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7 Abstract

8 Key message Overview of seed size control.

9 Human and livestock nutrition is largely based on calories

10 derived from seeds, in particular cereals and legumes.

11 Unveiling the control of seed size is therefore of remark-

12 able importance in the frame of developing new strategies

13 for crop improvement. The networks controlling the

14 development of the seed coat, the endosperm and the

15 embryo, as well as their interplay, have been described in

16 Arabidopsis thaliana. In this review, we provide a com-

17 prehensive description of the current knowledge regarding

18 the molecular mechanisms controlling seed size in

19 Arabidopsis.20

21 Keywords Seed development � Arabidopsis � Seed size �

22 Seed coat � Endosperm

23 Introduction

24 Increasing seed production is a key goal to meet world

25 demand and consumption of agricultural crops, for food

26 and feed in emerging economies. In this context, the study

27of the molecular mechanisms controlling seed formation

28becomes essential for plant scientists as seed size is a major

29component of seed yield (Adamski et al. 2009). Thus,

30advances in the basic knowledge about seed development

31in the model species Arabidopsis thaliana are of key rel-

32evance for the rational design of genetically engineered

33traits in relevant agronomic crop species that could com-

34plement and improve upon traditional breeding systems

35(Varshney et al. 2009; Langridge and Fleury 2011; Feuillet

36et al. 2011; Becker et al. 2014).

37Arabidopsis seed development (see Fig. 1) starts after a

38double-fertilization event (for a complete seed develop-

39ment review, see Nowack et al. 2010; Becker et al. 2014).

40During the first fertilization event, the zygotic embryo is

41generated by the fusion of the egg cell and one sperm cell.

42The second fertilization event, which triggers the devel-

43opment of the triploid endosperm, starts with the fusion of

44the central cell of the embryo sac with the second pollen

45sperm cell (endosperm development is reviewed by Lafon-

46Placette and Köhler 2014). The two biparentally derived

47fertilization products (the embryo and the endosperm) are

48encased by the maternal sporophytic tissue (the seed coat),

49which is derived from the ovule integuments (seed coat

50development has been reviewed recently by Khan et al.

512014; Figueiredo and Köhler 2014). The seed coat repre-

52sents a protective layer that prevents damage from external

53factors such as UV radiation, toxic chemicals and patho-

54gens, as well as impeding germination until conditions are

55favorable (Haughn and Chaudhury 2005). Furthermore, the

56seed coat plays a major role in controlling communication

57between the two generations (reviewed by Bencivenga

58et al. 2011).

59In spite of the influence of several abiotic factors on

60plant growth and development, such as temperature, light

61and day length, the final size of plant organs is reasonably
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62 constant within a given species (Tsukaya 2006), indicating

63 that it is mainly the genetic seed developmental plan which

64 determines the rate of growth until the seed reaches a

65 predetermined mass and final size (Conlon and Raff 1999;

66 Day and Lawrence 2000). Arabidopsis seed size is mainly

67 attained either during the rapid proliferation and growth of

68 the endosperm (Boisnard-Lorig et al. 2001) and prolifera-

69 tion of the seed coat cells. These events span from fertil-

70 ization to 6 days after pollination (DAP) of seed

71 development (Fig. 1). From 7 to 13 DAP, there is a residual

72 increase in seed volume occurring when the embryo

73 expands at the expense of the endosperm. At this point,

74 seed growth is limited by the seed coat that acts as a

75 constraining physical barrier (Fang et al. 2012). Thus, to

76 understand the whole mechanism governing seed size, it is

77 essential to unveil both the mechanisms of endosperm and

78 integument growth and development, as well as the inter-

79 play existing between the developmental programs of these

80 structures.

81 In the last decades, many key regulators of seed size

82 have been identified (reviewed by Kesavan et al. 2013—

83 summarized in Table 1). However, there are still major

84 gaps in knowledge regarding seed size and the available

85 data are still fragmentary and need to be assembled into a

86 global and coherent picture (see Fig. 2). This review pro-

87 vides a summary and an update of the different pathways

88 controlling seed size in Arabidopsis. We analyzed seed size

89 regulation in Arabidopsis, focusing on different functional

90 categories in order to better describe them singularly. This

91 includes mechanisms underlying the developmental pro-

92 cesses of (A) the endosperm, including genomic imprinting

93 and parent-of-origin effects, and (B) the seed coat/integu-

94 ments. Moreover, we discuss (C) the cross talk between

95endosperm and seed coat and the role of (D) hormone

96synthesis and perception in determining seed size.

97Endosperm development

98Successful seed development requires the synchronized

99growth of the endosperm, the embryo and the seed coat

100(Fig. 1). Coordinated growth and development between

101these structures is reached through exchange of signals

102whose nature is still unknown. The profound morphologi-

103cal changes that characterize seed coat development could

104start only if the endosperm undergoes its developmental

105program, as embryo development by itself is not sufficient

106to stimulate seed coat growth and differentiation (Nowack

107et al. 2007; Hehenberger et al. 2012). However, it was

108demonstrated that central cell nuclei could start to prolif-

109erate even in the absence of karyogamy between central

110cell and sperm nucleus (Guitton et al. 2004). The failure of

111karyogamy in the central cell has been shown to impair

112endosperm development causing seed abortion (Aw et al.

1132010). Interestingly, viable seeds can also be produced in

114the presence of homoparental diploid, as opposed to trip-

115loid, endosperm (Nowack et al. 2006, 2007). In cdka;1

116mutants, pollen fertilizes only the egg cell, not the central

117cell due to karyogamy failure (Aw et al. 2010). If cdka;1

118pollen is used to fertilize the medea (mea) mutant, in which

119the endosperm proliferates without fertilization (Kiyosue

120et al. 1999), full embryogenesis and viable plants are

121produced in the presence of diploid endosperm (Nowack

122et al. 2007). Endosperm development has four phases

123(Fig. 1): syncytial, cellularization, differentiation and

124death. The syncytial phase is characterized by a series of

Fig. 1 Schematic representation of seed development in Arabidopsis.

