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ABSTRACT  

A new strategy of simple, inexpensive, rapid, and label-free single nucleotide polymorphism 

(SNP) detection using robust chemosensors with piezomicrogravimetric (PM), SPR, or 

capacitive impedimetry (CI) signal transduction is reported.  Using these chemosensors, selective 

detection of a genetically relevant oligonucleotide under FIA conditions within 2 min is 

accomplished.  An invulnerable to non-specific interaction molecularly imprinted polymer (MIP) 

with electrochemically synthesized probes of hexameric 2,2’-bithien-5-yl DNA analogs 

discriminating single purine-nucleobase mismatch at room temperature was used.  With DFT 

modeling, synthetic procedures developed, and ITC quantification, adenine (A) or thymine (T) 

substituted 2,2’-bithien-5-yl functional monomers capable of Watson-Crick nucleobase pairing 

with the TATAAA oligodeoxyribonucleotide template or its peptide nucleic acid (PNA) analog 

were designed.  Characterized by spectroscopic techniques, molecular cavities, exposed 

in the MIP, ordered nucleobases on the 2,2’-bithien-5-yl polymeric backbone of the TTTATA 

hexamer probe designed to hybridize the complementary TATAAA template.  That way, 

an artificial TATAAA-promoter sequence was formed.  The purine nucleobases of this sequence 

are known to be recognized by RNA polymerase to initiate the transcription in eukaryotes.  

The hexamer strongly hybridized TATAAA with the complex stability constant, 

Ks
TTTATA-TATAAA = ka/kd ≈ 106 M-1, as high as that characteristic for longer-chain DNA-PNA 

hybrids.  The CI chemosensor revealed a 5-nM limit of detection, quite appreciable as for the 

hexadeoxyribonucleotide.  The molecular imprinting increased the chemosensor sensitivity 

to the TATAAA analyte over four times compared to that of the non-imprinted polymer.  

The herein devised detection platform enabled generating a library of hexamer probes for typing 
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 3

majority of SNPs as well as studying a molecular mechanism of the complex transcription 

machinery, physics of single polymer molecules, and stable genetic nanomaterials.   

1. Introduction 

Inspired by the Watson−Crick double helix,1, 2 synthetic polymers were explored as templates to 

direct the polymerization as early as in 1956.3-5  Then, first investigations of biological 

macromolecular templates appeared only ten years later.6  However, the ability to direct 

polymerization along a template and read the sequence and chain-length information, particularly 

in the absence of biological catalysts, has remained limited.4  The self-recognizing and self-

organizing properties of biomolecules, and nucleic acids in particular, are exploited to fabricate 

new nanoscale materials with unique properties and capabilities.7, 8   

 Detection of specific nucleic acid sequences is critical in contemporary biology and 

medicine. Importantly, there is an increasing interest in personalized medicine in the underlying 

genetic causes of disease, and this invokes higher demand to detect and identify RNA and DNA 

sequences.9  Determination of DNA sequences shows considerable variability between 

individuals.  Most of the variations in the human genome results from single nucleotide 

polymorphisms (SNPs).10-13  SNPs are potent molecular genetic markers and valuable indicators 

for biomedical research, drug development, clinical diagnosis, disease therapy, evolutionary 

studies, and forensic science.14-16 

 Current methods for SNP genotyping rely on a wide variety of probes, e.g., molecular 

beacons17, 18 and nucleic acid analogs.19-23  So far, several different SNP detection platforms, e.g., 

fluorescence, gel electrophoresis, mass spectrometry, electrochemistry, and microgravimetry, 

have been developed.  Although they are sensitive, many of them reveal features that limit their 
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practical use, e.g., tedious assay processes, expensive instruments (e.g., mass spectrometer or a 

thermal cycler for PCR), or a need for exact control over the experimental conditions (e.g., 

temperature).15 

 Relatively short oligonucleotide (ON) probes are more sensitive to SNPs because of 

greater relative impact of a single base-pair mismatch on the hybridization stability of these 

probes with the target DNA sequence. Short ON probes have superior ability to discriminate 

SNPs, thus lowering the chance of generating false signals arising from non-specific or non-

perfect interactions, characteristic of 15-20 nucleotide hybrids.  However, the stability constant 

of complexes between complementary and target ONs, particularly those containing less than 

eight nucleotides, depends upon the chain lengths of ONs.  No interaction could be detected with 

thymine- (T) and adenine- (A) oligodeoxyribonucleotides (ODNs) with chain lengths less than 

five and four nucleotides, respectively6.  Basically, T- and A-hexadeoxyribonucleotides with two 

hydrogen bonds of A-T pairs cannot form a stable complex above 0 °C.   

