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Abstract 

Tissue regeneration is a complex process of healing and tissue growth, which 

involves different biological elements and strategies, including  the use of autologous 

cells, growth factors and scaffolds. All of these elements are present in platelet 

concentrates, such as Concentrated Growth Factors (CGF). Moreover, some trace 

elements play an important role in enhancing cell growth and proliferation and so 

tissue development and regeneration. Among these, Silicon seems to be beneficial 

for different organs and tissues, such as: bone and cartilage, brain, skin, nails and 

hair, cardiovascular system and immune system. For this reason, in the present 

study we evaluated the in vitro effect of Silicon (in the soluble form of Sodium 

Orthosilicate) and CGF on three different human cell lines of fibroblasts (NHDF), 

endothelial cells (HUVEC) and osteoblasts (HOBs). Each cell type, was treated with 

Sodium Orthosilicate at the final concentration of 0,5 mM and 1 mM, CGF and CGF 

supplemented with Sodium Orthosilicate, for 72 hours. At the end of the experimental 

period, the effect of the different treatments, on cell growth, proliferation and 

metabolic activity was evaluated by performing a simple cell count, using an 

automated cell counter and by evaluating the expression of the intracellular 

proliferation marker Ki-67, using FACS. Moreover, the expression of other cell 

markers and active molecules such as Collagen type I (Col I), Osteopontin (OPN), 

Vascular Endothelial Growth Factor (VEGF) and endothelial Nitric Oxide synthase 

(eNOS), was evaluated, through immunohistochemical analyses on fixed cells. 

Results obtained showed that the use of CGF in combination with Sodium 

Orthosilicate stimulates cell growth, proliferation and metabolic activity. Overall, these 

findings suggest that in vitro treatment with CGF and Sodium Orthosilicate seems to 

be promised in promoting cell growth and proliferation and so in tissue regeneration.   
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1 INTRODUCTION 

1.1 Tissue regeneration 

Regeneration is a regulative developmental process, ubiquitous across all species. It 

functions throughout the life cycle to maintain or restore the normal form and function 

of cells, tissues and in some cases organs, appendages and whole organisms. In 

fact the term “regeneration” refers to a type of healing in which new growth 

completely restores damaged tissue or lost appendage, to their normal state (Forbes 

et al., 2014; Krafts et al., 2010). Regeneration requires dramatic changes in cellular 

behaviour and includes different processes such as wound healing, cell death, 

dedifferentiation and stem cell proliferation. Regeneration can be achieved by 

restoration, intended as putting together what is broken and by reconstruction, 

defined as the replace and rebuilt of what it is torn down. On the contrary, the term 

repair, is used to refer to the reestablishment of tissue continuity, through restoration 

of tissue architecture and function. While a few types of tissue injury can sometimes 

be healed so that no permanent damage remains, most of the body’s tissue repair 

involves both regeneration and replacement. These pathways depend, in part, on the 

type of tissue in which occur. In fact, certain tissues of the body are more capable of 

cellular proliferation and so regeneration, than others. In this regard, we can 

distinguish three types of tissues: 1) continuously dividing tissues, 2) quiescent 

tissues and 3) non dividing tissues (Krafts et al., 2010). Continuously dividing tissues 

(or labile tissues), are characterized by cells in constant proliferation. Examples of 

these tissues include epithelia (such as skin, gastrointestinal epithelium and salivary 

gland tissue) and hematopoietic tissues. These tissues contain pools of stem cells, 

which have enormous proliferative and self-renewing ability and which give rise to 

more than one type of cell. Quiescent tissues (or stable tissues) are composed of 



7 
 

cells that normally exist in a non-dividing state but may enter in the cell cycle in 

response to certain stimuli, such as cell injury. Examples of these tissues include 

parenchymal cells of the liver, kidney and pancreas, mesenchymal cells such as 

fibroblasts and smooth muscle cells, endothelial cells and lymphocytes. Non dividing 

tissues (or permanent tissues) are composed of cells that have left the cell cycle 

permanently and are therefore unable to proliferate. Examples of these tissues 

include cardiac and skeletal muscle. Tissue repair in these tissues always leaves 

permanent evidence of injury, such as a scar.  

 

1.2 Key elements in tissue regeneration 

Tissue regeneration is a complex process of healing and tissue growth, which 

involves different biological elements and strategies. These include the use of bone 

grafts (García-Gareta et al., 2015), biomaterials and growth factors, natural or 

synthetic scaffolds (Asti et al., 2014; Loh et al., 2013) and the use of autologous cells 

(stem cells), (Figure 1) (Manunta et al., 2016; Fan et al., 2016; Polak et al., 2006).  

 

 

 

 

 

 

 

Figure 1: Key elements in tissue regeneration 
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1.2.1  Cells in tissue regeneration 

1.2.1.1 Stem cells 

Stem cells are the focus of many applications in regenerative medicine because of 

their extensive ability to self-renew and to generate differentiated progeny (Watt et 

al., 2010). Stem cells are the foundation for every organ and tissue in our body. They 

are undifferentiated cells, which differ from other kinds of cells of the body, having  

three general properties: 1) they are able to divide and renew (make copies of 

themselves) for long periods 2) they are unspecialized and 3) they can differentiate, 

giving rise to more specialized cells. For this reason these cells are used to enhance 

the regenerative capacity of different tissues and organs and for the treatment of a 

wide variety of diseases, such as neurological disorders (Donegan et al., 2016; 

Ferreri et al., 2016 ), autoimmune and other immunological disorders (Yarygin et al., 

2016), cardiovascular diseases (Faiella et al., 2016), bone and cartilage diseases 

(Burke et al., 2016; Li et al., 2015) and many other diseases. 

There are many different types of stem cells that come from different places in the 

body or are formed at different times in our life. In particular, we can divide stem cells 

into four categories: 

 

- Embryonic stem cells (ESCs) 

- Adult stem cells (ASCs) 

- Mesenchymal stem cells (MSCs) 

- Induced pluripotent stem cells (iPSCs) 
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1.2.1.2 Embryonic stem cells (ESCs) 

Human embryonic stem cells (ESCs) have been derived primarily from the inner cell 

mass of the blastocyst (Reubinoff et al., 2000; Thomson et al., 1998,1995), a mainly 

hollow ball of cells that, in the human, is formed three to five days after an egg cell is 

fertilized by a sperm (Figure 2). 

 

Figure 2: Establishment of ES cell lines: the inner cell mass of the blastocyst contains 

pluripotent cells that are isolated and propagated in tissue culture. ES cells can proliferate 

indefinitely and maintain their pluripotent state.  

 

Embryonic stem cells are pluripotent cells, so they are able to differentiate into  a 

myriad of cell types and have the ability of "self-renewal", meaning that unlimited 

numbers of identical, well-defined, genetically and genomically characterized stem 

cells can be produced in culture for medical use. These cells are incredibly valuable 



10 
 

because they provide a renewable resource for studying normal development and 

disease and for testing drugs and other therapies.  

 

1.2.1.3 Ault stem cells (ASCs) 

Adult stem cells (ASCs) are more specialized than embryonic stem cells (Young et 

al., 2004). Typically, these stem cells can generate different cell types for the specific 

tissue or organ in which they live. Unlike ESCs, which are defined by their origin (the 

inner cell mass of the blastocyst), ASCs share no such definitive means of 

characterization and they don’t seem to self-renew in culture as easily as embryonic 

stem cells do. The list of adult tissues reported to contain stem cells is growing and 

includes bone marrow, peripheral blood, brain, spinal cord, dental pulp, blood 

vessels, skeletal muscle, epithelia of the skin and digestive system, cornea, retina, 

liver and pancreas. In order to be classified as an adult stem cell, the cell should be 

capable of self-renewal for the lifetime of the organism and it should be clonogenic, 

meaning that a single adult stem cell should be able to generate a line of genetically 

identical cells, which then gives rise to all the appropriate differentiated cell types of 

the tissue in which it resides. An adult stem cell should also be able to give rise to 

fully differentiated cells that have mature phenotypes, are fully integrated into the 

tissue and are capable of specialized functions that are proper for the tissue. There 

are different types of adult stem cells such as: hematopoietic stem cells (Seita et al., 

2010), mammary stem cells (Soady et al., 2015; Visvader et al., 2014; Liu et al., 

2005), intestinal stem cells (Van der Flier et al., 2009; Barker et al,. 2008), 

endothelial stem cells (Kim et al., 2008), neural stem cells (Gage et al., 2013; 

Schmittwolf et al., 2005), olfactory stem cells (Féron et al., 2013; Murrell et al., 2005) 

testicular stem cells (Conrad et al., 2008; Hamra et al., 2008; Goossens et al., 2006).  
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1.2.1.4 Mesenchymal stem cells (MSCs) 

Mesenchymal stem cells (MSCs) are defined as self-renewing and multipotent cells 

capable of differentiating into multiple cell types, including osteocytes, chondrocytes, 

adipocytes, hepatocytes, myocytes, neurons and cardiomyocytes (Bobis et al., 

2006), (Figure 3).  

 

Figure 3: MSCs are multipotent cells capable of differentiating into different cell types. 

MSCs were originally isolated from the bone marrow stroma but they have recently 

been identified also in other tissues, such as adipose tissue, epidermis, peripheral 

blood, cord blood, liver and fetal tissues (Gnecchi et al., 2009; Beyer et al., 2006). 

Different methods have been used for MSCs isolation. Among these, the most 

common is based on the ability of the MSCs to selectively adhere to plastic surfaces. 

MSCs play a key role in the maintenance of bone marrow homeostasis and in the 

regulation of both hematopoietic and non-hematopoietic cells maturation. These cells 

represent a powerful tool in gene therapies and can be effectively transduced with 

viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins. 

