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Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head

blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these

diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was con-

stantly present throughout the monitored period. By assessing the population composition of the causal agents as well

as their genetic chemotypes and EF-1a polymorphisms, the study examined whether the two diseases could be differen-

tially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected

at different abundances (88% 3-ADON, 12% NIV). Fusarium graminearum (15-ADON genetic chemotype) appeared

only recently (2013) and in few areas as the causal agent of FHB. In F. culmorum, two haplotypes were identified

based on an SNP mutation located 34 bp after the first exon of the EF-1a partial sequence (60% adenine, 40% thy-

mine); the two populations did not segregate with the chemotype but the A-haplotype was significantly associated with

FRR in the Sardinian data set (P = 0�001), suggesting a possible fitness advantage of the A-haplotype in the establish-

ment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the

Sardinian haplotype is distributed worldwide. The question whether the A-haplotype segregates with characters facili-

tating FRR establishment will require further validation on a specifically sampled international data set.
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Introduction

Fusarium foot and root rot (FRR) and fusarium head
blight (FHB) represent major devastating diseases of wheat
worldwide, including the Sardinian Island. Sardinia is a
Tyrrhenian Island located in the western Mediterranean
Sea, with an area of 24 089 km2. Currently durum wheat
is cultivated as the principal crop, on more than
37 000 ha (B. Satta, Agenzia Laore Sardegna, Italy). Culti-
vation techniques rarely consider rotation with other crops
or the use of fungicide-coated seeds. These factors contrib-
ute to increase the disease potential present in the soil. As
a consequence, FRR and FHB may become epidemics. Pri-
mary factors include environmental conditions, previously
cultivated crop and residue management.
The symptoms of FRR depend essentially on the time

of infection: early stage infections lead to pre- or post-
emergence mortality of the young seedlings accompanied
by browning of the coleoptiles; later stage infections
cause brown spots located in the first two or three inter-

nodes. In the case of a severe attack, blighted heads
(shrivelled or no grains) are scattered in the field, easily
observed when the wheat is still immature. Damage
caused by FRR may cause up to 50% production loss
(Hollaway et al., 2013).
Wheat plants affected by FHB show a partial or a

total blighting of the head along with browning of the
peduncle, depending on disease severity. Sometimes, dur-
ing humid environmental conditions, orange-pink spor-
odochia appear on the spikelet, representing the agamic
sporulation stage of the fungus. One of the most impor-
tant impacts of FHB, together with direct production
losses, is the contamination of the kernels with mycotox-
ins (Scheider et al., 2009). Grain with high mycotoxin
levels cannot be used for food and feed products. It has
been reported that the toxins are also transported from
the roots to the upper plant, suggesting FRR as a con-
tributor to toxin contamination (Covarelli et al., 2012).
The European Community has defined strict limits for
several mycotoxins regarding the commercialization of
unprocessed kernels and the food products obtained
from different cereals but, depending on the level of
toxin contamination, those limits might not sufficiently
protect consumers (Gratz et al., 2014).
Depending on agronomic and environmental conditions,

the pathogens preferentially cause one of the two diseases.
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Rarely, both FHB and FRR may constitute a significant
problem at the same time and conditions (Scherm et al.,
2013). The two disease types, despite sharing large
weapon sets for infection (Mudge et al., 2006), do adopt
at least partly different mechanisms for their establishment
(Desmond et al., 2008; Pasquali et al., 2013).
Fusarium graminearum and Fusarium culmorum are,

together with Fusarium pseudograminearum, the most
important causal agents of FHB and FRR worldwide
(Goswami & Kistler, 2004; Miedaner et al., 2008;
Scherm et al., 2013), the latter mainly found in the
southern hemisphere (Obanor & Chakraborty, 2014).
Each strain of F. graminearum and F. culmorum can
produce several type-B trichothecenes: F. graminearum
produces mainly deoxynivalenol (DON) and its acety-
lated forms 3- and 15-acetyldeoxynivalenol (3- and 15-
ADON) or nivalenol (NIV), the three chemotypes known
so far (Pasquali & Migheli, 2014); and F. culmorum
produces DON, 3-ADON or NIV.
This study aimed to: (i) characterize the FHB and FRR

populations of Sardinia, including their chemotype-asso-
ciated genotype; and (ii) test whether it is possible to
identify genetic features that are associated with FHB or
FRR, based on the hypothesis that the microbe–plant
interaction in the two diseases is different and therefore
that different populations carrying a diverse set of
genetic characters (including toxins) could be favoured in
the two pathosystems.

