, if the distance is zero to any tuple already in a cluster it adds the

40

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

All | Live | HTTP | HTTPS
Onion URLs | 31,849 | 4,794 4,617 177
Onion addr. 6,426 | 1,974 1,965 79

Table 3.2: Onion URLs and addresses in our collection (all), those returning content
(live), and their split by protocol.

tuple to the cluster. If the distance is zero to tuples in different clusters, it merges
those clusters and adds the tuple to the merged cluster. Otherwise, it creates a
new cluster for the tuple.

3.4 Evaluation

This section details the evaluation of CARONTE: the datasets used (Section 4.3),
the selection of candidate pairs (Section 3.4.2) and the validation of the candidate
pairs (Section 3.4.3).

3.4.1 Datasets

Table 3.2 summarizes the collection and exploration of onion URLs. It shows the
number of onion URLs and addresses initially collected from search engines and
indices (All), the total number of onion URLSs that returned some content (Live),
and the split by protocol. Overall, CARONTE explored 31,849 onion URLs from
6,426 onion address. Only 31% of the onion addresses were alive, which may be
due to non-HTTP(S) services, short-lived hidden services, and hidden services
that change onion address over time. Only 4% of the live onion addresses offered
HTTPS, which may be due to the communication with hidden services being
encrypted in all hops and the difficulty of having a CA sign a certificate for an
onion address. The exploration took place in 4 rounds, each round lasting three
days on average.

Sonar data. The Sonar project |64] offers data from 68 Internet-wide scans
performed between October 2013 and February 2015. Each scan has 3 files. The
certs file (average size of 448MB per scan) has one row for each certificate with its
SHAT1 hash in DER format and the certificate in base64 encoding. Each row in
the names file (30 MB) contains the certificate hash and the Subject’s CN. The
hosts file (2 GB) contains in each row the certificate hash and an IP address from
where the certificate was collected. Overall, the Sonar data comprises 205 GB
and contains 35 M distinct certificates.

41

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Type Endpoints Onion Addr. | Cand.
URLs 6,207 (11,207) | 916 (2,301) 4,372
Domains 182 (231) 172 (269) 249
IPs 73 (22,182) | 75 (89) 102
| TOTAL | 4,704 |

Table 3.3: Endpoints extracted from onion pages.

3.4.2 Candidate Pairs

This section describes the candidate pairs extracted from the endpoints, identi-
fiers, and certificates.

Endpoints. Table 3.3 summarizes the endpoints extracted from the onion pages
collected during exploration. For each type of endpoint, it shows the number of
distinct endpoints after filtering (before filtering in brackets), the number of onion
addresses with at least one endpoint after filtering (before filtering in brackets),
and the number of candidate pairs obtained from that type of endpoint. The
numbers show that the filtering of non-Alexa domains and pages with more than
5 IP addresses removes 81% of the endpoints, most of those being IP addresses
from Tor relay status pages. After filtering, the median contribution of each onion
address is: 2 URLs, 1 domain from email addresses and 1 IP address. CARONTE
produces 4,704 candidate pairs from endpoints: 93% from URLs, 5% from email
domains, and 2% from IP addresses.

Identifiers. Table 3.4 summarizes the identifiers extracted from the onion pages
collected during exploration. For each type of identifier, it shows the number
of distinct IDs, the number of onion addresses and URLs containing at least
one identifier of that type, and the number of candidate pairs obtained from
these identifiers by searching on Internet search engines. CARONTE extracted 58
unique identifiers: 24 Google Analytics IDs, 3 Google AdSense IDs, and 31 Bitcoin
wallets. Only 66 hidden services (3.3%) contained an identifier, indicating that
most administrators are careful to avoid them. After querying the 58 identifiers
on search engines, CARONTE found candidate Internet endpoints for 32 (64%),
for a total of 192 candidate pairs.

Titles. After filtering titles in onion pages that appear in more than 10 hidden
services CARONTE identifies 583 distinct titles. Looking up these titles on a
search engine returns hits for 183 titles. From those hits, CARONTE produces
200 candidate pairs.

Certificates. Of the 79 onion addresses with port 443/tcp open, 50 provided
a certificate chain. CARONTE uses 4 methods to obtain candidate pairs from

42

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Onion Cand.

Identifier IDs | Addr. | URLs | Pairs
Google Analytics 24 33 52 146
Google AdSense 3 3 3 24
Bitcoin 31 31 36 22

| TOTAL | 58] 66 90| 192

Table 3.4: Identifiers extracted from the onion pages.

HTTPS certificates, which are summarized in Table 3.5. The table shows the
number of candidate pairs, and the number of distinct onion addresses, IP ad-
dresses, and DNS domains in those pairs. CARONTE produces a total of 366
candidate pairs from certificates. Next, we detail the results for each method.

First, CARONTE extracts DNS domains and IP addresses from the Subject’s
CN and SAN extension from each leaf certificate collected during exploration. Of
the 50 leaf certificates, 11 (22%) contain only onion addresses, 3 (6%) contain
both Internet endpoints and onion addresses, 26 (52%) contain only Internet
endpoints, and 10 (20%) contain no Internet endpoint or onion address. The
3 certificates with both onion and Internet endpoints are likely doing this on
purpose. However, 52% of the HTTPS hidden services are leaking endpoints in
their certificate. This method produces 81 candidate pairs for 29 onion addresses
(2.8 candidate endpoints per onion address).

Second, CARONTE searches the hash of the 50 leaf certificates in Sonar. It
finds 30 of them, so at least 60% of the HTTPS hidden services are using the same
certificate that an Internet Web server does. Of those 30, 26 were identified by
the previous method. This method identifies 4 certificates that were not leaking
an Internet endpoint but can still be found on Internet Web servers. Of those 4,
3 contain no Internet endpoints or onion addresses and the other one an onion
address only. For each of the 30 certificates, Sonar provides one or more IP
addresses from where the certificates were collected for a total of 188 candidate
pairs.

Third, CARONTE searches the public keys of the 50 leaf certificates in Sonar.
This method finds 9 new certificates that share their public key with one of the
50 leaf certificates. Those 9 certificates are observed being distributed from 20
IPs, of which 5 are not known from the previous methods.

Fourth, CARONTE searches Sonar for certificates that contain an onion ad-
dress in their Subject CN or SAN extension. It finds 30 previously unknown
certificates (i.e., not observed during exploration), each with one onion address.
Some of those are additional Facebook certificates, which are excluded because
they generate many useless candidate pairs. The IP addresses from where the
remaining certificates were observed produce 97 candidate pairs.

43

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Candidates
Method | Pairs | Onion Addr. | IPs | Dom.
Method 1 81 29 0 81
Method 2 188 30 | 188 0
Method 3 20 91 20 0
Method 4 97 30 | 37 60
| TOTAL [366 | 63| 225| 141

Table 3.5: Candidates pairs from certificates.

Total. The left side of Table 3.6 summarizes the candidate pairs per method.
In summary, CARONTE produced 5,462 candidate pairs: 86% from endpoints, 3%
from identifiers, 4% from titles, and 7% from certificates.

3.4.3 Validation

Of the 5,462 candidate pairs, 303 (5.8%) successfully validated. Of those 303
pairs, 88 had an IP address as Internet endpoint and 215 a domain name. Those
303 pairs contained 100 unique onion addresses, 87 IP addresses, and 163 domains.
One of the onion addresses offered two different hidden services, one through
HTTP and the other through HT'TPS. Thus, 101 hidden services were successfully
deanonymized by CARONTE. Next, we classify leaks as intentional or not.

Intentional leaks. CARONTE automatically labels as intentional those leaks
that match any of the 3 rules described in Section 3.3.4. Overall, 49% deanonymi-
zed hidden services are considered to be leaking their location intentionally. For
these, the hidden service has an Internet site counterpart that serves similar con-
tent and runs on the same Web server, and there are references from the onion
site to the Internet site and/or viceversa, e.g., the onion address appearing in the
Internet site or the title of the onion site being similar to the domain of the Inter-
net site. This result indicates that almost half of the hidden services CARONTE
deanonymized may not be trying to protect the hidden server’s location. This
may be due to a selection bias in our collection towards the most advertised hid-
den services. One benefit to these Internet sites of having a hidden service is that
users of the hidden service have their communication encrypted at all hops from
the client to the hidden service. Furthermore, since the onion address is derived
from the public key through a hash, the public key is self-authenticating, which
helps preventing man-in-the-middle attacks.

Unintentional leaks. We manually analyze 15 of the unintentional leaks.
They correspond to 4 cases. First, 5 hidden services run on a Web server with
multiple virtual hosts, where the hidden service is not the default virtual host.

44

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Candidates Deanonymizations
Method Pairs | Onions | All | Unintentional
Endpoints 4,704 793 | 67 32
Identifiers 192 66 | 12 2
Titles 200 157 | 44 20
Certificates 366 63| 30 18
TOTAL 5,462 841 | 101 51

Table 3.6: Summary of location leaks.

When connecting to the hidden service providing a random domain in the Host
header the Web server provides the default site, different from the hidden service,
which contains the candidate Internet endpoints.

Second, 8 hidden services are deanonymized through certificate leaks, which
provide a candidate Internet endpoint, even if the content of the hidden service did
not provide any candidate. Of these, 4 are certificates that include the domain or
IP address of the hidden server; the other 4 are certificates with an onion address
observed by Sonar but not in our exploration.

Another hidden service is deanonymized because it contains an email address
to a DNS domain with an Internet site also hosted in the same Web server. While
the Internet site serves content unrelated to the hidden server, when querying the
Internet site with the Host header being the onion address, the hidden service
content is returned through the Internet.

The last deanonymization happens with two hidden services running on the
same onion address through HTTP and HTTPS, respectively. One has an inten-
tional leak to an Internet site offering the same content through both HT'TP and
HTTPS. When requesting the Internet site with the Host header being the onion
address the two hidden services are observed, one on each port.

Location leak types. Table 3.6 summarizes the candidate pairs and deanonymi-
zations per method. For the candidates it shows the total number of pairs and
the distinct onion addresses in those pairs. The deanonymizations show the to-
tal onion addresses deanonymized by each method and how many of those are
classified as unintentional. When considering all 101 deanonymized hidden ser-
vices, URL endpoints are the most effective content leak being present in 67
deanonymizations, followed by titles (44), certificates (30), and identifiers (12).
The identifiers correspond to Google Analytics (8) and Bitcoin wallets (4). Note
that some deanonymizations contain several types of leaks. When considering
only unintentional leaks, the most effective location leaks are endpoints (32), ti-
tles (20), and certificates (18). These numbers indicate that certificate leaks are
best to identify unintentional leaks (60%) and identifiers worst (17%), which may
indicate that administrators are already careful about them.

45

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Clustering. Grouping the 101 hidden services by shared domains and IP ad-
dresses leaves 80 clusters. Of those, 12 contain multiple onion addresses. Three
of those 12 correspond to hidden services that offer the same content through
different onion addresses. The other 9 clusters with multiple onion addresses
correspond to servers that are being used for hosting multiple hidden services.

Tor relay hosting. Of the 101 hidden services deanonymized, 21 are hosted on
13 Tor relays. Of those, 18 are considered intentional leaks and 3 unintentional,
a smaller fraction of unintentional leaks compared with non-relay servers. This
matches reports by the Tor Project that several Tor relays were taken down during
operation Onymous [109]. In some cases multiple hidden services are hosted at
the same Tor relay, indicating that those hidden services belong to the owner
of the Tor relay or that the Tor relay provides hidden service hosting services.
Note that the Tor Project discourages hosting hidden services on Tor relays as
Tor relay runtime is known and can be correlated with the uptime of a hidden
service [114]. Furthermore, CARONTE could be configured to consider the IP
addresses of all Tor relays as candidates for all hidden services. We leave this as
future work as our goal is to demonstrate open-world deanonymization and also
to avoid impacting Tor relays.

Redirections. Fourteen hidden services redirect to an Internet site counterpart
at some point of the study. Surprisingly, 9 of these hidden services redirect to
the HTTP version of the Internet site. This is problematic for their users as they
expect all hops of the communication to be encrypted when accessing a hidden
service, but the last hop will not be. For these sites, the benefit of having a
hidden service is not clear.

3.4.4 Performance

CARONTE currently runs from one off-the-shelf workstation. Once preprocess-
ing finishes (e.g., parsing/indexing Sonar records) analyzing a hidden service
takes close to one minute. Most time is spent in network connections. To scale
CARONTE we could use multiple backend servers. Once a hidden service to be
deanonymized is submitted a link could be generated where results would be
available after the analysis completed.

3.5 Defenses

This section summarizes best practices that administrators of hidden services
should take to eliminate location leaks. Some of these best practices are men-
tioned at the Tor Project’s how-to configure a hidden service [114].

46

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

Use a dedicated Web server. CARONTE can validate candidate domains
when the same Web server is used to host both a hidden server and an Internet
site. The Tor Project recommends installing the hidden service in a separate Web
server, but we believe this is a must and we recommend changing the wording to
emphasize this. Administrators should specifically avoid reusing an existing Web
server that already hosts an Internet site by simply creating a new virtual host.
It is also a good idea to host the hidden service on a dedicated machine.

Bind the web server to localhost. Another best practice is binding the
hidden service’s Web server only to localhost, so that HTTP requests from Tor
(running as a SOCKS proxy on localhost) are successfully answered, but HTTP
requests from the Internet receive an HTTP Forbidden error response. We em-
phasize that this protection is required in addition to running the hidden server
on a dedicated Web server. More specifically, if the hidden server is hosted on
the same Web server as another Internet site, even if the Web server is bound
to localhost, it is still possible to perform validation by contacting the Internet
site over Tor, rather than through the Internet. To prevent configuration errors
we recommend the Tor Project to add detailed instructions on how to configure
a Web server in this manner, at least for the most common open source Web
Servers.

A firewall can also block non-Tor connections to the hidden server. Network
firewalls can block connections that do not come from a Tor relay. However, the
list of Tor relays needs to be continuously updated. Host firewalls can only allow
connections from localhost. Similar to binding the Web server to localhost, the
hidden service should still be run on a dedicated Web server. The advantage is
that Internet connections fail without generating an error message.

Another principle could be that if the server does not know its IP address it
cannot leak it. Thus, the hidden service could be run in a NATed VM without
a public IP address. However, other leaks (e.g., domain names in the content)
could still happen.

Site auditing. Administrators should carefully audit their site’s contents for
leaks before making the site available as a hidden service. A general rule is that
given the many possible sources of location leaks, the smaller the site, the easier
the auditing and the smaller the probability of location leaks. During the audit,
administrators could use CARONTE to identify validated location leaks, as well as
to examine the candidate pairs CARONTE could not validate. Also, all external
links should be made to point to onion addresses rather than Internet domains
or IP addresses. Since not all Internet sites have a corresponding onion address,
they should also audit all remaining IP addresses and Internet domains so that
they do not point to the public IP address of the hidden server. They should
also remove links to Internet domains or IP addresses owned by them, even when
hosted in other servers, as tracking accesses to those other servers may reveal the

47

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

identity of the administrators. Furthermore, identifiers such as email addresses,
Google Analytics, Google AdSense, and Bitcoin addresses should be removed or
at least not be reused in any other sites.

Certificates. Certificates with onion addresses in the CN or SAN fields should
not include DNS domains or IP addresses, and should exclusively be used on
Web servers that only run a hidden service bound to localhost. In addition, a
hidden service should never reuse the certificate chain of another Internet site
from the owner. Nowadays, the vast majority of hidden services use self-signed
certificates. Any entity willing to obtain a proper TLS certificate, is required to
pass the Extended Validation test, which includes verification entity’s identity by
the CA. This does not fit to hidden services, which by definition are anonymous
excluding some exceptions (e.g., Facebook’s hidden service seems to have a valid
certificate chain [92]). Thus, certificate chains do not validate and will generate
warnings, but man-in-the-middle attacks are limited by the fact that public keys
of hidden services are self-authenticating.