MSCs are attractive for clinical therapy due to their ability to differentiate, provide 

trophic support and modulate innate immune response (Phinney et al., 2007). They 
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have been used in bone and cartilage repair (Shao et al., 2015; Wang et al., 2013; 

Undale et al., 2009), heart and blood vessels repair (White et al., 2016; Karantalis et 

al., 2015; Kim et al., 2015), inflammatory and autoimmune diseases (Klinker et al., 

2015; Newman et al., 2009). 

 

1.2.1.5 Induced pluripotent stem cells (iPSCs) 

A relatively recent breakthrough in stem cell research is the discovery that 

specialized adult cells can be ‘reprogrammed’ into cells that behave like embryonic 

stem cells, named as induced pluripotent stem cells (iPSCs). The pioneer of the iPSC 

technology in mouse, was Shinya Yamanaka and his team at Kyoto University in 

2006, showing that the introduction of four specific genes encoding transcription 

factors could convert adult cells into pluripotent stem cells (Takahashi et al., 2006). 

Human iPSCs were first reported one year later, in 2007. iPSCs are obtained, by 

introducing a specific set of reprogramming factors, into a given cell type. These 

reprogramming factors (also dubbed Yamanaka factors) include the transcription 

factors Oct4 (Pou5f1), Sox2, cMyc, and Klf4. iPSC’s production is a slow and 

inefficient process, taking 1–2 weeks for mouse cells and 3–4 weeks for human cells, 

with efficiencies around 0.01%–0.1%. Even if iPSCs share many of the same 

characteristics of embryonic stem cells, including the ability to give rise to all the cell 

types in the body, they aren’t exactly the same. The discovery of iPSCs represents 

an important tool to help scientists to learn more about normal development and 

disease onset and progression, and  also to develop and test new drugs and 

therapies. For example, researchers have generated brain cells from iPSCs made 

from skin samples belonging to patients with neurological disorders such as Down’s 

syndrome or Parkinson’s disease (Du et al., 2015; Russo et al., 2015). These lab-
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grown brain cells show signs of the patients’ diseases. This has implications for 

understanding how the diseases actually happen and for searching and testing new 

drugs. However the technology is very new and the reprogramming process is not 

yet well understood.  

 

1.2.1.6 Blood cells as a source of growth factors 

Among blood cells, platelets represent an important source of growth factors. 

Platelets are produced by megakaryocytes as anucleated cells. A variety of growth 

factors, coagulation factors, adhesion molecules, cytokines, chemokines and 

integrins are stored in platelets and in particular in their alfa granules. After activation, 

platelets release a multitude of growth factors at concentrations significantly higher 

than the baseline blood levels, including transforming growth factor-β (TGF-β), 

platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), fibroblast 

growth factor (FGF), vascular endothelial growth factor (VEGF), epidermal growth 

factor (EGF) and many others. Growth factors released from activated platelets 

initiate and modulate wound healing and regeneration in both soft and hard tissues. 

 

1.3 Growth factors 

Growth factors (GFs), are soluble-secreted signaling polypeptides that activate and 

guide different cellular processes involved in tissue healing, such as infiltration, 

growth, differentiation, migration, cell metabolism and apoptosis (Lee et al., 2011). 

They modulate cellular activity by acting as signaling molecules between cells, 

transferring information between cell populations and their micro-environment, 

resulting in accelerated functional reparation of the damaged tissues. GFs 
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accomplish their function binding to specific transmembrane receptors on the surface 

of target cells. The instructions are translated into the cell through complex signal 

transduction networks resulting in a specific biologic cellular response. Common 

growth factors involved in tissue regeneration include: Transforming Growth Factor 

Beta 1 (TGF-β1), Bone Morphogenetic Proteins (BMPs), Insulin-like Growth Factor 1 

(IGF-1), Vascular endothelial Growth Factor (VEGF), Tumor Necrosis Factor alpha 

(TNF-α), Fibroblast Growth Factor (FGF) and Platelet Derived Growth Factor 

(PDGF).  

 

1.3.1 Transforming Growth Factor Beta 1 (TGF-β1) 

TGF-β1 is a polypeptide member of the TGF-β superfamily of cytokines. It is a growth 

factor ubiquitously expressed and it was initially discovered as a factor inducing 

colony formation of normal rat kidney fibroblasts in soft agar in the presence of 

epidermal growth factor (EGF)  By immunohistochemical techniques TGF-β1 was 

strongly detected in adrenal cortex, megakaryocytes and other bone marrow cells, 

cardiac myocytes, chondrocytes, renal distal tubules, ovarian glandular cells and 

chorionic cells of the placenta and also in cartilage, heart, pancreas, skin and uterus. 

TGF-β1 is secreted as an inactive precursor bound to the Latency Associated 

Peptide (LAP), forming the complex called Small Latent Complex (SLC). SLCs are 

secreted from cells and deposited into the extracellular matrix as covalent complexes 

with its binding proteins, also known as Latent TGF-β Binding Proteins, LTBPs (Koli 

et al., 2001). The latency proteins contribute to TGF-β1 stability. Active TGF-β1 half-

life is about two minutes whereas LTBPs half-life is about 90 minutes. In cells, active 

TGF-β1 is forming a large ligand-receptor complex involving a ligand dimer and four 

receptor molecules. TGF-β1 performs many cellular functions, including the control of 
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cell growth, cell proliferation, cell differentiation and apoptosis. It plays an important 

role in embryonic development, tissue morphogenesis, cell proliferation and 

differentiation (Ramoshebi et al., 2002) and also in bone induction, remodeling and 

extra cellular matrix (ECM) production (Urist et al., 2002).  

 

1.3.2 Bone Morphogenetic Proteins (BMPs) 

BMPs are multi-functional growth factors that belong to the TGF beta superfamily 

(Ducy et al., 2000). Originally discovered by their ability to induce the formation of 

bone and cartilage, BMPs are now considered to constitute a group of essential 

morphogenetic signals, orchestrating tissue architecture throughout the body. 

Originally, seven such proteins were discovered: six belonging to the TGF beta 

superfamily and one (BMP1) is a metalloprotease. Since then, thirteen more BMPs 

have been discovered, bringing the total to twenty. Among these proteins, BMP-2 

and BMP-7, are involved in the formation of bone and cartilage and they represent 

the most extensively studied proteins to induce bone formation even in critical size 

defects (Choi et al., 2016; Kolk et al., 2016; Betz et al., 2015; Del Rosario et al., 

2015). Recombinant human BMPs (rhBMP-2 and rhBMP-7) are Food and Drug 

Administration (FDA)-approved and they are used in orthopedic applications such as 

spinal fusions (Liao et al., 2003), non-unions and oral surgery (Boyne et al., 2005).  

 

1.3.3 Insulin-like Growth Factor 1 (IGF-1) 

Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a protein that in 

humans is encoded by the IGF-1 gene. It has a molecular structure similar to insulin. 

IGF-1 is produced primarily by the liver as an endocrine hormone as well as in target 
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tissues in a paracrine/autocrine manner. It is produced throughout life and the 

highest rates of IGF-1 production occur during the pubertal growth spurt, whereas the 

lowest levels occur in infancy and old age. Its primary action is mediated by binding 

to its specific receptor, the insulin-like growth factor 1 receptor (IGF-1R), which is 

present on many cell types in many tissues.  In this way, IGF-1 initiates intracellular 

signalling. In fact it is one of the most potent natural activators of the AKT signaling 

pathway, a stimulator of cell growth and proliferation, and a potent inhibitor of 

programmed cell death. IGF-1 is involved in the regulation of neural development 

including neurogenesis, myelination, synaptogenesis, dendritic branching and 

neuroprotection after neuronal damage. Moreover this growth factor represents a 

critical mediator of bone growth and fracture healing, promoting cell proliferation and 

matrix synthesis by chondrocytes and osteoblasts (Locatelli et al., 2014). 

 

1.3.4 Vascular Endothelial Growth Factor (VEGF) 

Vascular endothelial growth factor (VEGF), originally known as vascular permeability 

factor (VPF), is a signal protein produced by cells that stimulates vasculogenesis and 

angiogenesis. One of the main functions of VEGF is to form new blood vessels 

during the growth and to stimulate the growth of new blood vessels after injury. In 

cases where blood vessels are obstructed, VEGF also promotes the creation of new 

blood vessels to bypass the blocked vessels. 

 

1.3.5 Tumor Necrosis Factor alpha (TNF-α) 

TNF-α is a cell signaling protein (cytokine) involved in systemic inflammation and is 

one of the cytokines that make up the acute phase reaction. TNF was thought to be 
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produced primarily by macrophages, but it is produced also by a wide variety of cell 

types including lymphoid cells, mast cells, endothelial cells, cardiac myocytes, 

adipose tissue, fibroblasts, eosinophils and neurons. TNF-α can bind two receptors, 

TNFR1 and TNFR2. It exerts many effects on different organ systems, generally 

together with Interleukin 1 (IL-1) and 6 (IL-6): on the hypothalamus it stimulates the 

release of corticotropin releasing hormone (CRH), on the liver it stimulates the acute 

phase response, leading to an increase in C-reactive protein and a number of other 

mediators. It also induces insulin resistance by promoting serine-phosphorylation of 

insulin receptor substrate-1 (IRS-1), which impairs insulin signaling. Moreover it is a 

potent chemoattractant for neutrophils and promotes the expression of adhesion 

molecules on endothelial cells, helping neutrophils to migrate. On macrophages,  

TNFα stimulates phagocytosis and production of IL-1 oxidants and the inflammatory 

lipid Prostaglandin E2 (PGE2). 