 Therefore, easily prepared hexamers of DNA analogs capable of hybridizing nucleic 

acids with high affinity at or close to room temperature, and providing excellent mismatch 

discrimination will be valuable for generating an essentially complete library of genotyping 

probes, applicable for typing majority of SNPs.  Affinity of DNA probes and all other nucleic 

acid probes available so far, including peptide nucleic acids (PNAs), is insufficient to allow 

generating libraries of short probes fulfilling these criteria.24  To date, PNA probes had to be at 

least seven-nucleobase long because the lower affinity of shorter probes made their hybridization 

at room temperature unfavorable.24  Moreover, locked nucleic acid (LNA) molecules form 

exceedingly stable duplexes with complementary target nucleic acids.25, 26  However, the probes 

used to test hybridization of very short LNAs are dye-labeled and, therefore, their synthesis is 
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 5

prohibitively expensive and labor-demanding.24, 27  Short LNAs have been applied for efficient 

SNP scoring using fluorescence polarization detection.24  There was an attempt to decrease 

length of SNP probes by using LNA hexamers, which required only 4096 oligonucleotides in the 

complete library.28, 29  However, these hexamers exhibit several shortcomings29 including 

difficulties in discriminating terminal mismatches.   

 As a proof of concept, we herein designed and synthesized a new 2,2’-bithien-5-yl 

polymeric nucleic acid analog for SNP typing.  We explored a model example of the 

electrochemically synthesized 2,2’-bithien-5-yl TTTATA hexamer selectively hybridizing 

genetically important AT-rich ODN via Watson-Crick nucleobase pairing1 with perfect 

discrimination of one nucleobase mismatch.  The resulting 2,2’-bithien-5-yl hexamer was 

designed to assume a predefined structure by taking advantage of sequence programmability of 

the DNA template.  Herein, we used the ODN template to dictate precise positioning of 2,2’-

bithien-5-yl functional monomers around the A and T rich template.  Using molecular 

imprinting, we approached effortlessly the manner, at which nature generates complexity and 

function.8  Moreover, we used two templates, namely, an ODN of the TATAAA 1 (Scheme 1) 

and structurally similar PNA 2 (Scheme 1) of the same sequence as that of TATAAA.  In 

eukaryotes, the TATAAA is a part of the DNA core promoter, which is critical for proper 

regulation of the gene-selective transcription.30  For effective AT-rich oligonucleotide-template 

imprinting, we designed and synthesized electropolymerizable bis(2,2’-bithien-5-yl)methane 

functional monomers with T or A nucleobase moiety, vis., 4-bis(2,2’-bithien-5-yl)methylphenyl 

2-adenine ethyl ether31 3 (Scheme 1) and 4-bis(2,2'-bithien-5-yl)methylphenyl thymine-1-acetate 

4 (Scheme 1).  The 2,2’-bithien-5-yl moiety of 3 and 4 is capable of electropolymerization 

resulting in a stable conducting polymer.32  Moreover, nucleobase-substituents of the 2,2’-
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 6

bithien-5-yl functional monomers recognized compatible nucleobases of the oligonucleotide-

template used to form a pre-polymerization complex.  In this complex, 3 and 4 were self-

assembled around template molecules via Watson-Crick nucleobase pairing.  Subsequently, this 

complex was structurally incurred with the 2,4,5,2’,4’,5’-hexa(thiophene-2-yl)-3,3’-bithiophene 

5 (Scheme 1)33 cross-linking monomer by electropolymerization.  DNA-directed 

electropolymerization of functional monomers resulted in the 2,2’-bithien-5-yl TTTATA 

hexamer complementary to the TATAAA in the resulting molecularly imprinted polymer (MIP).  

In this MIP, the artificial TTTATA probe hybridized the native TATAAA to form a double-

stranded hybrid as an artificial TATAAA promoter sequence. 

 The aim of the present research was to identify molecular changes in genetically relevant 

ONs using the most innovative methods of molecular analysis.  By connecting these methods 

with MIPs, we developed a procedure of preparation of simple, rapidly operating, and 

inexpensive chemosensors.  These chemosensors were sensitive and selective for direct, non-

labeled ON determination using 2,2’-bithien-5-yl MIP, whose thickness was controlled by the 

amount of charge passed during the deposition.  Notably, conducting polymer films prepared by 

electropolymerization grow directly at a precise location on the transducer surface.  Therefore, 

these polymers have increasingly been used for preparation of MIP films as chemosensor 

recognizing units.32, 34, 35  Further development of the proposed molecular imprinting procedure 

may lead to generation of a set of genotyping electrosynthesized 2,2’-bithien-5-yl hexamer 

probes, constructing for instance electrode arrays with multiplexed electrochemical detection 

systems.   

 To date, different DNA sensors have been devised36 and the number of those using MIP 

films as recognition units is steadily growing.37, 38  Different imprinting methods were developed 
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 7

for recognition and determination of nucleic acid targets ranging from small nucleobases31, 39, 40 

to single- (ssDNA)41 and double-stranded (dsDNA)42 long-chain DNAs.  However, the 

possibility of preparation of an MIP engaging programmability of the ODN template for 

controlling sequence of the oligomer prepared via electropolymerization of nucleobase-

substituted functional monomers, including molecular imprinting of non-labeled ONs using 

Watson-Crick nucleobase pairing,1 has not been explored yet. 

2. Material and Procedures 

The Reagents and chemicals as well as Instrumentation and procedures sections are provided 

in Supporting Information. 