Diagrams of an unfertilized ovule and five stages of seed development

from the preglobular (1 day after pollination—DAP) to mature green

(13 DAP) stage. Embryo developmental stages were adapted from Le

et al. (2010). Detail of the five seed coat layers according to

Appelhagen et al. (2014). Seed coat developmental events are

specified by Beeckman et al. (2000). Endosperm development is

presented according to Lafon-Placette and Köhler (2014). Drawings

are not to scale. Abbreviations and color code: oi outer integument, ii

inner integument, DAP days after pollination. green seed coat, orange

endosperm, yellow embryo
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125divisions of the triploid nuclei without cytokinesis (Bois-

126nard-Lorig et al. 2001) and parallels the maximal phase of

127seed growth (Garcia et al. 2005). After eight rounds of

128syncytial mitoses, the cellularization process starts, initially

129from regions surrounding the embryo and proceeding

130toward the chalazal region. Cellularization is followed by a

131differentiation of functional tissues, and eventually most

132endosperm cells die during seed maturation. The timing of

133endosperm cellularization correlates with the end of the

134main stage of seed growing; therefore, the size attained by

135the endosperm syncytium appears to be a major determi-

136nant of seed size (Boisnard-Lorig et al. 2001). Conse-

137quently, precocious endosperm cellularization results in

138small seeds, while delayed endosperm cellularization cau-

139ses the formation of enlarged seeds (Scott et al. 1998;

140Garcia et al. 2003; Berger et al. 2006). A number of

141mutations have been described that impair proper endo-

142sperm development and the timing of endosperm cellular-

143ization. The existence of three redundant pathways that

144control endosperm cellularization has been recently pro-

145posed (Kang et al. 2013). The first pathway regulates

146endosperm cellularization through the action of APETALA

1472 (AP2) and the MADS-box transcription factor AGL62

148(Kang et al. 2008). The second endosperm cellularization

149pathway includes members of the Polycomb group (PcG)

150proteins and their targets (discussed below). The third

151pathway is the IKU pathway.

152The AP2 pathway controlling endosperm cellularization

153has only two members previously linked to seed size

154determination: AP2 itself and AGL62. AP2 encodes the

155founding member of the plant-specific family of tran-

156scription factors that contain an AP2/EREBP (ethylene-

157responsive element binding protein) DNA-binding domain

158(Jofuku et al. 1994; Okamuro et al. 1997; Riechmann and

159Meyerowitz 1998). AP2 is involved in a great variety of

160developmental processes, including endosperm cellular-

161ization. ap2 mutant seeds undergo an extended endosperm

162proliferation stage, associated with a delay in cellulariza-

163tion (Ohto et al. 2009). Additionally, the abnormal endo-

164sperm development in ap2 mutants resulted in other seed

165defects, such as enlarged embryos that show increased cell

166number and cell size (Jofuku et al. 2005; Ohto et al. 2005).

167AP2 has also been associated with seed coat development

168and integument-endosperm cross talk, as we discuss below.

169The other member belonging to this pathway is AGL62, a

170type I MADS-box transcription factor. The expression

171level AGL62 correlates with endosperm cellularization in a

172dosage-dependent way, suggesting that it represents a key

173regulator of endosperm cellularization and consequently of

174seed size determination. Accordingly, the agl62 mutants

175have precocious endosperm cellularization and a small

176seed phenotype (Kang et al. 2008; Kradolfer et al. 2013),

177while increased AGL62 expression correlates with a delayT
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178 or a complete absence of cellularization (Erilova et al.

179 2009; Tiwari et al. 2010). Interestingly, AGL62 expression

180 is under negative control of the FIS-PRC2, an indication

181 that the timing of endosperm cellularization is epigeneti-

182 cally controlled (Hehenberger et al. 2012).

183 The second pathway controlling cellularization of the

184 endosperm involves the PcG protein complex and its

185 imprinted genes. Imprinting and its relation with seed size

186 control will be discussed in a separate section of this

187 review.

188 The IKU pathway is probably the best-described path-

189 way for endosperm cellularization. The genes HAIKU1

190 (IKU1) and IKU2 have been shown to be key regulators of

191 seed size in Arabidopsis via control of the transition from

192 syncytial phase to the cellularization phase of the endo-

193 sperm (Garcia et al. 2003). IKU1 encodes a protein con-

194 taining a VQ motif (Wang et al. 2010), while IKU2

195 encodes a leucine-rich repeat kinase (Luo et al. 2005). iku1

196 or iku2 mutant plants show reduced proliferation of the

197 endosperm, as well as a precocious cellularization process,

198 leading to reduced seed size (Garcia et al. 2003). Another

199 member of the IKU pathway is MINISEED3 (MINI3), a

200 WRKY class transcription factor that regulates the endo-

201 sperm cellularization process (Luo et al. 2005). mini3

202mutant plants phenocopy iku1 and iku2 small seed phe-

203notypes, due to precocious cellularization of the endo-

204sperm. In addition, the small seed phenotype of mini3

205mutant is ascribable to reduced cell expansion in the seed

206coat and reduced cell proliferation that results in a smaller

207embryo compared with wild type (Garcia et al. 2003; Luo

208et al. 2005). Genetic and mutant analyses indicate that

209IKU1, IKU2 and MINI3 are likely to participate in a single

210pathway, with IKU1 regulating both MINI3 and IKU2, and

211MINI3 regulating IKU2 (Luo et al. 2005). Apparently,

212MINI3 could positively regulate IKU2 by binding to the

213putative W-box identified in the IKU2 promoter. Seed size

214of the double mutants iku2-1 mini3-1 is similar to the seed

215size of homozygous mutant alleles of each single locus

216(Luo et al. 2005).