 

1.3.6 Fibroblast Growth Factor (FGF) 

Fibroblast growth factors (FGFs) are secreted molecules which function through the 

activation of specific tyrosine kinases receptors, the FGF receptors, that transduce 

the signal by activating different pathways including the Ras/MAP kinase and the 

phospholipase-C gamma pathways. FGFs are involved in angiogenesis, wound 

healing, embryonic development and various endocrine signalling pathways. During 

the development of the central nervous system, FGFs play important roles in neural 

stem cell proliferation, neurogenesis, axon growth and differentiation. In humans, 22 

members of the FGF family have been identified. They are key players in the 

processes of proliferation and differentiation of wide variety of cells and tissues.  
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1.3.7 Platelet Derived Growth Factor (PDGF) 

PDGF is one of the numerous growth factors or proteins that regulate cell growth and 

division. In particular, it plays an important role in angiogenesis, promoting the 

formation and  growth of new blood vessels and regulating vascular tone and platelet 

aggregation. PDGF plays a central role also in cardiovascular diseases, as for 

example during vessel remodelling or atherosclerosis. Moreover, it stimulates the 

proliferation, differentiation and migration of cells of mesenchymal origin, including 

fibroblasts, smooth muscle cells and glial cells. It is involved also in the embryonic 

development of many organs including the brain, lungs, vasculature and kidneys. 

Finally, PDGFs are involved in wound healing. All PDGFs function as secreted, 

disulphide-linked homodimers, but only PDGFA and B can form functional 

heterodimers. Like the other growth factors, also PDGF is synthesized, stored in the 

platelets alpha granules and released after platelets activation. However, it is also 

produced by a variety of cells including smooth muscle cells, activated macrophages, 

and endothelial cells. PDGF family, comprises five different isoforms of PDGF: 

PDGF-AA, -AB, -BB, -CC and –DD,  that activate cellular response through two 

different receptors PDGFRα and PDGFRβ. These PDGF receptors are classified as 

a receptor tyrosine kinase (RTK), a type of cell surface receptor. The alpha type 

binds to PDGF-AA, PDGF-BB and PDGF-AB, whereas the beta type binds with high 

affinity to PDGF-BB and PDGF-AB. The binding of PDGFs to the PDGFRs induces 

downstream signalling involving several well-known pathways, e.g. Ras-MAPK, PI3K, 

PLC-γ pathways and others. Recombinant PDGF is used in medicine to help heal 

chronic ulcers and in orthopedic surgery and periodontistry to treat bone loss.  
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1.4 Biomaterials for tissue regeneration 

A major goal of tissue engineering is to synthesize or regenerate tissues and organs. 

Today, this is done by using specific “engineered materials” or biomaterials, which 

exploit specific and complex physical and biological functions. Combined with growth 

factors and autologous cells, these biomaterials provide a temporary supporting 

structure (scaffold), allowing not only three dimensional support of tissue growth and 

formation but also providing the biological environment needed for cellular growth, 

proliferation and differentiation. These scaffolds mimic the structure and biological 

functions of native extra-cellular matrix (ECM), both in terms of chemical composition 

and physical properties, recapitulating the in vivo environment and allowing cells to 

influence their own microenvironments (Asghari et al., 2016; Guo et al., 2015). The 

ideal scaffold should present the following characteristics: biocompatibility (meaning 

that it should not provoke any rejection, inflammation, immune responses or foreign 

body reactions), biodegradability (meaning that it should preferably be absorbed by 

the surrounding tissues without the necessity of a surgical removal), mechanically 

resistance and sterilizability, to avoid toxic contaminations without compromising any 

structural and mechanical properties. Moreover, it should have a porous architecture 

with an adequate pore size, to allow cell attachment, cell surface interactions, tissue 

ingrowth and transportation of nutrients and oxygen. Two traditional groups of 

biomaterials are available (Stoppel et al., 2015): natural byopolimers and synthetic 

polymers. Naturally derived materials include Collagen (Oliveira et al., 2010), 

Alginate, Chitosan (Chicatun et al., 2013; Hilmi et al., 2013) Fibrin, Elastin, 

Fibronectin, Keratin (Rouse et al., 2010), Silk (McNamara et al., 2014; Bellas et al., 

2013). Synthetic materials include Poly(l-lactic acid) (PLA or PLLA) (Nishio et al., 

2012), Poly(glycolic acid) (PGA), (Knight et al., 2013; Cao et al., 2010), Poly(ethylene 
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glycol) (PEG), Poly(lactic-co-glycolic acid) (PLGA), (Rahaman et al., 2013), 

Polyurethane, Polytetrafluoroethylene (PTFE), Polycaprolactone (PCL) and inorganic 

materials such as Calcium Phosphates and Hydroxyapatite. Recently the use of 

platelet preparations such as Platelet Rich Plasma (PRP), Platelet Rich Fibrin (PRF), 

Platelet Rich in Growth Factors (PRGF) and Concentrated Growth Factors (CGF), 

has been shown to be effective in promoting the natural processes of wound healing 

and tissue regeneration. 

 

1.5 Platelet concentrates 

Platelet concentrates are blood derivatives (Prakash et al., 2011; Anitua et al., 2004), 

prepared from patient’s own blood and containing autologous platelets, growth 

factors and cytokines involved in the key processes of tissue regeneration, including 

cell proliferation and differentiation, extracellular matrix synthesis, chemotaxis and 

angiogenesis. As mentioned before, platelets contain and release a variety of growth 

factors (VEGF, EGF, FGF, PDGF), coagulation factors, adhesion molecules, 

cytokines, chemokines and integrins that act on cell growth, proliferation and 

differentiation. Being autologous, platelet preparations are  biocompatible, easy to 

obtain, safe and without any risk of transmitting infectious disease. According to the 

classification proposed by Dohan Ehrenfest (Dohan Ehrenfest et al., 2009), four main 

families of platelet preparations can be defined, depending on their cell content and 

fibrin architecture: 

1) Pure Platelet-Rich Plasma (P-PRP) or leukocyte-poor PRP products such as cell 

separator PRP, Vivostat PRF (Agren et al., 2014) or Anitua’s PRGF (Anitua et al., 

2007; 2001): these preparations are free of leukocytes and with a low-density fibrin 

network after activation; 
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2) Leukocyte and PRP (L-PRP) products: these preparations contain leukocytes and 

have a low-density fibrin network after activation; 

3) Pure platelet-rich fibrin (P-PRF) or leukocyte-poor platelet-rich fibrin products, such 

as Fibrinet: these preparations are free of leukocytes and with a high-density fibrin 

network. They only exist in a strongly activated gel form and cannot be injected or 

used like traditional fibrin glues; 

4) Leukocyte- and platelet-rich fibrin (L-PRF) or second-generation PRP products, 

such as Choukroun’s PRF: these  preparations contains leukocytes and have a high-

density fibrin network; 

Another platelet concentrate, defined as Concentrated Growth Factors (CGF) must 

be added to this classification. 

 

1.5.1 Platelet Rich Plasma (PRP)  

PRP represents the first generation of platelets concentrates, whose pioneer was 

Marx in 1998. It is an autologous blood product, enriched with platelets, that 

concentrates a large number of platelets in a small volume of plasma (Everts et al., 

2006). In fact, according to Marx (Marx, 2001), PRP has a platelets concentration of 

1000 *109/L in 5ml of plasma, which is 5 times higher than normal baseline whole 

blood platelet count (200*109/L). In order to obtain PRP, blood must first be drawn 

from the patient, mixed with an anticoagulant to prevent clotting and then subjected 

to a two-step gradient centrifugation method. The first centrifugation (called hard 

spin) allows to separate blood into three distinct layer: acellular plasma or Platelet 

Poor Plasma (PPP) at the top; a middle layer containing the maximum platelet 

concentration and the red blood cells (RBCs) at the bottom. The second 



22 
 

centrifugation (called the soft spin) delicately and finely separates the platelets and 

leukocytes, from the plasma, so obtaining PRP.  

PRP has been shown to be effective in promoting the natural processes of wound 

healing, tissue reconstruction and regeneration (Gentile et al., 2016; Sengul et al., 

2016). It accelerates endothelial, epithelial and epidermal regeneration, stimulates 

angiogenesis and enhances collagen synthesis. The potentiality of PRP lies in its 

ability to incorporate high concentrations of platelet-derived growth factors, as well as 

fibrin, into the graft mixture. Recently published studies (Mlynarek et al., 2016; 

Ahmed et al., 2016; Serraino et al., 2015; Kakudo et al., 2014) have demonstrated 

beneficial results with PRP used in a broad range of clinical healing application such 

as head and neck surgery, otolaryngology, cardiovascular surgery, burns and wound 

healing, oral and maxillofacial surgery, cosmetic surgery and periodontics. Clinically, 

PRP is routinely combined with bone substitutes, such as BioOss (an inorganic 

bovine bone substitute) or demineralized freeze-dried human bone allograft, in oral 

and maxillofacial surgery. In particular, PRP has been shown to increase the rate of 

bone maturation and to improve bone density when added to small bony defects or to 

larger defects in combination with grafting material (Chen et al., 2014; Faratzis  et al., 

2012).  