2.1 Preparation of MIP films, and then template extraction from these films 

First, two solutions of pre-polymerization complexes with different templates were prepared. For 

that, functional and cross-linking monomers were dissolved in acetonitrile or a mixture of 

acetonitrile, toluene, water, and isopropanol with either the PNA or DNA template.  Then, MIP 

films were prepared by potentiodynamic electropolymerization with the potential scanned from 

0.50 to 1.25 V and back at the rate of 50 mV/s.  After electropolymerization, the MIP film was 

rinsed with abundant acetonitrile to remove unbound pre-polymerization complex components 

and the supporting electrolyte.  Subsequently, the TATAAA or the PNA template was extracted 

from the film with 20% trifluoroacetic acid or 0.1 M NaOH, respectively, for 45 min at room 

temperature in order to vacate imprinted cavities in the MIP before recognizing the TATAAA 

analyte.   

 In the same manner, a chemosensor featuring a control non-imprinted polymer (NIP) film 

was prepared, however, in the absence of the template in the solution for electropolymerization.   
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 8

3. Results  

3.1 Confirmation of formation of stable A-T Watson-Crick nucleobase pairs in the pre-

polymerization complex 

Formation of stable A-T nucleobase pairs in the pre-polymerization complex was predicted by 

computational modeling and experimentally confirmed by the isothermal titration calorimetry 

(ITC) measurements, described below. 

 For favorable formation of a pre-polymerization complex in solution, initial self-

assembly of the template and functional monomers is crucial.43  Structural modeling is helpful 

for that.  However, an accurate ab initio optimization of the 568-atom complex of one TATAAA 

template molecule with two adenine 3 and four thymine 4 functional monomer molecules 

appeared to be prohibitively time consuming in our case, even with the RI approximation44 

adopted.  Therefore, we focused on the complexation of a shorter TATA fragment with 

functional monomers 3 and 4, and then performed molecular modeling at the B3LYP level with 

the 3-21G(*) basis set (Scheme S1).  The negative Gibbs energy gain as high as 

∆G = -256.6 kJ/mol was calculated using the density functional theory (DFT) method augmented 

with the D3 empirical dispersion correction.45-48  Although this value, calculated per one 

hydrogen bond, is higher than that for typical nucleobase pairing interactions, our results still 

seem to be qualitatively correct and should not change significantly even at a higher level of the 

theory.  This relatively high negative ∆G value clearly indicates an energetic preference of 

formation of a complex of TATA with the A and T moieties of the functional monomers, each 

paired with the complementary T and A moiety, respectively, of the TATA.  Apparently, 

the 5’-TATAAA-3’ recognition mimicked that of nucleic acids in living organisms. 
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 9

 Scheme 1.  Structural formulas of the TATAAA oligonucleotide 1, its PNA analog with the 
same nucleobase sequence 2, 4–(bis(2,2’–bithien–5–yl)methylphenyl-2-adenine ethyl ether 3 and 
4-(bis-2,2'-bithien-5-yl)methylphenyl thymine-1-acetate 4 functional monomers as well as the 
2,4,5,2’,4’,5’-hexa(thiophene-2-yl)-3,3’-bithiophene 5 cross-linking monomer. 

 For experimental confirmation of formation of the A-T nucleobase pairs between the 

recognizing moieties of functional monomers and the binding nucleobase moieties of the 
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 10

template in solution, we performed an ITC measurement (Fig. S1).  However, solubility of the 

functional monomers and DNA or PNA in the solution for electropolymerization was insufficient 

to reach the concentrations required for the titration.  Therefore, instead, we used DMSO as the 

solvent because it dissolved both 2 and 3. Moreover, stability of PNA, in contrast to stability of 

DNA, is almost unaffected by organic solvents.49  The total calorimetric enthalpy change was 

obtained by subtracting the dilution heat of titrant 3 from the total heat corresponding to 

injections of the solution of this titrant to the solution of the PNA template.  An independent 

model was chosen and a theoretical isotherm was fitted to the ITC data acquired yielding the 

binding enthalpy change (∆H = -19.0 kJ), the complex stability constant (Ks = 1.65×105 M-1), 

and the expected complex stoichiometry (3 : PNA = 1 : 2).  From these values, the change of 

Gibbs energy (∆G = -29.5 kJ/mol) and entropy (∆S = 35.7 J mol-1 K-1) of complex formation 

were calculated.  Apparently, the complex of one PNA template molecule and two adenine 

functional monomer molecules was stable.   

3.2 Deposition of MIP films on different electrodes 

Figure 1 presents successful electropolymerization of the PNA-(3 and 4) complex to form a PNA 

imprinted MIP film.  The anodic peak at ~1.17 V vs. Ag/AgCl in the first current-potential cycle 

(Fig. 1a) corresponds to electro-oxidation of the (2,2’-bithien-5-yl)methane moieties of 

functional monomers 3 and 4 as well as of cross-linking monomer 5.  In the subsequent cycle, 

current increased indicating deposition of an electroactive polymer film.  Thus, this film did not 

hinder the charge transfer needed for further electro-oxidation of the monomers.  

