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Universitá di Milano, Via C. Saldini 50, 20133, Milano, Italy

We consider a one dimensional many body fermionic system with a large incom-

mensurate external potential and a weak short range interaction. We prove, for

chemical potentials in a gap of the non interacting spectrum, that the zero temper-

ature thermodynamical correlations are exponentially decaying for large distances,

with a decay rate much larger than the gap; this indicates the persistence of local-

ization in the interacting ground state. The analysis is based on Renormalization

Group, and convergence of the renormalized expansion is achieved using fermionic

cancellations and controlling the small divisor problem assuming a Diophantine con-

dition for the frequency.

1. INTRODUCTION AND MAIN RESULTS

A. Introduction

The properties of a fermionic system, like the conduction electrons in a metal, are deter-

mined, when the interaction between particles is not taken into account, by the eigenfunc-

tions of the single particle hamiltonian. In the presence of an external periodic potential,

the eigenfunctions are Bloch waves, and the zero temperature a.c. conductivity is vanishing

(insulating behavior) or not (metallic behavior) on whether the Fermi level lies within a

gap in the single particle spectrum or not. A different way in which an external potential

can produce an insulating behavior is known as Anderson localization [1]; in the presence

of certain potentials (like random ones, physically describing the presence of unavoidable

impurities in the metal) the eigenfunctions of the single particle Hamiltonian can be ex-

ponentially localized and this produces an insulating behavior. Localization in the single

particle Schroedinger equation with a random field has been indeed rigorously proved in

various regimes of energy and disorder, starting from [2],[3]. Note that in one dimension

any amount of disorder produces localization (the same is believed to happen in two di-
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mensions as well), while in three dimensions the disorder has to be sufficiently strong and

a metal to insulator transition is expected varying the strength of the random field. Lo-

calization does not necessarily require disorder, as it has long been known [4] that also

nonrandom systems with quasi-periodic potentials (or incommensurate in the lattice case)

can present single particle localization. The one dimensional quasi-periodic Schroedinger

equation has extended Bloch-Floquet eigenfunctions in the weak coupling regime [5],[7] and

localized eigenfunctions in the strong coupling regime, see [8],[9],[10], provided that some

Diophantine condition is assumed on the frequency of the potential. In the lattice case

with a cosine potential cos 2π(θ + xω), x integer, the weak or strong coupling regime are

connected by a duality transformation [4], and in this case it can be proved [11] that the

spectrum is a Cantor set for any irrational frequency ω (not only Diophantine). The case

of 1D quasi-periodic potential resembles the 3D random situation, as there is a transition

between an extended and localized phase varying the strength of the potential.

A realistic description of metals must include the electron-electron interaction, so that

the problem of the interplay between localization and interactions naturally arises [12]. In

the physical literature the zero temperature thermodynamical properties of 1D interacting

fermions with disorder has been analyzed in [13], [14], finding localized and delocalized

regions; the quasi-periodic case has been studied in [15]. While such works concern the

computation of the zero temperature thermodynamical quantities, in more recent times

attention has been devoted also to the localization properties of excited states of interacting

disordered many body systems, starting from [16], see [17]-[20]. Evidence has been found

that in several interacting systems with disorder all the eigenfunctions are localized for weak

interactions, while stronger interactions can destroy localization, leading to a so-called many-

body localization transition; similar properties has been found also in the quasi-periodic case

[21], [22].

It should however be remarked that not only the results about the excited states of the

N-particle Hamiltonian but even the ground state properties (that is, the zero tempera-

ture thermodynamical quantities) are based on conjectures or approximations, and more

quantitative results based on rigorous methods seem necessary. In particular, while there

are examples of interacting disordered systems of quantum rotators in which ground state

localization persists in the presence of interaction [23], exponential decay of ground state

correlation for disordered fermionic systems has been proved so far only in the absence of in-
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teraction [24]. The mathematical tools used for single particle localization in the disordered

case can usually treat only the case of a finite number of interacting disordered particles,

see [25]. Using a sequence of unitary transformations, localization of most eigenstates (in

the sense that the expectations of local observables are exponentially decaying) has been

rigorously proved in [26] (see also [27]) in a many body interacting disordered fermionic

chain , under a physically reasonable assumption that limits the amount of level attraction

in the system. Evidence of localization for finite times in interacting disordered bosons has

been found in [28].

There exist powerful methods, based on the version of Renormalization Group (RG)

developed for constructive Quantum Field Theory, to compute the thermodynamical prop-

erties at zero temperature of interacting fermions. Such techniques encounter at the moment

some difficulty in the application to random fermions, but can be successfully applied in the

case quasi-periodic or incommensurate potentials; this is not surprising as quasi-periodic

potentials produce small divisors similar to the ones in the KAM Lindstedt series, whose

convergence was established by RG methods, see [29],[30]. We will therefore analyze the

interplay of localization and interaction in the thermodynamical functions of interacting

fermions with a quasi-periodic potential by RG methods. We consider a system of spinless

fermions with Hamiltonian, x ∈ Z

HN = −ε
N∑
i=1

∆xi + u
N∑
i=1

ϕxi + λ
N∑

i,j=1
i̸=j

v(xi − xj) (1)

where ∆xf(x) = f(x+ 1) + f(x− 1)− 2f(x), ϕx = ϕ̄(ωx) with ϕ̄(t) = ϕ̄(t+ 1), ω irrational

and v(x − y) = δy−x,1 + δx−y,1. When ϕx = cos(ωx2π) the above model is the interacting

version of the Aubry-André model [4], and in recent times several experiments have been

focused to systems modelized by it, see [34]. In the absence of interactions between particles

(λ = 0) the eigenfunctions of HN are Slater deteminants obtained by the single particle

eigenfunctions of the Schroedinger equation

−εψ(x+ 1)− εψ(x− 1) + uϕxψ(x) = Eψ(x) (2)

which were extensively analyzed, see for instance [5],[6],[7], [8],[9],[10]. In principle, the

thermodynamical quantities could be obtained from such studies but, as a matter of fact,

even in the λ = 0 case the only available results on the zero temperature properties of (1)
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were obtained by RG methods for functional integrals. Indeed in [31] the Grand canonical

imaginary time correlations with λ = 0 were written in terms of an expansion plagued by

a small divisor problem, and convergence was proved in [31], for small u
ε
, suitable chemical

potentials and assuming a Diophantine condition on the frequencies, that is ||2πnω||2π ≥

Cn−τ for any n ∈ Z/{0} where ||.||2π is the norm on the one dimensional torus with

period 2π. It was found a power law or an exponential decay of the zero temperature

correlations at large distances depending on whether the chemical potential is inside a gap

or not; that is metallic or a band insulator behavior. In the opposite limit when u/ε is

large in the non interacting case λ = 0 it was proved in [32] that the correlations decay

exponentially in the coordinates for suitable values of the chemical potential, in agreement

with the localization properties of the single particle eigenfunction; the time decay is faster

than any power if the chemical potential correspond to a gap in the spectrum.

The only rigorous result for quasi-periodic interacting fermions is in [33], in which it

was proved that for small u
ε
and small λ there is still a power law decay of correlations

for values of the chemical potential outside the gap, but the exponent is anomalous with a

critical exponent signaling Luttinger liquid behavior. Therefore the metallic behavior, which

was present in the non interacting case as consequence of the extended nature of the single

particle eigenfunctions, persists also in the presence of interaction (but one has a Luttinger

liquid instead than a Fermi liquid). In addition if the chemical potential is inside a gap one

has exponentially decay of correlation, and an anomalous exponent appears in the decay

rate.

In the present paper we finally consider a system of interacting fermions with a large

incommensurate potential, a weak short range interaction and chemical potentials in a gap

of the non interacting one particle spectrum. We prove that the zero temperature thermody-

namical correlations are exponentially decaying for large distances, with a decay rate much

larger than the gap; such property indicates the persistence of localization in the interacting

ground state.

B. Thermodynamical quantities and solvable limits

We consider the Grand-canonical ensemble, in which one performs averages over the

particle number. If Λ is a one dimensional lattice Λ = {x ∈ Z,−L/2 ≤ x ≤ L/2}, L even,
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we introduce fermionic creation and annihilation operators a+x , a
−
x , x ∈ Λ on the Fock space

verifying {aεx, a−ε
′

y } = δε,ε′δx,y. The Fock space Hamiltonian corresponding to (1) can be

written as

H = −ε(
L/2−1∑
x=−L/2

a+x+1ax +

L/2∑
−L/2+1

a+x a
−
x−1) + (3)

+u

L/2∑
x=−L/2

ϕxa
+
x a

−
x − µ

L/2∑
x=−L/2

a+x a
−
x + λ

L/2∑
x,y=−L/2

v(x− y)a+x a
−
x a

+
y a

−
y

ternal potential ϕx, the third Using the Jordan-Wigner transformation the model can be

mapped in the XXZ model with a coordinate dependent magnetic field hx = ϕx.

Let us consider now the thermodynamical quantities in the grand-canonical ensemble.

We consider the operators a±x = ex0Ha±x e
−Hx0 , with

x = (x, x0) , 0 ≤ x0 < β (4)

for some β > 0 (β−1 is the temperature); x0 is the imaginary time and on it antiperiodic

boundary conditions are imposed, that is, if a±x = a±x,x0 , then a±x,β = −a±x,0. The 2-point

Schwinger function is defined as

Tr
[
e−βHT(a−x a

+
y )
]

Tr[e−βH0 ]
= I(x0 − y0 > 0)

Tr[e−βHa−x a
+
y ]

Tr[e−βH ]
− I(x0 − y0 ≤ 0)

Tr[e−βHa+y a
−
y ]

Tr[e−βH ]
(5)

where T is the time order product. The above quantity cannot be exactly computed, so

that one has to rely on a perturbative expansion around some solvable limit. In particular

the model is solvable in the free fermion limit (λ = u = 0), which is an extended phase

and in the molecular limit λ = ε = 0, which is a localized phase; in order to investigate the

interplay of localization and interaction we will perform an expansion around the molecular

limit. Before doing that, let us discuss the main properties of the solvable limits.

In the free fermion limit, corresponding to u = λ = 0, the Hamiltonian can be written

in diagonal form in momentum space. If we assume x = 0, 1, ...L and periodic boundary

conditions and we set a±x = 1
L

∑
k e

±ikxâ±k , with k = 2π
L
n and {âε, â−ε′k′ } = Lδε,ε′δk,k′ then

(ε = 1 for definiteness)

H0 =
∑
k

(− cos k + µ)â+k â
−
k (6)
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The two point Schwinger function is equal to

G(x− y) =
Tr

[
e−βH0T(a−x a

+
y )
]

Tr[e−βH0 ]
=

1

L

∑
k

e−ik(x−y)Ĝ(k, x0 − y0) = (7)

=
1

L

∑
k

e−ik(x−y)
{
e−(x0−y0)e(k)

1 + e−βe(k)
I(x0 − y0 > 0)− e−(β+x0−y0)e(k)

1 + e−βe(k)
I(x0 − y0 ≤ 0)

}
where ε(k) = µ − cos k The function Ĝ(k, τ) is defined only for −β < τ ≤ β, but we can

extend it periodically over the whole real axis. The function Ĝ(k, τ) is antiperiodic in τ of

period β; hence its Fourier series is of the form

Ĝ(k, τ) =
1

β

∑
k0=

2π
β
(n0+

1
2
)

Ĝ(k0, k)e
−ik0τ (8)

with

Ĝ(k, k0) =

∫ β

0

dτeiτk0
e−τe(k)

1 + e−βe(k)
=

1

−ik0 + e(k)
(9)

Note that the function Ĝ(k) is singular, in the limit L → ∞, β → ∞, at k0 = 0, k = ±pF ,

with cos pF = µ. ±pF are the Fermi momenta and close to them, that is for k′ small it

behaves as

Ĝ(k′ ± pF , k0) ∼
1

−ik0 ± vFk′
(10)

Another solvable limit is the Molecular limit corresponding to λ = ε = 0. The Hamilto-

nian reduces to (u = 1 for definiteness)

H0 =
∑
x∈Λ

(ϕx − µ)a+x a
−
x (11)

The 2–point function g(x,y) =
⟨
T{a−x a+y }

⟩
β,L

is equal to

g(x,y) = δx,y

{
e−(x0−y0)(ϕx−µ)

1 + e−β(ϕx−µ)
I(x0 − y0 > 0)− e−(β+x0−y0)(ϕx−µ)

1 + e−β(ϕx−µ)
I(x0 − y0 ≤ 0)

}
= δx,yḡ(x, x0 − y0) (12)

The function ḡ(x, τ) is defined only for −β < τ ≤ β, but we can extend it periodically over

the whole real axis. This periodic extension is smooth in τ for τ ̸= nβ, n ∈ Z, but has

a jump discontinuity at τ = nβ equal to (−1)n, as for the two point function in the free

fermion case.