 

1.5.2 Platelet Rich Fibrin (PRF) 

Platelet Rich Fibrin (PRF) consists of an intimate assembly of cytokines, glycanic 

chains, structural glycoproteins enmeshed within a fibrin scaffold and represents the 

second generation of platelet concentrates (Choukroun et al., 2006, Part IV,V; Dohan 

Ehrenfest et al., Part I, II, III, 2006). The cytokines, glycanic chains, structural 

glycoproteins can have synergetic effects on tissue healing processes. The PRF 
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pioneers were Choukroun and colleagues (Choukroun et al., 2006), who used it to 

promote the osseointegration of dental implants. This platelet preparation plays an 

important role in wound healing and tissue regeneration (Naik et al., 2013; Kang et 

al., 2011). PRF can be used in the form of a platelet gel in conjunction with bone 

grafts and also as a membrane (Kobayashi et al., 2012; Jankovic et al., 2012). PRF 

preparation is similar to PRP, except that no anti-coagulant is used during blood 

harvesting. After blood collection, PRF is immediately centrifuged for 10 min to 

activate the platelets, leading to the initiation of a coagulation cascade. At the end of 

centrifugation, three different layers are obtained: acellular PPP on top, a PRF clot in 

the middle and RBCs at the bottom of the test tube. The PRF clot obtained after 

centrifugation is collected 2 mm below the lower dividing line and the other layers are 

discarded. The clinical success of the PRF protocol is dependent on a quick 

collection of blood and its transfer to the centrifuge. Because no anticoagulant is 

used, the blood sample begins to coagulate almost immediately and a failure to 

accomplish the quick preparation of PRF could cause a diffuse polymerization of 

fibrin, which is not ideal for tissue healing. PRF can be considered as a natural fibrin 

based biomaterial, favourable to the development of a micro vascularisation and is 

also able to guide epithelial cell migration to its surface. It is used in oral and  

maxillofacial  surgery  to  improve  bone  healing  in  implant  dentistry (Saluja et al., 

2011). Several studies show a PRF efficiency in the treatment of periodontal and 

periimplant defects (Pradeep et al., 2016; Gupta et al., 2014; Panda et al., 2014;  

Ranganathan et al., 2014; Desarda et al., 2013; Lee et al., 2012), cyst cavities 

(Pradeep et al., 2016), gingival recession (Eren et al., 2014; Aleksić et al., 2010), 

sinus floor augmentation procedures (Ali et al., 2014; Xuan et al., 2014), mandible or 

maxilla fractures (Dincă et al., 2014; Kim et al., 2014), chronic wounds (Martinez-



24 
 

Zapata et al., 2016), articular cartilage defects (Wu et al., 2016) and others bone 

defects. 

 

1.5.3 Platelet Rich in Growth Factors (PRGF) 

PRGF is an autologous platelet concentrate prepared using a modified PRP protocol 

developed by Anitua (Anitua et al., 2015; 2011). Unlike PRP, PRGF is optimized to 

deliver a more sustained release of growth factors. PRGF can create a three-

dimensional fibrin scaffold which can be injected into a tissue defect, to maintain the 

regenerative space and can be used as a scaffold for cells to accomplish tissue 

regeneration. The leukocyte content of PRGF is eliminated to prevent the pro-

inflammatory effects of the proteases and acid hydrolases contained within these 

cells. PRGF is prepared from a small volume of patient’s peripheral venous blood 

and is collected by a one-step centrifugation with sodium citrate as the anti-coagulant 

(Endoret System). After activation, PRGF progressively releases a pool of proteins 

and growth factors, which accelerate soft tissue healing as well as osseous 

regeneration. It has been used in oral surgery and dentistry to regenerate tissues 

following cyst enucleations and periapical surgeries (Singh et al., 2013; Del Fabbro et 

al., 2009), to heal tissues following sinus floor elevation treatment (Anitua et al., 

2012; 2009) and gingival recession treatment (Lafzi et al., 2011), in periodontal and 

periimplant defects (Birang et al., 2012). Some studies investigated the clinical 

potential of PRGF to preserve tissue in tooth extraction sockets prior to dental 

implant placement. PRGF effect has been showed also in vitro, promoting  the 

migration and proliferation of human dental stem cells and gingival fibroblasts (Anitua 

et al., 2013; 2011). 
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1.5.4 Concentrated Growth Factors (CGF) 

CGF, first developed by Sacco, in 2006, is an autologous fibrin network, rich in 

leukocytes and platelets (Chen et al., 2016; Honda et al., 2013; Rodella et al., 2011). 

CGF also contains autologous osteo-inductive growth factors derived from platelets 

and an osteo-inductive fibrin matrix. In particular it contains and release some of the 

principal growth factors involved in tissue regeneration, such as TGF-β1, PDGF-AB, 

IGF-1, VEGF, TNF-α, BMPs (especially BMP-2 and BMP-7) and BDNF. The kinetic 

release of these growth factors shows an individual variability (Borsani, Bonazza et 

al., 2015). In fact some growth factors (VEGF and BMP-2) present a slow kinetic 

release, after six/eight days, others (TNF-α and BDNF) have a fast kinetic release, 

after one day and others (PDGF-AB, TGF-β1 and IGF-1) have a constant release. 

Similar to PRF, CGF is created using a one-step centrifugation method, but it 

requires a special programmed centrifuge (Medifuge MF200, Silfradent srl, Forli, 

Italy), which uses plastic tubes, coated with silica particles and without the addition of 

exogenous substances. The final blood product is separated into three layers: (1) the 

upper layer, representing the liquid phase of plasma named platelet poor plasma 

(PPP); (2) the lower layer, representing red blood cells (RBC) because of mainly 

contains erythrocytes; (3) the middle layer, representing the solid CGF consisting in 

three parts: the upper white part (WP), the downer red part (about 0,5 cm from RBC) 

and the middle “buffy coat” part (interface between white and red part), (Bonazza et 

al., 2016; Borsani,Bonazza et al., 2015). Morphologically, as regards blood cells 

localization in CGF, it was shown that leukocytes were localized principally in the 

buffy coat (BC) but also scattered around it, especially in the red part (RP) of CGF; 

whereas the erythrocytes were present only in the RP (Borsani, Bonazza et al., 

2015). Immunohistochemistry with the platelet marker CD61, showed that platelets 
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were localized in the BC, forming aggregates. Moreover, CGF presents a different 

fibrin architecture  moving from the BC to the WP of the CGF.  In particular, near the 

BC the fibrin network of the WP, appeared strictly compact, with thight meshes, while 

far from the BC appeared less compact, with larger meshes (Borsani, Bonazza et al., 

2015). 

 

1.5.4.1 CGF in tissue regeneration                     

Being the most recent platelet concentrate developed, there are no many studies in 

literature regarding the use of CGF in tissue regeneration. Till now, the use of CGF 

has been reported in the field of dental implantology, oral and maxillofacial surgery, 

in head and neck surgery, otolaryngology, cardiovascular surgery, burns and wound 

healing, cosmetic surgery and periodontics ligament diseases. In particular CGF has 

been used successfully in maxillary sinus augmentation, in order to facilitate new 

bone formation and reduce healing time (Chen et al., 2016; Kim et al., 2014; Sohn et 

al., 2009) and in the treatment of multiple gingival recessions (Doğan et al., 2015). Its 

beneficial effect has been reported also in vitro showing that CGF enhances the 

migration and proliferation of human dental stem cells and gingival fibroblasts (Yu et 

al., 2014), Schwann cells (Qin et al., 2016) and Rat Bone Marrow cells (Durmuşlar et 

al., 2016;Takeda et al., 2015). Moreover this autologous platelet concentrate 

promotes bone regeneration and repair in rat calvarial bone defects in vivo (Takeda 

et al., 2015), especially when used togheter with bone marrow derived stromal cells 

(BMSCs), (Honda et al., 2013).  
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1.6 Trace elements in tissue regeneration 

Trace Elements are essential for normal growth and development of skeleton in 

humans and animals. Although they are minor building components in teeth and 

bone, they play important functional roles in bone metabolism and bone turnover. 

These elements include: Magnesium, Selenium, Zinc, Copper, Silicon and many 

others. Magnesium enhances bone turnover through the stimulation of osteoclastic 

function (Costa et al., 2016; Hussain et al., 2014). Zinc regulates secretion of 

calcitonin from thyroid gland and influences bone turnover. It is a cofactor in a 

number of intracellular enzymatic reactions pertaining to wound healing. It is also an 

antioxidant, confers resistance against epithelial apoptosis and has significant 

antibacterial properties. Zinc doped Calcium Phosphate scaffolds or biopolymer 

scaffolds showed improved osteogenic differentiation. When incorporated into 

phosphate-based glasses (Chou et al., 2013; 2015), bone cell adhesion and 

proliferation were also enhanced. Moreover it has been showed that Zinc promotes 

the growth and osteogenic differentiation of mesenchymal stem cells (Chou et al., 

2015). Selenium has strong antioxidant properties (Bajpai et al., 2011) and has a 

beneficial role also in tissue repair and regeneration (Wang et al., 2013). Copper is 

an essential trace element abundantly presents in liver tissue and it is known for its 

stimulatory effect on angiogenesis, in endothelial cells. It functions as a cofactor and 

is an important component in the structural and catalytic properties of many 

enzymes, such as superoxide dismutase, which plays an antioxidant action, 

protecting the body against the harmful effect of superoxide. Its use together with 

biosynthetic materials improves angiogenic and osteogenic capacity for repairing 

osseous defects (Zhao et al., 2014). Silicon is another essential trace element that 
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plays an important role in tissue regeneration  as described in detail in the following 

paraghraphs.  

 

1.6.1 Silicon: chemistry and structure 

Silicon (Si) is a chemical element, in the carbon family (Group 14 of the periodic 

table), with an atomic weight of 28. It is classified as a semiconductor with electrical 

properties that are intermediate between metal and non-metal elements. The name 

Silicon derives from the Latin silex or silicis, meaning “flint” or “hard stone.” 