Simultaneously, resonance frequency decreased as a result of the QCR mass increase after the 

MIP-PNA film deposition.  Additionally, simultaneous negligible decrease (2 Ω) of the dynamic 

resistance in the first cycle, and then its return to the background line in the second cycle (not 
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 11

shown), indicated that the MIP-PNA film was rigid.  Then, the film was imaged by atomic force 

microscopy, AFM (inset to Figure 1), in order to unravel its morphology and thickness.  

Apparently, this film was composed of well-defined grains with diameter in the range of 30 to 60 

nm.  Its thickness was 114(±5) nm, as determined from the height of the step formed after 

removing part of the film from the substrate surface with a Teflon spatula. 
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Figure 1.  Simultaneously recorded two-cycle curves of (a) current and (b) resonance frequency 
change vs. potential for deposition on the Au-quartz electrode of the PNA-templated MIP film 
by potentiodynamic electropolymerization from the 40 µM PNA, 0.1 mM adenine functional 
monomer 3, 0.2 mM thymine functional  monomer 4, and 0.2 mM cross-linking monomer 5, 0.1 
M (TBA)ClO4 solution of acetonitrile.  The potential scan rate was 50 mV s-1.  Cycle numbers 
are indicated at curves.  Inset represents atomic force microscopy (AFM) image recorded using 
the tapping mode for the PNA-imprinted polymer.  Image size is (2 × 2) mm2. 

 We applied this MIP-PNA film as the recognition unit of a chemosensor for selective 

determination of the TATAAA analyte.  For that, the PNA template was extracted with 20% 

trifluoroacetic acid.  The increase of the resonance frequency after extraction evidenced the MIP-

PNA mass decrease because of PNA removal (Fig. S2).  Thus, the emptied MIP-PNA cavities 
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 12

featuring 2,2’-bithien-5-yl TTTATA recognizing sites could be used to recognize the AT-rich 

TATAAA analyte.  Herein, we demonstrated MIP film binding of the PNA under FIA conditions 

(Fig. S3) and, moreover, the TATAAA (not shown).  The comparable resonance frequency drop 

indicated equal affinity of the MIP to both the TATAAA and its PNA close analog manifested by 

hybridization via Watson-Crick pairing.  As expected, this was possible because the spacing 

between the nucleotides in TATAAA is the same as that in PNA.50 

3.3 Characterization of TATAAA-imprinted MIPs 

We extensively characterized the TATAAA-templated MIP film to examine if the sequence-

defined stable 2,2’-bithien-5-yl TTTATA oligomer, structurally not related to nucleic acids, 

reveals properties of conducting 2,2’-bithien-5-yl oligomers and exhibits spectral and chemical 

properties of DNA analogs.  Herein, the 2,2’-bithien-5-yl TTTATA was characterized by 

polarization-modulated infrared reflection-adsorption spectroscopy (PM-IRRAS) (Fig. 2a) and 

X-ray photoelectron spectroscopy, XPS (Table S1).  Moreover, its hybridization was confirmed 

by the differential pulse voltammetry, DPV (Fig. 2b), electrochemical impedance spectroscopy, 

EIS (Fig. S4), piezoelectric microgravimetry, PM (Fig. 3), surface plasmon resonance, SPR (Fig. 

S5a and b), and capacitive impedimetry, CI (Fig. 4) measurements.   

3.3.1 PM-IRRAS characterization of the MIP film  

We carried out PM-IRRAS measurements in search for spectral properties typical of 

polybithiophenes and DNA analogs in the 2,2’-bithien-5-yl TTTATA oligomer (Fig. 2a).  The 

presence of bonds in regions of 1580–1320 cm-1 and 1290–1140 cm-1, characteristic of vibrations 

of polybithiophene bonds, confirmed the presence of the 2,2’-bithien-5-yl backbone of the 

resulting DNA analog.  Moreover, there was a broad set of bands in these regions characteristic 
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of vibrations of nucleobase bonds.  Thus, DNA hybridization was confirmed.  However, relative 

intensity of these peaks was higher when the 2,2’-bithien-5-yl TTTATA oligomer hybridized 

with the TATAAA analyte in the MIP matrix (spectrum 1 in Fig. 2a).  Then, intensities of these 

bands decreased after extraction of the TATAAA template (spectrum 2 in Fig. 2a), thus resulting 

in the dehybridized 2,2’-bithien-5-yl TTTATA oligomer in MIP cavities.  Moreover, nucleobase 

pairing of the template with functional monomers was proved by enhancement of the band at 

1690 cm-1 corresponding to C=O stretching vibration (spectrum 1 in Fig. 2a).  After extraction, 

this band disappeared (spectrum 2 in Fig. 2a) as a result of dehybridization.51   
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Figure 2.  (a) The normalized PM-IRRAS spectra of the MIP-TATAAA film (1 ) before and (2) 
after TATAAA extraction with 0.05 mM NaOH as well as (3) the non-imprinted polymer film.  
All films were deposited on Au-glass slides.  (b)  Differential pulse voltammograms for 0.1 M 
K4Fe(CN)6 in 0.1 M KNO3, recorded at the 1-mm diameter Pt disk electrode coated with the MIP 
film (1’) before and after (2’) 25, and (3’) 45 min of TATAAA extraction with 0.1 M NaOH, and 
then (4’) after immersing the electrode in 50 µM TATAAA for 15 min.  The film was prepared 
by potentiodynamic electropolymerization in the potential range of 0.50 to 1.25 V vs. Ag/AgCl 
at the 50 mV s-1 scan rate.   
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 However, there were still bands characteristic of bending vibrations of the free -NH2 

group of A as well as stretching vibrations of C=O groups at C2 and C4 of T, located at 1642, 

1662, and 1772 cm-1, respectively.  By comparing bands of this region with those of the NIP 

spectrum (spectrum 3 in Fig. 2a), we concluded that neither the A nor T substituent of 2,2’-

bithien-5-yl functional monomer 3 and 4 is paired in the NIP film.   