Avoid Tor relays. Hidden services that want to hide their location should
not be hosted on Tor relays, as this enables attackers to perform closed-world
validation using the IP addresses of all Tor relays as candidates for any hidden
service to be deanonymized. Also, Tor relay uptime is public and can be correlated
with hidden service uptime. Similarly, running a hidden service on a machine that
is not always on enables uptime correlation attacks.

Other attacks. Some other recommendations are designed to protect against
network-level adversaries or code vulnerabilities. For example, not running a hid-
den service on a Tor relay or on a machine that is not always on, as host uptime
can be correlated with traffic to leak the server’s identity. Or, running the Web
server of the hidden service in a sandbox to limit the impact of software vulnera-
bilities. Applications as nitko [18], DirBuster [97] and theHarverster [19] can be
used to automate the process of finding possible leaks in the contents accessible
through the web application. Other tools such as w3af [4] and sqlmap [11] can
perform even more aggressive tests, attempting to find and exploit exploiting web
application vulnerabilities.

While all the recommendations mentioned above do not make the hidden
service resistant to any kind of leaks, they represent good practices that every
owner of a hidden service should take care. Following these guidelines it is possible
to harden the service and reduce sensibly risks of unintentional leaks about the
physical location of the server or owner’s identity.

48

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

3.6 Ethical Considerations

While there exist tools like Shadow [57] to simulate attacks against Tor, the appli-
cation layer leaks studied in this paper cannot be easily simulated because they are
caused by erroneous configurations by administrators of hidden services. Similar
to Biryukov et al. [13] we deem experiments on the live Tor network worthwhile
and necessary to enhance the scientific understanding of hidden services, as long
as they do not cause degradation of the network and hidden services.

Our approach does not add any malicious Tor relay and gives us no access to
the plaintext of traffic of any user. We purposefully avoid deanonymization tech-
niques based on exploiting software vulnerabilities. However, our data is sensitive
because it contains location information on some hidden services that may want
to protect their location. This work has been approved by our institution’s ethics
review board, which has mandated that due to its sensitive nature the data must
be protected with diligence, must not be disclosed to third parties, and must be
deleted when the paper is accepted for publication. Furthermore, in this paper
we do not disclose any deanonymized hidden service but only provide aggregate
data or fake examples to illustrate important steps and findings.

During the exploration of hidden services, to prevent downloading copyrighted
material and offensive content (e.g., pornography), we limit CARONTE to collect-
ing textual and HTML content, ignoring other content such as images, videos, or
documents.

All the design choices mentioned above strictly comply with the list of guide-
lines that Tor Project recommend researchers to follow in order to conduct re-
sponsible research [105]. Not just that we access exclusively publicly available
information and datasets, but we also have access only to our own traffic and we
try to minimize the contents downloaded from hidden services in order to limit
network load.

We have sent a copy of this work to the Tor Project to give them an advance
notice of our work.

3.7 Related Work

The first generation of Tor’s hidden services is described in the original design
paper [28], but has since been revised [24]. Overlier and Syverson [86] first demon-
strated techniques to deanonymize hidden services. They show how an adversary
could lie about the available bandwidth of a relay it controls to increase the prob-
ability of that relay being selected for a hidden service circuit. This adversary can
repeatedly connect to a hidden server until traffic correlation indicates that the
hidden server built a circuit to one of the adversary’s relays. Bauer et al. [10] ex-
tended the attack to general purpose circuits. As the result of these attacks, entry
guard nodes were added to the Tor hidden services specification [24,130]. Elahi et

49

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

al. [34] propose improvements to reduce the guard compromise rate. Biryukov et
al. [13] deanonymize hidden services in the presence of guard nodes by combining
the bandwidth inflation attack with a technique to phase their relays in and out
of the consensus at will without them losing their flags.

These attacks target a specific hidden service, while we show that large-scale
deanonymization of many hidden services is possible through content leaks. Also,
these attacks rely on vulnerabilities in the Tor specification that can be centrally
addressed by the Tor Project, while content leaks need to be fixed by each hidden
service. Furthermore, our attacks do not require adding a malicious relay to the
Tor network.

Most similar to our approach is the work by Crenshaw on deanonymizing I12P
eepSites [22]. Crenshaw sets up an I2P router and uses the IP addresses of the
peers known to his router as candidates for hosting the eepSites. In Tor, which
is not peer-to-peer based, his approach is similar to considering the list of all Tor
relays as candidates for hosting any hidden service. This closed-world approach
would enable deanonymizing only 21% of hidden services that are hosted on Tor
relays. Our approach in contrast shows how to move from an open-world to a
closed-world by extracting candidates from the identifiers and endpoints in the
content of hidden services, as well as their HT'TPS certificates. In addition, his
validation step relies solely on similar Server headers, which can produce a high
number of false positives.

A different deanonymization approach uses clock-skew measurements when
repeatedly connecting to a hidden service [80,132]. This attack also assumes a
closed-world. We propose techniques to move from a closed-world to an open-
world and could also use this technique in our validation.

DoS attacks. Selective denial-of-service attacks on relays can force circuits to
be re-built, increasing the probability of end-to-end compromise [15]. Overlier
and Syverson [87] introduce Valet Service nodes to improve the resilience of in-
troduction points against DoS attacks. Jansen et al. [58] deanonymize hidden
services through selective denial-of-service of relays’ memory that forces the hid-
den service to choose guard nodes in control of the adversary. The attack requires
hours or days to deanonymize a single hidden service and requires the adversary
to identify the target’s guards.

Forensics. A separate line of work considers the forensics problem of proving
that a confiscated machine hosted a hidden service [36,96]|. Those works assume
the hidden service logs the requests and place identifiable fingerprints in the log
files through crafted queries.

AS-level adversaries. An attacker that is able to observe encrypted traffic
from a client to the first relay and from the final relay to the destination can

50

Chapter 3. CARONTE : Detecting Location Leaks for Deanonymizing Tor
Hidden Services

link the client and destination by correlating traffic patterns [99]. Prior work has
studied Tor’s vulnerability to adversaries that can establish themselves in that
position both at the Internet exchange [82] and the AS [2, 33,40, 59, 118] levels.
Our attacks instead deanonymize hidden services.

Traffic analysis. Prior work proposes traffic analysis attacks on Tor that make
probabilistic inferences about relays and clients that are part of a specific circuit.
One approach is to congest a relay [38,81]. Another approach leverages network-
level characteristics such as circuit throughput and latency [50,75|. These attacks
target clients and may not fully deanonymize them, while our attacks fully dea-
nonymize the location of hidden servers.

3.8 Conclusion

In this paper we have presented CARONTE, a tool to deanonymize hidden services
through location leaks in their content and configuration. CARONTE implements
a novel approach to deanonymize hidden services that does not rely on flaws on
the Tor protocol and assumes an open-world, i.e., it does not assume a short list of
candidate servers is known in advance. Instead, it implements novel techniques to
identify candidate servers from the content and configuration of a hidden service,
which enable moving from an open-world to a closed-world.

Using CARONTE we perform the first measurement study on the prevalence
of location leaks in hidden services. Out of 1,974 live HTTP hidden services,
CARONTE successfully deanonymizes the location of 5% of them. Of the de-
anonymized hidden services 21% are running on Tor relays. The remaining 79%
could not be deanonymized in a close-world.

3.9 Acknowledgments

The authors would like to thank the anonymous reviewers for their feedback.
This work was performed while Srdjan Matic was a visiting Ph.D. student at the
IMDEA Software Institute.

This research was partially supported by the Regional Government of Madrid
through the N-GREENS Software-CM project
S2013/ICE-2731 and by the Spanish Government through the StrongSoft Grant
TIN2012-39391-C04-01. All opinions, findings and conclusions, or recommenda-
tions expressed herein are those of the authors and do not necessarily reflect the
views of the sponsors.

51

Dissecting Tor Bridges: a Security Evaluation
of Their Private and Public Infrastructures

This chapter reproduces the work “Dissecting Tor Bridges: a Security Evaluation
of Their Private and Public Infrastructures” that will appear in NDSS 2017. This
paper performs the first systematic study of the public and private Tor bridge
infrastructure. This work was realized together with people from the IMDEA
Software Institute.

4.1 Introduction

The Tor Network [28] offers protection against censorship [116], surveillance, and
traffic monitoring [100,129], by using encryption and hiding communication pat-
terns by routing traffic through several onion routers (ORs). Tor keeps secret the
IP addresses of a fraction of the entry ORs, called bridges, so that it is not triv-
ial to block traffic destined to the Tor Network. To increase protection, bridges
deploy Pluggable Transports (PTs) [108|, which disguise Tor traffic so that it is
difficult to recognize through deep packet inspection [37,119] or active probing
approaches that connect to the bridge mimicking a Tor user [122,127].

Research related to Tor bridges has focused on designing secure PTs [5,76,98,
120, 128], and proposing techniques to discover the IP address of bridges [66, 74].
However, to date there has been no security analysis of the bridge infrastructure
as a whole. In this work we set out to perform the first systematic study of
the Tor bridge infrastructure from a security point of view. We study both the
infrastructure of public bridges, i.e., bridges that volunteers provide to be used by
any Tor user, and private bridges, i.e., bridges for the exclusive use of individuals
who know about their existence. While public bridges are known to the Tor
Network, and report configuration and usage information to bridge authorities,
private bridges do not report such data and thus their population and properties
remain unknown. As far as we know, this is the first work that reports on Tor’s

52

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

private bridge infrastructure.

Public Infrastructure Analysis. To study public bridges, we leverage Col-
lecTor [104], a public Tor service that enables access to fine-grained longitudinal
data reported by public bridges (among other Tor nodes). The goal of our analy-
sis of the public infrastructure is twofold. First, we aim at understanding whether
any of the published data can harm the security of the public bridge infrastruc-
ture. We find out that usage statistics in CollecTor can be used to rank bridges by
importance, e.g., by the number of clients from a specific country, or the amount
of traffic carried for a particularly strong PT, which in turn allows an adversary
to evaluate how well her blocking works and to identify targets. Furthermore,
we find that the publication of which OR port a bridge uses to communicate
with bridge authorities can be leveraged to optimize a scan-based search for IP
addresses of public bridges and to select specific ports to scan to find a target
bridge. Our findings, already reported to the Tor Project, have lead CollecTor
maintainers to start sanitizing the OR port data [69].

Second, we aim at measuring security-relevant properties of public bridges.
We analyze the population size and its stability, finding that only 45% of public
bridges carry user traffic. These bridges are long-lived and stable: their median
lifetime is 4 months, and they rarely change IP address. While stability is good
to increase bridge usage, it also means an adversary that discovers a bridge can
block it for long periods of time without side-effects. We also observe that default
bridges, whose IP addresses can be obtained from the Tor client configuration,
support over 90% of bridge users, essentially defeating the very purpose of bridges.
This holds in countries where censorship is known to happen such as Iran or
Syria, raising the issue that a censor can at any point, e.g., in response to an
event like the recent coup in Turkey, disconnect the vast majority of bridge users
in the country. Finally, we analyze PT deployment, finding that 77% of public
bridges only offer the easy-to-detect “vanilla Tor” and another 15% offer PTs with
conflicting security properties (e.g., with and without active probing protection).
The latter enables an adversary to identify the bridge through the weaker PT
and disable the stronger PTs by blocking the bridge’s IP.

Private Infrastructure Analysis. To study private bridges, not present in
CollecTor or other Tor services, we first leverage two known Tor issues [31,117]
to find their IP addresses using Internet-wide scans. This means that our study
of the private infrastructure is opportunistic; fixing the Tor issues we leverage
may prevent future replication of our measurements. Rather than launching our
own scans, which could interfere with the Tor Network, we show how scan search
engines [30,72| can be leveraged to launch large-scale discovery of the IP addresses
of bridges, with no investment in scanning infrastructure.

We follow an approach to discover bridges that uses scan search engines to find
candidate IP addresses that may run an OR; connects to them to confirm their OR

53

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

role; and uses CollecTor data to filter out relays and classify discovered bridges as
public or private. Without launching any scan, our approach discovers 694 private
bridges, and deanonymizes the IP address of 35% of public bridges with clients,
and 23% of all active public bridges, in April 2016. Of all discovered bridges,
65% are public and 35% are private. We also propose a novel technique to track
known bridges across IP address changes. This technique leverages additional
non-Tor services (e.g., SSH) running on bridge hosts, and can be used even if the
two Tor issues we leverage are fixed by the Tor Project.

In the process of discovering bridges’ IPs, we also uncover 645 private proxies,
i.e., private IP addresses that forward traffic to a backend bridge or relay, and
through which users can also enter the Tor Network. As far as we know, we are
first to report on the existence of such private proxies. An important security
implication is that discovery of a private bridge or proxy enables an adversary to
flag IP addresses connecting to it as members of the owner organization, or the
owner itself, and to geographically locate them.

We study the infrastructures built using proxies and bridges using a novel
clustering approach to group ORs owned by the same entity based on their con-
figuration and IP addresses. We observe 3 prevalent cluster types: (I) a line of
2 up to 178 proxies on nearby IP addresses all forwarding to the same backend
OR; (IT) a simplified version, with a single proxy forwarding to one backend OR,;
and (IIT) a set of bridges with no proxies, where bridges are either all public or all
private. In both Type I and Type II clusters, the backend OR is typically a public
bridge or a relay (but rarely a private bridge), and in 77% of these clusters the
backend is in the same autonomous system (AS) as the proxies. In other words,
cluster owners seem to contribute a public bridge or relay to the Tor Network, but
use nearby IP addresses to run private proxies for their exclusive use. However,
in general these proxies do not contribute much IP address diversity as they are
hosted in the same AS and typically in nearby IP addresses. In 93% of Type III
clusters, all bridges are located in the same AS, thus also raising concerns on lack
of IP diversity.

4.2 Overview

We now present an overview of the Tor Network, focused on the components more
relevant to our work. Then, in Section 4.2.2, we describe open issues in Tor that
an adversary can leverage to discover the IPs of hosts running bridges.

4.2.1 The Tor Network

The core element of the Tor Network are Onion Routers (ORs), also known as
relays, which are essentially routers that forward encrypted data. A user that
wants to anonymously access an Internet service runs the Tor software on its

54

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

client host. This software builds a circuit of connections over three ORs, through
which traffic is forwarded between the client host and Internet services. This
circuit guarantees that the traffic is encrypted until it exits the circuit and that
none of the relays knows both the origin and the destination of the traffic. Some
of the ORs act as central authorities known as directory servers, storing contact
information for all ORs currently part of the Tor Network. Directory servers can
be queried by clients to find relays when building circuits.

Each OR is uniquely identified in the Tor Network by its fingerprint, which
is the 20-byte SHA1 hash of its public key. ORs listen on a dedicated OR port
for incoming connections using the vanilla Tor protocol |27]. The OR port is by
default set to 0 [89], i.e., a freshly installed OR will not accept connections. To
use the OR as a relay or bridge, the owner needs to explicitly set the OR port
in the configuration file to a particular port, or to auto to choose a random OR
port.

Bridges. Since the IP addresses of all Tor relays can be obtained at any point if
time from the directory servers, the Tor Network introduced a new OR type called
bridge. Bridges are essentially relays that act always as first hop in a circuit, and
whose IP addresses are not publicly advertised.