Materials and methods

Sampling

The aetiology of FRR and FHB was monitored from 2008 to

2013 by observing 20 locations in the north, centre and south

of Sardinia. Four historical samples were also added from the
period 2001–2004. A total of 73 Fusarium spp. isolates were

collected from plants with symptoms covering all representative

areas of durum wheat cultivation in Sardinia (Fig. 1). The sam-
ples were collected at the milk stage (GS 77) for both diseases.

Fungal isolations were carried out 1 day after sampling. Basal

stem sections (2–3 cm) with browning lesions (FRR) or blighted

spikelets (FHB) were surface-sterilized with 2% (v/v) sodium hypo-
chlorite for 2 min and then rinsed three times in sterile distilled

water. Each single portion was placed on potato dextrose agar

(PDA; Oxoid) and incubated at 25°C under 12 h of alternating

light and dark. After 4–6 days, all growing Fusarium colonies were
removed and transferred to carnation leaf agar (CLA). Single spore

cultures were prepared from each colony (Burgess et al., 1994).

Strain characterization and storage

Mycelium from the monosporic cultures grown on CLA was mor-
phologically characterized based on spore size and shape accord-

ing to Burgess et al. (1994). All isolates were stored in 15% (v/v)

glycerol at �80°C in the strain collection of the ‘Centro per la

Conservazione e Valorizzazione della Biodiversit�a Vegetale’, Uni-
versity of Sassari, Italy and in the mycological collection at the

Centre de Recherche Public – Gabriel Lippmann, Luxembourg.

Isolates were molecularly characterized as follows. Mycelium

was grown for 4 days on V8 medium covered with small pieces

of Miracloth (Merck-Millipore) tissue. Colonized Miracloth

patches were subsequently collected and transferred to Eppen-
dorf tubes containing 100 lL Tris-EDTA (TE) buffer. Eppendorf

tubes were then microwaved for 5 min and 2 lL were used

directly for PCR amplification. A partial sequence of the transla-

tion elongation factor 1a (EF-1a) was amplified in a 50 lL reac-
tion containing 1 9 Q5 master mix (New England Biolabs) and

primers described in Table 1. PCR conditions are also described

in Table 1. Bidirectional sequencing was carried out with a
3500 Genetic Analyzer (Life Technologies). Sequences were veri-

fied manually using reference sequences obtained from the Fusa-

rium-ID database as described by O’Donnell et al. (2012).

Database search procedures were then followed for Fusarium
species determination using both the Fusarium database (http://

isolate.fusariumdb.org/blast.php) and the NCBI (National Cen-

ter for Biotechnology Information) BLAST tool (http://blast.ncbi.

nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome).
Single nucleotide polymorphism (SNP) identification in the EF-
1a gene was carried out using the alignment and assembly

options provided by CLC v. 7.0 software (QIAGEN). A compari-

son with previously available EF-1a sequences was performed
by downloading all available reference sequences from the

nucleotide database in NCBI using keywords ‘Fusarium culmo-
rum’ and ‘elongation factor’ followed by a manual check for the
correct sequence correspondence (Table S1). The FHB-derived

F. culmorum data set from Beyer et al. (2014) as well as the

data set of Obanor et al. (2010), which both provide informa-

tion on the disease type, were included. The SNP designation
was counted for all sequences, comparing the presence of T or

A, to distinguish two types of isolates. Tri12 genotype determi-

nation to define the genetic chemotype was performed using the

same quick DNA extraction procedure as specified above, using
the primers and conditions in Table 1. Positive and negative

PCR controls were included in each reaction.

Statistical analysis

To test whether the EF-1a polymorphism was independent from
the sampling year, the sampling location, the genetic chemotype

or the type of disease (FRR versus FHB), chi-square tests with

the Monte Carlo option of 10 000 samples and a 99% confi-

dence level were conducted using the statistical software pack-
age SPSS v. 19 (IBM) on the Sardinian data set.