 In the spectrum of the NIP film (spectrum 3 in Fig. 2a), there are bands characteristic of 

the -NH2 group of the unpaired adenine moiety and the C=O group of the unpaired T moiety at 

1642 and 1663 cm-1, respectively, although of low intensity.  These wavenumbers values indicate 

no A-T base pairing between functional monomers themselves.  Moreover, low intensity of the 

band at 1690 cm-1 characteristic of hybridization indicates no mutual pairing of the A and T 

functional monomers between themselves.   

 The band at ∼1100 cm-1 is characteristic of the (TBA)ClO4 supporting electrolyte salt52 

(spectra 1 and 3 in Fig. 2a).  As expected, it nearly disappeared after template extraction 

(spectrum 2 in Fig. 2a).   

3.3.2 Electrochemical characterization of the MIP film  

In the DPV using “gate effect” studies of the MIP film with the TATAAA template molecules 

occupying the imprinted cavities, current peak of the Fe(CN)6
4- oxidation (curve 1 in Fig. 2b) 

was hardly seen.  Moreover, in EIS studies the Nyquist plot for the Pt disk electrode, coated with 

the TATAAA-templated MIP film, was represented by a large arc related to high charge transfer 

resistance, Rct = 13 kΩ (curve 1 in Fig. S4), of the Fe(CN)6
4-/Fe(CN)6

3- redox probe.  Apparently, 

the TATAAA template presence in the MIP film hindered the Fe(CN)6
4-/Fe(CN)6

3- electrode 

process.  Next, the template was gradually removed from imprinted cavities (Fig. 2b), thus 

allowing for probe free permeation through the MIP film, as confirmed by the DPV peak 
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increase in the consecutive steps of extraction (curves 2 and 3 in  Fig. 2b).  Furthermore, 

diameter of the arc part of the Nyquist plot smaller than that in curve 1 in Figure S4, implied a 

lower charge transfer resistance (Rct = 2.04 kΩ) of the template-free MIP film coated electrode.  

After complete template extraction, the resulted 2,2’-bithien-5-yl TTTATA immobilized in 

molecular cavities of the MIP film hybridized the TATAAA analyte.  In effect, the DPV peak 

decreased after immersing this electrode in the TATAAA analyte solution, thus confirming that 

redox probe diffusion in the film was hindered again.  Moreover, diameter of the resulting arc of 

the Nyquist plot increased to Rct = 2.42 kΩ, thus indicating that the target TATAAA analyte was 

bound by the TTTATA site in the MIP film (curve 3 in Fig. S4).  

3.3.2 Analytical performance of the MIP chemosensor for TATAAA determination using 

capacitive impedimetry (CI), piezoelectric microgravimetry (PM), and surface plasmon 

resonance (SPR) spectroscopy  

We examined analytical performance of the TATAAA-extracted MIP chemosensor with respect 

to TATAAA determination by using PM and CI, both under FIA conditions, as well as SPR 

spectroscopy under stagnant-solution conditions (Table 1).  Moreover, we investigated the 

kinetic aspect of the TATAAA recognition with the 2,2’-bithien-5-yl TTTATA oligomer using 

both the PM and SPR spectroscopy transduction (see below, in Discussion).   

Analytical parameters of our chemosensors with respect to TATAAA determination are 

summarized in Table 1.  
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Table 1.  Analytical parameters of MIP chemosensors for TATAAA determined with different techniques. 

TATAAA 
chemosensor 

Limit of 
detection 

(LOD), nM 

Sensitivity, x, y, or z 
Dynamic linear 

concentration range, 
µM 

Capacitive 
impedimetry (CI)a 

5  2.07(±0.13)x  0.05-2.00  

Surface plasmon 
resonance (SPR) 

spectroscopyb 

50  3.43(±0.30)z  0.05-7.50  

Piezomicrogravimetry 
(PM)a 

110 1.07(±0.04)y 0.5-100 

a under FIA conditions     x µF cm-2 µM-1 

b under stagnant-solution conditions   y Hz µM-1 

with neither gold NPs nor protein enhancement  z RU µM-1 

3.3.2.1 Piezoelectric microgravimetry (PM) chemosensor  

We determined the TATAAA analyte hybridized in molecular cavities of MIP using PM-FIA.  

After each injection, resonance frequency decreased (Fig. 3a) because the analyte entered the 

film and, accordingly, the film mass increased, as Sauerbrey equation predicts.  After reaching 

minimum, this frequency increased to its initial baseline value indicating a complete removal of 

the analyte from the film by excess of the carrier solution.  Figure 3a shows resonance frequency 

change with time for six consecutive injections of the TATAAA analyte solutions of different 

concentrations, which allowed constructing calibration plots (Fig. 3b).  