217Recently, it has been reported that short hypocotyl blue

2181 (SHB1) binds to the promoters of IKU2 andMINI3 (Zhou

219et al. 2009; Kang et al. 2013). SHB1 encodes a nuclear

220SYG1-homologous protein (Kang and Ni 2006) that is

221recruited by MINI3 to activate the IKU2 and MINI3

222expression, and probably other genes required for endo-

223sperm development, stimulating the process of endosperm

224cellularization (Kang et al. 2013). SHB1 was first described

225to be involved in hypocotyl development (Kang and Ni

Fig. 2 Model indicating the pathways determining seed size in

Arabidopsis. The model illustrates the main networks and/or key

regulators characterized in the literature, based on their role in

development of the a seed coat or b endosperm. a Seed coat. Genetic

pathways involved in the activation/repression of cell proliferation

and cell expansion during seed coat development, thus controlling

seed size in a maternal way. Four functional categories (boxes) are

indicated based on previous characterization studies. b Endosperm.

Schematic representation of factors that influence endosperm cellu-

larization and, therefore, seed size. One of the mechanisms involved

in parents-of-origin effects includes activation of DME in the central

cell and simultaneous repression of MET1, resulting in hypomethy-

lation of MEGs, and consequently their preferential expression over

PEGs in the endosperm. The expression of MEGs is furthermore

controlled by PRC2 action through histone methylation. The two

additional pathways (MADS/AP2 and IKU) that regulate the timing

of endosperm cellularization are indicated. Lines ending in arrow-

heads indicate positive transcriptional regulation, and lines ending in

bars indicate repression of expression
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226 2006) and later as a regulator of endosperm proliferation

227 and the timing of cellularization. The gain-of-function

228 overexpression mutant shb1-D displayed an enlarged seed

229 size phenotype associated with a delay in endosperm

230 cellularization (Zhou et al. 2009).

231 Thus, independent networks act as key regulators of

232 endosperm growth, by controlling endosperm proliferation

233 and cellularization with a major impact in final seed size

234 (Fig. 2). Further investigation is required to identify all the

235 molecular players in these pathways and to determine

236 whether they share downstream targets.

237 Genomic imprinting and parent-of-origin effects

238 In plants, genomic imprinting has been observed primarily

239 in the endosperm (Bauer and Fischer 2011) and rarely on

240 the embryo (Jahnke and Scholten 2009). Imprinting of a

241 specific allele depends on the presence of an epigenetic

242 mark on the corresponding locus (reviewed by Ferguson-

243 Smith 2011). It has been proposed that imprinted genes

244 regulate the transfer of nutrients from the sporophyte to the

245 developing progeny. In particular, maternally expressed

246 genes (MEGs) function to equally allocate nutrients to all

247 seeds, while on the other hand paternally expressed genes

248 (PEGs) function as growth factors that allow their own

249 offspring to extract the maximum amount of nutrients from

250 the mother. Therefore, increased PEGs activation deter-

251 mines the formation of larger seeds (Haig and Westoby

252 1989).

253 Epigenetic modifications performed on genetically

254 identic alleles lead to parent-of-origin specific expression.

255 Of particular importance is the balance of methylation

256 between maternal and paternal alleles in the central cell.

257 Removal of DNA methylation relies on the enzymatic

258 activity of DEMETER (DME) (Kinoshita et al. 2004;

259 Gehring et al. 2006), and DNA methylation depends on the

260 enzyme DNA methyltransferase 1 (MET1) (Hsieh et al.

261 2011; Jullien et al. 2012). DME is expressed in the central

262 cell in the embryo sac (Choi et al. 2002) and in the vege-

263 tative cell of the pollen grain (Schoft et al. 2011). This

264 leads to specific DNA hypomethylation of the maternally

265 inherited genome. Previous studies showed that altering

266 DNA methylation in a parental-specific manner via MET1

267 resulted in variation in seed size (Xiao et al. 2006). When

268 crossing MET1::RNAi pistils with wild-type pollen, the

269 result is production of enlarged F1 seeds. Meanwhile,

270 reciprocal crosses generated smaller F1 seeds, as expected

271 from the presence of hypomethylated paternal genome

272 (Adams et al. 2000; Luo et al. 2000; Xiao et al. 2006).

273 Thus, the methylation status of both the maternal and

274 paternal genome directly influences seed size.

275 The second major mechanism involved in imprinted

276 expression of a subset of genes relies on PcG proteins. PcG

277proteins are pivotal regulators of cell identity that act as

278transcriptional repressors in multimeric complexes (Schu-

279ettengruber and Cavalli 2009). Among these, the PRC2-

280complex catalyzes the trimethylation of histone H3 on

281lysine 27 (H3K27me3) and has been implicated in con-

282trolling endosperm development. Specifically, the FIS-

283PRC2 (fertilization-independent seed-Polycomb repressive

284complex 2), which comprises the different subunits enco-

285ded by MEDEA (MEA), fertilization-independent seed 2

286(FIS2), fertilization-independent endosperm (FIE) and

287multicopy suppressor of IRA1 (MSI1), acts in the central

288cell of the female gametophyte and in the endosperm,

289targeting DNA hypomethylation sites (Weinhofer et al.

2902010). The FIS-PRC2 mainly represses the expression of

291maternally inherited (and hypomethylated) alleles. Seeds

292with mutations in mea, fis2 or fie2 show endosperm pro-

293liferation even in the absence of fertilization, but also

294prolonged endospermal proliferation and absent or delayed

295cellularization if fertilization occurs (Grossniklaus et al.

2961998; Kiyosue et al. 1999; Makarevich et al. 2008). The

297phenotypes of these mutants imply that PCR2 complexes

298promote fast endosperm differentiation after fertilization,

299thus directly acting on a pathway that greatly influences

300seed size (Fig. 2).

301Finally, it is necessary to mention that perturbation of

302the relative dosages of the maternal and paternal genomes,

303typical in the case of interploidy crosses, directly affects

304endosperm development and seed size (Garcia et al. 2003;

305Luo et al. 2005; Kang et al. 2008; Zhou et al. 2009; Wang

306et al. 2010). The defects and low endosperm viability often

307observed in seeds of interploidy crosses (as in the case of

308wheat) can be explained in terms of maternal or paternal

309genome excess, i.e., an imbalance between MEGs and

310PEGs, and its effect on endosperm growth (Haig and

311Westoby 1991). However, the negative effects on seed

312development of interploidy crosses are reduced in Arabi-

313dopsis, in which both paternalized (PEGs excess) and

314maternalized (MEGs excess) seeds show the expected

315alteration from wild-type size, but show normal endosperm

316viability. This mitigated effect is probably due to the high

317rate of self-pollination that is characteristic of this model

318species (Scott et al. 1998).