Results

Disease incidence of the sampled fields varied during the
years and locations, with elevated FHB frequencies in
2009, 2010, 2012 and 2013, while FRR was present
throughout the whole period of observation (data not
shown).
Seventy-three single-spore isolates were obtained: 44

from durum wheat heads, one from a barley head (PVS-
Fu 416), one from Triticum monococcum (PVS-Fu 415),
one from a durum wheat leaf (PVS-Fu 382), one from a
wildtype Hordeum head (PVS-Fu 418) and 25 from
durum wheat showing FRR symptoms.

Species and chemotype determination

Three species were detected in the survey. Fusarium cul-
morum represented the predominant species (86%) of
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the 44 isolates collected from durum wheat heads affected
by FHB, while 14% consisted of F. graminearum isolates.
Finally, one of the isolates, morphologically identified as
F. graminearum, was re-identified as F. cortaderiae upon
EF-1a sequencing. Among the F. culmorum isolates, the
3-ADON chemotype was most prevalent (82%), while

the remaining 18% belonged to the NIV chemotype. All
F. graminearum isolates belonged to the 15-ADON
chemotype, while the F. cortaderiae isolate was classified
as NIV chemotype.
All 25 isolates obtained from the basal stem of durum

wheat affected by FRR belonged to F. culmorum,

(a)

(b)

Figure 1 Map of sample sites in Sardinia, Italy (from 2001 to 2013). Percentage of chemotype (a), percentage of haplotype distribution (b). ‘FRR’

indicates that an isolate was obtained from a plant showing foot and root rot symptoms (isolation from the stem), ‘FHB’ indicates that an isolate was

obtained from a plant showing head blight symptoms (isolation from the head).
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displaying the 3-ADON genetic chemotype, apart from
one isolate (PVS-Fu 398) that was characterized as NIV
chemotype. The four F. culmorum isolates obtained from
durum wheat leaves, from barley, T. monococcum and
wildtype Hordeum heads had 3-ADON chemotype pro-
files (Table 2; Fig. 1a).

EF-1a diversity and disease association

EF-1a partial sequence analysis of Sardinian F. culmo-
rum isolates identified an SNP based on the polymorphic
base (T–A) at position 34 after the first exon of the
EF-1a gene. This SNP defines the two haplotypes in the
Sardinian F. culmorum population previously identified
in an extensive sampling of Sardinian non-cultivated soils
(Balmas et al., 2010).
Both haplotypes were distributed homogenously over

the Sardinian wheat fields (Fig. 1b), with the A-haplotype
being the major component of the Sardinian F. culmorum
population (60% A-haplotype, 40% T-haplotype;
Table 2).
The hypothesis that either the chemotype or the SNP

populations are preferentially associated to one of the
two types of the disease (FHB or FRR) was examined.
A-haplotype isolates, corresponding to haplotype 2 in
Balmas et al. (2010), were found more frequently associ-
ated with FRR (P = 0�001) than expected under the
assumption of independence between haplotype and dis-
ease type. Neither location (P = 0�525) nor chemotype
(P = 0�166) of the isolates had a significant impact on
the type of disease. No association between haplotype
and chemotype, location or year of sampling could be
established.
Screening publicly available data sets on F. culmorum

EF-1a sequences (Table S1) revealed that the A-haplo-
type form was present in some isolates collected in Tuni-
sia, Syria, Iran (Obanor et al., 2010), Turkey (O’Donnell
et al., 2012), Australia (Ward et al., 2008) and Norway
(Kristensen et al., 2005) and thus seems to occur world-
wide (Fig. S1). No further statistical analysis could be
performed to validate the hypothesis of association with
FRR due to the very limited information on sample
sources: disease type was only described for isolates

originating from Tunisia, Iran and Syria, (Obanor et al.,
2010), but the small number of isolates did not permit
statistical processing with satisfactory power (Table S1).