 The chemosensor response to the TATAAA analyte was linear in the concentration range 

of at least 0.5 to 10 µM.  It was described by the linear regression equation of 

∆f [Hz] = -0.66(±0.02) [Hz] -1.07(±0.04) [Hz µM-1] cTATAAA [µM].  The LOD, sensitivity, and 

correlation coefficient at S/N = 3 was 110 nM, 1.07(±0.04) Hz µM-1, and 0.99, respectively.  The 

sensitivity of the NIP control film to the TATAAA was four times lower equaling 0.27(±0.03) 
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Hz µM-1 and, therefore, a reasonably high imprinting factor of 4.0 was calculated from the ratio 

of the sensitivity of the MIP and NIP film to TATAAA.   

Figure 3.  (a) The resonance frequency change with time for repetitive FIA injections of 
TATAAA of the concentration indicated at each peak for the MIP-TATAAA film coated Au-
QCR.  (b) Calibration plots for TATAAA on the (1) TATAAA-extracted MIP and (2) NIP film.  
The flow rate of the PBS (pH = 7.4) carrier solution was 30 µL/min.   

3.3.2.2 Surface plasmon resonance (SPR) spectroscopy chemosensor 

In SPR spectroscopy measurements under stagnant-solution conditions, binding the TATAAA 

analyte to the recognizing complementary TTTATA probe induced a change in the film 

refractive index.  This change was proportional to the mass load of the film, thus enabling real-

time hybridization monitoring.  Herein, the TATAAA analyte caused a shift of the reflectivity to 

higher angles as a result of significant change in the refractive index of the SPR chip coated with 

the MIP film (Fig. S5a).   

 The SPR calibration plot constructed for the TATAAA analyte (Fig. S5b) was described 

by the linear regression equation of ∆R [RU] = 8.22(±0.49) [RU] + 3.43(±0.30) [RU µM-

1] cTATAAA [µM] where R stands for the refractive index.  The LOD reached was appreciably low 

equaling ~50 nM TATAAA, which is half that attained herein by PM.  This is particularly 
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important because we enhanced the response of the SPR chip with neither gold nanoparticles nor 

proteins.   

3.3.2.3 Capacitive impedimetry (CI) chemosensor  

In CI determination of TATAAA under FIA conditions, we evaluated the electrical double-layer 

capacity, Cdl, at the Pt-MIP interface by measuring the imaginary component of impedance, Zim.  

Considering only the compact part of the double layer, we used Equation 1 for Cdl determination 

at the Pt-MIP interface by measuring Zim,   

��� =
�

���	

           (1) 

where � = 2� and A stands for angular frequency and Pt electrode surface area, respectively. 

 The determined Cdl changes corresponded to changes of capacity of the compact part of 

the double layer solely depending on the changes of electric permittivity, ε, and the double-layer 

thickness, d, according to Equation 2   

��� =
���


�
           (2) 

where ε0 is permittivity of free space.  After TATAAA binding, the permittivity increased, so did 

the capacity.  Apparently, the recognizing MIP film reversibly bound the analyte.   

 Based on the CI measurements, we constructed calibration plots for the MIP and NIP 

film coated electrodes (curves 1 – 3, and 4, respectively, in Fig. 4b).  The linear dynamic 

concentration range extended from at least 0.05 to 2.0 µM TATAAA (curve 1 in Fig. 4b) 

obeying the linear regression equation of Cdl [µF cm-2] = 2.67(±0.13) [µF cm-2] + 2.07(±0.13) 

[µF cm-2 µM-1] cTATAAA [µM].  The LOD, determined at S/N = 3, reached as low value as ~5 nM 
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TATAAA.  The sensitivity and correlation coefficient was 2.07(±0.13) µF cm-2 µM-1 and 0.98, 

respectively.  
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Figure 4.  (a) The capacity change with time in response to repetitive FIA 200-µL injections of 
0.1 M NaF solutions of TATAAA for MIP film coated Pt disk electrode.  The TATAAA 
concentration is indicated at each peak.  The flow rate of 0.1 M NaF, serving as the carrier 
solution, was 20 µL/min.  (b) Calibration plots for (1) TATAAA, (2 ) TATAGA, (3 ) TATAAG, 
on the TATAAA-extracted MIP film deposited on the Pt disk electrode, and (4) TATAAA on the 
NIP film deposited on the Pt disk electrode. 