Pluggable Transports. An alternative way to prevent access to the Tor Net-
work is blocking any traffic that looks like Tor communication, regardless of its
destination. This is possible due to distinguishing features of “vanilla Tor” that
are easy to detect (detailed in Section 4.2.2). After censors started deploying deep
packet inspection techniques to detect such features, the Tor Network introduced
Pluggable Transports (PTs) [108]. A PT is just a wrapper for the Tor protocol
that transforms the Tor traffic flowing between clients and bridges. Over time
multiple PTs have been proposed and the most recent protocols include features
as reply protection, which guarantees that the bridge will allow connections and
data transmits, only for users that previously authenticated. Pluggable Trans-
ports either imitate popular protocols (e.g., fte [32]), encapsulate Tor traffic using
popular protocols like TLS (e.g., meek [42]), or are designed to look like random
streams (e.g., obfs3 [88]). PTs may also implement reply protection against active
probing (e.g., obfs4, ScrambleSuit), in which case they require users to know a
shared secret before replying. A bridge can offer multiple PTs, each running on
its own PT port.

Bridge Distribution. To use a bridge, Tor clients need to obtain its endpoint
information, i.e., the IP address and port where the bridge listens for connections.
Additionally, the user may need some extra information (e.g., the secret when
using PTs with reply protection). Since it must not be possible for an adversary
to find out the IP address of all bridges, their endpoint information needs to

55

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

BridgeDB Bridge Authority Censored Service

descr.

Network

Tor
Client

Figure 4.1: Bridge distribution workflow: @ upon installation the bridge sends its
descriptors with contact information to the Bridge Authority that @ assigns the bridge
to BridgeDB; @ the user requests a bridge from BridgeDB through an uncensored
channel such as email; @ BridgeDB sends the contact information for the bridge; & the
client connects to the bridge using a PT; ® and the bridge builds a circuit through
the Tor Network. At this point, @ the client can communicate to the censored service
through Tor.

be carefully distributed to clients. There exist two classes of bridges: public
and private. Public bridges can be used by any Tor client. They upload their
endpoint information to Tor’s Bridge Authority (or bridge directory authority),
which maintains a list of available public bridges in the Tor Network. Endpoint
information for public bridges is distributed to users by the BridgeDB service,
which periodically receives it from the Bridge Authority. BridgeDB supports two
different distribution channels. Users can visit its website! or send it an email
request?. In both cases, users can specify the type of transport they want and
whether they need a bridge that supports IPv6. Figure 4.1 depicts the distribution
workflow for a public bridge.

The distribution algorithm adopted by BridgeDB aims at preventing the list-

Ihttps://bridges.torproject.org/
2bridges@torproj ect.org

56

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

ing of a significant fraction of public bridges [71]: it only distributes a few bridges
to each requesting IP address or email account, it restricts distribution to a sub-
set of the bridge pool that changes over time, and it limits email requests to
addresses from specific mail providers (Gmail, Yahoo, RiseUp).

To facilitate the use of bridges without having to go through the BridgeDB
distribution channels, the Tor software ships with a list of default bridges for
different transports. The IP addresses of these bridges are trivial to obtain, since
they are hard coded in the Tor configuration files — effectively making them relays
from the point of view of an adversary. Thus, these bridges can be easily blocked
by adversaries. When the Tor Project detects blocking on a default bridge, the
bridge is replaced by a new default.

In contrast, private bridges do not share their endpoint information with the
Bridge Authority and thus are opaque to the Tor Project maintainers. Since they
do not upload their descriptors on the Bridge Authority, they are not advertised to
users that request a bridge to BridgeDN. Endpoint information of private bridges
is distributed using private channels shared between the operator running the
private bridges and the people that use them.

4.2.2 Known Tor Issues

In this Section we describe two known Tor open issues that we leverage to discover
IP addresses of bridges.

Vanilla Tor Certificates. The “vanilla Tor” protocol comprises two phases.
First, the client and the bridge perform a TLS handshake to agree on a shared
key. Then, the two parties exchange Tor messages encrypted with that shared
key. In principle, using a TLS handshake should make the “vanilla Tor” traf-
fic look like TLS. In practice, the certificate chain sent by the bridge to the
client during the TLS handshake is easily distinguishable, enabling to identify
Tor handshakes among all TLS handshakes. In particular, the certificate chain
contains a single certificate where the subject and the issuer differ and their com-
mon names have an easy to identify pattern: SubjectCN=www.[random|.com; Is-
suerCN=www.[random].net, where [random]| are base32-encoded random strings
of length between 8 and 20 characters. While the certificate is changed every 2
hours, this pattern is always maintained. This issue is known by the Tor Project
since at least October 2012, when a ticket was open to revise the certificates used
by Tor |68]. However, the conclusion was that efforts to make vanilla Tor indistin-
guishable from TLS were superseded by the introduction of Pluggable Transports,
and the issue was left as “wontfix” [68]. This decision should be ascribed mainly
to the choice to do not change code in core parts of Tor, with the risk of intro-
ducing new bugs and security issues. Furthermore, developers believed that PTs
were deployed widely enough for being considered the state of the art solution
for users needing to bypass censorship.

o7

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

Open OR port in Bridges. The second known open issue is that bridges
always have an OR port open that offers vanilla Tor, even when they do not
advertise vanilla Tor as a transport, but only advertise stronger PTs. Thus,
bridges offering PTs will open one port per PT plus an additional one for the
OR port. This issue is also known since at least November 2012, when a ticket
was open for it [7]. In September 2015, the ticket priority was increased as it
was considered the next major defense against bridge enumeration. But, it was
also stated that the fix may require up to a month of work, as it requires changes
to the Bridge Authority and BridgeDB, as well as examining multiple tools that
assume bridges have an OR port.

4.3 Public Data Sources

We leverage two types of publicly available services as sources of data for ana-
lyzing the security of Tor bridges. On the one hand we use data published by
the Tor Project through the CollecTor service [104], which provides fine-grained
configuration information and usage statistics about individual bridges and relays
over time. On the other hand, we use data obtained from scan search engines,
which provide information about services offered on machines connected to the
Internet.

4.3.1 CollecTor

CollecTor is a service offered by the Tor Network that periodically collects data
from Tor relays, public bridges, and other Tor services, and makes it available
online [104]. In contrast to other Tor services that provide aggregated infor-
mation on the whole Tor Network (e.g., Tor Metrics [110]), CollecTor provides
information at the finer granularity of individual ORs (bridges or relays). In this
paper we only consider data published since July 2012, when CollecTor started
to include statistics on Pluggable Transports, until April 30th 2016.

CollecTor currently publishes 16 types of files. Files for bridges and relays
have the same structure, but there are some differences with respect to the pub-
lished information [107]. In particular, to avoid easy identification of bridges,
their sensitive data is sanitized prior to online publication. The sanitization pro-
cess includes the following 5 steps: (i) replacing the bridge’s fingerprint with its
SHA1 hash that we call sanitized fingerprint, (ii) removing most cryptographic
information, (iii) removing bridge contact information, (iv) removing PT ports,
and (v) replacing the bridge’s IP address with a format-preserving sanitized ver-
sion that we call AIP. This AIP is of the form 10.x.x.x, where x.x.x are the 3 most
significant bytes of the hash SHA256(IP || fingerprint || secret); where “secret” is
a 31-byte random string that changes once per month that is used to compute
the AIP of all bridges during that month.

58

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

Next, we describe the 4 files we use in this paper: bridge server descriptors,
network statuses, and extra-info descriptors for studying public bridges; and net-
work status consensuses for identifying relays and filter them from our results.

Bridge Server Descriptors. These descriptors are produced by bridges and
sent to the Bridge Authority. CollecTor publishes a sanitized version containing
information such as the bridge’s nickname (“Unnamed” by default), sanitized
fingerprint, OR port, and AIP. They may also contain contact information of
the bridge operator. Unsanitized bridge server descriptors can also be obtained
from bridges’ themselves (if their IP is known), by connecting to their OR port.
Descriptors obtained directly from the bridge contain its fingerprint (rather than
its sanitized fingerprint), the real IP address (rather than the AIP), and the
bridge contact information (if provided).

Bridge Network Statuses. These files are produced by the Bridge Authority
and capture which public bridges are available and their current status, so they
can be distributed to users by BridgeDB. While some of their data is also avail-
able in bridge server descriptors (e.g., nickname, AIP, OR port), bridge network
statuses do not contain the sanitized fingerprint, but instead include the bridge
uptime and the flags it has been assigned by Tor’s authorities (e.g., Running,
High-Bandwidth). We use bridge network statuses to measure the bridge popu-
lation and its stability. In particular we use the Running flag to determine if a
bridge is active, and thus distributed to users. This flag is assigned to a bridge if
and only if the Bridge Authority was able to reach the OR port using the vanilla
Tor protocol in the last 45 minutes [107].

Bridge Extra-Info Descriptors. These files are sent to the Bridge Authority
by the bridges approximately once a day (every 18h by default according to [107]).
These files contain the nickname and sanitized fingerprint, the P'Ts supported by
the bridge and usage statistics (number of IPv4 and IPv6 connections, number of
unique [P addresses that have connected from a country, and number of unique IP
addresses that have connected using each PT). Statistics are sanitized by rounding
them to the nearest multiple of 8. Still, we can use them to rank bridges according
to different criteria that may be relevant for an adversary.

Network Status Consensuses. These files contain information on which re-
lays are available in the Tor Network, their status, and their endpoint information
(IP address and OR port), so that they can be chosen by clients. We use these
consensus files to differentiate relays from bridges.

99

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.3.2 Scan Search Engines

Scan search engines index data from Internet-wide scans on a number of target
ports. Each port is scanned using a popular protocol on the port, e.g., TLS on
443 /tcp or SSH on 22/tcp. We use scan search engines to identify IP addresses
on the Internet that serve certificates matching a specific Tor pattern. We use
two different scan search engines, described below.

Shodan. Shodan |72] scans over 200 ports using different protocols (e.g., TLS,
SSH, HTTP, SMTP). When a supported protocol is identified on an IP, it indexes
the service’s text description (and the server certificate for TLS-based services).
Among the scanned ports, 19 are scanned using a TLS handshake, which we can
use for identifying IP addresses running Tor bridges (see Section 4.4.2). Once we
identify a bridge, we query Shodan about data related to other services running
in different ports of the same machine (e.g., SSH, HT'TPS), in order to discover
additional bridge IP addresses.

Censys. Censys [30] scans a smaller number of ports than Shodan using TLS
(only 6) but more regularly, typically on a weekly basis. Similar to Shodan,
for these 6 ports, Censys collects TLS handshake data, including the server’s
certificate, and it also publishes the raw scan data in addition to queries on the
indexed information. We download the raw data from Censys and process it
locally to identify IP addresses that run ORs and have their OR port in one of
the 6 scanned ports.

4.4 Security Analysis Description

In this section we describe what properties we measure and the methodology
used to perform those measurements. First, we introduce the measurements on
public bridges performed using CollecTor data (Section 4.4.1). Then, we detail
the approach we use to identify private bridges and proxies, (Section 4.4.2).

4.4.1 Public Bridges Analysis

We use the data provided by CollecTor to measure characteristics of the Tor
public bridge population. Beyond understanding the demographics of the public
bridges, our goal is to perform an in-depth analysis into how the fine-grained (i.e.,
per-bridge) publicly available data in CollecTor may impact the security of public
bridges. One of the goals is to identify data that may need to be removed or to be
sanitized prior to its publication. We evaluate the following 5 security-relevant
properties:

60

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

(1) Bridge Population. We measure the number of bridges in the Tor Network
in order to understand how large is the attack surface that an adversary needs to
target for enumerating all bridges.

(2) Bridge Stability. We measure how stable bridges are in terms of lifetime
and IP address changes in order to understand the vulnerability of bridges to
aggressive blocking policies.

(3) Pluggable Transport Deployment. We measure the deployment of PTs
over time in order to understand how long it takes to deploy a new PT and
whether bridges offer multiple PTs with conflicting security properties.

(4) OR Port Distribution. We measure the frequency with which bridges use
specific OR ports to evaluate how valuable this information is for an adversary
that leverages the issues explained in 4.2.2 for discovering private bridges and
proxies and for deanonymizing the IP address of public bridges.

(5) Bridge Importance. We rank bridges in terms of number of clients sup-
ported for different countries and PTs, showing that not all bridges are equally
important. While some are rarely used, others represent vital elements in terms
of the number of clients that connect to them, or the PTs they offer. Beyond
improving our understanding of public bridges usage, we want to raise attention
to how useful such rankings could be for an adversary. For instance, to evaluate
how effective her bridge enumeration is for a given goal (e.g., “are all the bridges
offering a particular transport identified?” or “are the top bridges for a country
identified?”), or to target selected bridges, e.g., unblocked ones that are hard to
identify because they run stronger PTs (e.g., obfs4, or ScrambleSuit).

To rank bridges, we extract usage statistics from CollecTor’s extra-info de-
scriptors. These are published periodically as introduced in Section 4.3, which
means that rankings could reflect accurate real-time information and, even though
they are sanitized by rounding to multiples of 8, they still allow to order bridges
in terms of number of clients they serve.

4.4.2 Private Bridges and Proxies Analysis

The goal of our analysis is to gain a better understanding of the characteristics
of the private bridge infrastructure in the Tor Network, e.g., population size,
configuration, and hosting. In particular for private prozies, which are unknown
to the Tor Project?, we measure the following properties: the type of OR backend
(i.e., relay, or public / private bridge) they forward traffic to, their configuration
with respect to the backend (e.g., line of proxies to one backend, one proxy per

3This fact was confirmed in a private conversation with Tor developers

61

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

backend), the AS in which they are located and whether it is the same as the
backend.

Since private bridges and proxies do not appear in CollecTor, studying them
requires to first discover them on the Internet. We first describe our approach
to identify hosts running private bridges and proxies, and then the clustering
method we use to better understand their infrastructures.

Discovering Private Bridges and Proxies. We use a 5-step process to dis-
cover private bridges and proxies that leverages the open issues described in
Section 4.2.2.

Step 1 — Finding candidate IP addresses. The first step consists on performing
Internet-wide scans on a selected set of ports, starting a TLS handshake on each
IP:port pair, and collecting the TLS certificate when the handshake succeeds. If
the certificate collected from an IP address matches the pattern associated to
Tor certificates described in Section 4.2.2, then it can be concluded that the IP
address serving the certificate corresponds to a Tor OR (or a proxy to a Tor OR).
To maximize the number of bridges identified with a limited scan budget, we
leverage the OR port distribution that can be computed from CollecTor’s data
and focus on the top OR ports.

Since Internet-wide scans can be expensive to perform, and to avoid disrupt-
ing the Tor Network, we choose to substitute active scanning by queries to the
Censys [30] and Shodan [72] scan search engines. Note that an adversary could
similarly leverage such engines to minimize her scanning investment.

Step 2 — Filtering relays. The previous step produces a set of IP addresses
running ORs (or proxies) at the time of the scan. Some of these IP addresses
could correspond to Tor relays, which use the same kind of certificates as bridges.
We use the Network Status Consensuses from CollecTor to classify IPs as relays.
Any IP address that does not correspond to a Tor relay is a discovered IP address,
i.e., running a Tor bridge (or proxy) at the time of the scan.

Step 3 — Verifying IP addresses. Next, our approach connects to the discov-
ered TP address on the scanned OR port using the vanilla Tor protocol to try
to download a bridge descriptor. If a descriptor is successfully downloaded, we
say that the IP address is verified, i.e., still running a bridge (or a proxy). Fur-
thermore, while Tor certificates are so distinct that we have not observed false
positives from the regular expression used in Step 1, this step guarantees that
there are no false positives since a verified IP address speaks the “vanilla Tor”
protocol.