Amorphous elemental Silicon was first isolated and described as an element in 1824 

by Jöns Jacob Berzelius, a Swedish chemist. This trace element, represents the 

second most abundant element in the Earth's crust (28 %), after Oxygen (47%), 

(Figure 4) but it is rarely found in its elemental form due to its great affinity for 

Oxygen, forming silica (SiO2) and silicates, which at 92%, are the most common 

minerals.  

 

 

Figure 4: most abundant element in the Earth's crust 
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In particular, SiO2 is the most studied chemical compound following water and the 

most important Si-containing inorganic substance (Figure 5). The Silicon dioxide form 

is the major component of sand, granite, quartz and other types of rocks, clays and 

gems in the Earth's crust. Quartz (12%) and the alumino-silicates are the most 

prevalent silicates. These are present in igneous and sedimentary rocks and soil 

minerals and are highly stable structures that are not readily broken down except 

with extensive weathering. Thus natural levels of soluble (available) silica are low. 

 

 

 

 

 

 

Figure 5: SiO2 structure 

 

1.6.2 Silicon sources 

Human are exposed to numerous sources of Silicon including dust, pharmaceuticals, 

cosmetics and medical implants and devices, but the major and most important Si 

source for the majority of the population is the diet (Jugdaohsingh et al., 2002). Si 

average daily intake ranges from about 20 mg/day to 50 mg/day in Western 

countries. Higher intakes (104 mg/day – 204 mg/day), have been reported in China 

and India, where plant-based foods may form a more predominant part of the diet. 

Mean Si intakes in men (33 mg/day) are significantly higher than in women (25 
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mg/day). In children the major Si source is from cereals (68% of total dietary intake), 

whereas the major source in adult males is from beer ingestion (44%). Silicon intake 

decreases with age. 

 

 A) Food sources 

Foods derived from plants rather than animals provide the highest sources of dietary 

Si (Pennington, 1991), because certain plants, especially cereals, are Si 

accumulators (Epstein, 1999). Plants take up and accumulate Si from soil and soil 

solutions that becomes incorporated as a structural component conferring strength 

and rigidity to stalks, for example, in grasses and cereals and also in some plants 

such as horsetail (Equisetum arvense) which is known to be one of the strongest 

accumulators of Si among higher terrestrial plants (Law et al., 2011; Sapei et al., 

2007). Plants produce biogenic (phytolithic) silica which is often associated with the 

polysaccharide/carbohydrate components of the cell wall. Foods rich in Silicon 

include: cereals, especially oats, barley, white wheat flour and some fractions of rice 

(Robberecht et al., 2009 ). Up to 50%, of the Si is present in the hulls and husks. 

Rice hulls, for example, contain 110 mg Si/100g, and during industrial treatment 

these are removed which reduces Si in the refined foods. However, grain products 

such as breakfast cereals, flour and bread, biscuit, rice, pasta, etc., are still high 

dietary sources of Si (McNaughton et al., 2005; Powell et al., 2005). Vegetables like 

beans (2.5 mg Si/100 g), spinach, carrots, radish and beetroot, are reasonably high 

in Si (Jugdaohsingh et al., 2002). Fruits generally contain low levels of Si, except for 

bananas and from which Si absorption appears to be unusually low (Jugdaohsingh et 

al., 2002), suggesting that the form of Si is poorly digestible in this food source. Dried 

fruits (e.g. raisins) and nuts also have a relatively high level of Si but their intakes are 
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generally low. Sugar cane also actively takes up Si and refined and unrefined sugars 

are also high in Si. 

 

B) Non-food sources  

Silicon may also be ingested as a supplement in tablet, capsule, gel and solution 

forms and as pharmaceuticals, since silicates are widely used as active components 

of anti acids and anti diarrhoeals (e.g. aluminium or magnesium trisilicates, etc.), or 

as an inert component (excipient) in many medications (Lomer et al., 2004). The 

absorption of Si from these preparations has not been well characterized, although 

there have been a few studies (Van Dyck et al., 1999; Cefali et al., 1995). Soil 

adherent to vegetables is a further source of ingested Si, but absorption is likely to be 

low as mineral silicates are expected to be stable and not broken down in the 

gastrointestinal tract. Humans may also come into contact with Si through exposure 

to siliceous dust, talc, etc., but this usually constitutes a minor exposure and 

dissolution to form available orthosilicic acid is probably minimal. Apart from these 

sources, medical and dental implants used in the replacement and repair of tissue, 

bone or dentine, or silicone tubing used in haemodialysis, for example, can also be 

sources of Si although these are also minor for the majority of the population. Silicon 

is also present in cosmetics, creams and toothpastes but gastrointestinal or dermal 

absorption from these is minimal because the silicates are particulate and poorly 

broken down to release the active (orthosilicic acid) moiety. Phytolithic silica may be 

present, as a contaminant, in facial scrub and shampoos as often these are plant 

based, while silicones may be present in some hand and nail creams and in nail 

varnish. 
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C) Beverages 

Silicon is highly available from drinking water (Jugdaohsingh et al., 2002) and its 

concentration is initially dependent upon the geology of the source of water (Perry & 

Keeling-Tucker, 1998; Birchall & Chappell, 1980). Water permeating through ‘old 

rock’ contains less Si compared with that from ‘young rock’ areas. In the UK for 

example, Si concentrations are low (0.2-2.5 mg/L) in the north and west of Britain 

(‘highland’ Britain), where the rocks are ‘old’ and well-weathered and the water is 

naturally soft. In contrast, Si levels are much higher (2.8-14 mg/L) in the south and 

east of Britain (‘lowland’ Britain) from the weathering of ‘young rocks’; the water is 

naturally hard as it is high in dissolved solids and is also alkaline. The Si 

concentration of European mineral waters is within a similar range (4-16 mg/L) to 

lowland drinking waters and their pH is typically around neutral, or slightly above. 

Recently, however, higher levels (30-40 mg/L) have been reported in Spritzer and Fiji 

mineral waters, from natural sources in Malaysia and Fiji respectively. Drinking water 

and other fluids provides the most readily bioavailable source of Si in the diet, since 

Si is principally present as Orthosilicic Acid (OSA, H4SiO4) and fluid ingestion can 

account for ≥ 20% of the total dietary intake of Si. High Si levels are found also in 

beer (Sripanyakorn et al., 2004), which is made from macerated whole-grain barley 

from which H4SiO4 is released into the beer. 

 

1.6.3 Silicon absorption and excretion   

The Si bioavailability depends on the solubility of the compound or speciation 

concerned. There is a lack of reliable data about the metabolism of Si in humans. 

This is partly due to the fact that there are many different forms of dietary Silicon, all 

with different absorptions. Silicic acid is the bioavailable form, especially as mono 
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(=ortho) and di silicic acid. It is easily absorbed from the gastro-intestinal tract (50–

80%). In the gastrointestinal tract Si, as OSA (H4SiO4), is available from fluids (20-

30%) and from silica in solid foods (70-80%), which is hydrolyzed to H4SiO4. The 

average absorption of daily Si intake is less than 50%. The absorption is facilitated by 

aquaporins (a family of small channel proteins present in the intracellular 

membranes, where they facilitate the transport of water and/or small neutral solutes 

like urea, boric acid, silicic acid). In humans several aquaporins for OSA are 

identified (AQP3, AQP7, AQP9 and AQP10), (Garneau et al., 2015). Another 

possibility for silicon uptake by the body is transdermal absorption. Lassus (Lassus, 

1997) showed the effects of oral and topical treatment of aged skin by a silicic gel. 

Because of the combined method of administration the effects of dermal absorption 

alone remain unclear. After absorption, OSA is readily filtered by the renal 

glomerulus, because it does not associate with plasma proteins and hence much 

absorbed Si is rapidly excreted into urine  (Reffitt et al., 1999; Jugdaohsingh et al., 

2002). Thus, urinary excretion of Si is a good surrogate marker of Si absorption 

(Calomme & Berghe, 1997; Reffitt et al., 1999; Van Dyck et al., 1999). It is not clear 

how much of the absorbed Si is retained in tissues, but it is likely to be small (≤ 10%), 

(Popplewell et al., 1998). Although it has been suggested that Si is poorly absorbed 

from food (Van Dyck et al., 1999), Jugdaohsingh and colleaugues (Jugdaohsingh et 

al., 2002) have shown that much of the Si in food is broken down into the monomeric 

form in the gastrointestinal tract and then absorbed. Thus serum Si levels 

significantly increase after ingestion of foods rich in Si, peaking 100–120 min after 

ingestion (Jugdaohsingh et al., 2002). A mean of 41 ± 36% of ingested Si was 

excreted in urine (i.e. at least that amount was absorbed), following ingestion of Si-

rich foods. Indeed, the Si content of food correlates significantly with urinary Si 

excretion following ingestion of the food, suggesting that for most foods their Si 
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content can be used as an approximate indicator of their absorption (Jugdaohsingh 

et al., 2002). However, from some foods, such as root vegetables and bananas, little 

Si appears to be absorbed (Jugdaohsingh et al., 2002), although further work is 

required to confirm and explain this. 

 

1.6.4 Silicon tissue distribution 

The biological importance of Silicon, is closely related to its bio distribution in the 

human organism. Silicon, after Iron and Zinc, is the third most abundant trace 

element in the human body (at ∼140–700 mg). The highest Si concentration is in 

connective tissues, especially aorta, trachea, tendon and in fast growing cells such 

as hair, nails, bone and skin cells. The reason for their high Si content is proposed to 

be the binding of Si to glycosaminoglycans and their protein complexes in connective 

tissues. Silicon is also found at lower levels in parenchymal tissues, such as liver, 

heart, muscle and lung (Carlisle, 1982) and it exists in the OSA form, not associated 

with proteins, in blood (Adler & Berlyne, 1986).  