319The role of the seed coat in seed size determination

320The Arabidopsis seed coat derives from the ovule integu-

321ments, formed by a set of five cell layers in mature ovules

322(Fig. 1). Two cell layers derive from the outer integument

323(oi) and three from the inner one (ii). The outer integument

324consists of two cell layers (oi1 and oi2), and the inner

325integument consists of three cell layers (ii1, ii10 and ii2)

326(Beeckman et al. 2000; Kunieda et al. 2008). The
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327 innermost layer of the inner integument, ii1, named the

328 endothelium (Beeckman et al. 2000), is in direct contact

329 with the endosperm cells.

330 The seed coat deeply influences seed size, highlighting a

331 fundamental role for seed maternal tissues in the control of

332 this aspect of seed yield. The seed cavity (the space

333 enclosed by the seed coat) increases in volume after fer-

334 tilization, partly due to the independent developmental plan

335 of the seed coat and partly as the result of the interplay

336 between the seed coat and the endosperm (Ingouff et al.

337 2006; Roszak and Köhler 2011). After fertilization, the

338 cells belonging to the different seed coat layers predomi-

339 nantly experiment intense expansion activity but still

340 undergo division activity (Garcia et al. 2005). Both cell

341 division and expansion cease at 6 DAP (Du et al. 2014).

342 Before fertilization, the female gametophyte (embryo sac)

343 seems to have only a moderate importance in generating

344 the signals to stimulate the integuments’ proliferation

345 (Ingouff et al. 2006); this was proven by demonstrating that

346 mutants defective in embryo sac formation, such as

347 sporocyteless (spl), are still able to develop integument to

348 some extent (Yang et al. 1999). Numerous studies have

349 identified genes involved in Arabidopsis ovule integuments

350 and seed coat development, and some of them have pro-

351 vided a functional characterization of seed size contribu-

352 tion. In particular, seed size mutant phenotypes showing a

353 clear maternal inheritance are mainly due to an alteration

354 of cell proliferation or elongation in the seed coat. The

355 control of these two pathways will be discussed separately.

356 Factors controlling integuments cell proliferation

357 A key player in the control of cell cycle and expansion in

358 Arabidopsis is auxin response factor 2 (ARF2), which

359 encodes a B3-type transcription factor of the ARF family

360 (Li et al. 2004). ARF genes take part in auxin-related

361 responses and recognize specific AuxRE (auxin response

362 elements) consensus elements on target genes (Ulmasov

363 et al. 1999). Among the different ARF proteins, ARF2 is

364 thought to act as a transcriptional repressor, exercising a

365 negative control over cell proliferation and expansion (Li

366 et al. 2004; Okushima et al. 2005; Schruff et al. 2006). In

367 particular, different arf2 loss-of-function mutants exhibit

368 abnormal flower morphology and enlarged seeds in com-

369 parison with the wild type (Okushima et al. 2005), a phe-

370 notype characterized in detail in the case of arf2-9, which

371 presented more cells in the seed coat compared with wild-

372 type seeds. The result of the increased volume of the seed

373 cavity in arf2-9 is that seeds are 46 % heavier than the

374 wild-type seeds, showing in some cases additional cell

375 layers in the seed coat (Schruff et al. 2006). A further

376 confirmation that ARF2 is important for the maternal

377 control of seed size comes from the maternal inheritance of

378arf2-9 phenotype observed in the reciprocal crosses with

379wild-type plants (Schruff et al. 2006). Besides enlarged

380seeds, the arf2-9 mutant also has a significant reduction in

381fertility due to improper flower development (Schruff et al.

3822006). Reduced fertility often correlates with increased

383seed weight (Harper et al. 1970; Ohto et al. 2005). How-

384ever, this is not occurring in the arf2-9 mutant, since the

385hypothesis of the large-seed phenotype as an indirect effect

386of the seed size/seed number trade-off was later refuted in a

387subsequent study (Hughes et al. 2008). In fact, the defects

388in the floral morphology of the arf2-9 mutant were over-

389come by expressing ARF2 under the promoter of APET-

390ALA1 (AP1). The pAP1::ARF2 arf2-9 plant improved the

391fertility, retaining the enlarged seed size phenotype of the

392original arf2-9 mutant, thus showing the pivotal role of

393ARF2 in seed development.

394Another negative regulator of cell division is the tran-

395scription factor AP2, whose role in endosperm develop-

396ment has been described above. Interestingly, the increased

397cell proliferation observed in ap2 is under maternal control

398and affects both the seed coat and the endosperm (Jofuku

399et al. 2005; Ohto et al. 2005). Notably, AP2 expression is

400negatively regulated by miR172 during flower develop-

401ment (Chen 2004), while ARF2 is negatively regulated by

402transacting small-interfering RNA (tasiRNA) (Williams

403et al. 2005). Similarly, it was reported that mutation in the

404gene miR159 results in seeds smaller than wild type (Allen

405et al. 2007). The two known targets of miR159 that are

406expressed in developing seeds, MYB33 and MYB65, have

407no described function in the seed. However, they are

408responsible for the mir159ab seed phenotype, as the qua-

409druple mutant mir159ab myb33 myb65 showed a reversion

410of the seed traits (Allen et al. 2007). Taken together, these

411results provide evidence of a fundamental role for post-

412transcriptional regulation via small RNAs in the control of

413seed size.