The function g(x,y) is antiperiodic in x0 − y0 of period β; hence its Fourier series is of

the form

g(x,y) = δx,y
1

β

∑
k0=

2π
β
(n0+

1
2
)

ĝ(x, k0)e
−ik0(x0−y0) (13)



7

with

ĝ(x, k0) =

∫ β

0

dτeiτk0
e−τ(ϕx−µ)

1 + e−β(ϕx−µ)
=

1

−ik0 + ϕx − µ
(14)

Let M ∈ N and χ(t) a smooth compact support function that is 1 for t ≤ 1 and 0 for t ≥ γ,

with γ > 1. Let Dβ = Dβ ∩{k0 : χ0(γ
−M |k0|) > 0}, where Dβ = {k0 = 2π

β
(n0 +

1
2
), n0 ∈ Z}.

If x0 − y0 ̸= nβ, we can write

g(x,y) = lim
M→∞

δx,y
1

β

∑
k0∈Dβ

χ(γ−M |k0|)
e−ik0(x0−y0)

−ik0 + ϕx − µ
≡

δx,y
1

β

∑
k0∈Dβ

e−ik0(x0−y0)ĝ(≤M)(x, k0) ≡ lim
M→∞

g(≤M)(x,y) (15)

Because of the jump discontinuities, g(≤M)(x,y) is not absolutely convergent but is point-

wise convergent and the limit is given by g(x,y) at the continuity points, while at the

discontinuities it is given by the mean of the right and left limits.

In particular, the above equality is not true for x0 − y0 = nβ, where the propagator is

equal ḡ(x, 0−) while the r.h.s. is equal to ḡ(x,0−)+ḡ(x,0+)
2

. Note that limβ,L→∞ −ḡ(x, 0−) =

I(ϕx − µ ≤ 0), which is the occupation number of the ground state.

We assume ϕx = ϕ̄(ωx) with ϕ̄ : R → R a C∞ periodic ϕ̄(t) = ϕ̄(t + 1) and even

ϕ̄(t) = ϕ̄(−t), t ∈ R; we assume moreover that there is only one (ωx̄)mod.1 ∈ (0, 1
2
) such that

µ = ϕ̄(ωx̄); therefore, for small (ωx′)mod.1

ϕx′+ρx̄ − µ = ρv0(ωx
′)mod.1 + rρ,x′ v0 = ∂ϕ̄(ωx̄), ρ = ± (16)

with rρ,x′ = O(((ωx′)mod.1)
2); therefore the 2-point function can be written as, for small

(ωx′)mod.1

ĝ(x′ ± x̄, k0) ∼
1

−ik0 ± v0(ωx′)mod.1

(17)

Note the similarity of (17) with (10); this analogy suggests to call ±x̄ as Fermi coordinates,

in analogy with the Fermi momenta ±pF . In the special case of ϕx = cos(2πωx) (Almost-

Mathieu operator), setting ε = u

Ĝ(k, k0)|k=2πωx = ĝ(x, k0) (18)

which is is a manifestation of the well known Aubry-duality.
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C. Grassmann Integral representation

If Bβ,L = {Dβ ⊗Λ}, we consider the Grassmann algebra generated by the Grassmannian

variables {ψ±
x,k0

}x,k0∈Bβ,L
and a Grassmann integration

∫ [∏
x,k0∈Bβ,L

dψ−
x,k0

dψ+
x,k0

]
defined

as the linear operator on the Grassmann algebra such that, given a monomial Q(ψ−, ψ+)

in the variables ψ±
x,k0

, its action on Q(ψ−, ψ+) is 0 except in the case Q(ψ−, ψ+) =∏
x,k0∈Bβ,L

ψ−
x,k0

ψ+
x,k0

, up to a permutation of the variables. In this case the value of the

integral is determined, by using the anticommuting properties of the variables, by the con-

dition ∫ [ ∏
x,k0∈Bβ,L

dψ+
x,k0

dψ−
x,k0

] ∏
x,k0∈Bβ,L

ψ−
x,k0

ψ+
x,k0

= 1 (19)

We define also Grassmanian field as ψ±
x = 1

β

∑
k0∈Bβ,L

e±ik0x0ψ±
x,k0

with x0 = m0
β
γM

and

m0 ∈ (0, 1, ..., γM − 1). The ”Gaussian Grassmann measure” (also called integration) is

defined as

P (dψ) = [
∏

x,k0∈Bβ,L

βdψ−
x,k0

dψ+
x,k0

ĝ(≤M)(x, k0)] exp{−
∑
x,k0

(ĝ(≤M)(x, k0))
−1ψ+

x,k0
ψ−
x,k0

} (20)

We introduce the generating functional WM(ϕ) defined in terms of the following Grassmann

integral (Dirichelet boundary conditions are imposed)

eWM (ϕ) =

∫
P (dψ)e−V(M)(ψ)−B(M)(ψ,ϕ)) (21)

where ψ±
x and ϕ±

x are Grassmann variables, P (dψ) has propagator

g(≤M)(x,y) = δx,y
1

β

∑
k0∈Dβ,L

χ(γ−M |k0|)
e−ik0(x0−y0)

−ik0 + ϕx − ϕx̄
(22)

and
∫
dx is a shorthand for

∑
x∈Λ

β
γM

∑
x0
; moreover

V(M) = λ

∫
dxdyv(x,y)ψ+

x ψ
−
x ψ

+
y ψ

−
y + ε

∫
dx(t1xψ

+
x+e1

ψ−
x + t2xψ

+
x−e1

ψ−
x ) (23)

+ν

∫
dxψ+

x ψ
−
x +

∫
dxdyλv(x,y)νC(y)ψ

+
x ψ

−
x

where v(x−y) = δ(x0 − y0)(δx,y+1 + δx,y−1), t
1
L/2 = t2−L/2 = 0 and t1x = t2x = 1 otherwise and

νC(x) =
1

2
[ḡ(x, 0+)− ḡ(x, 0−)] (24)

and ḡ(x, 0−) was defined in (12). Finally

B(M)(ψ, ϕ) =

∫
dx[ϕ+

xψ
−
x + ψ+

x ϕ
−
x ] (25)
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Note that we expect that the chemical potential is modified by the interaction; in the analysis

it is convenient to keep fixed the value of the Fermi coordinate in the free or interacting

theory, therefore we write the chemical potential as ϕx̄ + ν, where ν is a counterterm to be

fixed so that the free and interacting Fermi coordinate are the same.

Let us define

SM,β,L
2 (x,y) =

∂2

∂ϕ+
x ∂ϕ

−
y

WM(ϕ)|0 (26)

Note that limM→∞ SM,β,L
2 can be written as a series in ε, λ coinciding order by order with

the series expansion for the Schwinger functions (5) with chemical potential µ = ϕx̄ + ν.

Indeed each term of the series for (5) or limM→∞ SM,β,L
2 can be expressed as a sum of

integrals over propagators (respectively g(x,y) (12) or limM→∞ g(≤M)(x,y) (20)) which can

be represented by Feynman graphs. The subset of graphs contributing to (5) and with

no tadpoles coincides the the graphs contributing to limM→∞ SM,β,L
2 and no vertices νC .

The integrands are different, as the propagators g(x,y) (12) or limM→∞ g(≤M)(x,y) (20)

are different at coinciding times. However the integrals are well defined and coincide, as

the integrands of the graphs coincide except in a set of zero measure. Let us consider the

remaining graphs. In the graphs with a tadpole in the expansion for limM→∞ SM,β,L
2 there

is a factor of the form∫
dyλv(x,y)g(x1 − x)νT (y)g(x− x2) , νT (y) = −1

2
[ḡ(y, 0+) + ḡ(y, 0−)] (27)

On the other hand, given a graph G of this type, there is another graph G̃, which differs

from it only because, in place of the term V(ψ) which produced the tadpole, there is a vertex

νC . If we sum the values of G and G̃, we get a number which is equal to the value of G,

with −λḡ(y, 0−) replacing νT (y) , so that the terms coincide with the analogous term in

the expansion for (5). Therefore the two perturbative expansions coincide. An analyticity

argument, analogue to the one in Proposition 2.1 of [35], allows to conclude the coincidence

of (5) and limM→∞ SM,β,L
2 beyond perturbation theory, once that the limit exists and certain

analyticity properties are proved; this is quite standard and will be not repeated here for

brevity, so we state our main results directly for the Grassmann integral.
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D. Main result: localization in the presence of interaction

We set u = 1 and we consider ε, λ small. We define T = R/Z the one dimensional torus

and ||θ||1 the distance on T, that is the absolute value of θ modulo 1 so that 0 ≤ ||θ||1 ≤ 1
2
.

Our main result is the following.

Theorem 1.1 Let us consider the 2-point function SM,β
2 (x,y) (26) with ϕx = ϕ̄(ωx), with

ϕ̄ ∈ C∞(T) and such that ϕ̄(t) = ϕ̄(−t), ϕ̄(t) = ϕ̄(t + 1), ϕ̄(t) increasing for 0 < t < 1
2
and

ω verifying

||ωx||1 ≥ C|x|−τ , for any 0 ̸= x ∈ Z (28)

for some constants τ > 1 and C0 > 0. Assume x̄ in (22) half integer x̄ = n + 1
2
, n ∈ N

and that v0 = ∂tϕ̄(ωx̄) > 0. Then there exists an ε0, depending on ω and x̄, such that for

|ε| ≤ ε0 and |λ| ≤ ε2x̄+2 there exists a continuous function ν(ε, λ) such that, for any N , the

limit limβ→∞ limL→∞ limM→∞ SM,β,L
2 (x,y) = S2(x,y) exists and verifies, for any N ∈ N

|S2(x,y)| ≤ CN
e−κ log |ε|

−1|x−y|

1 + (|σ||x0 − y0|)N
(29)

where σ = aε2x̄ +O(ε2x̄+1) with a ̸= 0 κ,CN positive constants.

A typical example of function ϕx verifying the condition of Theorem 1.1 is ϕx =

cos(2πωx); the condition ϕ̄(t) = ϕ̄(−t) fixes naturally the origin of coordinates. As we

discussed above, in the absence of many body interaction Anderson localization of the single

particle Schroedinger equation implies exponential decay of the 2-point Schwinger function,

as proven in [32]. The above Theorem says that, for suitable chemical potentials and ω

diophantine, such exponential decay persists also in the presence of interaction at least for

certain chemical potentials, provided that the hopping is smaller than O(x̄!−γ) for some

positive γ, and the interaction is much smaller than the hopping; that is, if we remain suf-

ficiently close to the molecular limit. The decay rate in the coordinate difference is much

faster than the gap and this indicates the persistence of localization for the ground state

eigenfunction of an interacting many body system.

Note that, even if one can guess that the condition on the smallness of λ can be improved,

it is believed that large interactions can destroy Anderson localization; large ε destroys

Anderson localization as well. The chemical potential is chosen in correspondence of a gap

of the one particle non interacting spectrum; this assumption is the analogue of the filled
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band condition on the Fermi momentum in the extended regime and it is physically quite

natural, as the non interacting system tends to have a dense set of gaps. The choice of

the chemical potential ensures faster than any power decay in the time direction and this

fact plays an important role in the proof, as it allows to bound certain terms (loops) in the

perturbative expansion, which are generated by the presence of the many body interaction.