Step 4 — Identifying private proxies. To identify private proxies our approach
compares the verified IP address from where a descriptor was collected in Step 3
with the IP address that appears in the content of the descriptor. A discrepancy
between both IP addresses indicates that the verified IP address corresponds to
a proxy that forwards traffic to a backend OR, to whom the descriptor belongs,
running on the IP address leaked inside the descriptor. If no discrepancy is found,

62

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

the verified IP address corresponds to a bridge.

Step 5 — Classifying fingerprints. A downloaded descriptor contains the bridge
unsanitized fingerprint, which can be hashed to obtain the sanitized fingerprint.
We then search the sanitized fingerprint in CollecTor. If found, the descriptor
belongs to a public bridge, otherwise it belongs to a private bridge. For public
bridges, the mapping of an IP address to a specific bridge (i.e., sanitized finger-
print) in CollecTor, means access to all its historical data.

Discovery through non-Tor Services . Once a bridge is identified, it is
possible to enumerate other services offered on the host by performing a vertical
scan on its IP address seeking for open ports. Those additional services may
provide unique identifiers (UIDs) such as SSH keys or TLS certificates that may
enable discovering other bridges from the same owners, or tracking the bridge
across IP changes. The vertical scan can be replaced by querying for the IP
address in Shodan, since it already scans an IP on over 200 ports with popular
protocols. Once UIDs are available, periodic queries to Shodan using those UIDs
can be used to find new IP addresses where the UIDs have been observed. Once a
candidate IP appears, Steps 2—5 above can be applied. For public bridges the OR
port from where to try to download the descriptor can be obtained from CollecTor.
For private bridges we first test the OR port of the bridge from where the UID
was original found, in case it has not changed. Otherwise, Shodan is queried for
open ports on the candidate IP address with a TLS certificate matching the Tor
pattern. If that also fails, a vertical scan can be performed on the candidate IP
(using TLS or the Tor protocol).

Clustering. To better analyze our results, we cluster public bridges, private
bridges, and proxies into groups belonging to the same organization. Such clus-
tering enables us to study the characteristics of bridge/proxy infrastructures in
use. More precisely, we cluster tuples of (verifiedIP, port, descriptor) where veri-
fiedIP and port correspond to the Internet endpoint from where the descriptor was
downloaded. Our clustering uses 5 Boolean similarity features between tuples:
(1) Same fingerprint. Tuples with descriptors containing the same fingerprint
come from the same bridge, regardless if collected from different verified IP ad-
dresses, and thus are similar.

(2) Similar nicknames. Nicknames are chosen by the bridge owner. Hence, we
consider similar tuples with descriptors containing resembling non-generic nick-
names. That is, two tuples are similar if the nicknames are identical and not
generic (“Unnamed”, “default”, “anonymous”, “ididntedittheconfig”, “idideditthe-
config”), or if they have the same prefix of length 5 or more characters that is not

bP R4

generic (“torat”, “relay”; “ec2bridger”?), e.g., mybridge3, mybridge4.

4This generic prefix is due to the now deprecated Tor Cloud image [106].

63

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

(3) Same contact information. The contact information is a free-text string se-
lected by the bridge owner that often contains an email address, but may have
other content. We consider similar tuples with descriptors with identical, non-
empty, contact information.

(4) Similar verified IP address. This feature captures that similarly configured
bridges on nearby IP addresses likely belong to the same owner. Tuples whose
verifiedIP is in the same /24 subnet and for which the descriptors contain identical
values for 5 fields (orport, socksport, dirport, Tor version, OS) are similar.

(5) Similar IP address in descriptor. Tuples whose IP in the descriptor is the
same or that the IP is in the same /24 subnet and for which the descriptors
contain identical values for 5 fields (orport, socksport, dirport, Tor version, OS)
are similar.

Two tuples with at least one of the above features returning similar are placed
in the same cluster. For each cluster, we obtain statistics such as the number
of fingerprints, IP addresses, private bridges, public bridges, and proxies. We
also compute statistics on the hosting ASes used in the cluster and study cluster
ownership based on the contact information optionally available in the descriptors
of the cluster’s bridges.

4.5 Public Bridges Analysis

In this section we analyze the data published by CollecTor about public bridges
regarding features that may impact the Tor bridge infrastructure security.

4.5.1 Bridge Population

We use CollecTor to compute the number of public bridges in the Tor Network.
We uniquely identify public bridges and relays by their sanitized fingerprint,
assuming that ORs change fingerprint infrequently (an assumption we validate
in Section 4.6.1).

We split the sanitized fingerprints in CollecTor into active if they appear at
least once with the Running flag (explained in Section 4.3.1) in a bridge network
status in a month, and ¢nactive otherwise. Figure 4.2 shows the evolution over
time of the number of active (green bar) and inactive (red bar) sanitized finger-
prints in the Tor Network. The bridge population significantly varies over time:
it steadily grows from 2.8K active public bridges in July 2012 up to a maximum
of 12.7K in July 2014, and starts declining in January 2015 falling to 5.3K by
April 2016. We have had discussions with members of the Tor Project about this
recent decline in bridge population, but the reason remains unclear.

The yellow middle bar represents a cluster of 3 bridges run by the same or-
ganization, that we call by their nickname, Ki, which change fingerprint up to
once an hour (but keep their IP addresses stable, see Section 4.6). The Ki clus-

64

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

.}gt Bactive
14k []"ki" bridges
w Winactive
g 12k #active with clients | | |
& 10K [|=Tor Metrics estim. ||| | | |
o 8k
S ek [| || []
=4k I! ll Ill'!’l I
*® o NERNRRRE NERRRRRRREEE
0 SRR i | | || LU]|
Ju2 Jan13 Jul1i3 Jan'14 Jul'14 Jan'i5 Jul'i5 Jan'16
Months

Figure 4.2: Number of active (bottom bar in green), inactive (top bar in red), and Ki
(middle bar in yellow) sanitized fingerprints over time. The two lines correspond to the
monthly average number of bridges reported by TorMetrics (black line) and the number
of bridges with clients (blue line).

ter produced a few dozen fingerprints in July 2012, jumped to a few hundreds
in December 2012 and to a few thousands in February 2014. In March 2016,
those 3 bridges are responsible for 32% of all fingerprints, corresponding to 7%
of the active fingerprints and 68% of the inactive fingerprints, as most of their
fingerprints do not live long enough to obtain the Running flag. After discounting
those extraneous fingerprints, the number of active fingerprints in April 2016 is
slightly over 5K.

The figure also shows two lines representing the monthly average number of
bridges reported by TorMetrics [110] (black); and the number of active bridges
with at least one client (blue). These two values are very close to each other,
though not the same. The blue line represents less than 50% of the active bridges
in a month, indicating that more than half of the active bridges do not serve
users. We examine this discrepancy in the next subsection.

We use both the number of active bridges (bottom green bar) and the number
of active bridges with at least one client (blue line) as different baselines for other
measurements.

4.5.2 Bridge Stability

In this section we use CollecTor to study how stable public bridges are by first
measuring their lifetime (i.e., for how long they are active) and then how often
they change their IP address changes over their lifetime.

Bridge Lifetime. We define the lifetime of a bridge as the time window when
the bridge was active, i.e., the time difference, in days, between the last and first
time a descriptor for an active bridge becomes available in CollecTor. Figure 4.3
captures the CDF of the bridges’ lifetime in our study period for all active bridges

65

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

1 I wam | e s | s — asmmunut®
0.9 - - Jquumupnennnnnrts
08 " ----.‘I wanet L
07 TLL -_ﬁlll
0.6 "X: 1 et
0.5 1Y: 0.667 ﬁﬁ)'(116 = with at least 1 client -
83 ﬁ“‘. V- 05138 =with or without clients |
0.2 ¢
0.1 &

Ol

01 2 3 456 7 8 910111213 14151617 18 19 20 21 22 23 24 25

Months

Figure 4.3: CDF of bridge lifetime over time (Jul’12 - Apr’16) for all active bridges (red
dashed), and bridges that have had at least one client (blue dotted).

(red dashed line) and for bridges with clients (blue dotted line). We see that 67%
of the active bridges live for less than one day, and thus are unlikely to be used
by clients. This explains the difference between the bridges with clients and the
active bridges in Figure 4.2. However, bridges that are used by clients are quite
stable. Their median lifetime is 116 days (roughly 4 months) and 25% of them
live over one year.

Bridge TP Changes. Next, we evaluate how often public bridges change IP
address. As explained in Section 4.3.1, bridges’ IP addresses are replaced in
CollecTor with its AIP for privacy reasons. Yet, the AIP construction algorithm,
which every month assigns new AIPs to bridges associated to the monthly secret,
allows to compute the number of IP changes. It suffices with counting the number
of AIPs assigned to a bridge’s fingerprint and subtract the number of month
changes in its lifetime.

Figure 4.4 shows the CDF for the number of IP addresses for all active bridges
(black line) and for bridges with at least one client (blue line). The figure shows
that 67% of the active bridges have a single stable IP. This number grows for
bridges with clients where 84% of bridges never change IP address, and 90% had
at most one IP address change.

These results show that 55% of the bridges IPs are short-lived and thus these
bridges do not carry users. On the other hand, bridges that do carry users are
quite stable. They live for roughly 4 months and 84% of them never change IP
address. These results have important implications for a censor: they show that
current policies that remove blocks for bridge IP addresses every 25 hours [37] are
extremely polite and adversaries could be performing a more aggressive blocking
(up to months), without the risk of creating too many false positives.

66

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

X:50
Y:96.74
\

\

60 L Y80 swith at least 1 client
50 mall active fingerprints

1 5 10 15 20 25 30 35 40 45 50
IP addresses

Figure 4.4: CDF of number of bridge IP addresses for all active bridges (bottom) and
for bridges with at least one client (top).

105¢ I I I I
F |[®meek ' fte =obfs2 ¢obfs3 ®obfs4 =scramblesuit svanilla |
[e A A A 4
10%¢ .‘.*ﬁﬁb‘*b"_ el P TS ST,
A A 4 A4 ‘\
(2]
£10° |
s F
[} r / g
5’102; = =
H* r ’
10 AT Ry
0 o-o-»-o-/-.-.-‘
Jul'12 Jan'13 Jul'13 Jan'14 Jul'14 Jan'15 Jul'ts Jan'16

Months

Figure 4.5: Number of active fingerprints offering each transport over time (note the
y-axis logarithmic scale).

4.5.3 Pluggable Transports Deployment

We now examine PT deployment across time and bridges. Figure 4.5 depicts the
number of active public bridges, in logarithmic scale, offering each transport over
time. It indicates that the most popular transport is vanilla Tor. Although its
popularity has started to slowly decrease, it is still offered by 77% of all bridges in
April 2016. The timeline shows how the deployment of obfs4 coincides with the
decline of the deprecated obfs2 [9]. It also shows that after a PT is introduced, it
takes between 4 months and one year to reach a stable number of 1K—2K bridges
offering it. Surprisingly, deployment of different PTs does not improve beyond
that stability point, an issue that we examine next.

A bridge can offer multiple transports. Table 4.1 shows the most popular
transport combinations in April 2016. Rows in gray highlight that a single trans-
port is offered. Surprisingly, 77% of the bridges only offer vanilla Tor, a transport

67

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

>
& &
Rid ¥

06(0
(3
4
%
Y

o & 9@0 Bridges

T 6,213 (771%)

v 524 (6.5%)

510 (6.3%)

v 353 (4.4%)

- ()
v

v

242 (3.0%
129 (1.6%)
117 (1.4%)
72 (0.9%)
27 (0.3%)
22 (0.3%)
20 (0.2%)
v 6 (<0.1%)
5 (<0.1%)
- - - - 4 (<0.1%)
- - v - 3 (<0.1%)
- v - - 2 (<0.1%)

RN RN SN
I I N N R R T
%
NSNS SSSASSN %
| S

Table 4.1: Most frequent transport combinations in April 2016. Combinations offered
by a single bridge or by inactive bridges are not included.

that is trivial to identify through traffic analysis. The 1K-2K bridges offering
obfs3, obfs4, and ScrambleSuit (ssuit) responds to the deployment of multiple
transports on the same bridges.

The combination of PTs with different security properties raises several secu-
rity concerns, since the security of the bridge is only as strong as its weakest link.
First, an adversary detecting the weakest transport and blocking the IP disables
also stronger transports for free, e.g., for the nearly 100 bridges that offer obfs3
or obfs4 in combination with obfs2, which is deprecated and trivial to identify
through traffic analysis. Second, it allows an adversary to confirm a bridge, even
in presence of transports that implement reply protection. For example, for the
most popular combination obfs3+obfsd+ScrambleSuit, offered by 524 bridges,
an adversary can confirm a bridge, e.g., identified through traffic analysis [119],
through a vertical scan using obfs3 on the candidate 1P address.

4.5.4 OR Port Distribution

In this section we use CollecTor to find the most common OR ports employed by
public bridges. If an adversary knows that the majority of bridges are running on
a few OR ports she can use them as targets for deanonymization via Internet-wide
scanning, as described in Section 4.4.2.

First, we study the stability of a bridge’s OR port, i.e., how often bridges
change their OR port. We find that 99% of active fingerprints never change their
OR port during their lifetime.

Next, we study the OR port distribution. During our observation period,
bridges used 7,985 different OR ports. However, we observe that four ports
(443 /tcp, 8443 /tcp, 444 /tcp, and 9001 /tcp) are chosen much more often than
the rest, while all other OR ports are used only by a small subset of bridges.

68

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

16k P._.o.
15Kk w443 B AT N M0
& s PN
<9001 LAY N Nemay O,
12k 3 T -
211k +8443 Sl \ Yo,
E Kk - *Top-4 ."{N\ Y .'G o,
9'1%k IR f -2 - \ hdin Al
o) 8k @all hunning 02 N v S 000" "g.0.,
CE» 7k °‘r‘r."'N \ ‘..“ko-o—-—- -
= 6k '2:' X - '
2 5 R A
© 4k #‘9/ R
] Skit':'—'?'_?'f'g' A A A A A4 N
* T N ~Aeh—de o
1k
04
Jul't2 Jan'13 Jul'13 Jan'14 Jul'14 Jan'15 Jul'l5 Jan'16
Months

Figure 4.6: Top 4 OR ports used by active public bridges over time. The top dotted
line represents all active public bridges; the dashed line below corresponds the Top-4
OR ports together; and each solid line represents one OR port.

Figure 4.6 reports the OR port usage over time. The top line corresponds
to the total number of active fingerprints. The dashed (blue) line directly below
corresponds to the top 4 OR ports aggregated. Each solid line below corresponds
to one of the top 4 OR ports. On average, the top 4 OR ports are used by 82% of
the fingerprints observed each month, although this fraction has decreased from
95% in March 2013 to 82% in April 2016. The most common port is 443. We
conjecture that its popularity is due to two main reasons: it is the default HI'TPS
(HTTP over TLS) port, which makes it less likely for TLS-looking vanilla Tor
traffic to stand out, and it is a port typically open in firewalls so it can be reached
by most users. We assume that for similar reasons 8443, the alternative HT'TPS
port, is the second most popular port. The third most popular port, 9001, is the
standard Tor port.

Port 444 is a special case since in principle is associated to the Simple Net-
work Paging Protocol (SNPP), a not so popular protocol. However, according to
CollecTor data, roughly 3K active fingerprints are using it on April 2016. The
reason for this is that this OR port is used by the K% bridges that change finger-
print often, as introduced in Section 4.5.1. Those K7 bridges artificially inflate
the usage of this OR port, a behavior that does not manifest on other OR ports.

In summary, the OR port distribution shows that an adversary could deano-
nymize 71% of all active public bridges by scanning 3 OR ports (443, 8443, 9001)
and 82% if we consider the Top 4 with the anomalous 444. While 443 usage
has declined over time, the top 4 OR ports usage closely follows the total active
bridges, thus OR port diversity does not seem to be improving over time.