414Cytochrome P450 KLUH, encoded in Arabidopsis by

415CYP78A5/KLU, is a regulator of organ size (both leaves

416and floral organs) as well as of plastochron length (Anas-

417tasiou et al. 2007; Wang et al. 2008). It has also been

418shown that KLU, expressed prior to fertilization in the inner

419integuments of the ovule, acts as a maternal positive reg-

420ulator of seed size. klu-2 seeds have a reduced number of

421cells in the outer layers of the seed coat in comparison with

422wild type, with the result that klu-2 seeds are 13 % lighter

423than seeds of wild-type plants. The opposite phenotype was

424observed in KLU-overexpressing plants, whose seeds are

42511 % heavier (Adamski et al. 2009). KLU seems to act

426independently of previously described integument cell

427proliferation factors as AP2 and ARF2, because seeds of

428the double mutants klu arf2 and klu ap2 were an interme-

429diate seed size between those of the respective single

430mutants (Adamski et al. 2009).
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431 In Arabidopsis, the importance of ubiquitin pathway in

432 the determination of seed size has been widely investigated

433 over the last decade. Several members involved in this

434 pathway have been identified (reviewed by Li and Li 2014)

435 for their role in maternal control of seed size. Among them,

436 DA1 and DA1-related (DAR) encode for plant-specific

437 ubiquitin receptor protein. While single mutants da1-ko

438 and dar1-1 do not exhibit variation in seed size in com-

439 parison with wild type, the double mutant da1-ko dar1-1

440 produces larger seeds. Another mutation in the DA1

441 sequence (a single arginine-to-lysine aminoacidic change

442 at position 358, the da1-1 mutant) results in plants pro-

443 ducing seeds with increased cell proliferation in the seed

444 coat, a phenotype also observed in 35S::DA1R358K. This

445 suggests that the mutated DA1 protein might act antago-

446 nistically with native DA1 or DAR (Li et al. 2008). DA2

447 and enhancer of DA1 (EOD1) encode proteins with E3

448 ubiquitin ligase activity and are also negative regulators of

449 seed size, as shown by the enlarged seeds of single mutants

450 da2-1 and eod1. They may act synergistically with DA1, as

451 observed by the enhanced seed size of da1-1 da2-1 and

452 da1-1 eod1 double mutants in comparison with da1 mutant

453 (Xia et al. 2013). EOD3 encodes cytochrome P450

454 CYP78A6. The gain-of-function mutant eod3-1D proved to

455 be a dominant enhancer of the da1-1 seed size phenotype,

456 while on the contrary eod3-ko produced smaller seeds than

457 wild type (Fang et al. 2012). CYP78A9 encodes for another

458 cytochrome P450 and is the most closely related gene to

459 EOD3, with whom it might act synergistically in promoting

460 the size of the seed coat. This is implied by the additive

461 small seed phenotype observed in eod3-ko cyp78a9-ko

462 double mutants in comparison with the single mutants

463 (Fang et al. 2012). Ubiquitin-specific protease 15 (UBP15)/

464 suppressor of DA2 (SOD2) encodes for a de-ubiquitinating

465 enzyme acting downstream of DA1 (Li et al. 2008; Du et al.

466 2014). The ubp15 mutant produces small seeds, while the

467 overexpression line of UBP15 results in larger seeds. This

468 is likely due to a positive effect on cell proliferation in

469 maternal integuments of ovules and developing seeds.

470 It has been suggested that da1-1 acts independently of

471 ARF2 and AP2, as the seed phenotype of the double

472 mutants da1-1 ap2 and da1-1 arf2 is additive in compari-

473 son with the one of the single mutants (Li et al. 2008).

474 Factors controlling integuments cell elongation

475 A reduction in cell elongation is observed in the loss-of-

476 function mutant transparent testa GLABRA 2 (TTG2). In

477 the ttg2 mutant, cell elongation in the integuments is

478 affected, possibly because of the increased physical con-

479 straint of the cell walls, or possibly because of disruption of

480 the developmental pathways for elongation. Endosperm

481 development is also affected, probably as a consequence of

482the defects in integument cells (Garcia et al. 2003, 2005).

483Developing seeds produced by the double mutant ttg2 iku2

484display extremely reduced size in comparison with the

485single mutants ttg2 and iku2 seeds (Garcia et al. 2005). The

486combination of ttg2 and iku2 mutations prevents integu-

487ment cell elongation and growth of the endosperm more

488severely than in each single mutant. The double homozy-

489gous mutant displays a cumulative phenotype combining

490the maternal effects of ttg2 with the endospermal effect of

491iku2 (Garcia et al. 2003, 2005). The additive reduction in

492integument cell division and elongation, endosperm growth

493and seed size when iku2 and ttg2 mutations are combined,

494indicates that each mutation acts in distinct genetic path-

495ways, but has common effectors. In parallel, reduction in

496the endosperm volume is more evident in the double

497mutant relative to the single mutants. To achieve the size of

498the integument, dictated by the size of the syncytial

499endosperm, integument cells regulate elongation, not cell

500proliferation. Integument cell elongation plays a key role in

501the coordination of size between the endosperm and the

502integument. Accordingly, TTG2 would modulate the

503competence of the integument cells to elongate via a

504maternal integument elongation-dependent pathway (Gar-

505cia et al. 2005).

506Another positive regulator of seed size in Arabidopsis is

507the R2R3 MYB transcription factor, MYB56, which

508maternally affects seed development by regulating seed

509size and shape (Zhang et al. 2013). The loss-of-function

510mutant lines of MYB56 generate smaller seeds, while

511overexpression of MYB56 generates larger seeds compared

512with wild type. myb56 endothelial cells are smaller and

513more rounded. Apparently, the role of MYB56 is locally

514dependent since its altered expression on the endothelial

515layer affects cell size but not cell number; however, in the

516two layers of the outer integument, MYB56 controls only

517cell number but not the cell size (Zhang et al. 2013).

518MYB56 affects seed size in a regulatory pathway probably

519independent of other seed coat development regulators

520such as TTG2, KLU, GORDITA (GOA) and DA1, because

521these genes show no expression changes in a myb56 mutant

522background (Zhang et al. 2013).

523SEEDSTICK (STK) and Arabidopsis B-sister (ABS) are

524two MADS-box genes that act together to control the for-

525mation of one layer of the seed coat, the endothelium,

526during seed development (Mizzotti et al. 2012). STK con-

527trols ovule identity redundantly with SHATTERPROOF1

528(SHP1) and SHP2. In addition, stk single mutant produces

529smaller seeds (Pinyopich et al. 2003) with respect to wild

530type, whereas abs mutant has no size difference (Nesi et al.