The random case has far fewer resonances than the quasi periodic potential, a fact which

simplifies the Renormalization Group analysis of the interacting quasi-periodic case.

A consequence of Theorem 1.1 combined with [33] is the existence of a quantum phase

transition between an extended and a localized phase. Indeed it was proved in [33] in the

small λ, u case that even in the presence of interaction the system has a metallic or a band

insulating behavior depending on the chemical potential; that is, for small u and λ (ε = 1)

if µ = 1− cos pF then if pF = mωπ then

|S2(x,y)| ≤
CN

1 + (∆|x− y|)N
(30)

with ∆ = ϕ̂m|u|1−η(1 +O(λ)) and η = aλ+O(λ2) with a > 0 suitable constant; the 2-point

function has a faster than any power decay with the same rate in space and time, indicating

band insulating behavior. On the other hand, if ||2pF +2πnω||2π ≥ C|n|−τ , for any n ∈

Z/{0} then the 2-point function decays for large distance as

S2(x,y) ∼|x−y|→∞ O(|x− y|−1−η̃) (31)

with η̃ = bλ2 + O(λ3), b a positive constant, denoting an anomalous metallic behavior

(Luttinger liquid behavior). Therefore, there is a localization-delocalization transition also

in the presence of interaction varying the strength of the kinetic energy.

Theorem 1.1 is proven under the condition that the chemical potential is in a gap of

the single particle spectrum. One may expect that Anderson localization is present also for

other values of the chemical potential, and indeed in [32] in the non interacting case λ = 0,

exponential coordinate decay of the two-point function in the absence of interaction was

established also in correspondence of the condition

||ωx± 2ωx̄||1 ≥ C|x|−τ , for any 0 ̸= x ∈ Z (32)

By an extension of the methods introduced in the present paper, one could indeed prove

exponential decay of correlations in presence of interaction at finite temperatures, with a
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decay rate much larger than the inverse temperature; new ideas seem however necessary to

consider the zero temperature case.

E. Sketch of the proof

In order to prove Theorem 1.1 we expand around the molecular limit, obtaining a series

in terms of sum of product of propagators (−ik0 + ϕx − ϕx̄)
−1 which, for (ω(x − ρx̄))mod.1

small, ρ = ±, can be bonded by C|x − ρx̄|τ ; such small divisors can accumulate so that

the size of certain terms in the expansion grows as a factorial, so destroying the possibility

of convergence. One has then to prove that there is no accumulation of small divisors. A

similar problem arises in the Linstedt series for KAM tori [29], in which one can exploit the

Diophantine condition to show the lacking of small divisors accumulation. The presence of

interaction produces however an essential difference: in KAM Lindstedt series or in the non

interacting case the series can be represented in terms of tree diagrams, while in the present

case the series are expressed in terms of diagrams with loops. This make the small divisor

problem and the structure of resonances much more involved.

We perform the analysis of the Grassmann integral (26) in an iterative way by using

Renormalization Group methods. We start integrating the higher energy frequencies, see

§2. After the integration of the ultraviolet scales, we have to integrate the low energy modes

(infrared scales) in which one has to face a small divisor problem, as discussed in §3. The

theory is non-renormalizable according to power counting; the scaling dimension depends

on the number of vertices in any subgraph, so that one has to improve the dimensions of

all possible subgraphs with any number of external fields. In order to get such improve-

ment, we have to exploit the in incommensurability of the potential and take advantage of

the diophantine condition on the frequency. One has to distinguish between two kind of

terms in the effective potential, depending on whether the coordinates (measured from the

Fermi coordinate) of the external fields are different (non-resonant terms) or equal (resonant

terms). In the non resonant terms one uses the Diophantine condition to get good bounds,

exploiting, roughly speaking, the idea that if the denominators associated to the external

lines have similar small size but different coordinates, then the difference of coordinates is

necessarily large (see §3.C). The result is somewhat similar to Bruno lemma as presented in

[29], but new difficulties arise from the fact that the resonances have any number of external



13

fields and not only two as in the non interacting case; in particular, one has to improve

the bounds by a quantity proportional to the external lines for combinatorial reason, see

§3.E . Regarding the resonances one uses that the local part of the terms with more than

four external fields is vanishing. Moreover the resonances with two external fields produce a

renormalization of the chemical potential or a dynamically generated a mass term implying

an exponential decay in time. An important difference with respect to the non interacting

case, or the Lindsted series for KAM is that in such cases one has only tree diagrams, and

their number is O(n!) so that a Cn

n!
-bound on each diagram is sufficient for convergence. In

the presence of interaction, on the contrary, one has loops so that the number of diagrams

O(n!2) and a similar bound on each diagram is not sufficient; one has then to avoid graph

expansion and taking into account the fact that the fermionic expectations can be repre-

sented in terms of determinants, exploiting the cancellations due to the fermionic nature of

the problem, see §3.G. Finally in §3.G we study the flow of the running coupling constants,

proving its boundedness as a consequence of the dynamically generated mass term, and the

two point functions is analyzed in §3.H, completing the proof of the theorem.

2. THE ULTRAVIOLET INTEGRATION

A. Ultraviolet and Infrared fields

We introduce a function χh(t, k0) ∈ C∞(T × R), such that χh(t, k0) = χh(−t,−k0) and

χh(t, k0) = 1, if
√
k20 + v20||t||21 ≤ aγh−1 and χh(t, k0) = 0 if

√
k20 + v20||t||21 ≤ aγh with a

and γ > 1 suitable constants. We choose a so that the supports of χ0(ω(x − x̄), k0) and

χ0(ω(x+ x̄), k0) are disjoint; note that the C∞ function on T× R

χ̂u.v.(ωx, k0) = 1− χ0(ω(x− x̄), k0)− χ0(ω(x+ x̄), k0) (33)

is equal to 0, if
√
k20 + |ϕx − ϕx̄|2 ≤ b, with b a suitable constant. For reasons which will

appear clear below, we choose γ > 2
1
τ . We can write then

g(x,y) = g(u.v)(x,y) + g(i.r)(x,y) (34)

and

g(i.r)(x,y) =
∑
ρ=±

g(≤0)
ρ (x,y) (35)
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where

g(u.v.)(x,y) =
δx,y
β

∑
k0∈Dβ

χ(γ−M |k0|)χ̂u.v.(ωx, k0)
e−ik0(x0−y0)

−ik0 + ϕx − ϕx̄

g(≤0)
ρ (x,y) =

δx,y
β

∑
k0∈Dβ

χ0(ω(x− ρx̄), k0)
e−ik0(x0−y0)

−ik0 + ϕx − ϕx̄
(36)

For definiteness, we start considering the generating function (21) with ϕ = 0. We will

use the following addition formula; if g1, g2 are two propagators and g := g1 + g2, then

Pg(dψ) = Pg1(dψ1)Pg2(dψ2), in the sense that for every polynomial f∫
Pg(dψ)f(ψ) =

∫
Pg1(dψ1)

∫
Pg2(dψ2)f(ψ1 + ψ2) . (37)

The properties of Grassmann integrals imply that we can write

eW (0) =

∫
P (dψ)e−V(M)(ψ) =

∫
P (dψ(i.r.))

∫
P (dψ(u.v.))e−V(M)(ψ(i.r.)+ψ(u.v.)) (38)

where P (dψ(u.v.)) and P (dψ(i.r.)) are gaussian Grassmann integrations with propagators re-

spectively g(u.v.)(x,y) and g(i.r)(x,y) and ψ(u.v.) and ψ(i.r.) are independent Grassmann vari-

ables. We can write∫
P (dψ(u.v.))e−V(M)(ψ(i.r.)+ψ(u.v.)) = e

∑∞
n=0

(−1)n

n!
ET
u.v.(V(M):n) ≡ e−βLE0−V(0)(ψ(i.r.)) (39)

where ET is the fermionic truncated expectation with respect to P (dψ(u.v.)), that is, if

X(ψ + ϕ) is a monomial

ET (X : n) =
∂n

∂αn
log

∫
P (dψ)eαX(ϕ+Ψ))|α=0 (40)

By the above definition

V(0) =
∞∑
n=1

∑
x1

∫
dx0,1....

∑
xn

∫
dx0,nW

(h)
n (x1, ...,xn)[

n∏
i=1

ψ
(εi)(≤0)

x′
i,ρi

] (41)

with x = x′ + ρx̄, x̄ = (0, x̄) and E0 is a constant; moreover

eW (0) = e−βLE0

∫
P (dψ(i.r.))e−V(0)(ψi.r.) (42)

Note that the kernel W
(h)
n (x1, ...,xn) will contain in general Kronecker or Dirac deltas,

and we define the L1 norm as they would be positive functions, e.g. if W (x1,x2, ..xn) =

δ(
∑

j ηjxj)W̄ (x1, ..,xn) then |W |L1 =
∫
dx1..dxnδ(

∑
j ηjxj)|W̄ (x1, ..,xn)|.
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Lemma 2.1 The constant E0 and the kernels W
(0)
n are given by power series in λ, ε, ν

convergent for |λ|, |ε|, |ν| ≤ ε0, for ε0 small enough and independent of β,M . They satisfy

the following bounds:

|W (0)
n |L1 ≤ LβCnεkn0 , (43)

for some constant C > 0 and kn = max{1, n− 1}. Moreover, limM→∞E0 and limM→∞W
(0)
n

do exist and are reached uniformly in M , so that, in particular, the limiting functions are

analytic in the same domain.

B. Proof of Lemma 2.1

We can write χ(γ−M |k0|) =
∑M

j=−∞ fj(|k0|) with, for j ≤M − 1, fj(|k0|) = χ(γ−j|k0|)−

χ(γ−j+1|k0|) a smooth compact support function non vanishing for γh−1 ≤ |k0| ≤ γh+1. .

Therefore

g(u.v.)(x,y) =
M∑
h=1

g(h)(x,y) , (44)

where

g(h)(x,y) = δx,y
1

β

∑
k0

e−ik0(x0−y0)

−ik0 + ϕx − ϕx̄
χ(u.v.)(k0, ωx)fh(|k0|) = δx,yḡ

(h)(x, x0 − y0) (45)

where we have used that χ(γ−N |k0|) =
∑N

h=1 fh(|k0|), according to the definition after (15).

By integration by parts, for any integer K

|ḡ(h)(x, x0 − y0)| ≤
CK

1 + [γh|x0 − y0|]K
(46)

By using (44) we can write P (dψ(u.v.)) =
∏M

h=1 P (dψ
(h)) and the corresponding decom-

position of the field ψ
(u.v.)
x =

∑M
h=1 ψ

(h)
x . Hence, we can integrate iteratively the fields

ψ(M), ψ(M−1), ..., ψ(h) with h ≥ 1 and, if we define ψ(≤0) = ψi.r. and ψ(≤h) = ψi.r.+
∑h

j=1 ψ
(j),

if h ≥ 0, we get :

eW (0) = e−LβEh

∫
P (dψ≤h) e−V(h)(ψ(≤h)) (47)

Let us consider first the effective potentials on scale h, V(h)(ψ(≤h)). We want to show that

they can be expressed as sums of terms, each one associated to an element of a family of

labeled trees; we shall call this expansion the tree expansion.
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The tree definition can be followed looking at Fig 1 (for a general introduction to tree

expansion see for instance [32]).

v0
v

v′

hv M M + 1

FIG. 1: A tree τ ∈ Th,n with its scale labels.

Let us consider the family of all trees which can be constructed by joining a point r, the

root, with an ordered set of n ≥ 1 points, the endpoints of the unlabeled tree, so that r is not

a branching point. n will be called the order of the unlabeled tree and the branching points

will be called the non trivial vertices. The unlabeled trees are partially ordered from the

root to the endpoints in the natural way; we shall use the symbol < to denote the partial

order. Two unlabeled trees are identified if they can be superposed by a suitable continuous

deformation, so that the endpoints with the same index coincide. It is then easy to see that

the number of unlabeled trees with n̄ end-points is bounded by 4n̄. We shall also consider the

set Th,n,M of the labeled trees with n endpoints (to be called simply trees in the following);

they are defined by associating some labels with the unlabeled trees, as explained in the

following items.