After we reported our findings to the Tor Project, they opened a ticket to san-
itize the OR port in CollecTor [69] so that our experiments cannot be replicated.

69

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.5.5 Bridge Importance

As introduced in Section 4.3.1, not all bridges are equally important and CollecTor
can be used to rank bridges according to different metrics. We now evaluate two
example scenarios: ranking bridges by country usage and by PT usage. These
two rankings are very relevant to, for instance, a censor that wants to know
how many (or which) bridges have to be blocked to minimize the likelihood of
users connecting outside the country; or to block a strong PT that it cannot
be identified through traffic analysis or active probing. For our evaluation we
select 5 countries: three where Internet censorship is known to occur [53]: China
(cn), Iran (ir) and Syria (sy); and two where monitoring is a real threat: United
Kingdom (uk) and United States (us) [100,129].

Ranking per country. Table 4.2 summarizes the ranking per country for April
2016. For each country it shows the country code, the number of bridges that
received at least one connection from users located inside the country, the average
number of clients per day served by those bridges, the percentage of these clients
served by the Top 20 bridges, with the fraction of served by default bridges® in
parentheses, and the total traffic carried by default bridges. For the last two
columns the number of default bridges is shown in square brackets. The All row
at the bottom corresponds to statistics for all bridges in CollecTor regardless of
user location.

The Top 20 bridge statistics show that a few bridges handle the majority of
clients. The Top 20 support more than 91% of traffic for the full Tor Network, and
more than 75% for all countries except China and the US, where clients are better
spread among available bridges. The Top 20 is dominated by default bridges. In
fact, the Top 14 bridges in the full Tor Network, and also in all countries except
the US, are default bridges. Thus, we can conclude that default bridges carry the
vast majority of clients in the Tor Network.

This dominant choice of default bridges, which are trivial to deanonymize
through the configuration files shipped int the Tor client software, means that
in the majority of cases clients route their traffic through known bridges, thus
defeating the very purpose of bridges.

Ranking per PT. Table 4.3 summarizes the ranking per PT for April 2016. Its
structure is the same as that for Table 4.2. The results indicate that while vanilla
Tor is the most widely deployed transport, most clients opt for more recent PTs
such as obfs4, obfs3, and meek. ScrambleSuit (ssuit) is not very popular and, as
expected [9], obfs2 has almost completely stopped being used.

We observe that the Top 20 bridges handle almost the entire user base for
obfs4, obfs3, and meek. The vast majority (90%-100%) of clients using these 3
transports are carried by default bridges. The Top 20 bridges do not dominate

5We use the default bridges available in the Tor Browser 5.5.5 distribution.

70

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

CC Used Top 20 Total
Brid. Clients (Default) Default
cn 712 4,265 45.6% (44.0%) [14] 44.3% [18]
ir 941 26,479 86.6% (86.1%) [16] 86.1% [18]
sy 74 449 76.9% (68.0%) |14] 69.2% [17]
uk 943 16,723 84.1% (84.0%) [17] 84.0% [19]

us 1,496 17,911 58.7% (56.7%) [6] 56.9% [11]
All 2213 301,009 91.71% (91.4%) [17] 91.4% [23]

Table 4.2: Bridge importance per country (Apr’16)

PT Used Top 20 Total
Brid. Clients (Default) Default

vanilla 1,967 14,939 5.6% (0.0%) | 0] 1.2% [21]
obfs2 13 158 100.0% (25.8%) [1] 25.8% [1]
obfs3 898 63,088 92.0% (90.8%) [4] 90.8% [4]
obfs4 792 204,005 95.4% (94.7%) [11] 94.7% [11]
ssuit 467 4483 524% (46.3%) [1] 46.3% [1]
meek 4 22685 100.0% (~100%) [3] ~100% | 3]

Table 4.3: Bridge importance per PT (Apr’16).

vanilla Tor and ScrambleSuit, likely related to no default bridge being marked
as offering “vanilla Tor” in the Tor client configuration files and only one offering
ScrambleSuit. Still, the lone default bridge offering ScrambleSuit carries over
46% of the clients using that transport.

OR Port Distribution per Country. In Section 4.5.4 we have studied the
global ranking of OR ports and have shown that the top 3 OR ports are used by
71% of all public bridges. Here, we analyze whether the top bridges by number
of clients also follow that distribution.

Table 4.4 contains the Top 20 OR ports by percentage of clients served in the
full Tor Network. For each OR port it reports the rank, the percentage of clients
supported by bridges using that OR port, the number of bridges using that OR
port (and how many are default bridges in square brackets), and the ranking of
the OR port when only considering connections from a particular country.

The table shows that the choice of OR port among popular bridges does not
resemble the distribution of OR ports in the overall bridge population. The Top 6
OR ports correspond exclusively to default bridges. The first OR ports in the Top
10 global distribution appear at rank 8 (9002) and rank 10 (9001). In both cases,
the majority of the clients served on those ports correspond to default bridges,
e.g., for port 9001, the percentage of clients served by the 303 non-default bridges
is negligible. From that point, we see that the most popular bridges run in random

71

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

RK Port Clients BRs Ranking per country
(%) |Default] cn ir sy uk us

1 6666 23.805% 11 2 5 6 1 1
2 42506 14.096% 11] 6 3 4 3 -
360906 13.877% 1 7 4 3 2 -
4 63848 13.730% 220 5 6 5 4 4
5 44445 9.485% 11 8 2 2 5 2
6 8008 7.173% 1] 4 54 - 6 -
7 29001 5.027% 2] 10 1 1 7 3
8 9002 2.827% 211 1 7 8 8 -
9 1512 1.206% 111 3 8 14 9 125
10 9001 0.263% 309[6] 19 9 7 10 5
1129309 0.045% 1[0] 36 10 - 42 10
12 27134 0.041% 1j0] 15 13 18 12 16
1320506 0.040% 1[o] 59 19 19 11 7
14 12497 0.040% 1[0] 57 14 - 42 9
15 59760 0.039% 1] 18 19 - 33 11
16 60841 0.039% 1[0] 49 15 - 50 16
17 53885 0.038% 1[0] 15 36 - 50 14
18 14769 0.035% 1[0] 38 61 - 11 6
19 34678 0.033% 1[0 37 12 - 66 8
20 19924 0.032% 1[o] 12 19 - 19 14

Table 4.4: OR port ranking for most used bridges (Apr’16).

high ports. These results suggest that owners of non-default popular bridges are
careful to set the OR port selection to random, but those of less popular bridges
are not as careful in this respect.

The ranking per country shows that, even though in general default bridges
dominate in all countries, the popular non-default bridges can vary significantly
across countries. For example, in Syria the globally popular bridges have little
overlap with the popular ones in that country. This suggests that a state-level
adversary can use CollecTor to compute a ranking of, currently unblocked, OR
ports that she should target next through Internet-wide scanning to maximize
the blocked population in her country.

Another observation (not shown in Table 4.4) is that all Top 20 non-default
bridges incur in the problem flagged in Section 4.5.3 of offering multiple PTs with
different security properties.

72

€L

Port SC Source Scan Dates Verif. Date Disc. Verified Public Private Proxy
443 9 Censys 04/04-04/28 04/08 2,448 1,315 (1 122) 897 (860) 263 (262) 164
993 2 Censys 04/20-04/27 04/21 19 6 (13) 1(11) 3(2) 2
995 3 Censys 04/15-04/29 04/23 14 14 (13) 10 (10) 3 (3) 1
444 1 Shodan 04/19-04/19 04/19 14 12 (101) 8 (97) 1(4) 4

8443 1 Shodan 04/21-04/21 04/22 191 156 (149) 148 (148) 1 (1) 7

9001 1 Shodan 04/17-04/17 04/18 2,001 1047 (587) 165 (166) 415 (421) 468

9002 1 Shodan 04/23-04/23 04/23 23 9 (5) 1(1) 4 (4) 14
All 17 All 04/04-04/29 04/08 4,684 2,554 (1 986) 1,239 (1,292) 684 (694) 645

Table 4.5: Bridge discovery in April 2016

pue 9JeALI] 119, JO UOTYeN[eAF] AYIND9G © :SoSpLIg 10T, Suroossiq § 1ojdey))

SOINJONIISRIUT OI[qNJ

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.6 Private Bridges and Proxies Analysis

In this section we analyze private bridges and proxies in the Tor Network. Sec-
tion 4.6.1 presents the results of applying the bridge discovery approach described
in Section 4.4.2 on the Tor Network during April 2016, Then, we analyze the dis-
covered bridge/proxy infrastructures (Section 4.6.2).

4.6.1 Discovering Private Bridges & Proxies

Since we do not run our own scans, we can only apply the bridge discovery to 7
out of the top 10 OR ports in April 2016, which are scanned by either Censys
or Shodan using TLS. Table 4.5 summarizes our results. For each OR port we
report: the number of scans available on that port in April 2016 (SC), the source
of the scanning data (either Censys or Shodan), the first and last scan dates, the
date when verification started, the number of discovered bridge IP addresses, i.e.,
those where scan data shows a certificate matching the Tor pattern and that are
not relays, the number of verified IP addresses (and fingerprints in parentheses)
from which we were able to download a bridge descriptor, and the split of verified
IPs (and fingerprints) into public bridges, private bridges, and private proxies.
Note that we distinguish public and private bridges through fingerprints, but
proxies by IP address, as proxies are not Tor ORs and have no fingerprint. The
last row shows the aggregate results for all ports.

Overall, we discover 694 private bridges and 645 private proxies, which do not
appear in CollecTor. Additionally, we deanonymize the IP address of 1,292 public
bridges. According to CollecTor data, these correspond to 35% of public bridges
with clients (23% of all active public bridges) in April 2016, excluding Ki-related
bridges. On the 7 OR ports examined, the bridge population comprises 65%
public and 35% private bridges, i.e., one in three bridges is private.

There exist several reasons why we do not deanonymize a larger fraction of
public bridges in CollecTor. First, we can only deanonymize bridges on the 7
OR ports scanned by Censys or Shodan. Second, for most ports we only have
one scan in the second half of the month. Hence, we cannot discover short-lived
bridges active only in the first half. Furthermore, we have shown that 55% of
the active bridges are short-lived; thus, while they may appear as candidate IPs,
we may not be able to confirm them because they no longer live when we try to
download a descriptor from them.

We note that the aggregated results differ slightly from the sum of all rows
for two reasons. First, a few proxies have more than one OR port open and thus
their IPs are counted in more than one row. In addition, a few IP addresses were
observed hosting a proxy at some point in the month and hosting a bridge at
other times. Also, note that the number of verified fingerprints for port 444 is
significantly larger than the number of verified IPs. This is because 6 of these IPs
(3 proxies and 3 public bridges) belong to the Ki cluster that changes fingerprint

74

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

periodically.

Discovery through non-Tor Services. Next, we evaluate if additional ser-
vices running on bridge hosts can be leveraged to track bridges across IP address
changes. For this, we assume an adversary discovered a bridge by any means,
(e.g., the approach in Section 4.6.2, querying BridgeDB, or adding a middle OR
in the Tor Network [66]), but the open OR port issue we leverage has been solved
by the Tor Project.

First, we measure the percentage of bridges in Table 4.5 with additional ports
open (beyond the OR port). For this, we query each verified IP address at Shodan.
Overall, 621 (24%) of the 2,554 verified IPs offer at least one additional service
(beyond the OR port) and 10% more than one. In total, we observe 101 additional
ports. These numbers indicate that it is not uncommon to run other services on a
Tor bridge. The most common additional services are SSH on ports 22 and 2222,
Web services on ports 80 and 443, and RPC port mapper on 111. As unique
identifiers (UIDs), we use SSH keys on ports 22 and 2222 and certificate serial
numbers on 443.

Scanning those UIDs in Shodan on May 18 provides us with 2,248 candidate
IPs, of which only 248 return a descriptor. After filtering out relays and already
known IPs, we found 9 new bridge IP addresses that were not observed in April
2016. For example, one of them is located in Amazon EC2 and it corresponds
to a bridge that was running on another IP in April 2016, but likely changed TP
because the EC2 instance was re-started, as EC2 assigns VM TP addresses from
a shared pool.

Fingerprint Stability Validation. The discovery of bridges, which provides
us with access to their unsanitized descriptors, allows us to validate the assump-
tion that OR fingerprints rarely change, and thus are indeed good bridge identi-
fiers. We periodically (roughly once a day until June 3rd, 2016) try to download
a descriptor from verified IP addresses. Then, we measure the frequency of fin-
gerprint changes in the descriptors for bridge (i.e., non-proxy) IPs found in April
2016.

Overall, 94.1% of the bridge IP addresses did not change fingerprint, 5.5%
changed fingerprint once, and 0.4% changed fingerprint multiple times. The
bridges with multiple fingerprint changes include the 3 K3 bridges, which present
a different fingerprint every time we connect to them (on a closer look we find that
they change fingerprint roughly every hour). Furthermore, we observe that over
70% of the IP addresses with fingerprint changes belong to 2 clusters of private
bridges each using multiple nearby IP addresses. These IPs change fingerprint on
the same dates, so it is possible that bridges in each cluster were reassigned IP
addresses on those dates.

These numbers confirm that the vast majority of bridges do not change finger-
print over time. Thus, bridge fingerprints (and sanitized fingerprints in CollecTor)

5

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

Backend

Type-Il Type-Il Type-Ill

Figure 4.7: The three most common cluster types.

can be used as identifiers.

Hosting. The discovered proxies are hosted in 166 ASes, the private bridges in
139, and the public bridges in 385. The top 10 ASes for both bridges and proxies
are dominated by the ASes used by the top clusters we find in the next Section.
For bridges, the top 10 ASes comprise: 5 popular cloud hosting providers, 2
broadband residential ISPs, and 3 large ISPs that provide multiple services. While
overall there seems to be enough TP diversity among the bridge population, in
the next section we show that individual clusters exhibit less diversity.

Contact Information. Bridge descriptors may contain contact information
that could reveal ownership. We find 267 email addresses in the descriptors
collected from the 1,986 public and private bridges. Of those, 69 have a domain
name from a public email service provider (e.g., Gmail, Yahoo), and thus cannot
be easily used to establish ownership. The other 198 email addresses contain 191
domain names, of which 175 return a valid mail server IP address through a DNS
MX query, the rest we discard as invalid. Those 175 domains appear in descriptors
from 307 bridges: 187 public and 120 private. This indicates that, contrary to
what could be expected, private bridges often provide contact information that
may reveal the organizations behind the bridge. This enables an adversary to
identify Tor clients connecting to the bridge as members of that organization.

76

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.6.2 Bridge/Proxy Infrastructures

We cluster bridges and proxies as described in Section 4.4.2 to better understand
how they are used. Out of 41,359 tuples (verifiedIP, port, descriptor), collected
by connecting periodically to the 2,554 verified 1P addresses, we obtain 1,343
clusters, of which 75% are singletons, i.e., contain a single bridge and no proxies.

We identify 5 cluster types, as well as mixed clusters with subclusters of
those types. The 3 most common cluster types are shown in Figure 4.7. Type I
corresponds to a line of proxies (from 2 up to 178) that all forward to the same
backend. Type II is a Type I cluster with a single proxy. For both types, the
backend can be a private bridge, a public bridge, or a relay. Type III is a cluster of
multiple bridges belonging to the same owner, without proxies. Type III clusters
can have only public bridges or only private bridges.