5312002). The double mutant stk abs completely lacks endo-

532thelium development and manifests a high level of sterility,

533due to both ovule and seed abortions (Mizzotti et al. 2012).

534Another MADS-box transcription factor involved in seed
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535 coat development is GOA. A loss-of-function mutation in

536 GOA causes an increase in the seed size when compared

537 with wild type, due to an impact on cell expansion pro-

538 cesses, during fruit and seed development (Prasad et al.

539 2010; Erdmann et al. 2010).

540 Very recently, a new actor in the integument develop-

541 ment was described, the plasma membrane receptor kinase

542 FERONIA (FER) (Yu et al. 2014). FER has been demon-

543 strated previously to be involved in inhibiting pollen tube

544 elongation (Escobar-Restrepo et al. 2007) and promoting

545 cell elongation in leaves and root hairs (Guo et al. 2009;

546 Duan et al. 2010). FER is highly expressed on the integ-

547 uments of developing seeds, but it was not detected in

548 embryo or endosperm (Yu et al. 2014). FER-null mutants

549 develop seed that are 40–60 % larger than the wild type. At

550 2 DAP, the outer integument of fer-4 contained larger cells

551 and no differences in cell number from the wild type. The

552 authors concluded that FER inhibits the elongation of seed

553 coat cells (Yu et al. 2014). This conclusion is supported by

554 the fact that FER controls cell elongation in root hairs in

555 response to auxin through recruitment of RHO GTPases

556 (ROP/RAC) to promote or inhibit cell elongation. ROP/

557 RAC signaling pathway regulates several cell responses,

558 such as polarized growth and differentiation (Duan et al.

559 2010; Yu et al. 2014). In the female gametophyte, FER is a

560 receptor of rapid alkalinization factor (RALF), a small

561 peptide whose overexpression or external application pro-

562 motes cell wall alkalinization and growth inhibition. The

563 FER–RALF interaction causes the phosphorylation of the

564 H?-ATPase AHA2. AHA2 phosphorylation may have an

565 effect on the cell wall levels of reactive oxygen species

566 (ROS), changing the balance between the ROS promoting/

567 inhibiting cell wall relaxation state (reviewed in Wolf and

568 Höfte 2014). In this way FER could, at least partially,

569 control the cell wall’s capacity to elongate. However, fur-

570 ther research has to be done to fully understand the role of

571 FER in seed development.

572 Endosperm–integument cross talk

573 Endosperm and integument growth and development are

574 tightly coupled. As mentioned above, seed coat develop-

575 ment influences endosperm proliferation and the timing of

576 cellularization (Fig. 1). At the same time, the endosperm

577 performs a key nourishing function and provides signals to

578 coordinate seed maturation (Berger et al. 2006).

579 Two models have been proposed to explain the cross

580 talk between endosperm and the seed coat and its role in

581 controlling seed size. The ‘integument size-restriction

582 model’ suggests that the expansion of the integument cells

583 represents a physical constraint to the size of the seed

584 cavity, restricting the size of the embryo. As a result, this

585volume reduction increases the concentration of the factors

586triggering the cellularization process (Garcia et al. 2005;

587Doughty et al. 2014).

588In the second model, identified as the ‘cellularization

589signaling model’ (Fig. 3), the interplay between seed coat

590and endosperm is mediated by a signal that moves between

591integuments and endosperm. Flavonoids (proanthocyani-

592dins [PAs]) represent excellent candidates for the signal

593that triggers the endosperm cellularization process since

594they are synthesized in the endothelium. The accumulation

595of flavonoids is initiated after fertilization in the endothe-

596lium (Debeaujon et al. 2003). The relevance of flavonoids

597in seed size control emerged from the fact that many fla-

598vonoid biosynthetic pathway mutants show alterations in

Fig. 3 Schematic representation of endosperm–seed coat cross talk

in Arabidopsis according to the ‘cellularization signaling model.’

Seed coat layers are not shown for clarity. Black circles represent the

endosperm nuclei at syncytial stage. a During early seed development

(globular stage embryo—4 DAP), the endosperm progresses from the

syncytial to cellularized stage. In this suggested model, transport of a

cellularization signal between the integuments and the endosperm

would be controlled by flavonoid biosynthesis. Adding support to this

thesis, several mutants defective in the flavonoid biosynthesis

pathway with reduced seed size were found to display a precocious

endosperm cellularization (Scott et al. 2013). Hexose concentrations

may also play an important regulatory role driving growth of the

endosperm, since a higher hexose/sucrose ratio may stimulate mitotic

activity and promote cellular proliferation leading to a greater seed

size (Ohto et al. 2005). During the early stages of seed development,

sucrose is actively transported into plant ‘‘sink’’ tissues like seeds and

enters the seed coat via the vascular bundle of the funiculus (black

arrows). Sucrose is cleaved in the seed coat and the resultant hexoses

are used by developing embryo and endosperm. Signaling mecha-

nisms originated in the seed coat (red arrows) may enter to the

syncytium from the seed coat and later reach the embryo. This could

be done directly from the syncytial endosperm, or indirectly via the

suspensor. b The accumulation of these signals triggers the

endosperm cellularization process at later stages of seed development

(heart stage embryo). Abbreviations: SC seed coat, CV central

vacuole
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599 the timing of the endosperm cellularization process (Scott

600 et al. 2013; Doughty et al. 2014). Furthermore, it has been

601 reported that flavonols could interact with the phospho-

602 glycoprotein (PGP) auxin transporters PGP1, PGP4 and

603 PGP19 (Peer and Murphy 2007). Flavonoids inhibit PGP-

604 mediated polar auxin transport (Terasaka et al. 2005),

605 which in fact may cause a rapid change in auxin concen-

606 tration that results in delay/triggering of the endosperm

607 cellularization process (Doughty et al. 2014), thus affecting

608 seed development and seed size.