2) We associate a label h ≤ M with the root. Moreover, we introduce a family of vertical

lines, labeled by an integer taking values in [h,M +1], and we represent any tree τ ∈ TM,h,n

so that, if v is an endpoint or a non trivial vertex, it is contained in a vertical line with

index hv > h, to be called the scale of v, while the root r is on the line with index h. In

general, the tree will intersect the vertical lines in set of points different from the root, the

endpoints and the branching points; these points will be called trivial vertices. The set of

the vertices will be the union of the endpoints, of the trivial vertices and of the non trivial
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vertices; note that the root is not a vertex. Every vertex v of a tree will be associated to its

scale label hv, defined, as above, as the label of the vertical line whom v belongs to. Note

that, if v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 .

3) There is only one vertex immediately following the root, which will be denoted v0; its

scale is h+ 1. If v0 is an endpoint, the tree is called the trivial tree; this can happen only if

n+m = 1.

4) Given a vertex v of τ ∈ TM,h,n that is not an endpoint, we can consider the subtrees of

τ with root v, which correspond to the connected components of the restriction of τ to the

vertices w ≥ v; the number of endpoint of these subtrees will be called nv. If a subtree with

root v contains only v and one endpoint on scale hv + 1, it will be called a trivial subtree.

5) Given an end-point, the vertex v preceding it is surely a non trivial vertex, if n > 1.

Our expansion is built by associating a value to any tree τ ∈ TM,h,n in the following way.

First of all, given a normal endpoint v ∈ τ with hv =M +1, we associate to it one of the

terms (note that to the ε interaction two terms are associated) contributing to the potential

V(M)(ψ) while, if hv ≤ M , we associate to it one of the terms appearing in the following

expression:

−V(ψ(<hv))− νN (ψ(<hv)) +

∫
dxdyλv(x,y)(−νC(y) + ḡ[hv,M ](y; 0))ψ+(<hv)

y ψ−(<hv)
y ) (48)

We associate to the label an index to specify which term is associated to the end-point.

We introduce also a field label f to distinguish the field variables appearing in the different

terms associated to the endpoints; the set of field labels associated with the endpoint v will

be called Iv. Analogously, if v is not an endpoint, we shall call Iv the set of field labels

associated with the endpoints following the vertex v; x(f), ε(f) will denote the space-time

point, the ε index of the Grassmann field variable with label f .

The previous definitions imply that, if 0 ≤ h < M , the following iterative equations are

satisfied:

−V(h)(ψ(≤h))− βLeh =
∞∑
n=1

∑
τ∈TM,h,n

V(h)(τ, ψ(≤h)) , (49)

where, if v0 is the first vertex of τ and τ1, . . . , τs, s ≥ 1, are the subtrees with root in v0,

V(h)(τ, ψ(≤h)) =
(−1)s+1

s!
ETh+1

[
V̄(h+1)(τ1, ψ

(≤h+1)); . . . ; V̄(h+1)(τs, ψ
(≤h+1))

]
, (50)
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where V̄(h+1)(τi, ψ
(≤h+1)) is equal to V(h+1)(τi, ψ

(≤h+1)) if the subtree τi contains more than

one end-point, otherwise it is given by one of the terms contributing to the potentials in

(24), if hv =M + 1, or one of the addends in (48), if hv ≤M .

Note that

|λνC(x)|, |λḡ[hv ,M ](x, 0))| ≤ C|λ| (51)

We define

Nv =
∑
i,v∗i>v

1 (52)

the number of end-points following v The above definitions imply, in particular, that, if

n > 1 and v is not an endpoint, then Nv > 1; in fact the vertex preceding an end-point is

necessarily non trivial, if n > 1.

Using its inductive definition, the right hand side of (49) can be further expanded, and

in order to describe the resulting expansion we need some more definitions.

We associate with any vertex v of the tree a subset Pv of Iv, the external fields of v, and

the set xv of all space-time points associated with one of the end-points following v. The

subsets Pv must satisfy various constraints. First of all, |Pv| ≥ 2, if v > v0; moreover, if

v is not an endpoint and v1, . . . , vSv are the Sv ≥ 1 vertices immediately following it, then

Pv ⊆ ∪iPvi ; if v is an endpoint, Pv = Iv. If v is not an endpoint, we shall denote by Qvi

the intersection of Pv and Pvi ; this definition implies that Pv = ∪iQvi . The union Iv of

the subsets Pvi \ Qvi is, by definition, the set of the internal fields of v, and is non empty

if Sv > 1. Given τ ∈ TM,h,n, there are many possible choices of the subsets Pv, v ∈ τ ,

compatible with all the constraints. We shall denote Pτ the family of all these choices and

P the elements of Pτ .

With these definitions, we can rewrite V(h)(τ, ψ(≤h)) in the r.h.s. of (49) as

V(h)(τ, ψ(≤h)) =
∑
P∈Pτ

V(h)(τ,P) ,

V̄(h)(τ,P) =

∫
dxv0ψ̃

(≤h)(Pv0)K
(h+1)
τ,P (xv0) , (53)

where K
(h+1)
τ,P (xv0) is defined inductively by the equation, valid for any v ∈ τ which is not

an endpoint,

K
(hv)
τ,P (xv) =

1

Sv!

Sv∏
i=1

[K(hv+1)
vi

(xvi)] EThv [ψ̃
(hv)(Pv1 \Qv1), . . . , ψ̃

(hv)(PvSv
\QvSv

)] , (54)
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Moreover, if vi is an endpoint, K
(hv+1)
vi (xvi) is equal to the kernel of one of the terms con-

tributing to the potential in (24), if hvi = N +1, or one of the four terms in (48), if hvi ≤ N ;

if vi is not an endpoint, K
(hv+1)
vi = K

(hv+1)
τi,Pi

, where Pi = {Pw, w ∈ τi}.

In order to get the final form of our expansion, we need a convenient representation

for the truncated expectation in the r.h.s. of (54). Let us put s = Sv, Pi := Pvi \ Qvi ;

moreover we order in an arbitrary way the sets P±
i := {f ∈ Pi, ε(f) = ±}, we call f±

ij their

elements and we define x(i) = ∪f∈P−
i
x(f), y(i) = ∪f∈P+

i
y(f), xij = x(f−

ij ), yij = x(f+
ij ).

Note that
∑s

i=1 |P
−
i | =

∑s
i=1 |P

+
i | := k, otherwise the truncated expectation vanishes. A

couple l := (f−
ij , f

+
i′j′) := (f−

l , f
+
l ) will be called a line joining the fields with labels f−

ij , f
+
i′j′ .

Then, we use the Brydges-Battle-Federbush formula, if s > 1,

ETh (ψ̃(h)(P1), . . . , ψ̃
(h)(Ps)) =

∑
T

∏
l∈T

[
g(h)(xl − yl)

] ∫
dPT (t) detG

h,T (t) , (55)

where T is a set of lines forming an anchored tree graph between the clusters of points

x(i) ∪ y(i), that is T is a set of lines, which becomes a tree graph if one identifies all the

points in the same cluster. Moreover t = {tii′ ∈ [0, 1], 1 ≤ i, i′ ≤ s}, dPT (t) is a probability

measure with support on a set of t such that tii′ = ui ·ui′ for some family of vectors ui ∈ Rs

of unit norm.

Gh,T
ij,i′j′ = tii′δxij ,yi′j′

[
g̃(h)(xij, x0,ij − y0,i′j′)

]
ρ−ij ,ρ

+
i′j′

, (56)

with (f−
ij , f

+
i′j′) not belonging to T .

By inserting (55) in the r.h.s. of (54) we get

V (h)(τ,P) =
∑
T∈T

∫
dxv0Wτ,P,T (xv0)

∏
f∈Pv0

ψ
(≤h)σ(f)
x(f) (57)

where

Wτ,P,T (xv0) =
∏

vnot e.p.

1

Sv!

∫
dPTv(tv)detG

hv ,Tv(tv)
∏
l∈Tv

δxℓ,yℓ ḡ
(hv)(xℓ; x0,ℓ − y0,ℓl) (58)

T is the set of the tree graphs on xv0 (which is a collection of several coordinates, defined

after (52) ), obtained by putting together an anchored tree graph Tv for each non trivial

vertex v; v∗1, . . . , v
∗
n are the endpoints of τ , f−

l and f+
l are the labels of the two fields forming

the line l, “e.p.” is an abbreviation of “endpoint”.

Note that we can eliminate the Kronecker deltas in the propagators in the spanning tree

T , so that only a single sum over the coordinate remain and the coordinate of the external
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FIG. 2: A pictorial representation of one of the terms summed in the r.h.s. of (55); in the figure

s = 4 and each of the monomial ψ̃(h)(P ) is represented as a set of half-lines external to a blob (not

from a single point to take into account that they can have different coordinates). Some of the

half-lines are contracted in propagators and their union represent the spanning tree T ∈ T; the

others are uncontracted and represent the fields in the determinant.

fields and of the fields in the determinants are assigned once that x, T and τ are given, as

the interaction is quasi local; we can then write

V (h)(τ,P) =
∑
T∈T

∑
x

∫
dx0,v0Hτ,P,T (x, x0,v0)

∏
f∈Pv0

ψ
(≤h)σ(f)
x̂(f) (59)

where

Hτ,P,T (x, x0,v0) =
∏

vnot e.p.

1

Sv!

∫
dPTv(tv)detG

hv ,Tv(tv)
∏
l∈Tv

ḡ(hv)(x̂ℓ; x0,ℓ − y0,ℓ)] (60)

where x̂(f) = (x̂(f), x0(f)) and there is a field f̄ such that x̂(f̄) = x and all the other

coordinates x̂(f) are assigned once that x, T and τ are given. We will call resonances the

terms such that x̂(f) is the same for all f ∈ Pv0 . Similarly x̂l is assigned, once that that x,

T and τ are given.

In order to bound the above expression we introduce an Hilbert spaceH = ℓ2⊗Rs⊗L2(R1)

so that

Gh,T
ij,i′j′ =

(
vxij ⊗ ui ⊗ A(x0,ij−, xij) , vyi′,j′ ⊗ ui′ ⊗B(y0,i′j′−, xij)

)
, (61)
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where v ∈ RL are unit vectors such that (vi,vj) = δij, u ∈ Rs are unit vectors (ui, ui) = tii′ ,

and A,B are vectors in the Hilbert space with scalar product

(A,B) =

∫
dz0A(x

′, x0 − z0)B
∗(x′, z0 − y0) (62)

given by

A(x, x0 − z0) =
1

β

∑
k0

e−ik0(x0−z0)
√
χ(u.v.)fh(|k0|)(k20 + (ϕx − ϕx̄)

2)−1

B(x, y0 − z0) =
1

β

∑
k0

e−ik0(y0−z0)
√
χ(u.v.)fh(|k0|)(ik0 + ϕx − ϕx̄) . (63)

Moreover

||Ah||2 =
∫
dz0|Ah(z)|2 ≤ Cγ−3h , ||Bh||2 ≤ Cγ3h , (64)

for a suitable constant C.

If ε0 = max{|λ|, |ν|}, by using (54) and (55), we get the bound

1

βL

∑
τ∈TM,h,n

∑
T∈T

∑
P∈Pτ

∑
x

∫
dx0,v0 |Hτ,P,T (x, x0,v0)| ≤ (65)

∑
τ∈TM,h,n

∑
T∈T

∑
P∈Pτ

[ ∏
v not e.p.