 
The chemosensor selectivity was determined under the same CI conditions of FIA by examining 

sensitivity of the MIP film to interfering oligonucleotides of the sequence similar to that of the 

TATAAA analyte including TATAAG and TATAGA, i.e., hexamers mismatched with just one 

nucleobase.  The MIP chemosensor was ~3.0 and ~2.3 times more sensitive to the TATAAA 

analyte than to the TATAGA and TATAAG interference, respectively.  Moreover, TATAAA 

was determined at a control NIP film (curve 4 in Fig. 2b), to confirm the imprinting.  Apparently, 

the TATAAA binding by the NIP was significantly (~2.5 times) weaker compared to that of the 

MIP revealing sensitivity of 0.82(±0.19) µF µM-1. 
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4. Discussion 

The MIP formation in organic solvent solutions is more effective than that in aqueous solutions, 

if non-covalent binding is involved in molecular imprinting.53  To date, most of MIP syntheses 

involving non-covalent template binding were performed using organic solvents in order to avoid 

water competition in hydrogen bonding operative in formation of the pre-polymerization 

complex.  Moreover, contribution of hydrogen bonding is higher, the lower is electric 

permittivity of the solvent used.  Therefore, derivatives of all five nucleobases soluble in an 

organic solvent were used as templates.54  Among them, MIPs prepared using genuine 

nucleobases are most desired since the ultimate objective of this imprinting is recognition of 

native components of nucleic acids.  Unfortunately, most of these components of biological 

origin are insoluble in organic solvents.  Therefore, functional monomers soluble in aqueous 

solutions addressed this need.41, 42, 55   

 Herein, we designed and fabricated functional monomers soluble in aprotic solvents and 

capable of recognizing nucleobases of nucleic acids via Watson-Crick pairing.  Functional 

monomers synthesized herein formed a non-covalent complex with the ON template.  Then, this 

complex was electropolymerized to form 2,2’-bithien-5-yl conducting oligomers co-joined to 

this ON.  Moreover, the present ON template imprinting, which restricted the Watson-Crick 

nucleobase pairing between its nucleobases and nucleobases of functional monomers aligned 

along the AT-rich oligonucleotide, resulted in the nucleobase-substituted 2,2’-bithien-5-yl 

hexamer probe selectively hybridizing the matched ON.  Thus, molecular imprinting provided 

means to utilize the sequence programmability of DNA to prepare any number of stable 2,2’-

bithien-5-yl oligomers designed to reveal properties of a stable DNA analog fabricated in 

molecular cavities of the MIP.  

Page 20 of 31

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 21

 We anticipated that the use of the PNA analog of DNA, soluble in aprotic solvents, can 

appreciably increase efficiency of molecular imprinting using our 2,2’-bithien-5-yl functional 

monomers.  However, PNA has to be pre-organized to assume binding conformation before 

complexation for successful use of the imprinting strategy, i.e., to ensure high affinity and 

selectivity of binding the functional monomers and the PNA template.  Unlike DNA or RNA in 

the non-hybridized (single-stranded) form, which can adopt a helical structure through base-

stacking (although highly flexible), PNA does not exhibit well-defined conformational folding in 

solution.56  This is because PNA is a neutral DNA analog where the negatively charged 

phosphodiester backbone of DNA (Scheme 1) is replaced with an achiral 2-amino-ethyl-glycine 

(AEG).57  Moreover, PNA oligomers form very stable duplexes with complementary target 

nucleic acids via Watson-Crick nucleobase pairing.  We confirmed this pairing between PNA 

and our nucleobase-substituted 2,2’-bithien-5-yl functional monomers.  Apparently, functional 

monomers enforced conformational stability of the PNA template and provided the size and 

hydrogen bonding complementarity for effective PNA imprinting.  Therefore, the pre-

polymerization complex of PNA with complementarily aligned 2,2’-bithien-5-yl functional 

monomers 3 and 4 was very stable.  This stability was confirmed by a relatively high melting 

temperature (Tm = 63.9 °C) of the pre-polymerization complex determined with the differential 

scanning calorimetry (DSC) measurement (Fig. S6).  Moreover, this Tm is higher than that of a 

comparable ON, which ranges from 10 to 43 °C for TATTTTA and ATGGTG, respectively.24  

Herein, 3 or 4 functional monomers, used as artificial nucleotides, carry the sequence 

information of DNA at the molecular level.  Therefore, we propose the use of stable, 

nucleobase-substituted 2,2’-bithien-5-yl oligomers as non-biological oligonucleotide 
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counterparts.  Apparently, our results open up possibilities to store and retrieve digital data using 

DNA molecules.   

 First, our PM-FIA measurements confirmed that emptied molecular cavities in the MIP-

PNA successfully recognized by hybridization both PNA and TATAAA with similar affinity.  

Next, we examined if a minute amount of water, needed to dissolve the TATAAA and to 

maintain its native conformation during imprinting, influenced recognition properties of the MIP 

film of the chemosensor.  Moreover, we have demonstrated that a minute amount of a protic 

solvent can be added to the pre-polymerization complex solution to prepare the MIP recognizing 

TATAAA with the same affinity as that of the PNA-imprinted MIP prepared using just one 

aprotic solvent.  Therefore, the MIP film bound the TATAAA analyte with the same affinity as 

that of the MIP-PNA film (not shown).   