Discussion

This survey represents the first comprehensive description
of Fusarium/wheat disease on the island of Sardinia. Sar-
dinian cultural practices and environmental conditions
seem to favour the co-occurrence of both FHB and FRR.
While F. pseudograminearum is the main species associ-
ated with FRR diseases in different geographic areas
where wheat is cultivated outside Europe (Miedaner
et al., 2008), in Sardinia F. culmorum appears to cause
significant FRR. The Sardinian situation looks very similar
to the Turkish (Tunali et al., 2008) and Tunisian (Rebib
et al., 2014) ones where F. culmorum was the prevalent
species associated with crown rot-diseased wheat. Simi-
larly, in Canada F. culmorum plays an important role
together with F. pseudograminearum (Davis et al., 2009)
in causing FRR.
In Sardinia FHB on durum wheat is mainly caused by

F. culmorum. Fusarium graminearum is associated exclu-
sively with FHB, but until now as a minor population.
This is in contrast with related reports from other
regions all over the world, where F. graminearum acts as
the main causal agent of FHB (Goswami & Kistler,
2004). Similarly, continental Italian regions (Infantino
et al., 2012) showed different species abundance, F. cul-
morum being the minor population associated with FHB.
The prevalence of F. culmorum as the significant FHB
agent in Sardinia does not seem to be a temporary event
as reported elsewhere (Beyer et al., 2014), but is consis-
tent over the years (2001–2012). Fusarium culmorum
was frequently reported as a pathogen of colder areas
compared to F. graminearum (Osborne & Stein, 2007).
The results obtained in this survey suggest that this clas-
sical distribution scheme is not generally applicable, as
F. culmorum was identified as the prevalent causal agent
of FHB in Sardinia, as in other Mediterranean regions
(Kammoun et al., 2010).
In 2013 F. graminearum was detected for the first time

as an important species causing FHB in Sardinia (over

Table 1 Primers and PCR programmes used in this study for Fusarium species and chemotype identification

Gene

Primer

name Primer sequence (50–30)

Primer

amount

(lM) PCR programme

Amplification

size (bp)

Chemotype

identifieda

EF-

1a

TEF1 ATGGGTAAGGA(A/G)

GACAAGAC

0�3 (98°C 2 min) 9 1 cycle; (98°C 15 s, 60°C 15 s, 72°C

30 s) 9 35 cycles; (72°C 5 min) 9 1 cycle

670 –

TEF2 GGA(G/A)GTACCAGT(G/

C)ATCATGTT

0�3

Tri12 12CON CATGAGCATGGTGATGTC 0�1 (98°C 2 min) 9 1 cycle; (98°C 10 s, 59°C 10 s, 72°C

20 s) 9 30 cycles; (72°C 5 min) 9 1 cycle12NF TCTCCTCGTTGTATCTGG 0�1 840 NIV

12-15F TACAGCGGTCGCAACTTC 0�1 670 15-ADON

12-3F CTTTGGCAAGCCCGTGCA 0�1 410 3-ADON

a

NIV: nivalenol; 15-ADON: 15-acetyldeoxynivalenol; 3-ADON: 3-acetyldeoxynivalenol.
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Table 2 Fusarium isolates associated with fusarium foot and root rot (FRR) and fusarium head blight (FHB) in this study