1

Sv!
max
tv

∣∣detGhv ,Tv(tv)
∣∣×

∏
l∈Tv

∏
l∈Tv

∫
d(x0,l − y0,l)| sup

x
|ḡ(hv)(xl;x0,l − y0,l)||

∣∣]

where, given the tree τ , T is the family of all tree graphs joining the space-time points

associated to the endpoints, which are obtained by taking, for each non trivial vertex v, one

of the anchored tree graph Tv appearing in (55), and by adding the lines connecting the

two vertices associated to non local endpoints. Gram–Hadamard inequality (see for instance

[30]), combined with (64), implies the dimensional bound:

|detGhv ,Tv(tv)| ≤ C
∑Sv

i=1 |Pvi |−|Pv |−2(Sv−1) . (66)

By the decay properties of g(h)(x) given by (46), it also follows that∏
v not e.p.

1

Sv!

∏
l∈Tv

∫
d(x0,l− y0,l)| sup

x
|ḡ(hv)(xl;x0,l− y0,l)|| ≤ Cn+m

∏
v not e.p.

1

Sv!
γ−hv(Sv−1) (67)

We can now perform the sum
∑

T∈T, which erases the 1/Sv! up to a Cn factor. Then, by

using the identity
∑

v′≥v(Sv′−1) = nv−1 and the bound
∑

v≥v0 [
∑Sv

i=1 |Pvi|−|Pv|−2(Sv−1)] ≤
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4n− 2(n− 1), we easily get the final bound

∞∑
n=1

Cnεn0
∑

τ∈TM,h,n

∑
P∈Pτ

|Pv0 |=0

γ−h(n−1)
[ ∏
v not trivial

γ−(hv−hv′ )(Nv−1)
]

(68)

where v′ is the non trivial vertex immediately preceding v or v0. This bound is suitable to

control the expansion, if n > 1, since Nv > 1 (Nv is defined in (52)) for any non trivial

vertex, as discussed below (51). If n = 1 the allowed trees have only one endpoint of scale

h+ 1.

Note that
∑

T∈T can be bounded by
∏

v Sv!C
∑Sv

i=1 |Pvi |−|Pv |−2(Sv−1) ≤ cn
∏

v Sv!. In order

to bound the sum over τ , note that the number of unlabeled trees is ≤ 4n; moreover, as

Nv > 1 and, if v > v0, 2 ≤ |Pv| ≤ 4Nv − 2(Nv − 1), so that Nv − 1 ≥ |Pv|/6,[ ∏
v not trivial

γ−(hv−hv′ )(Nv−1)
]
≤

[ ∏
v not trivial

γ−
2
5
(hv−hv′ )

][ ∏
v not e.p.

γ−
|Pv |
10

]
(69)

The factor γ−
2
5
(hv−hv′ ) can be used to bound the sum over the scale labels of the tree;

moreover ∑
P∈Pτ

γ−
|Pv |
10 ≤ Cn (70)

Since the constant C is independent of M,β, the bounds above imply analyticity of the

kernels in λ and ν, if ε0 is small enough. It is an immediate consequence of the above

bounds the proof of uniform convergence of theM → ∞ limit; the proof of this is essentially

identical to the one in [35] after (2.8) and it will not repeated here.

3. THE INFRARED INTEGRATION AND THE SMALL DIVISOR PROBLEM

A. Multiscale analysis

In order to integrate the infrared scales we will use, in addition to (37), also the following

property: if Pg(dψ) is a Grassmann integration with propagator g then

1

N

∫
Pg(dψ)e

−νψ+ψ−
f(ψ) =

∫
Pg′(dψ)f(ψ) (71)

with g′−1 = g−1 + ν and N = 1 + gν ; the general strategy will be to insert part of the

quadratic terms of the effective potential in the fermionic integration at each iteration, so
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dynamically varying the propagator. We describe such a procedure inductively. Assume

that we have integrated the fields ψ(0)...ψ(h+1) obtaining

e−βLE0

∫
P (dψ(≤0))e−V(0)(ψ(≤0)) = e−βLEh

∫
P (dψ(≤h))e−V(h)(ψ(≤h)) (72)

where P (dψ(≤h)) is the gaussian grassman integration with propagator, ρ = ±

g
(≤h)
ρ,ρ′ (x

′,y′) = δx′,y′ ḡ
(≤h)
ρ.ρ′ (x

′, x0 − y0) (73)

with

g
(≤h)
ρ,ρ′ (x

′, x0 − y′0) =

∫
dk0e

−ik0(x0−y0)χh(ωx
′, k0)× −ik0 + v0(ωx

′)mod.1 + r+,x′ σh

σh −ik0 − v0(ωx
′)mod.1 + r−,x′

−1

ρ,ρ′

≡ (74)

∫
dk0e

−ik0(x0−y0)χh(ωx
′, k0)A

−1
h,ρ,ρ′(x

′, k0) (75)

where V(h) can be written as sum over trees (similar to the ones for V(0) and defined precisely

below), and each tree with n end points contribute to V(h) with a term of the form, after

integrating the Koenecker deltas in the spanning tree as discussed before (59)∑
x′

∫
dx0,1....

∫
dx0,nH

(h)
n;ρ1,..,ρn

(x′;x0,1, ., x0,n)[
n∏
i=1

ψ
(εi)(≤h)
x′
i,ρi

] (76)

where the coordinates of the external fields x′i are assigned once that x′ and the labels of

the tree are assigned. As in the previous section we call resonant the terms such that all the

spatial components of coordinates of the external points are equal, that is x′i = x′1 ≡ x′. We

can split V(h) in two parts

V(h) = V(h)
R + V(h)

NR (77)

where in V(h)
R are the resonant terms while in V(h)

NR are the non resonant terms. We define a

localization operation L as a linear operation acting on V(h) in the following way:

1. On the non resonant part of the effective potential is defined as LV(h)
NR = 0.

2. On the resonant part of the effective potential its action consists in setting the time

coordinate of the external fields equal

L
∑
x′

∫
dx0,1...

∫
dx0,nH

(h)
n,ρ1,..,ρn

(x′; x0,1, .., x0,n)[
n∏
i=1

ψ
(εi)(≤h)
x′,x0,i,ρi

] =

∑
x′

∫
dx0,1...

∫
dx0,nH

(h)
n,ρ1,..,ρn

(x′; x0,1, .., x0,n)[
n∏
i=1

ψ
(εi)(≤h)
x′,x0,1,ρi

] (78)
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From the above definitions it turns out that LV(h) is given by the following expression

LV(h) = γhνhF
(h)
ν + F (h)

z + shF
(h)
σ + F

(h)
ζ + F

(h)
λ = shF

(h)
σ + L̄V(h) (79)

where, if x′ = (x+ ρx̄, x0)

F (h)
σ =

∑
ρ

∑
x′

∫
dx0ψ

+(≤h)
x′,ρ ψ

−(≤h)
x′,−ρ F (h)

ν =
∑
ρ

∑
x′

∫
dx0ψ

+(≤h)
x′,ρ ψ

−(≤h)
x′,ρ

F
(h)
ζ =

∑
ρ

∑
x′

∫
dx0(ωx

′)mod.1ζh,ρ(x
′)ψ

+(≤h)
x′,ρ ψ̂

−(≤h)
x′,−ρ (80)

F (h)
z =

∑
ρ

∑
x′

∫
dx0(ωx

′)mod1zh,ρ(x
′)ψ

+(≤h)
x′,ρ ψ̂

−(≤h)
x′,ρ

F
(h)
λ =

∑
x′

∫
dx0λh(x

′)ψ
+(≤h)
x′,+ ψ

−(≤h)
x′,+ ψ

+(≤h)
x′,− ψ

−(≤h)
x′,−

where ∂̂xH
(h)
2,ρ,−ρ(x

′, x0, y0) ≡
H

(h)
2,ρ,−ρ(x

′,x0,y0)−H(h)
2,ρ,−ρ(0,x0,y0)

(ωx′)mod1
and

sh =
1

β

∫
dx0dy0H

(h)
2,ρ,−ρ(0, x0, y0) νh =

1

β

∫
dx0dy0H

(h)
2,ρ,ρ(0, x0, y0) (81)

ζh,ρ(x
′) =

1

β

∫
dx0dy0∂̂xH

(h)
2,ρ,−ρ(x

′, x0, y0) zh,ρ(x
′) =

1

β

∫
dx0dy0∂̂xH

(h)
2,ρρ(x

′, x0, y0)

λh(x
′) =

1

β

∫
dx0,1...dx0,4H

(h)
4 (x′;x0,1, x0,2, x0,3, x0,4)

Note that in LV(h) there are no terms with 6 or more fields, as consequence of anticommu-

tativity. Moreover the sh, νh coefficients are independent from ρ and real. Note indeed that

(21) is invariant under parity x → −x (in the limit L → ∞), and this implies invariance

under the transformation ψ
±(h)
x0,x′,ρ

→ ψ
±(h)
x0,−x′,−ρ; therefore, if ε = ±∑

ρ,x′

∫
dx0H

(h)
2,ρ,ερ(x

′, x0, 0)ψ
+(≤h)
x0,x′,ρ

ψ
+(≤h)
x0,x′,ερ

=
∑
ρ,x′

∫
dx0H

(h)
2,−ρ,−ερ(−x′, x0, 0)ψ

+(≤h)
x0,x′,ρ

ψ
+(≤h)
x0,x′,ερ

(82)

so that from (81) the independence from ρ of σh, νh follows. Moreover g∗(k0, x) = g(−k0, x)

so that (Ĥ
(h)
2,ρ,ερ(x

′, k0))
∗ = Ĥ

(h)
2,ρ,ερ(x

′,−k0), and this implies reality.

We also define a renormalization operation as R = 1− L and using (71) we can rewrite

(83) as∫
P (dψ(≤h))e−LV(h)(ψ(≤h))−RV(h)(ψ(≤h)) =

∫
P (dψ(≤h))e−shF

(h)
σ (ψ(≤h))−L̄V(h)(ψ(≤h))−RV(h)(ψ(≤h)) =

e−βLth
∫
P̃ (dψ(≤h))e−L̄V(h)(ψ(≤h))−RV(h)

(83)



25

with th coming from the normalization in (71)and P̃ (dψ(≤h)) with a propagator g̃(≤h) co-

inciding with g(≤h) with σh replaced by σh−1 with σh−1(ωx
′, k0) = σh + χ−1

h (ωx′, k0)sh and

σh ≡ σh(0, 0); moreover σ0 = 0.

We write then∫
P (dψ≤h−1)

∫
P (dψ(h))e−LV̄(h)−RV(h)

= e−βLẼh

∫
P (dψ(≤h−1))e−V(h−1)(ψ(≤h−1)) (84)

where P (dψ≤h−1) have propagator g(≤h−1) coinciding with (75) with h− 1 replacing h, and

P (dψ(h) has propagator g(h) coinciding with g(≤h−1) with χh−1 replaced by fh, with fh a

smooth compact support function vanishing for c1γ
h−1 ≤

√
k20 + v20||ωx′||21 ≤ c2γ

h+1, for a

suitable constants c1, c2. From the r.h.s. of (84), the procedure can be iterated. The above

procedure allows to write the W (0) (38) in terms of an expansion in the running coupling

constants v⃗h = (νh, ζh,ρ, zh,ρ) with h ≤ 0; as it is clear from the above construction, they

verify a recursive equation of the form

v⃗h−1 = v⃗h + β⃗(h)(v⃗h, ..v⃗0) (85)

The single scale propagator g(h) verify the following bound, for any integer N and a

suitable constant CN

|ḡ(h)(x, x0 − y0)| ≤
CN

1 + (γh|x0 − y0|)N
(86)

which can be easily obtained integrating by parts; the propagator in the infrared region then

verifies the same bound than in the ultraviolet region (45). The bound (86) can however be

improved at low scales. Note indeed that, in the above integration procedure, the propagator

g(h) is ”massive” due to the presence of σh in (75). We can then naturally define a scale h∗

as

γh
∗
= inf{h : h ≤ 0, γk ≥ |σk| for any k ≤ h} (87)

and the following bound is valid

|ḡ(≤h∗)(x, x0 − y0)| ≤
CN

1 + (γh∗ |x0 − y0|)N
(88)

saying that the propagator of all the scales ≤ h∗ verifies the same bound of the single

scale propagator corresponding to a scale h > h∗; this fact, saying essentially that σh is an

dynamically generated infrared cut-off, will be used to integrate all scale ≤ h∗ in a single

step.
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B. Tree expansion

Also in the infrared region V(h) can be written as sum over trees, up to the following

modifications to take into account the different multiscale integration procedure.