 Thus, we developed two procedures of imprinting AT-rich ON, using nucleobase-

substituted 2,2’-bithien-5-yl functional monomers designed for the Watson-Crick pairing.  We 

prepared MIP chemosensors considering their recognition of secondary structure of the 

determined AT-rich ON analyte.  We have demonstrated that this determination was possible 

because we fabricated, inside MIPs, artificial non-labeled hexameric probes with a very high 

affinity for complementary nucleic acid targets, both DNA and PNA.  Our constrained 2,2’-

bithien-5-yl DNA analog hybridized the TATAAA at room temperature under FIA conditions 

within 2 min.  Moreover, its sensitivity for mismatch discrimination makes it uniquely suited for 

hybridization-based SNP genotyping.   

 Herein, we exploited the complementary information about the TATAAA-templated MIP 

film provided by the XPS multipoint surface analysis 58, 59 to identify surface elemental 

composition of the film and spatial atomic distribution (Table S1).  Apparently, the MIP film 
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with 2,2’-bithien-5-yl TTTATA was homogeneous.  That is, 3-D molecular cavities were 

homogeneously imprinted in it and nucleobases of the electrochemically synthesized 2,2’-

bithien-5-yl TTTATA oligomer were available for Watson-Crick pairing of nucleobases of the 

TATAAA.  The TATAAA is the only source of phosphorus in the studied system.  Therefore, its 

presence, evidenced by XPS, confirmed the TATAAA imprinting to form the TTTATA-

TATAAA hybrid in the MIP film, on the one hand.  On the other, however, its subsequent 

absence in the film after extraction (not shown) confirmed complete template removal from MIP.   

 Kinetic analysis of the PM-FIA data of the TATAAA analyte interaction with the 

MIP60, 61 provided values of the association, ka ≈ 104 M-1 s-1, and dissociation, kd = 10-2 s-1, rate 

constants.  From this analysis, we concluded that the TTTATA hexamer hybridized TATAAA 

with a high value of the complex stability constant, Ks
TTTATA-TATAAA = ka/kd ≈ 106 M-1, 

comparable to that characteristic for longer-chain DNA-PNA hybrids.  We determined the above 

rate constants by fitting theoretical data to experimental PM-FIA data.  These constants well 

compared with those determined from the SPR analysis using the literature procedure.60, 61  To 

date, a state-of-art SPR biosensor detected a short (15-mer) oligonucleotide target (Mw = 5 kDa) 

via complementary probe hybridization with a similar ka value of 104 M-1s-1.62  Moreover, 

stability constants of complexes of native nucleic acid “hosts” with their cognate ligand “guests” 

are relatively low being of the order of 103 M-1.63  Successfully, the presently determined 

Ks
TTTATA-TATAAA value for the hexamer probe is comparable to those for much longer-chain 

DNA-PNA hybrids, 106  M-1 (for PNA-GCATTTGCAT) ≤ Ks
DNA-PNA ≤ 107 M-1 (for PNA-

GCATGAGCAT).64, 65  Our procedure circumvents disadvantages connected with a very low 

stability of short ON hybrids.   
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 With the presently developed procedure, we fabricated an oligomer analog of DNA in the 

molecular cavities of MIPs.  Herein, we assumed that our MIP film prevented nonspecific 

adsorption and aggregation of 2,2’-bithien-5-yl nucleic acid analogs on the transducer surface, 

which is critically important for surface hybridization assays.66-68  Furthermore, this film most 

likely operated as a shield for the 2,2’-bithien-5-yl TTTATA located in its imprinted cavities, 

thus protecting degradation of this hexamer strand from nuclease.  Presumably, even without a 

distinct stage of our hexamer SNP probe immobilization, its 2,2’-bithien-5-yl backbone was 

aligned in parallel to the transducer surface.  Therefore, effects of counterion screening68 were 

minimized.  The probe horizontally immobilized on the surface is important for DNA 

hybridization assays that use the electric field effect sensors for detection.  This alignment does 

not limit the probe length, as is the case with the conventional vertically tethered probe.68  

Moreover, our 2,2’-bithien-5-yl MIPs are invulnerable to inhibition by sample components69, 70 

that can result in false negative determinations in clinical,71, 72 environmental,73 food,74 and 

forensic75 samples.  Therefore, our direct method of quantification of specific sequences is a 

promising alternative to quantitative amplification methods, such as PCR reliant on 

polymerases.76, 77   

5. Conclusions 

By combining of PM, SPR, or CI signal transduction with the MIP film recognition, we have 

successfully developed a procedure of simple, inexpensive, rapid, and label-free chemosensing 

of the TATAAA analyte by using the 2,2’-bithien-5-yl TTTATA probe.  Under carefully chosen 

FIA conditions, i.e., at a relatively low flow rate of the carrier solution and a large volume of the 

injected sample solution, the concentration limit of detection was as low as ~5 nM TATAAA.  

The developed strategy of MIP preparation enables utilization of the self-recognizing properties 
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and sequence programmability of DNA to generate tailored artificial oligomers.  Thus, the 

present proof-of-concept study opens up new horizons in designing conducting 2,2’-bithien-5-yl 

DNA analogs with discrimination of one nucleobase mismatch in the determined oligonucleotide 

at room temperature within 2 min.  Further development of the proposed procedure may lead to a 

new generation of DNA chemosensors for determination of self-complementary sequences (e.g., 

inverse repeats, palindromes, or hairpins), regardless of their sequence.  Such a work is in 

progress in our laboratories. 
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