 

1.6.5 Biological role of Silicon: the Prolylhydroxylase 

Silicon would seem to act on the enzyme Prolyl hydroxylase, whose catalytic action is 

important in the synthesis of collagen and glycosaminoglycans, allowing the 

conversion (internal to the structure of collagen) of L-Proline amino acid into 

Hydroxyproline (Figure 6). This biological catalyst plays a key role in the development 

of joints, bones, skin and skin appendages and therefore Silicon intake stimulates the 

synthesis of Collagen, leading to an harmonious development of connective and 

other tissues. 
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Figure 6:  Silicon biological effect on the enzyme Prolylhydroxylase. 

In the figure above the possible Silicon mechanism of action is showed: an increase 

of Silicon concentration in the blood (1) is progressively followed by an increase in 

the maturation of L-proline to Hydroxyproline (2); this leads to a more efficient 

synthesis of Collagen (3) that, in the space of a few months, leads to an improvement 

in mechanical properties of bones, skin and skin appendages (4). 

All this suggests that, acting on the synthesis of Collagen and glycosaminoglycans, 

we can improve the mechanical properties and appearance of various tissues and 

organs, including the skin. 

 

1.6.6 Silicon in tissue regeneration 

Several studies, performed both in vivo and in vitro (Kim et al., 2009; Bae et al., 

2008; Calomme et al., 2006; Jugdaohsingh et al 2004; Refitt et al., 2003), suggest 

that dietary Si consumption is beneficial for different organs and tissues, such as: 

bone and cartilage, brain, skin, nails and hair, cardiovascular system and immune 

system.  
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1.6.6.1 Bone and other connective tissues 

Higher Si levels are reported to be associated with healthy connective tissues (e.g. 

aorta, bone, trachea, tendon) and especially their connective tissue components (i.e. 

collagen and elastin), compared to non-connective tissues (e.g. liver, kidney, spleen). 

The Si concentration in connective tissues is suggested to decrease with age and 

with disease progression, based upon data for the human aorta (Charnot et al., 

1971). As concern bone tissue, several studies conducted in ovariectomized rats 

(Kim et al., 2009; Calomme et al., 2006; Seaborn et al., 2002; Hott et al., 1993), 

showed a Si beneficial effect on bone metabolism, suggesting its preventive or 

therapeutic role in different bone diseases like osteoporosis. The ovariectomized rat 

is the standard model for post menopausal bone loss and the studies conducted 

using this model, showed that consumption of a diet rich in Si, stimulated bone 

growth and mineralization, especially of long bones such as femur and tibia. On the 

contrary, Si deficiency, resulted in an increased degradation of bone and cartilage, 

impaired bone mineral composition and decreased activity of bone enzymes, such as 

alkaline phosphatase (ALP), with a consequent higher risk of fractures or bone 

diseases (Rodella, Bonazza et al., 2014). Other studies (Kayongo et al., 2008; Sahin 

et al., 2006; Carlisle 1980,1976,1972), on growing animals showed that Si dietary 

supplementation improved bone quality, increasing bone mineral density and 

reducing bone fragility. Studies on humans, especially on pre and post-menopausal 

women (Macdonald et al., 2012; Li et al., 2010; Spector et al., 2008; McNaughton et 

al., 2005; Jugdaohsingh et al., 2004), showed that 40 mg of Si daily intake is 

associated with greater bone mineral density, reducing the risk of bone fractures. In 

vitro studies have also been conducted to determine the mechanism of Si effect on 

bone. The in vitro effects of OSA (0-50 μM) was investigated (Refitt et al., 2003) 
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using the human MG-63 osteosarcoma cell line and an immortalized human early 

osteoblastic cell line (HCC1), as osteoblast model, showing that physiological 

concentrations of OSA (10-20 μM), stimulated Collagen type I synthesis and 

enhanced osteoblastic differentiation in both the cell lines used. In an another work, 

(Kim et al., 2013), the Si effect, in the form of Sodium Metasilicate, on the MC3T3 

murine cell line, was investigated, showing an increase in bone formation and 

mineralization. So all these results suggest that Si acts as a biocatalyst which can be 

used in the preventive and healing therapies of disorders related to the joints and the 

skeleton, such as osteoarthritis and post-menopausal osteoporosis. The loss of bone 

mass is closely related also to an increase of vascular calcification, with a higher risk 

of developing vascular diseases, such as atherosclerosis. In fact, some 

epidemiological studies have demonstrated the existence of a positive correlation 

between the increase in arterial calcification and the reduction of bone mineral 

density (Celik et al., 2010; Persy et al., 2009; Park et al., 2008). Moreover, further 

evidence of Silicon role in bone is provided by in vivo and in vitro studies with Silicon 

containing implants and ceramics such as Si-substituted hydroxyapatite and silica-

based bioactive glass (De Godoy et al., 2015; Shadjou et al., 2015; Kim et al., 2015). 

Silica on these materials undergoes partial dissolution, forming an amorphous Si 

layer and the dissolved Silicon is involved in gene upregulation, osteoblast 

proliferation and differentiation, type I collagen synthesis and apatite formation. 

Based on the evidences of Si beneficial properties on bone health, artificial Si 

scaffolds have been generated, especially during the last years. 
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1.6.6.2 Brain 

Apart from its physiological role in bone and cartilage formation, Silicon seems to be 

an essential element also for the brain, in which dietary Si provides protection against 

aluminum (Al) accumulation and consecutive oxidative damage (Domingo et al., 

2011; Belles et al., 1998). This effect has been associated with protection against 

Alzheimer’s disease (Davenward et al., 2013) because Al interferes with 

glutamatergic neurotransmission causing neurotoxicity and death of nitrergic 

neurons, by inducing glutamatergic cytotoxicity and consequently an overproduction 

of Nitric Oxide (NO) (Llansola et al., 1999). Several studies (Foglio et al., 2012; 

Exley, 2006) suggest that dietary Si supplementation might have a protective role, 

reducing the Aluminium gastrointestinal adsorption and increasing its excretion via 

the urine, probably by interacting with filterable Al in renal tubules, forming 

hydroxylaluminosilicates and impeding the metal re-absorption. In particular Si 

mantains the number of nitrergic neurons and their expression of nitrergic enzymes 

at physiological levels. Silicic acid has also been found to induce down-regulation of 

endogenous antioxidant enzymes associated with aluminum administration. 

 

1.6.6.3 Cardiovascular system  

Some evidences suggest a positive correlation between Silicon consumption and 

vascular homeostasis (Schwarz et al., 1977). In particular, it seems that dietary Si 

intake improves the cardiovascular system, being essential to the structural integrity, 

elasticity and permeability of the arteries and exerting a protective and preventive 

anti-atherosclerotic effect. The exact mechanism of action is not fully known and its 

understanding requires further in-depth investigation. However, some recent studies 

(Buffoli et al., 2013) have shown that, at the vascular level, Si results in an increase 
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of some vasoactive molecules involved in the processes of oxidative stress, the 

endothelial nitric oxide synthase (eNOS) and aquaporin-1 (AQP1) and could 

therefore act as a protective factor against vascular alterations.  

 

1.6.6.4 Skin, hair and nails 

To date, there has been little research concerning the effects of dietary Si intake, on 

skin and its appendages (hair, nails). As regards skin, it is suggested that Si is 

important for optimal synthesis of Collagen and for activating the hydroxylation 

enzymes, improving skin strength and elasticity. It was shown that physiological 

concentrations of OSA stimulate fibroblasts to secrete Collagen type I (Refitt et al., 

2003). The first report about Si and skin dated back to 1958 (Fregert, 1958). The aim 

of the study was to quantify Si levels in human tissues (especially skin) and in some 

human internal organs (aorta, kidneys), derived from cadavers and surgical 

materials. The highest Si concentration was found in hair and epidermis, particularly 

in the cornified layer. On the contrary, the amount of Si in patients with skin diseases, 

like psoriasis and exfoliative dermatitis, was lower than in healthy subjects, probably 

because these pathologies are characterized  by incomplete keratinization process. 

Subsequently, Barel and colleagues (Barel et al., 2005) investigated the influence of 

Si supplementation, in the form of OSA stabilized with Choline (ch-OSA), on skin and 

its appendages, in a double-blind placebo controlled study. It was observed that 

treatment with ch-OSA determined a significant improvement in skin thickness and 

turgor and in hair and nails brightness. In 2007, Wickett and collegues (Wickett et al., 

2007), conducted another study, to evaluate the influence of ch-OSA oral intake on 

hair structure and morphology. In this randomized, double blind placebo-controlled 

study, 48 women with fine hair were given 10 mg of ch-OSA a day or placebo for 
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nine months. At the end of the study, the researchers concluded that the women 

taking bioavailable silica had thicker hair because of increased elasticity and tensile 

strength. These findings have led the researchers to conclude that Silicon has a 

positive role also on the mechanical properties of the skin surface as well as on the 

strength of its appendages like hair and nails. 
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2. AIM OF THE STUDY 

 

The aim of the present study was to evaluate the in vitro effect of three different 

treatments (Silicon, in the soluble form of Sodium Orthosilicate, CGF and Sodium 

Orthosilicate together with CGF), on the growth, proliferation and metabolic activity of 

three different human cell lines: human osteoblasts cells (HOBs), human fibroblasts 

cells (NHDF - Normal Human Dermal Fibroblasts) and human endothelial cells 

(HUVEC - Human Umbilical Vein Endothelial Cells).  
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3. MATERIAL AND METHODS 

3.1 Human cell lines 

For in vitro experiments with Sodium Orthosilicate, CGF and Sodium Orthosilicate 

togheter with CGF we used three different cryopreserved human cell lines (Figure 7) 

that are described in detail below: 

 

Figure 7: Human cell lines used for in vitro experiments: A) Normal Dermal Human 

Fibroblasts (NHDF); B) Human Umbilical Vein Endothelial Cells (HUVEC); C) Human 

Osteoblast cells (HOBs). Bar = 80 µm. 