1. The scale index now is an integer taking values in [h, 2], h being the scale of the root.

2. With each vertex v of scale hv = +1, which is not an endpoint, we associate one of

the terms contributing to −V(0)(ψ(≤0)), in the limit M = ∞. With each endpoint v of

scale hv ≤ 1 we associate one of local terms that contribute to LV(hv−1), and there is

the constrain that hv = hv′ + 1, if v′ is the non trivial vertex immediately preceding

it or v0; to the end-points of scale hv = 2 are associated one of the terms contributing

to −V and there is not such a constrain.

3. With each trivial or non trivial vertex v > v0, which is not an endpoint, we associate

the R = 1− L operator, acting on the corresponding kernel.

v0

h hv′ hv

v′
v

0 1 2

FIG. 3: A tree τ ∈ Th,n with its scale labels.

A vertex v which is not an end-point such that the spatial coordinates x′ in Pv are all

equal is called resonant vertex, while if the coordinates are different is called non resonant

vertex; the set of resonant vertices is denoted by H and the set of non-resonant vertices is

denoted by L. If v1, . . . , vSv are the Sv ≥ 1 vertices following the vertex v, we define

Sv = SLv + SHv + S2
v (89)
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where SLv is the number of non resonant vertices following v, SHv is the number of resonant

vertices following v, while S2
v is the number of trivial trees with root v associated to end-

points.

If h ≤ −1, the effective potential can be written in the following way:

V(h)(ψ(≤h)) + LβẼh+1 =
∞∑
n=1

∑
τ∈Th,n

V (h)(τ, ψ(≤h)) (90)

where, if v0 is the first vertex of τ and τ1, .., τs (s = sv0) are the subtrees of τ with root v0,

V (h)(τ, ψ(≤h)) is defined inductively by the relation, if s > 1

V (h)(τ, ψ(≤h)) =
(−1)s+1

s!
ETh+1[V̄

(h+1)(τ1, ψ
(≤h+1)); ..; V̄ (h+1)(τs, ψ

(≤h+1))] (91)

where V̄ (h+1)(τi, ψ
(≤h+1)):

1. it is equal toRV(h+1)(τi, ψ
(≤h+1)), withR given by (105), if the subtree τi is non trivial;

2. if τi is trivial and h ≤ −1, it is equal to one of the terms of LVh+1 or, if h = 0, to one

of the terms in the V .

By using (91) and the representation of the truncated expectations we get

V (h) =
∞∑
n=1

∑
τ∈Th,n

∑
P∈Pτ

∑
T∈T

∑
x

∫
dx0,v0Hτ,P,T (x, x0,v0)

∏
f∈Pv0

ψ
(≤h)σ(f)
x̂′(f),ρ(f)

}
(92)

where one of the spatial coordinates x̂′(f) of the external fields
∏

f∈Pv0
ψ

(≤h)σ(f)
x̂′(f),ρ(f) is equal to

x′ and the others are determined once that τ,T,P are given.

Given a tree τ and P ∈ Pτ , we shall define

1. The χ-vertices are the vertices v of τ , such that Iv (the union of of the subsets Pvi \Qvi

defined before (53), that is the set of lines contracted in v) is non empty.

2. Vχ is the family of all χ-vertices, whose number is of order n; moreover we call Hχ the

resonant vertices belonging to Vχ and Lχ the non-resonant vertices belonging to Vχ.

3. v̄′ the first vertex belonging to Vχ following v in τ .

In order to bound (92) we could proceed exactly as in §2. We define v⃗h = εṽh where vh

are the running coupling constants. Therefore, each contribution from the tree τ ∈ Th,n is



28

proportional to a factor εn. If we neglect the R operation (that is, if we bound the modulus

of the differences produced by R simply by the sum of the modulus) we get, assuming ṽh

smaller than a constant

1

βL

∑
x

∫
dx0,v0 |Hτ,P,T (x, x0,v0)| ≤ Cnεn

∏
v∈Vχ

γ−hv(Sv−1) (93)

This bound is indeed very similar to (67) for the integration of the ultraviolet scales, the

reason being being that that the bound for the single scale propagator (86) is the same both

in the ultraviolet (positive scales h) or in the infrared (negative scales h) regime. However

the bound (93) is unsuitable to get convergence of the sum over τ,P, the reason simply being

that the scales hv are negative and the factor
∏

v γ
−hv(Sv−1) forbids the summations over the

scales (in §2 the scales were instead positive). In the Renormalization Group terminology,

the infrared region correspond to a non-renormalizable theory which the ultraviolet region

is superrenormalizable.

By using (113) we can write the r.h.s. of (93) as∏
v∈Vχ

γ−(Sv−1)hv =
∏
v∈Vχ

γ−(SH
v +SL

v +S2
v−1)hv (94)

In §3.C we will see that the contribution of the non resonant vertices Lχ can be improved

taking into account certain constraint for the size of the small divisors due to the Diophantine

condition. There is not such improvement for the resonant vertices, and this is why we have

introduced the renormalized expansion defining the R operation acting on them, see §3.D.

C. Non resonant terms and the Diophantine condition

It is convenient to write in a more explicit way the relations between the coordinates

x̂′(f) of the external fields produced by the tree expansion. In order to do that we give the

following definitions.

1. We define a tree T̄v =
∪
w≥v Tv starting from Tv and attaching to it the trees Tv1 , .., TvSv

associated to the vertices v1, .., vSv following v, and repeating this operation until

the end-points are reached. The tree T̄v is composed by a set of lines, representing

propagators with scale≥ hv, connecting end-points w of the tree τ . Note that, contrary

to Tv, the vertices of T̄v are connected with at most four lines. To each vertex w of T̄v

is associated a coordinate xw.
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2. To each line ℓ of T̄v we associate a label aℓ = 0,±2x̄ respectively if the corresponding

propagator g
(hℓ)
ρ,ρ′ has ρ = ρ′, ρ = −ρ′ = 1 or ρ = −ρ′ = −1.

3. To each line coming in or out w is associated a factor δiww , where iw is a label identifying

the lines connected to w. The vertices w (which corresponds to the end-points of τ)

can be of type λ, ν or λh, zh, ζh, and a) δiw = 0 if w if it corresponds to a ν or νh, zh end-

point; b) δiw = ±2x̄ if w if it correspond to a ζh end-point; c) δiw = ±1 it corresponds

to an ε end-point; d) δiw = (0,±1) is a λ end-point f) δiw = (0,±2x̄) if is a λh end-point

Note that the value of such indices (and correspondingly the value of x̂(f) is determined

by the choice of τ,P,T.

w1
wa

wbwc

w2

FIG. 4: A tree T̄v with attached wiggly lines representing the external lines Pv; the lines represent

propagators with scale ≥ hv connecting w1, wa, wb, wc, w2, representing the end-points following v

in τ .

According to the above definitions, consider two vertices w1, w2 such that x′w1
and x′w2

are coordinates of the external fields, and let be cw1,w2 the path (vertices and lines) in T̄v

connecting w1 with w2 (in the example in Fig. 4 the path is composed by w1, wa, wb, wc, w2

and the corresponding lines) ; as the path is a linear tree there is a natural orientation in

the vertices, and we we call iw the label of the line exiting fom w in cw1,w2 . We call |cw1,w2 |

the number of vertices in cw1,w2 . The following relation holds

x′w1
− x′w2

= (ρℓw2
− ρℓw1

)x̄+
∑

w∈cw1,w2

δiww +
∑

ℓ∈cw1,w2

aℓ (95)
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The Diophantine condition implies a relation between the scale hv and the number of

vertices between w2 and w1.

Lemma 3.1 Given τ,P,T, let us consider v ∈ Lχ and w1, w2 two vertices in T̄v with

x′w1
̸= x′w2

; then

|cw1,w2 | ≥ Ax̄−1γ
−hv̄′

τ (96)

with a suitable constant A.

Proof. Note that ||ωx′wi
||1 ≤ cv−1

0 γhv̄′−1, i = 1, 2 by the compact support properties of

the propagator; therefore by using (95) and the Diophantine condition

2cv−1
0 γhv̄′ ≥ ||(ωx′w1

)||1 + ||(ωx′w2
)||1 ≥ ||ω(x′w1

− x′w2
)||1 =

||(ρℓw2
− ρℓw1

)x̄+
∑

w∈cw1,w2

δiww +
∑

ℓ∈cw1,w2

aℓ)||1 ≥

C0|(ρℓw2
− ρℓw1

)x̄+
∑

w∈cw1,w2

δiww +
∑

ℓ∈cw1,w2

aℓ)|−τ ≥ C0(4x̄cw2,w1|)−τ (97)

from which (96) follows.

Lemma 3.1 says that there is a relation between the number of end-points following

v ∈ Lχ and the scales of the external lines coming out from v.

Lemma 3.2 If v ∈ Vχ and Nv =
∑

i,v∗i>v
1 is the number of end-points following v in τ then

εn ≤ ε
n
2

∏
v∈Vχ

εNv2
hv̄′−1

(98)

Proof We can write

ε
1
2 =

0∏
h=−∞

ε2
h−2

(99)

Given a tree τ ∈ Th,n, we consider an end-point v∗ and the path in τ from v∗ to the root

v0; to each vertex v ∈ Vχ in such path with scale hv we associate a factor ε2
hv−2

; repeating

such operation for any end-point, the vertices v followed by Nv end-points are in Nv paths,

therefore we can associate to them a factor εNv2hv−2
; finally we use that ε2

hv−2
< ε2

hv̄′−2

.

It is an immediate consequence of Lemma 3.1 and Lemma 3.2 the following result, en-

suring that we can extract from the εn factor a small factor to be associated to the non

resonant vertices.
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Lemma 3.3 Given τ,P,T the following inequality holds

ε
n
4 ≤

∏
v∈Lχ

εAx̄
−1γ

−hv̄′
τ 2hv̄′−1

(100)

Proof. Note that if v is non resonant, there exists surely two external fields with coordinates

x′1, x
′
2 such that x′1 ̸= x′2; note that

Nv ≥ |cw1,w2 | ≥ Ax̄−1γ
−hv̄′

τ (101)

therefore, by (98), (100) follows, .

By combing the above results we get the following final lemma which will play a crucial

role in the following.

Lemma 3.4 If γ
1
τ /2 ≡ γη > 1, given τ,P,T the following inequality holds

[
∏
v∈Vχ

γ−hvS
L
v ][

∏
v∈Lχ

εAx̄
−1γ

−hv′
τ 2hv′ ] ≤ C̄n (102)

with C̄ = [ 3
| log ε|Ax̄−1] ]

3e−3].

Proof As we assumed γ
1
τ /2 ≡ γη > 1 than, for any N

εAx̄
−1γ

−h
τ 2h = e−| log ε|Ax̄−1γ−ηh ≤ γNηh

N

| log ε|Ax̄−1]NeN
(103)

as e−αxxN ≤ [N
α
]NeN . Therefore, by choosing N = 3 we get∏

v∈Lχ

εAx̄
−τγ

−hv̄′
τ 2hv̄′ ≤ C̄n

∏
v∈Vχ

γ3S
L
v hv (104)

D. Renormalization of the resonant terms

By lemma 3.4 we see that the contribution from the non resonant vertices v ∈ Vχ can

be bounded by exploiting the Diophantine condition. On the other hand, the R = 1 − L-

operation, with L defined in (78), is defined exactly to deal with the resonant vertices. The

R acts on the resonant terms and its action is

R
∑
x′

∫
dx0,1....