Not shown in Figure 4.7 are the rarer Type IV and Type V. Type IV cor-
responds to the same bridge running on multiple IPs at the same point in time.
This differs from a bridge changing IP over time where we would observe the
same fingerprint at different IPs on different days. This cluster type could be a
result of cloning an image with an installed bridge on multiple VMs. Type V cor-
responds to a proxy load-balancing across multiple backend IPs. In most cases,
the backend IPs host the same bridge (fingerprint), which runs on a Windows
host. This is similar to a fast-flux network where residential hosts run bridges,
and the proxy provides IP stability to access them.

We develop a set of rules to automatically classify non-singleton clusters. The
cluster classification outputs: 47 clusters as Type I (37 relay, 7 public, 3 private);
138 as Type II (94 relay, 29 public, 15 private); 88 as Type III (69 public, 19
private); 43 as Type IV; 10 as Type V; and 16 as mixed clusters containing at
least two subclusters of other types.

Type I clusters most often have proxies forwarding to a relay (37 clusters)
or a public bridge (7 clusters). A similar trend applies to Type II clusters. In
all Type I clusters all proxies in the cluster are hosted in the same AS, and are
often located in nearby and even consecutive IP addresses. In 77% of Type I and
Type II clusters, the proxies and the backend are in the same AS. The cases where
proxies and backends are in different ASes could indicate organizations free-riding
on public ORs to perhaps avoid configuring their own bridge. We observe only 3
Type I clusters with private backend indicating that, since proxy IPs are already
private, there is no benefit on a private backend.

In Type I and Type II clusters, proxies seem to be used by owners of public
bridges and relays to keep a few IPs (only one for Type II) private for their own
use. Those proxies do not provide much IP diversity; once a proxy is known,
an adversary could scan the nearby IP addresses to find other proxies and the
backend. Furthermore, when the backend is a relay, an adversary could scan IP
ranges hosting relays to try to find proxies forwarding to it. It is also important
to note that when the backend is a relay only “vanilla Tor” is supported, as relays

7

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

IPs Bridges
Type All Proxy | Pub. Priv. | ASNs Contact
1 I public 179 178 1 0]1,1x v
2 III private | 164 0 0 164 | 0,1,X v
3 Irelay 72 71 0 0] 1,1,v -
4 IIT private | 63 0 0 63 | 0,1,X -
5 III public 53 0 53 0] 0,16,X v

Table 4.6: Statistics on top 5 clusters.

do not run PTs.

Type III clusters most often comprise public bridges (69 clusters) but can also
have private bridges (19 clusters). In 93% of Type III clusters all bridges are in
the same AS. This indicates that once an owner has established a relationship
with a hosting provider, it is easier to install multiple bridges on that provider.
Still, there are a few Type III clusters with good diversity. For example, the
cluster at Rank 5 has 53 public bridges on 16 ASes. We observe that some Type
IIT public clusters belong to organizations that also contribute relays to the Tor
Network. Another public cluster belongs to a computer security company.

The mixed clusters show that our clustering can capture multiple infrastruc-
tures from the same owner. An example of a mixed cluster is the Ki cluster, which
comprises a Type I subcluster with 2 proxies forwarding to a public bridge, an-
other Type II subcluster with one proxy forwarding to one public bridge, and a
singleton subcluster with a public bridge. Both bridges and proxies in the cluster
keep their IP address stable, but bridges change fingerprint hourly.

We conclude that proxies are not generally used for load-balancing across
multiple backend ORs as there are only 10 Type V clusters compared to 185
Type I and Type II clusters. Proxies do not seem to be used for OR port diversity
either. We observe only 13 proxy IPs forwarding on multiple ports. Of those,
10 belong to 2 clusters where the same backend IP runs two different bridges on
different ports and a proxy port forwards always to the same backend OR port.

Top Clusters. Table 4.6 provides details for the Top 5 clusters. For each
cluster, it shows the rank by number of TP addresses; the type; the total number
of TP addresses; the number of proxy IP addresses; the number of public and
private bridges (by fingerprint); the hosting as a (x,y,flag) tuple with number
of autonomous system numbers (ASNs) for proxy IPs (x), bridge IPs (y), and
whether those ASNs are the same (v') or not (X); and if the bridges in the cluster
contain contact information.

78

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.7 Costs

In this section we evaluate the costs, both in term of time and computational
resources needed for carrying your deanonymization attacks. Bridge descriptors
and "Network Status Consensus" consist only of a few hundreds of Megabytes
and can be easily downloaded from CollecTor. The data is then processed an
converted into a serialized dictionary for making faster the access to this infor-
mation. Processing stats for one entire month, can be done in less than one hour.
Censys scans are huge ".json" files, typically exceeding the size 100 Gigabytes.
The download of a full scan takes roughly 24 hours. To process the data and
identify certificates that have the features mentioned in Section 4.2.2, our script
requires a few hours. Access to Shodan data is performed through dedicated
APIs. Depending on the number of hosts that have a specific feature, obtaining
information for all services running on a particular IP, can take from 1 up to 8
hours. Finally, validation requires to attempt to connect to each IP using “vanilla
Tor”; only if this step succeeds and we are able to download the descriptor, we
confirm that the IP belongs to a bridge. Attempting to connect sequentially to
each candidate, using a single machine and with only one Tor client, on average
can require up to 8 hours.

From the perspective of resource usage, the download and the analysis of
data can be performed using a single machine, with no demanding requirements
in terms of resources (CPU and RAM). For this reason the bottleneck for the
whole process is represented by the download of the Censys scan. Because of this
limitation attacks can be performed with a delay of a one day and half (i.e., the
time required to download and process the most recent Censys scan in addition
to the time to try to connect to each IP of a possible bridge).

4.8 Security Discussion of Findings

In this section we recapitulate the findings described throughout the paper and
discuss their implication with respect to the security and privacy of Tor’s bridge
population.

4.8.1 Security Implications of Scan Search Engines

While the use of Internet-wide scanning for discovering bridges was known |31,
117], our work illustrates how the availability of scan search engines, which index
data collected from Internet-wide scans, greatly lowers the attack cost in terms of
scanning infrastructure. In fact, by leveraging search engines, an adversary that
follows our approach can discover, with no investment in scanning infrastructure,
35% of public bridges with clients, 23% of active public bridges, and hundreds
of private bridges and proxies. The discovered public bridges support 95% of
all clients and include 90% of the bridges offering obfs4 and obfs3. In contrast,

79

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

other bridge enumeration attacks, e.g., using a middle node or performing clever
queries to the Bridge Authority [66], achieve lower coverage, are much slower,
and may require setting up an OR.

Furthermore, we have shown a novel technique to leverage scan search en-
gines to discover Tor bridges by examining non-Tor services running on bridge
hosts. Those services may provide unique identifiers (e.g., SSH keys) that may
reveal other bridges from the same owners and enable tracking a bridge across IP
changes.

One key take away is that scan search engines have greatly lowered the bar
with respect to the resources needed to learn what services are offered on Internet-
connected hosts. The security of systems that require hiding components, e.g.,
Tor bridges, should be designed with this threat in mind.

Even in case IPv6 was widely adopted, the situation would be slightly better
despite the presence of scan search engines. The address space of 2'2® possible IP
addresses, would not allow scanners to collect data on a daily basis, but results
obtained by querying one of those engines, would return the address of a bridge
that was active several months ago. Adoption of IPv6 by itself would not be
sufficient: stable bridges have a median lifetime of 4 months and they could still
be identified even using information obtained from non-fresh scans.

Closing the OR Port. Having the OR port open in all bridges enables bridge
enumeration through Internet-wide scanning. Closing the OR port has been
queued for fixing since November 2012. While its priority was increased in
September 2015 |7], the fix has not happened yet, as it requires changes to the
Bridge Authority, BridgeDB, and multiple other tools that assume bridges have
an OR port. Our quantification of the impact of this bug highlights the impor-
tance of quickly fixing vulnerabilities. We hope our work will provide a push to
fix this bug and possibly to find an entity that sponsors the fix.

While the bug is fixed, possible stopgap fixes include allowing only known
IPs (e.g., Bridge Authority) to connect to the OR port and improving OR port
diversity. The latter is critical because closing the OR port by default does not
solve the problem that it would remain open for the 77% bridges offering “vanilla
Tor”, which would still be vulnerable to scanning attacks. Non-default important
bridges carrying a significant number of users seem to already be randomizing
the OR port by setting it to auto in their configuration files, likely due to the
expertise of their owners. This forces an attacker to scan many ports before
finding a significant fraction of bridges. However, we have shown that 71% of
public bridges use 3 OR ports. Thus, it is critical to educate less expert users
on the importance of setting the OR port to auto in their bridge configuration.
Bridge configuration tutorials that still use a fixed OR port, e.g. [79], should be
fixed.

We must stress that closing the OR port does not eliminate the threat of
discovering bridges through additional non-Tor services coexisting on a bridge’s

80

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

host, nor other security risks uncovered by our analysis that we discuss in the
following sections.

4.8.2 Security Implications of CollecTor Data

While collecting fine-grained data about the Tor Network is fundamental for
the Tor Project maintainers, making it publicly available through services like
CollecTor requires an analysis of the benefit versus privacy trade-off to understand
the risks. One of our goals was analyzing if the fine-grained, per-bridge, data
provided by CollecTor, as opposed to aggregate statistics provided by Tor Metrics,
could be harmful to the security of public bridges. Here we discuss our findings.

OR Ports. The most concerning data in CollecTor we found is the availability
of OR ports. Knowing the OR port of all public bridges helps to optimize the
discovery of bridges by focusing Internet-wide scans on the most popular OR
ports, which are used by the overwhelming majority of bridges. Furthermore, as
discussed in Section 4.5.5, an adversary can search for the OR port of a bridge of
interest (e.g., one supporting most users in a censored country or providing strong
PTs) and then perform an Internet-wide scan on that OR port to deanonymize
it. After we sent a draft of this work to the Tor Project, CollecTor has started
sanitizing the OR port in a similar way as they anonymize bridge IPs [69]. Such
sanitization prevents mapping an anonymized OR port in CollecTor to a real
port, preventing the two issues above. Techniques that apply differential privacy
would not have been enough in this situation, since from the anonymized data
it would still be possible to infer correlation and usage of a small number of OR
ports. Even if the attacker did not have access to the information about the most
popular OR ports in CollecTor, she could still interact with BridgeDB and obtain
bridge samples with the corresponding OR port on which they are listening. By
knowing the only the shape of the distribution of the ports, the sampled dataset
can be leveraged by the adversary for inferring which should be the most popular
OR ports, to be selected during scans, that would maximize the likelihood of
discovering bridges.

Fingerprints. A second piece of data extremely valuable for our work was the
availability of the bridge sanitized fingerprint. It allowed us to link information
from different CollecTor files and gather longitudinal information on individual
bridges. Having a unique bridge identifier is fundamental to the granularity of
CollecTor. Thus, it does not seem easy to remove them and instead raises the
question of whether CollecTor should be a service only available to Tor maintain-
ers. Another issue is that once the fingerprint of a public bridge is known, it can
be hashed to find the specific bridge in CollecTor enabling near-real-time access
to bridge’s data (e.g., PTs offered, IP changes), as well as longitudinal statis-
tics on the whole bridge lifetime. This could be addressed by adding a secret to

81

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

the fingerprint sanitization. However, this would prevent bridge owners to check
statistics on their own bridges on CollecTor.

Usage Statistics. Rounding usage counters is a simple method to protect indi-
vidual users while enabling statistics collection. Recent developments on privacy-
preserving collection of statistics [35,91] improve this protection and enable a
wider range of statistics collection. Yet, these methods are not sufficient to pre-
vent an adversary from ranking bridges according to their usage. We have shown
that such rankings have two security implications. First, they enable an adversary
to evaluate how successful is her blocking, not only at the global Tor Network
level, but more worryingly for specific countries and PTs. Second, they allow
an adversary to identify valuable (yet unblocked) bridges to target. Therefore,
we believe that further research on privacy-preserving publishing of aggregated
statistics is needed.

4.8.3 Security Implications of Bridge Properties

In this Section we discuss implications of the bridge properties we learned through
the analysis of CollecTor data.

Bridge Stability. We found that public bridges can be coarsely classified in
55% volatile and 45% stable, where only stable bridges carry client traffic. Volatile
bridges are short-lived and may be due to bridges installed on machines not
always connected to the Internet, or by users testing how to run a bridge. Stable
bridges are long-lived (median lifetime of 4 months) and rarely change IP address.
Stability means once a user obtains the bridge information from BridgeDB it can
use it for a long time. On the other hand, it also implies that current adversary
blocking policies, e.g., the GFC removing blocks for bridge IP addresses every 25
hours [37], are extremely polite. Once an adversary finds a stable bridge, it can
perform more aggressive blocking (up to months) or adaptive, by reconnecting to
a bridge every day to check it is still active and the block should be renewed.

Use of Default Bridges. Our study of bridge importance reveals that default
bridges carry over 90% of bridge users. Default bridges enable out-of-the-box use
of Tor software, without the need to request bridges from BridgeDB. While cen-
sors may not be continuously blocking default bridges (otherwise they would not
carry clients on censored countries), their massive usage enables easy disconnec-
tion of the bridges user base in response to events. Our measurements show that
such blocking would disconnect nearly 90% of bridge clients in countries like Iran
and Syria. Additionally, the fact that Tor users are educated to use the software
out-of-the-box casts doubts about their ability to find alternative bridges when
such blocking happens.

82

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

PT Deployment. We observe that 77% of public bridges only offer “vanilla
Tor” and another 15% mix PTs with conflicting security properties (e.g., with
and without reply protection), reducing the protection to that of the least safe
transport. In general, the goal should be that bridges do not offer weak transports
(e.g., vanilla) or deprecated ones (e.g., obfs2), but only PTs considered safe and
without conflicting properties. The current PT deployment strategy in which
bridge owners decide independently which PTs to offer from the complete pool
of PTs is not optimal. There is a need for a faster way to remove PTs known
to be unsafe (e.g., vanilla, obfs2). This could be achieved by adding automatic
updates to Tor, enabling centralized decision on which PTs should no longer be
offered and faster distribution of updates to disable them. In general, automatic
updates would more quickly close the vulnerability window for any already fixed
security issue. Since adding automatic updates may take time, the Tor software
could in the mean time be configured to offer the strongest PT (e.g., obfs4) by
default and to warn the user if two transports with conflicting security properties
are about to be offered.

4.8.4 Security Implications of Uncovering Private Infras-
tructure

Discovery of private bridges and proxies is arguably more worrisome than de-
anonymization of the IP address of public bridges. Their discovery allows an
adversary to learn that IP addresses connecting to them correspond to Tor users
that are members of the owner organization, and to use their IPs to geographically
locate the users. This is particularly dangerous as private bridges and proxies may
be run precisely by organizations trying to avoid such identification. One positive
aspect is that since private bridges do not report to the Bridge Authority, nor are
explored by any Tor-related service, it may be much easier to disable their OR
port. This would prevent private bridges from appearing in scan search engines,
and if they exclusively use strong PTs (e.g., obfs4), would thwart attempts of
scanning to find them.

We have uncovered that multiple organizations are using private proxies as
cheap replacements for private bridges. However, proxies are always in the same
AS, which in 77% type I and II clusters is also the same AS hosting the backend
OR. Once a proxy is discovered, it is possible to scan nearby IP addresses to find
other proxies and the backend. In the case of backend relays, whose IP addresses
are known, an adversary can perform localized scans around relay IP addresses
to locate proxies. In those cases, using as backend a public bridge with a random
OR port is preferable to a relay.

Proxies also have non-security implications for the Tor Network. First, they
add an extra hop in addition to the 3-hop Tor circuit, which if the proxy lays
across the Internet from the bridge increases the, already high, latency of Tor cir-
cuits. Second, proxies affect the usage statistics in CollecTor as connections from

83

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

multiple clients, potentially in different countries, are all counted as connections
from the proxy IP address by the backend OR.