 

A) Normal Dermal Human Fibroblasts – NHDF: fibroblasts are the main cells of 

connective tissue responsible for the production of collagen and 

mucopolysaccharides. Furthermore, these cells are specialized in the deposition of 

extra cellular matrix and in the maintenance, degradation and rearrangement of its 

structure, through the production of protein molecules including laminin and 

fibronectin. NHDF grow adherent in a specific medium named Fibroblast Growth 

medium (FGM) enriched with serum and growth factors. Morphologically NHDF show 

an elongated shape. 
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B) Human Umbilical Vein Endothelial Cells – HUVEC: these cells are primary 

endothelial cells obtained by enzymatic digestion from the vein of the umbilical cord 

and make up the inner lining of all blood vessels and lymph vessels. Therefore, they 

are used as a laboratory model system for the study of the biology and 

pathophysiology of the endothelium and its interactions with other cell types and 

matrix components. They synthesize and secrete activators as well as inhibitors of 

both the coagulation system and the fibrinolysis system in addition to mediators that 

influence the adhesion and aggregation of blood platelets. Endothelial cells also 

release molecules that control cell proliferation and modulate vessel wall tone. 

HUVEC grow adherent in a specific endothelial medium named Endothelial Growth 

Medium (EGM), supplemented with serum and growth factors. Morphologically, these 

cells show a round shape. 

 

C) Human Osteoblast cells – HOBs: Human osteoblasts are a highly specialized 

cell type, of mesenchymal origin, involved in bone formation and remodelling. In vivo 

they produce the osteoid, an extracellular matrix rich in Collagen type 1. In the 

course of their natural maturation process into osteocytes, called osteogenesis, they 

become embedded in the bone matrix and stop proliferating. They grow adherent in a 

specific medium named Osteoblast Growth Medium (OGM) supplemented with 

serum and specific growth factors. These cells show an elongated shape and are 

morphologically similar to NHDF. 
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3.2 Cell cultures 

The cryopreserved cells were thawed following the specific protocol and cultured until 

confluence in ther specific complete medium and then subcultured in order to have a 

sufficient number of cells to perform in vitro experiments. 

 

3.3 Cell treatments  

The three different human cells lines were subjected to the following treatments: 

1) Sodium Orthosilicate 

2) CGF 

3) Sodium Orthosilicate + CGF 

 

3.3.1 Sodium Orthosilicate preparation 

For the in vitro experiments we used Silicon in the form of Sodium Orthosilicate 

(Na4SiO4), (Alfa Aesar,Germany) because readily soluble in water, producing an 

alkaline solution. A stock solution of Na4SiO4 at a final concentration of 0,1 M, was 

prepared. The powder was weighted using an analytical balance and then it was 

dissolved in sterile water using heating plate and a magnet. The pH solution was 

checked using a calibrated pH meter. Nitric Acid 10M (VWR International, Milan) was 

added to lower the pH solution. Once prepared, the stock solution was filtered using 

a 0.2 μm syringe filter, under a laminar flow cabinet and two different concentrations 

of Sodium Orthosilicate (0,5 and 1mM) were prepared in cell culture media by serial 

dilution of the 0,1 M stock solution.  
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3.3.2 CGF preparation 

For the experiments, the  whole blood was collected by piercing a superficial venous 

blood vessel with a 21-gauge needle from a total of 3 healthy adult volunteers of 

Caucasian ethnicity consisting of 1 men (V1) and 2 women (V2,V3), aged 28 to 53 

years. Exclusion criteria were a systemic disorder, smoking, infection, non-steroidal 

anti-inflammatory drug use, a hemoglobin level of < 11g/dl or a platelet concentration 

of < 150000 mm3. To avoid variances from the different subjects, blood was collected 

from the three volounteers during all the study. Once collected, the samples were 

always immediately processed in order to obtain CGF. 

The CGF was produced as follow: 9 mL of blood was drawn in each sterile Vacuette 

tubes (Greiner Bio-One, GmbH, Kremsmunster, Austria), coated with silica 

microparticles as serum clot activator. These tubes were then immediately 

centrifuged in a special machine (Medifuge MF200, Silfradent srl, Forlì, Italy) using a 

program with the following characteristics: 30’’ acceleration, 2’ 2,700 rpm, 4’ 2,400 

rpm, 4’ 2,700 rpm, 3’ 3,000 rpm, and 33’’ deceleration and stop. At the end of the 

process, three blood fractions were identified (Figure 8A): (1) the upper layer, 

representing the liquid phase of plasma named platelet poor plasma (PPP); (2) the 

lower layer, representing red blood cells (RBC) because of mainly contains 

erythrocytes; (3) the middle layer, representing the solid CGF consisting into three 

parts: the upper white part (WP), the downer red part (RP), about 0,5 cm from RBC 

and the middle “buffy coat” part (BC), interface between WP and RP (Figure 8C). At 

the end of the centrifugation process, CGF was removed from each tube, using 

sterile tweezers and placed on the surface of sterile petri dish, under a laminar flow 

cabinet. Whole solid CGF was obtained cutting the lower part of RBC, using sterile 

scissors (Figure 8B). Subsequently, each whole CGF was processed in relation to 

the experiment.  
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Figure 8: Blood sample after CGF protocol of centrifugation. Three layers are obtained: 

PPP, upper layer; CGF, middle layer; RBC, lower layer (A). CGF was removed from the tube, 

using sterile tweezers and RBC cut at 0,5 cm under buffy coat (BC) (B). The whole CGF 

consists into three parts: the upper white part (WP), the downer red part (RP) and the middle 

BC part (C). Bar = 1 cm. (modified by Borsani, Bonazza et al., 2015). 

 

3.3.3 Cell treatment with Sodium Orthosilicate 

 

1) NHDF  

NHDF were cultured in Fibroblast Growth Medium (FGM; Lonza, Walkersville MD, 

USA) constituted by Fibroblast Basal medium (FBM; Lonza, Walkersville MD, USA) 

supplemented with gentamicin/amphotericin B (antibiotic/antifungal) and growth 

factors (rhFGF-B, insulin, fetal bovine serum - all from BulletKits®, Lonza, 

Walkersville MD, USA), at 37 °C, 5% CO2, in a humidified atmosphere until they 

reached about 80% confluence, changing the medium every 2 days. NHDF from third 

and sixth passage were used in the experiments. At confluence, NHDF were 
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passaged and seeded at a final density of 10000 cell/cm2, in 6-well culture plates 

(Sarstedt, Nuembrecht, Germany) and starved in FBM for 24 hours, before 

stimulation. Then the medium was removed and the cells were subjected to the 

following treatments for 72 hours: 1) only FGM (which represents the control); 2) 

FGM + Na4SiO4 0,5 mM; 3) FGM + Na4SiO4 1 mM.  

 

2) HUVEC   

HUVEC (pooled cells; Lonza, USA) were cultured in Endothelial Growth Medium 

(EGM; Lonza, Walkersville MD, USA) constituted by Endothelial Basal Medium 2 

(EBM2; Lonza, Walkersville MD, USA) supplemented with gentamicin/amphotericin B 

(antibiotic/antifungal) and growth factors (hFGF, VEGF, IGF-1, hEGF, fetal bovine 

serum, all from EGM-2 Single Quot®; Lonza, Walkersville MD, USA) at 37 °C, 5% 

CO2, in a humidified atmosphere until they reached about 80% confluence, changing 

the medium every 2 days. Experiments were performed using HUVEC between third 

and sixth passage. At confluence, HUVEC were passaged and seeded, at a final 

density of 10000 cell/cm2, in 6-well culture plates (Sarstedt, Nuembrecht, Germany) 

and starved in EBM2 for 24 hours, before stimulation. Then the medium was 

removed and four different treatments were tested for 72 hours: 1) only EGM (which 

represents the control); 2) EGM + Na4SiO4 0,5 mM; 3) EGM + Na4SiO4 1 mM.  

 

3) HOBs 

HOBs (cryopreserved cells; Promocell, Germany), were cultured in Osteoblast 

Growth Medium (OGM; Promocell, Heidelberg, Germany) constituted by Osteoblast 

Basal Medium (OBM; Promocell, Heidelberg, Germany) supplemented with 

gentamicin/amphotericin B (antibiotic/antifungal) and SupplementMix (OGM 

Supplement Mix; Promocell, Heidelberg, Germany) containing growth factors (not 
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specified by the manufacturer) at 37 °C, 5% CO2, in a humidified atmosphere until 

they reached about 80% confluence, changing the medium every 2 days. 

Experiments were performed using cells between third and sixth passage. At 

confluence, HOBs were passaged and seeded, at a final density of 10000 cell/cm2, in 

6-well culture plates (Sarstedt, Nuembrecht, Germany) and starved in OBM for 24 

hours, before stimulation. Then the medium was removed and four different 

treatments were tested for 72 hours: 1) only OGM (which represents the control); 2) 

OGM + Na4SiO4 0,5 mM; 3) OGM + Na4SiO4 1 mM.  

 

 

3.3.4 Cell treatment with CGF 

 

1) NHDF  

NHDF were cultured in FGM, in a humidified atmosphere until they reached about 

80% confluence, changing the medium every 2 days. NHDF from third and sixth 

passage were used in the experiments. At confluence, NHDF were passaged and 

seeded, at a final density of 10000 cell/cm2, in 6-well culture plates and starved in 

FBM for 24 hours, before stimulation. Then the medium was removed and four 

different treatments were tested for 72 hours: 1) only FBM; 2) only FGM; 3) FBM + 

CGF; 4) FGM + CGF.  