∫
dx0,nH

(h)
n;ρ1,..,ρn

(x′;x0,1, ., x0,n)[
n∏
i=1

ψ
(εi)(≤h)
x′,x0,i,ρi

] =
∑
x′

∫
dx0,1....

∫
dx0,n

{H(h)
n,ρ1,..,ρn

(x′; x0,1, .., x0,n)[
n∏
i=1

ψ
(εi)(≤h)
x′,x0,i,ρi

−
n∏
i=1

ψ
(εi)(≤h)
x′,x0,1,ρi

]} (105)
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We can write the difference [
∏n

i=1 ψ
(εi)(≤h)
x′,x0,i,ρi

−
∏n

i=1 ψ
(εi)(≤h)
x′,x0,1,ρi

] as a sum of products of fields in

which one ψ
(ε)(≤h)
x′,x0,i

field is replaced by a D-field defined as

D
ε(≤h)
x′,x0,1,x0,i,ρi

= ψ
(ε)(≤h)
x′,x0,1,ρi

− ψ
(ε)(≤h)
x0,i,x′,ρi

(106)

This means that the effect of the R operation on a resonant vertex v can be expressed

replacing on of the ψε(≤hv) fields in Pv with Dε(≤hv) (see for instance §3.1 of [36] for more

details in a similar case). The corresponding propagator can be written as

g(hv′ )(x0,1 − z0, x
′)− g(hv′ )(x0,i − z0, x̄

′) = (x0,1 − x0,i)

∫ 1

0

dt∂g(hv′ )(x̂0,1i(t)− z0, x
′) (107)

where x̂0,1i(t) = x0,1+ t(x0,i−x0,1) is an interpolated point between x0,1 and x0,2. Note that,

for any integer α, β

|(x0 − y0)
α∂βg(hv)(x0 − y0)|L∞ ≤ Cα,βγ

−αhvγβhv

|(x0 − y0)
α∂βg(hv)(x0 − y0)|L1 ≤ Cα,βγ

−αhvγβhvγ−h (108)

Therefore the effect of a non trivial R operation on a vertex v is twofold. From one side an

extra factor (x0,1 − x0,i) is produced, which can be written can as (x0,1 − x0,i) =
∑

r(x0,r −

x0,r−1) where x0,r are points in the spanning tree T̄v defined above; then the factor (x0,r −

x0,r−1) in the integration over the coordinates (similar to (67)) produces an extra factor

γ−hv for any resonant v ∈ Lχ. One the other hand one of the propagators associated to

the external line in Pv carry an extra derivative, so that an extra factor γhv̄′ is obtained;

therefore , with respect to the bounds in which there are no D fields, one has an extra factor

in the bound (see §3.2-§3.9 for more details in a similar case)∏
v∈Vχ

γ(hv̄′−hv) (109)

As we will see, the extra factors γhv̄′ produced by theR operation can be used to compensate

the factors γ−hvS
H
v in (94).

E. Bounds for vertices with a large number of external fields

In order to sum over P (92) we have to show that there is some gain factor also on

the vertices with a large number of external fields. Let us consider the vertices v ∈ Vχ
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with |Pv| ≥ 6 we call ρ̄, ε̄ the labels of the external fields whose number is maximal; we

define this set mv and |mv| ≥ |Pv|/4. We consider a tree T̄v and we define a pruning

operation associating to it another tree T̂v eliminating from T̄v all the trivial vertices w in

T̄v not associated to any external line with label ρ̄, ε̄, and all the subtrees not containing

any external line with label ρ̄, ε̄ (see Fig. 5 for an example), so that there is an external line

associated to all end-points.

w6

w1

w2

w3

w4

w5

w7

w8

w9w10

w11

w12

FIG. 5: In the picture the lines represent the propagators with scale ≤ hv in T̂v and the wiggly

lines represent the external lines Pv with label ρ̄; note that, by definition of the pruning operation,

all the end-points have associated wiggly lines, contrary to what happens in T̄v, see Fig. 4.

The vertices w of T̂v are then only non trivial vertices or trivial vertices with external

lines ρ̄, ε̄; all the end-points have associated an external line. We define a procedure to group

in two sets the fields in mv. We start considering the end-points wa immediately followed

by vertices wb with external lines (in the figure w4, w10), and we say that the couple of fields

in wa, wb is of type 1 if x′wa
= x′wb

, while it is of type 2 if x′wa
̸= x′wb

. If x′wa
= x′wb

we can

replace the ψ field in wb with a D field

ψ
ε(≤hv−1)
x′
wb
,ρ ψ

ε(≤hv−1)
x′
wa ,ρ

= ψ
ε(≤hv−1)
x′
wb
,ρ (ψ

ε(≤hv−1)
x′
wa .ρ

− ψ
ε(≤hv−1)
x′
wb
,ρ ) (110)

We now prune tree T̂v canceling the end-points w already considered and the resulting

subtrees with no external lines; in the resulting tree we select an end-point wa immediately

followed by vertices wb, and again such a couple can be of type 1 or 2. We again prune

the tree and we continue unless there are no end-points w followed by vertices with wiggly
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line. Then in the resulting tree we consider (if they are present, otherwise the tree is trivial

and the procedure ends) a couple of endpoints followed by the same non trivial vertex (in

the picture w1, w2); we call them wa, wb and we proceed exactly as above distinguishing

the two kind of couples. We then cancel such end-points and the subtrees not containing

external lines, so that the end-points are associated to external lines; we consider end-points

followed by non trivial vertices with no external lines, and we proceed in the same way. If

the resulting tree has again end-points with external lines followed by vertices with external

lines (in the picture w5), we prune such vertices as described above and we continue in this

way so that at the end all except at most one vertex with external lines are considered. Note

that by construction the paths cwa,wb
in T̄v do not overlap; for instance in Fig.5 the paths

can be, if the corresponding coordinates are different, cw10,w11 , cw4,w5 , cw1,w2 , cw5,w6 , cw6,w7 ,

cw7,w12 , cw9,w11 .

Therefore, given a vertex v in the tree τ , we have paired all the external fields with index

ρ̄, ε̄, whose number mv is mv ≥ |Pv|/4, in couples both with the same x′ or with different x′;

we write mv = m
(1)
v +m

(2)
v , where m

(1)
v are the fields in couples with the same x′ and m

(2)
v

are the fields in couples with different x′. In the couple of fields w,w′ with x′w = x′w′ one of

the fields is a D field and, by (108), this produces in the bound an extra γhv̄′−hv for each

couple, so that we get an extra factor γ−|m(1)
v |(hv̄′−hv). For each couple w,w′ with x′w ̸= x′w′ ,

we have |cw,w′′ | ≥ Bγ−hv̄′/τ by lemma 3.1 so that

ε|cw,w′ |2hv′ ≤ εBγ
−hv̄′/τ2hv̄′ (111)

Moreover by Lemma 3.2 we can associate to each v ∈ Vχ a factor εNv2hv̄−1
with Nv the

vertices in T̄v; as the paths cw,w′ are non overlapping, we get one of the factors (111) for

each of the couples in m2
v so that

ε
n
4

∏
v∈Vχ

γA|m
1
v |(hv̄′−hv) ≤

∏
v∈Vχ

εγ
−hv̄′/τ2hv̄′ |m2

v |
∏
v∈Vχ

γ|m
1
v |(hv̄′−hv) ≤

∏
v∈Vχ

γ−|Pv|/8 (112)

Remark. It can happen that a D field emerging from a vertex v1 is not contracted

in v2, with v2 = v̄′1, but in a vertex v3 < v2; then the corresponding gain is γ
hv̄′2

−hv1 =

γ
hv̄′2

−hv2γhv2−hv1 ; therefore if in v2 the R operation acts non trivially, one can simply bound

the absolute value of the difference of terms due to the action of R in v2 by the sum of the

absolute values. Similarly if such field is in a couple w,w′ belonging to m1
v2
, there is no need
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to use (110) as one of the two fields is already a D-field. It is useful to avoid unnecessary

renormalization as they could produce too many derivatives on a single propagators, see

§3.1-§3.10 of [36] for more details in a similar case.

F. Bounds

In this section we get a bound for the kernels of the effective potential defined in (92).

Lemma 3.5 If v⃗h = (λ̃h, ν̃h, z̃h, ζ̃h) ≡ (λ̃h, α̃h) then

1

βL

∑
τ∈TM,h,n

∑
T∈T

∑
P∈Pτ

∑
x

∫
dx0,v0 |Hτ,P,T (x, x0,v0)| ≤ Cn|ε|

n
2 |h|2n(γ−h| sup

k≥h
|λ̃k||)nλ(sup

k≥h
|α̃k||)na

(113)

where C is a suitable constant and nλ, nα is the number of end-points of type λ, α.

Proof The matrix G̃h,T
ij,i′j′ can be written as

G̃h,T
ij,i′j′ =

(
vxij ⊗ ui ⊗ A(x0,ij−, xij) , vy′

i′,j′
⊗ ui′ ⊗B(y0,i′j′−, xij)

)
, (114)

where v ∈ RL are unit vectors such that (vi,vj) = δij, u ∈ Rs are unit vectors (ui, ui) = tii′ ,

and A,B are vectors in the Hilbert space with scalar product

(A,B) =

∫
dz0A(x0 − z0, x

′)B∗(z0 − y0, x
′) (115)

given by

A(x0 − z0, x
′) =

1

β

∑
k0

e−ik0(x0−z0)
√
fh(k0, x′) 11 ,

B(y0 − z0, x
′) =

1

β

∑
k0

e−ik0(y0−z0)
√
fh(k0, y′)

[
Ah(k0, x

′)
]−1

. (116)

with Ah defined in (67). Therefore

|detG̃hv ,Tv(tv)| ≤ C̄n (117)

By using Lemma 3.3, (109), (112) we get

1

Lβ

∑
x

∫
dx0,v0 |Hτ,P,T,(x, x0,v0)| ≤ [

∏
v

1

Sv!
][
∏
v∈Lχ

εAx̄
−1γ

−hv̄′
τ 2hv̄′ ][

∏
v∈Hχ

γhv̄′−hv ][
∏
v∈Vχ

γ−α|Pv |]

[
∏
v∈Vχ

γ−hv(S
H
v +SL

v −1)][sup
k≥h

|α̃k|]nα [sup
k≥h

|γ−kλ̃k|]nα |ε|
n
2 (118)
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Note that

[
∏
v∈Vχ

γ−hv(S
H
v +SL

v −1)][
∏
v∈Hχ

γhv̄′−hv ] ≤ [
∏
v∈Vχ

γ−hv(S
H
v +SL

v )][
∏
v∈Hχ

γhv̄′ ] (119)

and

[
∏
v∈Vχ

γ−hvS
H
v ][

∏
v∈Hχ

γhv̄′ ] = 1 (120)

so that

[
∏
v∈Vχ

γ−hv(S
H
v +SL

v −1)][
∏
v∈Hχ

γhv̄′−hv ] ≤ [
∏
v∈Vχ

γ−hvS
L
v ] (121)

By using Lemma 3.4 [
∏

v∈Lχ
εAx̄

−1γ
−hv̄′

τ 2hv̄′
∏

v∈Vχ γ
−hvSL

v ≤ C̄n so that

1

Lβ

∑
x

∫
dxv0 |Hτ,P,T (x,xv0)| ≤ [

∏
v

1

Sv!
][
∏
v∈Vχ

γ−α|Pv |][sup
k≥h

|α̃k|]nα [sup
k≥h

|γ−kλ̃k|]nα |ε|
n
2 (122)

The sum over P is done as in (70) using the factor [
∏

vnote.p. γ
−α|Pv |], and the sum

∑
T can

be bounded by cn
∏

v Sv!. The sum over the trees τ is done performing the sum of unlabelled

trees and the sum over scales. The unlabeled trees can be bounded by 4n by Caley formula.

The sum over the scales is bounded by |h||Vχ| and |Vχ| ≤ 2n; indeed given the unlabeled

tree, the scales of the trivial vertices and of the end-points are determined once that the

scales of the non trivial vertices are given, and their number is smaller than the number of

χ-vertices; then (113) follows.