4.9 Related Work

The academic community has paid quite some attention to Tor bridges A first
line of research related to this work deals with the proposal of PTs to avoid
traffic analysis attacks [32, 76,120, 128, and their detection [119]. The latter
work studies the detectability of five popular PTs. Their results show that a
determined adversary can reliably detect communications with bridges with a low
false positive rate. We note that the quest for the best anti-censorship mechanism,
where approaches that rely on raising the cost of blocking [52,60, 128| seem most
promising, is an orthogonal problem to the one studied in this paper where we are
concerned with studying the security implications of currently deployed defenses.

A second line of work arises in response to censors using active probing to
confirm that suspicious nodes are bridges [37]. This work also shows that the
censors’ systems operate in real time, are able to detect servers using five circum-
vention protocols and are regularly updated. Houmansadr et al. [51] show that
PTs that mimic other protocols, e.g., [76,120], are particularly sensitive to active
probing since they only mimic part of the communication. Defenses against ac-
tive probing are based on PTs that only reply upon being proven that the client
knows a long-lived secret [5,128] or a short-lived key [98].

A third relevant research line is dedicated to the discovery of bridges. McLach-
lan and Hopper [74| showed that it is possible to deanonymize bridge operators
when bridges run in clients. In case bridges are dedicated servers, Ling et al [66]
provide both active attacks where the adversary directly interacts with the bridge
distributor, and passive attacks where she sets up a relay and enumerates bridges
(i.e., non relay nodes) that connect to it. The work on Internet-wide scanning by
Durumeric et al. [31] showed that the pattern in Tor certificates could be used to
identify bridges, a property that we leverage to realize our measurement of the Tor
bridge infrastructure. We show how to optimize enumeration by leveraging data
in CollecTor and the availability of scan search engines to minimize investment in
scanning infrastructure. We also present an alternative discovery technique based
on non-Tor services bridges may also run, which is related to works leveraging
leaks on scan search repositories to deanonymize hidden services [73].

Finally, Winter et al. [125] propose a tool to identify sybils in the Tor Net-
work, i.e., relays owned by the same group, by studying configuration and uptime
similarity. Our clustering has a similar goal as their nearest neighbor ranking and
can be applied to relay descriptors as well, with the advantage that it does not
require an input OR to compare with.

84

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

4.10 Ethical Considerations

Our measurements only leverage known limitations of the Tor Network, and only
use leaks present in publicly accessible repositories such as Shodan, Censys or
CollecTor. We purposefully avoid adding relays or bridges into the Tor Network,
as well as exploiting any software vulnerability. We have no access to any traffic
that is not ours, and hence we can not threaten the privacy of any Tor user.
However, the data we collect contains the IP addresses and contact information
of public and private bridges that must be kept private to preserve the security
provided by the Tor Network. Thus, we do not disclose any bridge/proxy IP
addresses, nor any personal information we may learn about its owners, but only
provide aggregate data to illustrate important steps and findings.

This work has been approved by ethics review board of our institution, which
has mandated that due to its sensitive nature the data must be protected with
diligence, must not be disclosed to third parties, and must be deleted when the
paper is published. We forwarded a copy of this draft with the Tor Project, that
has already started taking measures [69] to prevent bridge targeting based on
CollecTor public information.

4.11 Conclusion

In this work we provide the first systematic security analysis of the Tor bridge
infrastructure. Our opportunistic measurements, made possible by taking advan-
tage of two known Tor issues, allow us to discover thousands of bridges which we
have used to gain understanding about the security properties of the bridge pop-
ulation. In particular we uncover the use of private proxy-based infrastructures
likely to obtain IP diversity to access the Tor Network. We also study the impact
on security of publicly available information such as that provided by CollecTor
or scan search engines. Our results have implications for the Tor Project, since
they indicate that the two issues we leveraged need to be solved as soon as possi-
ble, and that the information offered by CollecTor may need to be reduced; but
also beyond, since we confirm that the information made available by public scan
search engines should be taken into account when designing covert services.

Acknowledgments

The authors would like to thank the Tor Project their feedback. In particular,
we are very thankful to Steven Murdoch for useful discussions about bridges’ OR
ports, and to Karsten Loesing for his feedback and for promptly launching a fix
to CollecTor for anonymizing OR ports. Finally we would like to thank John
Matherly and the Shodan project for their helpfulness.

85

Chapter 4. Dissecting Tor Bridges: a Security Evaluation of Their Private and
Public Infrastructures

This research was partially supported by the Regional Government of Madrid
through the N-GREENS Software-CM S2013/ICE-2731 project, by the Spanish
Government through the DEDETIS Grant TIN2015-7013-R, and by the European
Commission through the H2020-ICT-2015 NEXTLEAP project (GA 688722). All
opinions, findings and conclusions, or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of the sponsors.

86

Conclusion and Future Directions

In the last years we have witnessed an ongoing interest from users towards Pri-
vacy Enhancing Technologies, and more specifically in the field of anonymity
networks. Anonymity networks are the state of the art solution many users daily
leverage to protect their personal information and communications and to access
contents from countries where censorship is performed. An important component
of an anonymity network is the hidden server, a machine whose IP address is kept
secret. In this thesis we propose novel approaches and techniques for deanonymiz-
ing hidden servers. Our goals are both to raise awareness about security issues
that might affect users of the anonymity network and owners of anonymous ser-
vices, and to develop tools that can be used for building more secure anonymity
networks.

In the first part of the thesis, we propose a novel approach for recovering
the IP address of servers hosting hidden services in the Tor Network. To this
end, we design, implement, and evaluate a tool that automatically explores a
hidden service detecting location leaks. Those location leaks are leveraged for
trying to unveil the IP address of the machine hosting the hidden service. Our
tool, CARONTE, operates in an open-world model. It generates a list of candi-
date Internet endpoints that could be hosting the hidden hidden service, using
the content and the configuration obtained from the hidden service. As a next
step CARONTE connects to each candidate and compares the content downloaded
from it with the one retrieved from the hidden service, in order to verify that the
candidate Internet endpoint hosts the hidden service. We demonstrate our tool
by running it on real hidden services and successfully deanonymizing over 100
of them. Both privacy-concerned owners of hidden services and law-enforcement
agencies could benefit from such a tool. Owners of services that provide sensi-
tive content (e.g., material from whistleblowers, or political dissidents) could use
CARONTE to audit their service before making it available to the public. Law-
enforcement agencies could apply CARONTE for trying to automatically identify
addresses of hidden services hosting illegal content. Future work includes both ex-

87

Chapter 5. Conclusion and Future Directions

tending CARONTE to support other location leaks (e.g., metadata from pictures)
and other anonymity networks (e.g., 12P), as well as improving the coverage by
extending CARONTE’s crawling to all the content hosted on the hidden service,
rather than just the main page.

In the second part of the thesis we perform the first systematic study of the
Tor bridge infrastructure. Our study covers both the public bridge infrastructure
available to all Tor users, and the previously unreported private bridge infras-
tructure, comprising private nodes for the exclusive use of those who know about
their existence. To analyze the public bridge infrastructure we use public data
accessible from the CollecTor service. Despite CollecTor sanitizing all sensitive
information prior to its publication, we identify elements in the published data
that may be detrimental for the security of public bridges. Using CollecTor we
measured security relevant properties of public bridges. This measurement shows
how the public bridges with clients are stable and they rarely change their IP ad-
dress. As a direct consequence of this property, governments that restrict users’
access to the anonymity network might switch to more aggressive strategies. We
also show how additional services running on bridges can be abused for keeping
track of IP changes. Furthermore we show that the presence of multiple transport
protocols with conflicting security properties harms bridge security. After sharing
our work with the Tor Project, the maintainers of CollecTor started sanitizing
the OR port on which the bridge is listening for incoming connections

To study the private bridge infrastructure, we use an approach that leverages
both scan search engines and two known Tor issues. During this process we dis-
cover 694 private bridges and 645 proxies that forward traffic to backend bridges
or relays. Our results have implications for the Tor Project, since they indicate
that the two issues we leveraged to deanonymize bridges need to be solved as
soon as possible. We also show how the availability of scan search engines, which
index data collected from Internet-wide scans, greatly lowers the cost of our de-
anonymization attack in terms of scanning infrastructure. Thus, the security of
systems that require hiding components, e.g., Tor bridges, should be designed
with this threat in mind. Finally we uncover the use of private proxy-based in-
frastructures likely to obtain IP diversity to access the Tor Network. Our future
work includes evaluating possible solutions for the protocol-dependent issues used
to deanonymize bridges, and developing strategies that would allow publication
of network information through privacy-preserving statistics.

Anonymity networks have become an essential technology for many users that
access content and communicate over the Internet. In this thesis we have shown
how despite continuous progress in the development of more secure protocols, and
without the need to introduce any malicious element in the anonymity network,
still the privacy and security of their users can be seriously compromised. We have
illustrated how focusing exclusively on the development of more sophisticated
protocols and encryption schemes is not enough for protecting the anonymity of
both users and service providers. We identify several sources of potential leaks

88

Chapter 5. Conclusion and Future Directions

that can provide an attacker with valuable information about the location of a
service or the identity of its owner. First of all, configuration issues when setting
up the application to use the anonymity network. For example, in the scenario of
Tor hidden services, this could be presence of files that were not supposed to be
publicly accessible. Second, third-party services, such as search engines. When a
service is available both within the anonymity network and on the Internet, the
content downloaded from the hidden service might have been indexed by a search
engine. If the content contains unique features, such as an extremely specific title
or email address, the search engine itself could be used for identifying candidates.
Also dedicated search engines, which scan the address space looking for open
ports or addresses that offer a particular protocol, can become a valuable tool in
the hands of an attacker. Protocols often contain unique patterns or fingerprints
that allow the attacker to link an IP address with a particular protocol (as in the
case of vanilla Tor and TLS). When this does not apply to the protocol adopted
by the anonymity network, additional services running on a hidden server could
be using different protocols that instead have those features. Finally, also publicly
accessible datasets that contain statistics about the network are also a potential
source of leaks. Even when this data goes through a sanitization process it can still
be used for harming the security of critical elements of the anonymity network.
Despite our work focusing on Tor, the possible sources of leaks that we exploited
for deanonymizing Tor hidden servers could be leveraged to achieve the same goal
within other anonymity networks. For this reason we hope that this thesis can
be a help guiding developers and users of new generation anonymity networks.

Acknowledgments

This research was partially supported by the Regional Government of Madrid
through the N-GREENS Software-CM project S2013/ICE-2731, by the Span-
ish Government through the StrongSoft Grant TIN2012-39391-C04-01 and the
DEDETIS Grant TIN2015-7013-R, and by the European Commission through
the H2020-ICT-2015 NEXTLEAP project (GA 688722).

89

Bibliography

[1] Tor Hidden Service (.onion) search. https://ahmia.fi/search/.

[2] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LASTor: A
Low-Latency AS-Aware Tor Client. In Proceedings of the IEEE
Symposium on Security and Privacy, 2012.

[3] Ross Anderson et al. The eternity service. In Proceedings of
PRAGOCRYPT, volume 96, pages 242-252, 1996.

[4] Andres Riancho. w3af. https://github.com/andresriancho/w3af.

[5] Yawning Angel. obfs4 (The obfourscator). https://gitweb.torproject.
org/user/phw/scramblesuit.git/tree/doc/scramblesuit-spec.txt,
2014.

[6] Jacob Appelbaum. NSA targets the privacy-conscious.
http://daserste.ndr.de/panorama/aktuell/nsa230_page-1.html.

[7] asn. Obfsbridges should be able to "disable" their ORPort.
https://trac.torproject.org/projects/tor/ticket/7349.

[8] asn. GFW probes based on Tor’s SSL cipher list, 2011.
https://trac.torproject.org/projects/tor/ticket/4744.

[9] asn. On recent and upcoming developments in Pluggable Transports,
2014. https://blog.torproject.org/blog/
recent-and-upcoming-developments-pluggable-transports.

[10] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and
Douglas Sicker. Low-resource Routing Attacks Against Tor. In
Proceedings of the ACM Workshop on Privacy in Electronic Society, 2007.

90

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

22]

23]

Bernardo Damele A. G. and Miroslav Stampar. sqlmap.
https://github.com/sqlmapproject/sqlmap.

Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp
Weinmann. Content and Popularity Analysis of Tor Hidden Services. In
Proceedings of the First International Workshop on Big Data Analytics for
Security, June 2014.

Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for Tor Hidden Services: Detection, Measurement, Deanonymization. In
Proceedings of the IEEE Symposium on Security and Privacy, 2013.

Reporters Without Borders. Enemies of the Internet 2014: Entities at the
heart of censorship and surveillance. http://12mars.rsf.org/2014-en/.

Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial
of Service or Denial of Security? In Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007.

Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial
of Service or Denial of Security? - How Attacks on Reliability can
Compromise Anonymity. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, 2007.

David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Communications of the ACM 24, 1981.

Chris Sullo. nikto. https://github.com/sullo/nikto.

Christian Martorella. theHArvester.
https://github.com/laramies/theHarvester.

Nicolas Christin. Traveling the Silk Road: A Measurement Analysis of a
Large Anonymous Online Marketplace. In Proceedings of the 22nd
International Conference on World Wide Web, 2013.

Nicolas Christin. Traveling the Silk Road: A measurement analysis of a
large anonymous online marketplace. In Proceedings of the 22nd
international conference on World Wide Web, pages 213-224.
International World Wide Web Conferences Steering Committee, 2013.

Adrian Crenshaw. Darknets and hidden servers: Identifying the true
IP /network identity of I2P service hosts, 2011. Black Hat DC.

Deep Web Links: .onion hidden service urls list.
http://deepweblinks.org/.

91

[24]

[25]

26]

[27]

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

Roger Dingledine. Tor Project: Tor Rendezvous Specification.
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt.

Roger Dingledine. Tor Hidden Services, 2005.
https://www.freehaven.net/ arma/wth3.pdf.

Roger Dingledine and Jacob Appelbaum. How governments have tried to
block Tor. In 28th Chaos Communication Congress, 2012.

Roger Dingledine and Nick Mathewson. Tor protocol specification.
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
Second-generation Onion Router. In Proceedings of the 13th USENIX
Security Symposium, 2004.

DuckDuckGo. http://3g2upl4pg6kufcdm.onion.

Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and

J. Alex Halderman. A Search Engine Backed by Internet-Wide Scanning.
In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
SIGSAC Conference on Computer and Communications Security, pages
542-553. ACM, 2015.

Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast
Internet-wide Scanning and Its Security Applications. In Samuel T. King,
editor, USENIX Security Symposium, pages 605-620. USENIX
Association, 2013.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas
Shrimpton. Protocol misidentification made easy with
format-transforming encryption. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM Conference on Computer and
Communications Security, pages 61-72. ACM, 2013.

Matthew Edman and Paul Syverson. AS-awareness in Tor Path Selection.
In Proceedings of the 16th ACM Conference on Computer and
Communications Security, 2009.

Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Tan
Goldberg. Changing of the Guards: A Framework for Understanding and
Improving Entry Guard Selection in Tor. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society, 2012.

Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private
collection of traffic statistics for anonymous communication networks. In
ACM Conference on Computer and Communications Security, 2014.

92

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Juan A. Elices, Fernando Perez-Gonzalez, and Carmela Troncoso.
Fingerprinting Tor’s Hidden Service Log Files Using a Timing Channel.
In Proceedings of the IEEE International Workshop on Information
Forensics and Security, 2011.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas
Weaver, and Vern Paxson. Examining How the Great Firewall Discovers
Hidden Circumvention Servers. In ACM Internet Measurement
Conference, 2015.