Isolate Site Year Origina FRR/FHB Species Chemotypeb
EF-1a GenBank

accession no. SNP typec

PVS-Fu 353 1 2010 P. San Nicola (SS) FHB F. culmorum 3-ADON KJ999807 A

PVS-Fu 354 10 2010 Pabillonis (OR) FHB F. culmorum 3-ADON KJ999808 A

PVS-Fu 355 16 2010 Benatzu (CA)- A FHB F. culmorum 3-ADON KJ999809 A

PVS-Fu 356 16 2010 Benatzu (CA)- B FHB F. culmorum 3-ADON KJ999810 A

PVS-Fu 357 10 2010 Pabillonis (OR) FHB F. culmorum 3-ADON KJ999811 T

PVS-Fu 358 1 2010 P. San Nicola (SS)- A FHB F. culmorum 3-ADON KJ999812 A

PVS-Fu 359 1 2010 P. San Nicola (SS)- B FHB F. culmorum 3-ADON KJ999813 T

PVS-Fu 360 9 2010 S. Lucia (OR) FHB F. culmorum 3-ADON KJ999814 T

PVS-Fu 361 3 2004 Ottava (SS) FHB F. culmorum 3-ADON KJ999815 A

PVS-Fu 362 3 2012 Ottava (SS) FHB F. culmorum 3-ADON KJ999816 A

PVS-Fu 363 3 2009 Ottava (SS)- A FHB F. culmorum 3-ADON KJ999817 A

PVS-Fu 364 3 2009 Ottava (SS)- A1 FHB F. culmorum 3-ADON KJ999818 A

PVS-Fu 365 3 2009 Ottava (SS)- B FHB F. culmorum 3-ADON KJ999819 A

PVS-Fu 366 3 2009 Ottava (SS)- B1 FHB F. culmorum 3-ADON KJ999820 A

PVS-Fu 367 3 2009 Ottava (SS)- E FHB F. culmorum NIV KJ999821 T

PVS-Fu 368 3 2009 Ottava (SS)- E1 FHB F. culmorum NIV KJ999822 T

PVS-Fu 369 3 2009 Ottava (SS)- H FHB F. culmorum 3-ADON KJ999823 T

PVS-Fu 370 3 2009 Ottava (SS)- H1 FHB F. culmorum 3-ADON KJ999824 T

PVS-Fu 371 3 2009 Ottava (SS)- I FHB F. culmorum 3-ADON KJ999825 T

PVS-Fu 372 3 2009 Ottava (SS)- M FHB F. culmorum 3-ADON KJ999826 T

PVS-Fu 373 3 2009 Ottava (SS)- P FHB F. culmorum NIV KJ999827 T

PVS-Fu 374 3 2009 Ottava (SS)- S FHB F. culmorum 3-ADON KJ999828 T

PVS-Fu 375 3 2009 Ottava (SS)- V FHB F. culmorum 3-ADON KJ999829 T

PVS-Fu 376 3 2009 Ottava (SS)- Z FHB F. culmorum 3-ADON KJ999830 A

PVS-Fu 377 14 2010 Sarcidano (CA) FHB F. culmorum 3-ADON KJ999831 A

PVS-Fu 378 15 2010 Senorb�ı (CA) FHB F. culmorum 3-ADON KJ999832 T

PVS-Fu 379 20 2010 Settimo San Pietro (CA) FHB F. culmorum 3-ADON KJ999833 A

PVS-Fu 381 11 2010 San Gavino (OR) FHB F. culmorum 3-ADON KJ999834 A

PVS-Fu 382 6 2010 Tergu (SS) Leaf F. culmorum 3-ADON KJ999835 T

PVS-Fu 383 16 2010 Benatzu (CA) FRR F. culmorum 3-ADON KJ999836 A

PVS-Fu 384 – 2002 – FRR F. culmorum 3-ADON KJ999837 A

PVS-Fu 385 4 2009 P. Torres (SS) FRR F. culmorum 3-ADON KJ999838 A

PVS-Fu 386 15 2010 Senorb�ı (CA) FHB F. culmorum 3-ADON KJ999839 T

PVS-Fu 387 3 2008 Ottava (SS) FRR F. culmorum 3-ADON KJ999840 T

PVS-Fu 388 3 2001 Ottava (SS) FRR F. culmorum 3-ADON KJ999841 A

PVS-Fu 389 3 2009 Ottava (SS)- A FRR F. culmorum 3-ADON KJ999842 A

PVS-Fu 390 3 2009 Ottava (SS)- B FRR F. culmorum 3-ADON KJ999843 A

PVS-Fu 391 3 2009 Ottava (SS)- C FRR F. culmorum 3-ADON KJ999844 A

PVS-Fu 392 3 2009 Ottava (SS)- D FRR F. culmorum 3-ADON KJ999845 A

PVS-Fu 393 3 2009 Ottava (SS)- E FRR F. culmorum 3-ADON KJ999846 A

PVS-Fu 394 3 2009 Ottava (SS)- F FRR F. culmorum 3-ADON KJ999847 A

PVS-Fu 395 3 2009 Ottava (SS)- G FRR F. culmorum 3-ADON KJ999848 A

PVS-Fu 396 5 2010 Pietrafitta (OT) FRR F. culmorum 3-ADON KJ999849 A

PVS-Fu 397 9 2009 S. Lucia (OR) FRR F. culmorum 3-ADON KJ999850 A

PVS-Fu 398 18 2010 Serramanna (CA) FRR F. culmorum NIV KJ999851 A

PVS-Fu 399 19 2010 Sinnai (CA) FRR F. culmorum 3-ADON KJ999852 A

PVS-Fu 408 13 2010 Suelli (CA)- A FRR F. culmorum 3-ADON KJ999853 A

PVS-Fu 409 13 2010 Suelli (CA)- B FRR F. culmorum 3-ADON KJ999854 A

PVS-Fu410 17 2001 Ussana (CA) FRR F. culmorum 3-ADON KJ999855 T

PVS-Fu 411 17 2010 Ussana (CA) FRR F. culmorum 3-ADON KJ999856 A

PVS-Fu 412 12 2010 Villamar (OR)- A FRR F. culmorum 3-ADON KJ999857 A

PVS-Fu 413 12 2010 Villamar (OR)- B FRR F. culmorum 3-ADON KJ999858 A

PVS-Fu 415 4 2013 P. Torres (SS) FHB F. culmorum 3-ADON KJ999859 A

PVS-Fu 416 1 2010 P. S. Nicola (SS) FHB F. culmorum 3-ADON KJ999860 T

PVS-Fu 418 10 2010 Pabillonis (OR) FHB F. culmorum 3-ADON KJ999861 T

PVS-Fu 419 9 2013 S. Lucia (OR) FHB F. culmorum 3-ADON KJ999862 T