609 Another type of candidate molecules that could mediate

610 the seed coat–endosperm cross talk are the polysaccha-

611 rides. Nutrients from the phloem have to be unloaded from

612 the seed coat into the endosperm and the embryo. The

613 processing of sucrose follows distinct biochemical path-

614 ways, such as biosynthesis of cell wall polysaccharides and

615 storage reserves. Thus, maternal tissues are major sites of

616 sugar translocation and partitioning and are hence consid-

617 ered key determinants of sink strength and seed biomass

618 yield. Since sugar metabolism and transport can be highly

619 compartmentalized in seeds (Morley-Smith et al. 2008),

620 even small differences in hexose/sucrose ratio can have

621 dramatic effects on seed development and storage metab-

622 olism. For instance, AP2 seems to modulate the nutritional

623 supply from maternal tissues by changing the ratio of

624 hexose to sucrose during seed development, opening the

625 possibility that AP2 may also control seed mass through its

626 effects on sugar metabolism (Ohto et al. 2009).

627 The role of hormone synthesis and perception

628 in determining seed size

629 As stated before, the complex structure forming the

630 developing seed requires the coordination in growth of

631 multiple tissues and cells with different patterns of prolif-

632 eration and differentiation. This coordinated growth

633 demands a precise spatiotemporal organization that can be

634 achieved thanks to the synthesis and perception of signals

635 in different seed tissues. This sophisticated communicative

636 system between seed compartments is crucial not only to

637 regulate their balance in growth, but also to control the

638 progression of the whole developmental process within

639 each tissue. The function of hormones in this communi-

640 cative role to coordinate seed development has been well

641 characterized by studies performed on hormone-deficient

642 and hormone-insensitive mutants of Arabidopsis. Several

643 hormonal pathways such as brassinosteroids, cytokinins,

644 auxins and abscisic acid have been already proposed to

645 play a crucial role in seed development (Sun et al. 2010). In

646 this last part of the review, we provide a global panorama

647 of the regulation of seed development by phytohormonal

648stimuli, emphasizing their impact on seed size (for a review

649of hormones controlling seed development, see Locascio

650et al. 2014).

651Key role of brassinosteroids in seed size regulation

652The function of brassinosteroids (BR) in seed development

653has been well characterized by studies of BR-deficient and

654BR-insensitive mutants in several species such as Arabi-

655dopsis, Oryza sativa, Pisum sativum and Vicia faba (for a

656review, see Jiang and Lin 2013). At the cellular level, low

657endogenous concentrations of BR have been shown to exert

658a positive effect on cell elongation; meanwhile, saturating

659levels of BR lead to the opposite effects with reduced cell

660elongation (Fujioka et al. 1997; Turk et al. 2003). Brassi-

661nosteroids are required for proper plant growth and defi-

662ciencies in their synthesis, and signal transduction pathway

663leads to severe dwarfed phenotypes (Fujioka et al. 1997).

664An Arabidopsis dwarf mutant overexpressing the P450

665monooxygenase gene CYP72C1 (shk1-D) showed a

666reduction in endogenous BR levels and produced smaller

667seeds than the wild type, probably due to an effect on cell

668elongation (Takahashi et al. 2005). A similar small seed

669phenotype was reported in the DWARF5 (DWF5) loss-of-

670function mutant. DWF5 encodes a sterol reductase gene

671involved in the BR biosynthesis pathway (Choe et al.

6722000). The weak BR-deficient mutant de-etiolated 2 (det-

6732), in which seed size was rescued by exogenous BR

674application, and the BR-insensitive mutant (brassinoster-

675oid-insensitive 1) bri1-5 produced smaller seeds than wild-

676type seeds.

677The mechanism of BR regulation of seed size is twofold:

6781) expanding the seed cavity and endosperm volume,

679promoting embryo development and 2) controlling integ-

680ument cell length (Jiang et al. 2013). BR regulates embryo

681and endosperm development through the brassinazole-

682resistant 1 (BZR1) transcription factor which controls the

683IKU pathway by binding to the promoter regions of SHB1

684or IKU1, or alternatively through binding to the promoter

685of IKU2 (Jiang et al. 2013).

686On the other hand, evidence supporting BR control of

687seed size by regulating integument development comes

688from the significant decrease of integument cell length in

689det2 (Jiang et al. 2013) and from the mutant arf2, which

690develops larger seeds due to extra integument cell divisions

691(Schruff et al. 2006). ARF2 is a direct target of BZR1, and

692its transcription is negatively regulated by BR (Jiang et al.

6932013). Thus, it seems that BR might regulate seed size

694through BZR1 binding and repressing ARF2 promoter to

695positively regulate the integument development (Jiang

696et al. 2013). As a result, ARF2 has been proposed to

697mediate the cross talk between auxins and BR. BIN2, a
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698 kinase regulated by BR, phosphorylates ARF2 in vitro.

699 Apparently, this phosphorylation would allow the detach-

700 ment of ARF2 from DNA, inhibiting its transcriptional

701 repression activity (Vert et al. 2008). The proposed sce-

702 nario establishes that BR affects BIN2 target specificity

703 promoting a change from BRZ1/BES1 to ARF2. The pre-

704 sence of auxin and/or BR will determine an increment or

705 persistence of the target genes expression (Krizek 2009).

706 Interestingly, the fer mutants are hypersensitive to BR (24-

707 epibrassinolide), suggesting that FER can act as a critical

708 modulator of the brassinosteroid signaling pathway during

709 hypocotyl development (Deslauriers and Larsen 2010).

710 Deciphering the relation between FER and BR promises to

711 be very interesting to better understand seed size determi-

712 nation. Last but not least, BR can act as global regulator,

713 acting at the same time over both integuments, endosperm,

714 and embryo development through BZR1 binding to the

715 AP2 promoter (Jiang et al. 2013).

716 The role of auxins in communication

717 At the cellular level, auxin is involved in many processes,

718 including pattern formation, cell division and cell expansion

719 (Vandenbussche and Van Der Straeten 2004; Leyser 2005).