G. The flow of the effective couplings

In order to sum over n in (113) we need that the running coupling constants vk are small

uniformy in h. In order to prove this we exploit the recursive equation (85). Note that the

r.h.s. of (85) is expressed by a sum over trees with the constraint that over v0, the first

vertex in τ , the L-operation acts. This immediately implies that each term verifies the same

bound as the r.h.s. of (113) with an extra γh. The reason is that (119) is replaced by

[
∏
v∈Vχ

γ−hv(Sv−1)][
∏
v∈Hχ

γhv̄′−hv ] ≤ γh[
∏
v∈Vχ

γ−hvSv ][
∏
v∈Hχ

γhv̄′ ] (123)

as v0 ̸∈ Hχ so that
∏

v∈Vχ γ
hv ≤ γhv0

∏
v ̸=v0,v∈Hχ

γhv and hv0 = h as v0 ∈ Vχ because LR = 0.

Lemma 3.6 If γh̄ ≥ |ε|2x̄ then there exists an ε0 and a choice ν such that for ε ≤ ε0 and

|λ| ≤ ε2x̄+2 then there exists a suitable constant C1 such that, for any k ≥ h̄

|λ̃h| ≤ |λ̃|C1 |α̂h| ≤ C1 (124)
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Proof We proceed by induction. The flow equation for νk is

ν̃k−1 = γν̃h + γ−k
∫
dx0H

(k)
2,ρρ(0, x0, 0) (125)

with ν̃2 = ν̃. By iteration we get

ν̃k = γ−k+1(ν̃ +
∑
k′≥k

∫
dx0H

(k′)
2,ρρ(0, x0, 0)) (126)

and by properly choosing ν̃ so that ν̃h̄ = 0 we get

ν̃k = −γ−k+1
∑

h̄≤k′≤k

∫
dx0H

(k′)
2,ρρ(0, x0, 0)) (127)

and one can show by a fixed point argument, the existence of a bounded sequence of ν̃k

verifying (127) (the proof is identical to the one §A2.6 of [32]). Regarding the flow of ζ̃h

assume that (124) is true for k ≥ h. The flow equation for ζ̃h

ζ̃h,ρ =
∑
k≥h

∫
dx0∂̂H

(k)
2,ρ,ρ (128)

where z̃1,ρ = 0 and ∂̂ is defined after (80). Using lemma 3.4 and the fact that the derivative

cancels a factor γh we get for ε small enough

|ζ̃h| ≤
∞∑
n=2

∑
k≥h

CnCn
1 ε

n
2 |h|2n ≤ |h|C2(CC1|h|2ε

1
2 ) ≤ C1 (129)

where we use that |h|2ε 1
2 ≤ ε

1
4 and γ−k|λ̃| ≤ ε.

Similarly

|λ̃h| ≤ |λ̃0|+
∞∑
n=2

n∑
nλ=1

∑
k≥h

CnCn
1 γ

kε
n
2 |h|2n(γ−k|λ̃k|)nλ ≤

|λ̃0|+
∞∑
n=2

|h|2n+1ε
n
2CnCn

1

∞∑
nλ=1

|λ|(γ−h̄|λ̃k||)nλ−1 ≤ |λ|C1 (130)

The above lemma says the the flow is bounded up to a scale γh ≥ ε2x̄. In order to

integrate the smaller scales one has to use the mass term. Note indeed that if there exists

two constants such that

c1ε
2x̄ ≤ σh ≤ c2ε

2x̄ (131)
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then there the scale h∗ defined in (87) is c̄1ε
2x̄ ≤ γh

∗ ≤ c̄2ε
2x̄. By (88) we can integrate the

scale ≤ h∗ in a single step, so that, by lemma 3.4 and 3.5 (for h > h∗ = log ε2x̄), convergence

follows. It remains then to prove (131); indeed the upper bound is trivial and actually

σh, ζh = O(ε2x̄). In order to prove the lower bound we can write

σh =
∑
k≥h

∫
dx0H

(k)
2,ρ−ρ(0, x0, 0) (132)

and

H
(h)
2 = H

(a)(h)
2,ρ,−ρ +H

(b)(h)
2,ρ,−ρ (133)

where H
(a)(h)
2,ρ,−ρ is the sum over trees with n ≤ 8x̄ and H

(b)(h)
2,ρ,−ρ is the sum over trees with

n ≥ 8x̄ + 1. By Lemma 3.5 H
(b)(h)
2,ρ,−ρ is bounded by ≤ Cε2x̄+

1
4 . Regarding H

(a)(h)
2,ρ,−ρ we again

distinguish between trees with at least a λ, λh end-point and the rest; the former is bounded

by Cγh|γ−hλ̃| ≤ Cε2x̄+1. Regarding the latter, it can be represented in terms of chain graphs,

and there is only one possible contribution O(ε2x̄), namely the graph with only ε-vertices

and diagonal propagators; note indeed that z̃h = O(ε2x̄) and there are at least two vertices

in each chain. In order to bound the chain graphs O(εk) with k ≥ 2x̄+1 we note that, if x′ℓ

is the coordinate of any internal propagator with scale h and x′ is the external coordinate,

xℓ ̸= x′ , c is a constant

cγh ≥ ||ωx′||1 + ||ωx′ℓ||1 ≥ ||ωx′ − ωx′ℓ|| ≥ C0|x′ − xℓ|−τ ≥ C0|(8x̄)2|−τ (134)

Such graphs have have at most 8x̄ propagators bounded by (134) so that they are

O(ε2x̄+1x̄!α). Let us then consider the chain graph with 2x̄ ε-vertices; it has only diago-

nal propagator and, up to higher order terms, is given by ε2x̄a with

ah =
χ≥h

ϕ−x̄+1 − ϕx̄

χ≥h

ϕ−x̄+2 − ϕx̄
.....

χ≥h

ϕx̄−1 − ϕx̄
(135)

where χ≥h is the cut-off function χu,v+
∑

ρ=±
∑0

k=h f
(k)(ω(x−ρx̄)). The terms proportional

to εk, with 2x̄+ 1 ≤ k ≤ 8x̄ have at most 8x̄ propagators bounded by (134); therefore

σh = ε2x̄(ah +O(εx̄!α) +O(ε2x̄+
1
4 )) (136)

Therefore, for ε ≤ O(x̄!−α) then (131) follows, with a−∞ ≡ a ̸= 0.
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H. The 2-point function

We have finally to get a bound for the two-point function. First of all, we note that Lemma

3.4 and Lemma 3.5 immediately imply a bound for the kernel of the effective potential with

two external lines, with coordinate x and y. Indeed in the trees τ ∈ Th,n with n end-points

contributing to W
(h)
2 there is necessarily a path cw1,w2 in T̂v connecting the points w1, with

xw1 = x and w2 with xw2 = y such that by (95) |x− y| ≤ 8|cw1.w2 |x̄; moreover |cw1,w2 | ≤ n

so that n ≥ 1
8x̄
|x− y|. Therefore no tree τ with n < 1

8x̄
|x− y| contribute to a kernel of the

effective potential with external lines with coordinate x and y; therefore by Lemma 3.5 and

Lemma 3.6 we get, for h ≥ h∗

1

β

∫
dx0|W (h)

2 (x,y)| ≤
∑

n≥ 1
8x̄

|x−y|

Cnγh| log ε|nε
n
2 |h|n ≤ Cγhεα|x−y| (137)

with suitable α and C.

In order to bound the 2-point function we have to consider the multiscale integration

with ϕ ̸= 0, see (26); we get

S2(x,y) =
1∑

h=h∗

S2,h(x,y) (138)

and S2,h(x,y) are expressed in terms of a tree expansion similar to the one for W
(h)
2 , where

the only difference is that two external fields are replaced by propagators g(k)(x′;x0 − z0)

and g(l)(y′;x0− z0); therefore S2,h(x,y) (at x,y fixed) verifies a bound similar to (137) with

an extra extra factor CN
γ−h

1+γNh|x0−y0|N for any N , that is

|S2,h(x,y)| ≤ εα|x−y|
CN

1 + γNh|x0 − y0|N
(139)

In conclusion, by (136), for any N

|S2(x,y)| ≤
0∑

h=h∗

εα|x−y|
CN

1 + γNh|x0 − y0|N
≤ C̃N

e−
α
2
| log ε||x−y|

1 + [σh∗ |x0 − y0|]N
(140)

so that (29) is proved.

[1] P. W. Anderson Phys. Rev. 109, 1492 (1958)

[2] J. Froehlich and T. Spencer, Comm. Math. Phys. 88 (1983), 151.



40

[3] M. Aizenman and S. Molchanov, Comm. Math. Phys. 157 (1993), 245

[4] S. Aubry and G. Andre, Ann. Israel Phys. Soc 3, 1 (1980).

[5] E. Dinaburg, E, Y. Sinai, Funct. analysis and its app. 9, 279 (1975)

[6] L. Pastur, Usp. Mat. Nauk. 28, 3 (1973)

[7] L.H. Eliasson, Comm. Math. Phys 146, 447 (1992)

[8] J. Bellissard, R. Lima, and D. Testard, Comm. Math. Phys. 88, 207 (1983

[9] Ya. Sinai, J. Stat. Phys. 46, 861 (1987)

[10] J. Froehlich, T. Spencer, T. Wittvwer, Comm. Math. Phys. 88, 151 (1983)

[11] A. Avila, S. Jitomirskaya Ann. of. Math. 170 303 (2009)

[12] L.Fleishmann, P.W. Anderson Phys. Rev B 21, 2366 (1980)

[13] T. Giamarchi, H.J. Schulz, Europhys. Lett. 3 (1987), 1287.

[14] I. Gornyi, A. Mirlin, A., D. Polyakov, Phys. Rev. Lett. 9, 206603 (2005)

[15] J. Vidal, D. Mouhanna, T. Giamarchi, Phys, Rev. Lett. 83, 3908 (1999)

[16] D.M. Basko, IL. Alteiner , B. L. Altshuler Ann. of Physics Ann. Phys. (N. Y). 321, 1126 (2006)

[17] V. Oganesyan, D. A. Huse, Phys. Rev. B 75, 155111 (2007)

[18] M. Znidaric, T. Prosen, P. Prelovek, Phys. Rev. B 77, 064426 (2008)

[19] Pal, A., and Huse, Phys. Rev. B 82, 174411 (2010)

[20] V. Ros, M. Mueller, A. Scardicchio.Nuclear Physics B, 420 (2015)

[21] R. Nandkshore, D. Huse . Annual Review of Condensed Matter Physics, Vol. 6, 15 (2015)

[22] S. Iyer, V. Oganesyan, G. Refael, D. A. Huse Phys. Rev. B 87, 134202 (2013)

[23] A. Klein, J.F. Perez, Comm Math, Phys.,147, 241, (1992)

[24] A. Klein, J.F. Perez , Comm Math, Phys. 147,1, 99 (1990)

[25] M. Fauser, M., S Warzel. arXiv:1402.5832.

[26] J. Imbrie. arxiv1403.7837

[27] T. Spencer. Talk at a conference in Rome 2012

[28] De Roeck, W., and Huveneers, F. arXiv:1308.6263

[29] G. Gallavotti. Comm.Math. Phys 164, 1, 145 (1994)

[30] G.Gentile, V.Mastropietro. Rev. Math. Phys. 8, 3, 393 (1996).

[31] G.Benfatto, G. Gentile, V.Mastropietro. J. Stat. Phys. 89, 655 (1997)

[32] G. Gentile, V.Mastropietro. Comm. Math.Phys. 215, 69 (2000)

[33] V.Mastropietro. Comm. Math. Phys. 201, 81 (1999)



41

[34] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno,

M. Inguscio, Nature 453, 895 (2008).

[35] G.Benfatto, P.Falco V.Mastropietro. Comm. Math.Phys. 330, 153 (2014)

[36] G. Benfatto, V. Mastropietro Rev. Math. Phys. 13, 1323 (2001)