PVS-Fu 422 4 2013 P. Torres (SS)- E FHB F. culmorum NIV KJ999863 T

PVS-Fu 423 17 2013 Ussana (CA) FHB F. culmorum 3-ADON KJ999864 A

(continued)
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30% of FHB being caused by F. graminearum), suggest-
ing that the pathogen had found more favourable condi-
tions during this year or that an emerging population has
some competitive advantages. Additional samplings cou-
pled to meteorological and agronomical information are
needed to further elucidate the shift in species incidence
on the disease.
Interestingly, both F. graminearum and F. culmorum

were isolated (PVS-Fu 426 and 432; PVS-Fu 428 and
435) from two heads collected in 2013 from the same
field (Table 2). This confirms the potential role of
co-infection as shown in Poland in a recent survey
(Kuzdrali�nski et al., 2014) where F. graminearum is the
major component of stem disease colonization also able
to favour its association with F. culmorum. The only
F. cortaderiae isolate from Sardinia was associated with
FHB. Moreover, F. cortaderiae, a supposedly southern
hemisphere species described by Ward et al. (2002), was
recently reported in France (Boutigny et al., 2014)
suggesting that the species may come across suitable
conditions in European climates, too. From the current
study it is evident that a geographically isolated area like
the island of Sardinia is not immune to the introduction
of new species (Migheli et al., 2009) causing further
diseases. The introduction of the species into a new envi-
ronment via seed contamination is a possible hypothesis
(Boutigny et al., 2014). This phenomenon has been
already observed in wheat (Duthie & Hall, 1987) and is
supposed to be the main mechanism of global spread of
soilborne Fusarium diseases (Garibaldi et al., 2004).
The Sardininan F. graminearum population is com-

posed exclusively of 15-ADON isolates. This finding is
in line with observations in Italy and in other parts of
Europe where 15-ADON is the predominant population
(Pasquali & Migheli, 2014). Within the F. culmorum

isolates, the NIV population is quite infrequent (12%),
similar to the situation reported in Germany (Miedaner
et al., 2013) or Tunisia (Kammoun et al., 2010). From a
food safety perspective, the information on which chem-
otype is present and prevalent in a certain area may help
to establish the level of potential risk of toxin detection.
The identification of a small NIV population in Sardinian
wheat may suggest a limited impact of NIV in Sardinian
crops, but at the same time it requires a constant moni-
toring effort as a chemotype shift may occur over time
(Pasquali & Migheli, 2014).
As reported elsewhere and in the current survey, the

presence of more than one chemotype of F. culmorum
was detected in the same field, perhaps a common find-
ing (Jennings et al., 2004; Pasquali et al., 2010; Boutigny
et al., 2014) that suggests that chemotypes may coexist
without strongly interfering with each other.
Hypotheses on the prevalence of a certain chemotype

(associated with a different toxigenic risk) have been for-
mulated and include the effect of climatic conditions, the
use of fungicides, the role of previous crops as well as
the mechanisms of interaction with the plant (Pasquali
& Migheli, 2014). This current study found that a cer-
tain chemotype was not associated with a particular dis-
ease type (FRR or FHB), implying the absence of a
potential advantage of one chemotype over the other
during establishment of FRR or FHB, at least based on
these epidemiological data. This confirms that minor
toxin type differences do not play a crucial role in dis-
ease establishment, but most probably have some specific
role in disease progression (Maier et al., 2006).
Fusarium culmorum is a single phylogenetic species

that presents a certain level of polymorphism, which sug-
gested the possible existence of sexual recombination
(Scherm et al., 2013).