Nathan S. Evans, Roger Dingledine, and Christian Grothoff. A Practical
Congestion Attack on Tor Using Long Paths. In Proceedings of the 18th
USENIX Security Symposium, 2009.

Facebook. 1 Million People use Facebook over Tor.
https://www.facebook.com/notes/facebook-over-tor/
1-million-people-use-facebook-over-tor/865624066877648/.

Nick Feamster and Roger Dingledine. Location Diversity in Anonymity
Networks. In Proceedings of the ACM Workshop on Privacy in the
Electronic Society, 2004.

David Fifield. Meek.
https://trac.torproject.org/projects/tor/wiki/doc/meek.

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson.
Blocking-resistant communication through domain fronting. In PoPETs,
2015.

Fredzupy. Ethiopia Introduces Deep Packet Inspection | The Tor Blog.
https://trac.torproject.org/projects/tor/ticket/6140.

David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding
routing information. In International Workshop on Information Hiding,
pages 137-150. Springer, 1996.

Google. Certificate Transparency.
http://www.certificate-transparency.org.

Robert Graham. Reading the Silk Road configuration, October 2014.
http://blog.erratasec.com/2014/10/
reading-silk-road-configuration.html.

Andy Greenberg. Wired: Global Web Crackdown Arrests 17, Seizes
Hundreds Of Dark Net Domains, November 2014. http:
//www.wired.com/2014/11/operation-onymous-dark-web-arrests/.

93

[48] Glenn Greenwald and Ewen MacAskill. Boundless Informant: the NSA’s
secret tool to track global surveillance data, 2013.
urlhttps://www.theguardian.com /world /2013 /jun/08 /nsa-boundless-
informant-global-datamining.

[49] Nicholas Hopper. Short paper: Challenges in Protecting Tor Hidden
Services from Botnet Abuse. In Proceedings of the 18th International
Conference on Financial Cryptography and Data Security, 2014.

[50] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-TIN. How Much
Anonymity Does Network Latency Leak? ACM Transactions on
Information Systems Security, 13(2):1-28, February 2010.

[51] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The Parrot Is
Dead: Observing Unobservable Network Communications. In IEEE
Symposium on Security and Privacy, pages 65—79. IEEE Computer
Society, 2013.

[52] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. No
Direction Home: The True Cost of Routing Around Decoys. In Network
and Distributed System Security Symposium, 2014.

[53] Freedom House. Freedom on the Net 2015, 2015.
https://freedomhouse.org/report/freedom-net/freedom-net-2015.

[54] Html::Similarity. http://search.cpan.org/ xern/HTML-Similarity-0.
2.0/1ib/HTML/Similarity.pm/.

[55] The Invisible Internet Project. https://geti2p.net/.

[56] International Computer Science Institute. The ICST Certificate Notary.
http://notary.icsi.berkeley.edu/.

[57] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In Proceedings of the 19th Annual
Network and Distributed System Security Symposium, February 2012.

[58] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Bjérn Scheuermann.
The Sniper Attack: Anonymously Deanonymizing and Disabling the Tor
Network. In Proceedings of the 21st Annual Network and Distributed
System Security Symposium, 2014.

[59] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul
Syverson. Users Get Routed: Traffic Correlation on Tor by Realistic
Adversaries. In Proceedings of the ACM Conference on Computer and
Communications Security, 2013.

94

[60]

[61]

[62]

[63]

[64]

[65]

|66]

|67]

[68]

[69]

[70]

[71]

Josh Karlin and Daniel Ellard and Alden W. Jackson and Christine E.
Jones and Greg Lauer and David Mankins and W. Timothy Strayer.
Decoy Routing: Toward Unblockable Internet Communication. In
USENIX Workshop on Free and Open Communications on the Internet,
2011.

T. Ristenpart K. Dyer, S. Coull and T. Shrimpto. Protocol
Misidentication Made Easy with Format-Transforming Encryption. In

Proceedings of the ACM Conference on Computer and Communications
Security, 2012.

Kaffeine. Guess who is back again, Cryptowall, January 2015.
http://malware.dontneedcoffee.com/2015/01/
guess-whos-back-again-cryptowall-30.html.

Bryan Krebs. Silk Road Lawyers Poke Holes in FBI’s Story, October
2014. http://krebsonsecurity.com/2014/10/
silk-road-lawyers-poke-holes-in-fbis-story/.

Rapid7 Labs. Rapid 7: Sonar Project.
https://scans.io/study/sonar.ssl.

Andrew Lewman. Update on Internet censorship in Iran. https:
//blog.torproject.org/blog/update-internet-censorship-iran.

Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen Fu. Extensive
analysis and large-scale empirical evaluation of tor bridge discovery. In
Albert G. Greenberg and Kazem Sohraby, editors, IEEE INFOCOM,
pages 2381-2389. TEEE, 2012.

D. H. Lipman. Mailing list post: [tor-talk] vwfws4obovm2cydl.onion?,
June 2012. https://lists.torproject.org/pipermail/tor-talk/
2012-June/024565.html.

Karsten Loesing. Evaluate, possibly revise, and then implement ideas for
TLS certificate normalization.
https://trac.torproject.org/projects/tor/ticket/7145.

Karsten Loesing. Sanitize TCP ports in bridge descriptors.
https://trac.torproject.org/projects/tor/ticket/19317.

Karsten Loesing. [tor-dev| Introducing CollecTor (was: Spinning off
Directory Archive from Metrics Portal). https://lists.torproject.
org/pipermail/tor-dev/2014-June/006942.html.

Karsten Loesing and Nick Mathewson. BridgeDB specification. https:
//gitweb.torproject.org/torspec.git/tree/bridgedb-spec.txt.

95

[72]
73]

[74]

[75]

[76]

7]

78]
[79]

[30]

[81]

[82]

[83]

John Matherly. Shodan, 2013. https://www.shodan.io/.

Srdjan Matic, Platon Kotzias, and Juan Caballero. Caronte: Detecting
Location Leaks for Deanonymizing Tor Hidden Services. In ACM
Conference on Computer and Communications Security, 2015.

Jon McLachlan and Nicholas Hopper. On the risks of serving whenever
you surf: vulnerabilities in Tor’s blocking resistance design. In Ehab
Al-Shaer and Stefano Paraboschi, editors, ACM Workshop on Privacy in
the Electronic Society, pages 31-40. ACM, 2009.

Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy Traffic Analysis of Low-latency Anonymous
Communication Using Throughput Fingerprinting. In Proceedings of the
18th ACM Conference on Computer and Communications Security, 2011.

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and
Ian Goldberg. SkypeMorph: protocol obfuscation for Tor bridges. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on
Computer and Communications Security, pages 97-108. ACM, 2012.

MOTHERBOARD. Confirmed: Carnegie Mellon University Attacked Tor,
Was Subpoenaed By Feds, 2016.

urlhttp: //motherboard.vice.com /read /carnegie-mellon-university-
attacked-tor-was-subpoenaed-by-feds.

Mozilla. Public Suffix List. http://publicsuffix.org/.

mrphs. Guide to run an obfs4 bridge. https://trac.torproject.org/
projects/tor/wiki/doc/PluggableTransports/obfsdproxy.

Steven J. Murdoch. Hot or Not: Revealing Hidden Services by Their
Clock Skew. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, 2006.

Steven J. Murdoch and George Danezis. Low-Cost Traffic Analysis of Tor.
In Proceedings of the IEEE Symposium on Security and Privacy, 2005.

Steven J. Murdoch and Piotr Zieliniski. Sampled Traffic Analysis by
Internet-exchange-level Adversaries. In Proceedings of the 7th
International Conference on Privacy Enhancing Technologies, 2007.

Netcraft. Keys left unchanged in many Heartbleed replacement

certificates!, April 2014.
http://news.netcraft.com/archives/2014/05/09/
keys-left-unchanged-in-many-heartbleed-replacement-certificates.
html.

96

[84] OONI Censorship Wiki: Iran.
https://trac.torproject.org/projects/tor/wiki/doc/00NI/
censorshipwiki/CensorshipByCountry/Iran.

[85] OONI Censorship Wiki: The Philippines.
https://trac.torproject.org/projects/tor/wiki/doc/00NI/
censorshipwiki/CensorshipByCountry/The_Philippines.

[86] Lasse Overlier and Paul Syverson. Locating Hidden Servers. In
Proceedings of the IEEE Symposium on Security and Privacy, 2006.

[87] Lasse Overlier and Paul Syverson. Valet Services: Improving Hidden
Servers with a Personal Touch. In Proceedings of the 6th International
Conference on Privacy Enhancing Technologies, 2006.

[88] The Tor Project. Obfs3.

https://gitweb.torproject.org/pluggable-transports/obfsproxy.
git/tree/doc/obfs3/obfs3-protocol-spec.txt.

[89] The Tor Project. Tor Manual.
https://www.torproject.org/docs/tor-manual.html.en.

[90] Michael G Reed, Paul F Syverson, and David M Goldschlag. Anonymous
connections and onion routing. IEEE Journal on Selected areas in
Communications, 16(4):482-494, 1998.

[91] Rob Jansen and Aaron Johnson. Safely Measuring Tor. In ACM
Conference on Computer and Communications Security, 2016.

[92] Roger Dingledine. Tor Project: Facebook, hidden services, and https
certs. https://blog.torproject.org/blog/
facebook-hidden-services-and-https-certs.

[93] runa. Kazakhstan uses DPI to block Tor.
https://trac.torproject.org/projects/tor/ticket/6140.

[94] Sameld. http://sameid.net/.

[95] Sarah Jamie Lewis. OnionScan. https://github.com/s-rah/onionscan,
2016.

[96] Bilal Shebaro, Fernando Perez-Gonzalez, and Jedidiah R. Crandall.
Leaving Timing-channel Fingerprints in Hidden Service Log Files. Digital
Investigations, 7:104-113, August 2010.

[97] sitting-duck. DirBuster.
https://sourceforge.net/projects/dirbuster/.

97

98]

[99]

[100]

[101]

102

[103]

[104]
[105]

[106]

107]

108

[109]

[110]

[111]

Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs
Hengartner. BridgeSPA: improving Tor bridges with single packet
authorization. In Yan Chen and Jaideep Vaidya, editors, ACM Workshop
on Privacy in the Electronic Society, pages 93-102. ACM, 2011.

Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards
an Analysis of Onion Routing Security. In Designing Privacy Enhancing

Technologies: Workshop on Design Issue in Anonymity and
Unobservability, July 2000.

The Guardian. NSA’s PRISM surveillance program: how it works and
what it can do, 2013. http://www.theguardian.com/world/2013/jun/
08/nsa-prism-server-collection-facebook-google.

The Guardian. Peeling back the layers of Tor with EgotisticalGiraffe,
2013. http://www.theguardian.com/world/interactive/2013/oct/
04/egotistical-giraffe-nsa-tor-document.

The Guardian. Tor: "The king of high-secure, low-latency anonymity’,
2013. http://www.theguardian.com/world/interactive/2013/oct/
04/tor-high-secure-internet-anonymity.

The Tor Project. censorship circumvention. https:
//blog.torproject.org/category/tags/censorship-circumvention.

The Tor Project. CollecTor. https://collector.torproject.org/.

The Tor Project. Ethical Tor Research: Guidelines. https:
//blog.torproject.org/blog/ethical-tor-research-guidelines.

The Tor Project. Tor Cloud: Tor bridges in the Amazon cloud.
https://cloud.torproject.org/.

The Tor Project. Tor directory protocol, version 3.
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt.

The Tor Project. Tor: Pluggable transports.
https://www.torproject.org/docs/pluggable-transports.html.en.

The Tor Project. Thoughts and Concerns about Operation Onymous,
November 2014. https://blog.torproject.org/blog/
thoughts-and-concerns-about-operation-onymous.

The Tor Project. Tor Metrics, 2016.
https://metrics.torproject.org/.

Hidden Wiki: Tor .onion urls directories. http://thehiddenwiki.org/.

98

[112]

[113]

[114)

[115]

[116]

[117]

[118]

[119]

[120]

121

[122]

[123]

[124]

Tor Blog. Iran blocks Tor; Tor releases same-day fix.
https://blog.torproject.org/blog/
iran-blocks-tor-tor-releases-same-day-fix.

TorProject. Tor Bridges.
https://metrics.torproject.org/clients-data.html.

Torproject. Tor Project: Configuring Hidden Services for Tor.
https://www.torproject.org/docs/tor-hidden-service.html.en.

Torproject. Who uses Tor?, 2014.
https://www.torproject.org/about/torusers.html.en.

Michael Carl Tschantz, Sadia Afroz, David Fifield, and Vern Paxon. SoK:
Towards Grounding Censorship Circumvention in Empiriscism. In IFEE
Symposium on Security €& Privacy, 2016.

Vlad Tsyrklevich. Internet-wide scanning for bridges. https://lists.
torproject.org/pipermail/tor-dev/2014-December/007957 .html.

Laurent Vanbever, Oscar Li, Jennifer Rexford, and Prateek Mittal.
Anonymity on QuickSand: Using BGP to Compromise Tor. In
Proceedings of the 13th ACM Workshop on Hot Topics in Networks, 2014.

Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and
Thomas Shrimpton. Seeing through Network-Protocol Obfuscation. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 57-69. ACM, 2015.

Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda
Briesemeister, Steven Cheung, Frank Wang, and Dan Boneh. StegoTorus:
a camouflage proxy for the Tor anonymity system. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer and
Communications Security, pages 109-120. ACM, 2012.

Tim Wilde. Great Firewall Tor Probing Circa 09 DEC 2011.
https://gist.github.com/da3c7a9af01d74cd7de7.

Tim Wilde. Knock Knock Knockin” on Bridges’ Doors, 2012. https:
//blog.torproject.org/blog/knock-knock-knockin-bridges-doors.

Philip Winter. Censorship by country: The Philippines.
https://trac.torproject.org/projects/tor/wiki/doc/00NI/
censorshipwiki/CensorshipByCountry/The_Philippines.

Philipp Winter. ScrambleSuit Protocol Specification, 2013
https://gitweb.torproject.org/user/phw/scramblesuit.git/tree/
doc/scramblesuit-spec.txt.

99

[125] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick Feamster.
Identifying and characterizing Sybils in the Tor network. In USENIX
Security Symposium, 2016.

[126] Philipp Winter and Stefan Lindskog. How the Great Firewall of China is
Blocking Tor. In FOCI, 2012.

[127] Philipp Winter and Stefan Lindskog. How the Great Firewall of China is
Blocking Tor. In USENIX Free and Open Communications on the
Internet, 2012.

[128] Philipp Winter, Tobias Pulls, and Jiirgen Fufi. ScrambleSuit: a
polymorphic network protocol to circumvent censorship. In Ahmad-Reza
Sadeghi and Sara Foresti, editors, ACM Workshop on Privacy in the
Electronic Society, pages 213-224. ACM, 2013.

[129] Wired. A simple guide to GCHQ’s internet surveillance programme
Tempora, 2013. http:
//www.wired.co.uk/news/archive/2013-06/24/gchq-tempora-101.

[130] Matthew Wright, Micah Adler, Brian N. Levine, and Clay Shields.
Defending Anonymous Communications Against Passive Logging Attacks.
In Proceedings of the IEEE Symposium on Security and Privacy, 2003.

[131] Yawning. Obfsproxy4. https:
//github.com/Yawning/obfs4/blob/master/doc/obfsd-spec.txt.

[132] Sebastian Zander and Steven J. Murdoch. An Improved Clock-skew
Measurement Technique for Revealing Hidden Services. In Proceedings of
the 17th USENIX Security Symposium, 2008.

100