720 In addition, auxins exert a key role during the first steps of

721 seed development (Hamann et al. 2002; Friml et al. 2003;

722 Jenik and Barton 2005; Cheng et al. 2007; Wabnik et al.

723 2013). Schruff and colleagues proposed that ARF2 is a

724 general repressor of cell division inmany aerial organs of the

725 plant by controlling expression ofCYCD3;1, a D-type cyclin

726 involved in cell cycle entry, and AINTEGUMENTA (ANT), a

727 transcription factor involved in organ growth and cell divi-

728 sion control (Klucher et al. 1996; Schruff et al. 2006).

729 Cytokinins

730 Several studies have highlighted the importance of cytoki-

731 nins (CK), together with auxin, in promoting growth by cell

732 division, development and differentiation (Bishopp et al.

733 2011; Vanstraelen and Benková 2012). High levels of CK

734 are present during early seed development in many species

735 (Yang et al. 2002). In Arabidopsis, limited information

736 comes from a few reports (Werner et al. 2003; Garcia et al.

737 2005; Day et al. 2008) and CK function has not yet been

738 exhaustively characterized. Studies performed on the

739 genetics of CK production have shown that during early

740 stages of seed development transcriptional changes are

741 mostly associated with effects of the hormone on the

742 development of endosperm and seed coat. These data rein-

743 force the idea that the control of seed size would involve a

744 cross talk occurring between maternal and zygotic tissues

745 (Garcia et al. 2005). Transcriptome analysis of the

746endosperm at 4 DAP revealed an overrepresentation of CK

747biosynthetic and response genes, supporting the hypothesis

748that the predominant role of CK is in cell proliferation of the

749early endosperm (Lur and Setter 1993; Day et al. 2008).

750Overexpression of two cytokinin oxidase dehydrogenases

751(CKX1 and CKX3) produced larger seeds with larger

752embryos. The enlargement found in these transgenic seeds is

753attributable to increases in cell number and size (Werner

754et al. 2003). Larger seeds were also produced by the triple

755mutant of the CK receptor genes arabidopsis histidine

756kinase 2 (AHK2), AHK3 and cytokinin response 1/AHK4

757(CRE1/AHK4). In this case, an increase of almost two times

758the seed size was reported, when compared with wild-type

759seeds, due to an enlargement of the embryo size, with

760approximately 15 % greater cell number and 30 % greater

761cell size. Reciprocal crosses with wild-type plants suggested

762that the increase found in seed size was likely to be regulated

763by maternal and/or endospermal genotypes (Riefler et al.

7642006).

765Recently, it was concluded that the control of endo-

766sperm size by the IKU pathway is regulated by the cyto-

767kinin catabolic pathway through the activation of CKX2

768(cytokinin oxidase 2) by MINI3 (Li et al. 2013). CKX2 is

769also co-regulated by maternal genome dosage and meth-

770ylation, and both phenomena suppress CXK2 transcription.

771These data establish a link between hormonal and epige-

772netic factors in the regulation of seed size in Arabidopsis

773(Li et al. 2013).

774Abscisic acid

775The predominant role of abscisic acid (ABA) regulation

776involves key processes occurring during the maturation

777stages of seed development. Key aspects of this develop-

778ment are accumulation of storage compounds in the embryo,

779seed dormancy, and the inhibition of precocious germination

780(McCarty 1995; Finkelstein et al. 2002; Kanno et al. 2010).

781ABA biosynthesis exhibits two peaks during seed develop-

782ment: Initially biosynthesis is induced in the embryo and

783then levels accumulate to a second peak during the late

784maturation stage, where it is thought that ABA mainly

785originates from the maternal tissues (Finkelstein et al. 2002;

786Finkelstein 2004). ABA has been proposed to act mainly as

787an endosperm development regulator since the mutants

788abscisic acid-deficient 2 (aba2) and abscisic acid-insensi-

789tive 5 (abi5) develop larger seeds than the wild type (Cheng

790et al. 2014). ABA2 encodes a dehydrogenase/reductase

791involved in ABA biosynthesis (González-Guzmán et al.

7922002), and ABI5 encodes a transcription factor involved in

793ABA signaling (Brocard et al. 2002). Interestingly, aba2

794mutants have delayed endosperm cellularization. The model

795of action suggests that endogenous ABA levels in the seed
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796 are raised by ABA2 action, resulting in an enhancement of

797 ABI5 transcription. ABI5 negatively regulates SHB1

798 expression by directly binding to its promoter region.

799 Therefore, ABA regulates proper endosperm development

800 and cellularization processes in a SHB1-dependent way

801 (Cheng et al. 2014). ABA slowly induced DA1 expression,

802 but other growth regulators such as jasmonic acid, auxin,

803 CK, BR, gibberellins or glucose failed to induce its

804 expression. It therefore seems that the mechanism that

805 restricts proliferative growth under the control of DA1

806 control could include ABA signaling (Li et al. 2008).

807 Future perspectives

808 Unraveling seed development and its genetic control is

809 important due to the critical role of seeds as a food source

810 for mankind and livestock, as well as the growing interest

811 in seeds as a renewable source of energy. Recently,

812 genomic-based research and other modern technologies

813 have made it possible to identify most of the genes

814 involved in seed development, providing a vast amount of

815 information that could be used in the engineering and

816 design of transgenic crops. However, there are many gaps

817 in the field regarding the functional characterization and

818 determination of the biological relevance of these genes in

819 model species. Unveiling a complete and accurate map of

820 the process remains a major challenge for plant biologists.

821 Achieving these goals will require not only the integration

822 of multiple disciplines including proteomics, metabolomics

823 and functional genomics, but also the development and

824 improvement of automatized computational tools to ana-

825 lyze complex datasets. A comprehensive analysis of large-

826 scale datasets will provide the required tools to enhance the

827 nutritional quality of seeds and also to increase resistance

828 to adverse environmental conditions and/or biological

829 attacks. A second major challenge for plant genomics will

830 be finding an integrative and rational way to apply that

831 information to crop species to improve their agronomic

832 performance. This could be achieved either by using the

833 basic knowledge arising from studies of Arabidopsis, or by

834 using the tools and techniques refined with Arabidopsis (or

835 other model species), to generate and analyze extensive

836 datasets for important crop species.
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