Table 2 (continued)

Isolate Site Year Origina FRR/FHB Species Chemotypeb
EF-1a GenBank

accession no. SNP typec

PVS-Fu 424 8 2013 Cabras (OR) FHB F. culmorum 3-ADON KJ999865 T

PVS-Fu 425 4 2013 P. Torres (SS)- B2 FHB F. culmorum 3-ADON KJ999866 T

PVS-Fu 426 4 2013 P. Torres (SS)- D1 FHB F. culmorum NIV KJ999867 T

PVS-Fu 427 4 2013 P. Torres (SS)- F FHB F. culmorum NIV KJ999868 T

PVS-Fu 428 4 2013 P. Torres (SS)- L1 FHB F. culmorum NIV KJ999869 T

PVS-Fu 429 17 2013 Ussana (CA) FRR F. culmorum 3-ADON KJ999870 T

PVS-Fu 430 8 2013 Cabras (OR) FRR F. culmorum 3-ADON KJ999871 A

PVS-Fu 431 7 2013 Sedini (SS) FRR F. culmorum 3-ADON KJ999872 A

PVS-Fu 432 4 2013 P. Torres (SS)- D2 FHB F. graminearum 15-ADON – –

PVS-Fu 433 2 2013 Stintino (SS) FHB F. cortaderiae NIV – –

PVS-Fu 434 17 2013 Ussana (CA) FHB F. graminearum 15-ADON – –

PVS-Fu 435 4 2013 P. Torres (SS)- L2 FHB F. graminearum 15-ADON – –

PVS-Fu 436 4 2013 P. Torres (SS)- H1 FHB F. graminearum 15-ADON – –

PVS-Fu 437 4 2013 P. Torres (SS)- H2 FHB F. graminearum 15-ADON – –

PVS-Fu 906 3 2009 Ottava (SS)- Q FHB F. culmorum 3-ADON KJ999873 (A) A

aMultiple isolates from the same plant portion are indicated with the same uppercase letter.
b3-acetyldeoxynivalenol, 3-ADON; 15-acetyldeoxynivalenol, 15-ADON; nivalenol, NIV.
cSingle nucleotide polymorphism (SNP) at nucleotide 34 of the first exon of EF-1a (Balmas et al., 2010).
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Two haplotypes of EF-1a were found within the
characterized Sardinian population, confirming results
of previous sampling carried out in Sardinian soils
(Balmas et al., 2010). Both haplotypes have been
sampled in several areas in the same years, supporting
the hypothesis that the two haplotypes coexist in Sardi-
nia. Given the significant difference in abundance
depending on the disease type, it can be hypothesized
that the A-haplotype is somewhat favoured in FRR
establishment. The same EF-1a sequence is also present
in an international data set from other regions and
continents where FRR is frequently reported (Tunisia,
Iran, Turkey, Australia; Table S1). Unfortunately, only
limited information is available in public databases,
hence sufficient evidence for the association of the
A-haplotype with FRR outside Sardinia is lacking at
present. Further analysis looking for phenotypic differ-
ences associated with the two F. culmorum haplotypes
is warranted in order to identify potential characters
that may lead to the establishment of a certain disease
type on wheat. Importantly, this study showed that
disease specificity on wheat can be associated not only
with different species (Obanor & Chakraborty, 2014)
but also with different populations within a species,
in this case F. culmorum. As reported in Fusarium
fujikuroi for fumonisin production, a single SNP in the
EF-1a sequence may be associated with complex char-
acters, probably associated with a subpopulation within
the species (Suga et al., 2014).
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Figure S1. Alignment of a representative Sardinian A-haplotype partial

EF-1a sequence (Ef1_365_SARDINIA_H04) and a representative Sardi-

nian T-haplotype partial EF-1a sequence (Ef1_360_SARDINIA_C04)

with all Fusarium culmorum EF-1a partial sequences present in public

databases being identical to the A-haplotype.

Table S1. Fusarium culmorum EF-1a gene sequence information used

in this study, including NCBI accession numbers, annotations, origin of

the isolate and reference publication.
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