 

2) HUVEC  

HUVEC were cultured in EGM, at 37 °C, 5% CO2, in a humidified atmosphere until 

they reached about 80% confluence, changing the medium every 2 days.  

Experiments were performed using HUVEC between third and sixth passage. At 

confluence, HUVEC were passaged and seeded, at a final density of 10000 cell/cm2, 
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in 6-well culture plates and starved in EBM2 for 24 hours, before stimulation. Then 

the medium was removed and four different treatments were tested for 72 hours: 1) 

only EBM; 2) only EGM; 3) EBM + CGF; 4) EGM + CGF.  

 

3) HOBs 

HOBs were cultured in OGM, at 37 °C, 5% CO2, in a humidified atmosphere until 

they reached about 80% confluence, changing the medium every 2 days. 

Experiments were performed using cells between third and sixth passage. At 

confluence, HOBs were passaged and seeded, at a final density of 10000 cell/cm2, in 

6-well culture plates and starved in OBM for 24 hours, before stimulation. Then the 

medium was removed and four different treatments were tested for 72 hours: 1) only 

OBM; 2) only OGM; 3) OBM + CGF; 4) OGM + CGF.  

 

 

3.3.5 Cell treatment with Sodium Orthosilicate and CGF 

 

1) NHDF  

NHDF were cultured in FGM, at 37 °C, 5% CO2, in a humidified atmosphere until they 

reached about 80% confluence, changing the medium every 2 days. NHDF from third 

and sixth passage were used in the experiments. At confluence, NHDF were 

passaged and seeded, at a final density of 10000 cell/cm2, in 6-well culture plates 

and starved in FBM for 24 hours, before stimulation. Then the basal medium was 

removed and three different treatments were tested for 72 hours: 1) FGM + CGF; 2) 

FGM + CGF + Na4SiO4 0,5 mM; 3) FGM + CGF + Na4SiO4 1 mM.   
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2) HUVEC   

HUVEC were cultured in EGM, at 37 °C, 5% CO2, in a humidified atmosphere until 

they reached about 80% confluence, changing the medium every 2 days.  

Experiments were performed using HUVEC between third and sixth passage. At 

confluence, HUVEC were passaged and seeded, at a final density of 10000 cell/cm2, 

in 6-well culture plates and starved in EBM2 for 24 hours, before stimulation. Then 

the basal medium was removed and three different treatments were tested for 72 

hours: 1) EGM + CGF; 2) EGM + CGF + Na4SiO4 0,5 mM; 3) EGM + CGF + Na4SiO4 

1 mM.  

 

3) HOBs  

HOBs were cultured in OGM, at 37 °C, 5% CO2, in a humidified atmosphere until 

they reached about 80% confluence, changing the medium every 2 days. 

Experiments were performed using cells between third and sixth passage. At 

confluence, HOBs were passaged and seeded, at a final density of 10000 cell/cm2, in 

6-well culture plates and starved in OBM for 24 hours, before stimulation. Then the 

basal medium was removed and three different treatments were tested for 72 hours: 

1) OGM + CGF; 2) OGM + CGF + Na4SiO4 0,5 mM; 3) OGM + CGF + Na4SiO4 1 

mM.  

 

In all the three cell lines used, whole CGFs were not put into direct contact with cells 

but each whole CGF was placed into a sterile transwell insert (ThinCertTM cell 

culture inserts, Greiner Bio-One, Austria) with a semi-permeable membrane at the 

bottom (pores of 0,4 µm) and inserted into the 6-well culture plates (an insert in each 

well) for 72 hours.  
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The final in vitro effect of the different treatments, on cell growth and proliferation was 

evaluated both by performing a simple cell count, using an automated cell counter 

(Scepter™ 2.0 Cell Counter, Millipore) and by evaluating the expression of the 

intracellular proliferation marker Ki-67, using FACS. Moreover, we evaluated also the 

expression of other cell markers such as Collagen type I (Col I), Osteopontin (OPN), 

Vascular Endothelial Growth Factor (VEGF), endothelial Nitric Oxide oxide synthase 

(eNOS), performing immunohistochemical analyses on fixed cells. 

 

3.4 FACS analysis  

Cells were detached with the Trypsin (0,025%)/EDTA (0,01%) solution (Promocell, 

Heidelberg, Germany) and centrifuged at 1000 rpm for 5 minutes. After removing the 

supernatant, pellet was re-suspended in the appropriate culture medium. Cell 

suspension (100-200 µl), was transferred into each fresh tube (100000 cells/tube) 

and permeabilized with Saponin (1ml/tube), on ice for 10 minutes, preserving Ki-67 

antigen. At the end of the incubation period with Saponin, cells were centrifuged at 

1200 rpm for 5 minutes and the supernatant was removed. Cells were stained with 

the mouse monoclonal antibody Ki-67 FITC-conjugated (BD Bioscience, San Diego, 

CA). 20 µl of Ki-67 antibody were added to each tube and incubated in the dark for 

30 minutes, at 4°C. As positive control it was used the Ki-67 isotype control (BD 

Bioscience, San Diego, CA) and as negative control the primary antibody was 

omitted and only a secondary FITC antibody was used. Then, cells were washed with 

FACS buffer (PBS with 2% FBS – 2 ml/tube), centrifuged at 1200 rpm for 5 minutes 

and re-suspended in 0,5ml of FACS buffer (PBS with 2% FBS). Finally, the cell 

samples were analyzed with FACS (BD FACSCanto™- BD Bioscience, San Jose, 

CA) and the data were analyzed using the BD FACSDiva™ software version 8.8.7 

(BD Bioscience, San Jose, CA).  
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3.5 Cell count 

An automated cell counter (Scepter™ 2.0 Cell Counter, Millipore), was used to count 

the total number of each cell type, after the three different treatments. Briefly, cells 

were detached with the Trypsin (0,025%)/EDTA (0,01%) solution (Promocell, 

Heidelberg, Germany) and centrifuged at 1000 rpm for 5 minutes. After removing the 

supernatant, pellet was re-suspended in the appropriate culture medium. Cell 

suspension (200 µl) was transferred into an eppendorf tube of 2ml, with a round base 

for Scepter cell count. Depending on the cell diameter, a specific sensor (40 μm or 60 

μm) was attached to the Scepter, the plunger was depressed and the sensor was 

submerged into the sample; then the plunger was released drawing 50 μL of cell 

suspension through the cell sensing aperture. In this way, the Scepter cell counter 

provided the cell concentration, displaying an histogram as a function of cell diameter 

or volume on its screen. Using the Scepter 2.0 software, the test files were then 

uploaded from the device in order to perform data analysis to determine the final cell 

number. 

 

3.6 Immunohistochemical analysis 

At the end of the culture period, the different cell types were fixed on coverslips so to 

evaluate some cell markers through immunohistochemistry. The goal of fixation is to 

halt cells decomposition and freeze cellular proteins and subcellular structures in 

place. The cells were fixed by cross-linking, incubating them with 2 to 4% 

paraformaldehyde solution for 10 to 20 minutes at room temperature. At the end of 

the incubation period, the cells were carefully washed with PBS (Phosphate Buffered 

Saline, Amresco) to remove any fixation agent. Then the coverslips were allowed to 

dry at room temperature for 24 hours. 
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3.6.1 Collagen type I  (Col I) 

Immunohistochemical analysis for Collagen type I were performed on NHDF and 

HOBs. Collagen I is synthesized mainly by fibroblasts, osteoblasts, odontoblasts and 

chondroblasts. It attends a structural role in the extracellular matrix by providing 

mechanical support and resistance to tension. Immunohistochemistry was performed 

using the UltraVision Quanto Detection System Horseradish Peroxidase (HRP; 

ThermoScientific, Bio-Optica, Milan, Italy), followed by development with the 

chromogen substrate Diaminobenzidine (DAB, Amresco, Prodotti Gianni, Milan, 

Italy). Before adding the mouse monoclonal antibody, the cells were permeabilized 

with Triton 0,1% for 10 minutes and then incubated with blocking solution for 5 

minutes. The primary antibody used was Col I (1:100, Abcam, Cambridge). To better 

visualize the positive reaction, the cells were counterstained with Carazzi’s 

Hematoxylin, dehydrated and mounted with DPX, for light microscopy detection and 

quantification of Col I levels. Digitally fixed images of cells were analyzed using an 

image analyzer (Image Pro-Plus 9.1.4, Milan, Italy) and the Integrated Optical 

Density (IOD) was measured. 

 

3.6.2 Osteopontin (OPN) 

Immunohistochemical analysis for Osteopontin was performed on HOBs. OPN is a 

multifunctional 41 KDa protein, expressed by osteoblasts during cell proliferation and 

matrix mineralization. The UltraVision Quanto Detection System Horseradish 

Peroxidase (HRP; ThermoScientific, Bio-Optica, Milan, Italy), was used to perform 

the immunohistochemical analysis, followed by development with DAB. Before 

adding the mouse monoclonal antibody, the cells were permeabilized with Triton 

0,1% for 10 minutes and then incubated with blocking solution for 5 minutes. The 

primary antibody used was Anti-Osteopontin (1:100, Abcam, Cambridge). To better 
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visualize the positive reaction, the cells were counterstained with Carazzi’s 

Hematoxylin (Bio-Optica, Milan, Italy), dehydrated and mounted with DPX, for light 

microscopy detection and quantification of OPN levels. Digitally fixed images of cells 

were analyzed using an image analyzer (Image Pro-Plus 9.1.4, Milan, Italy) and the 

Integrated Optical Density was measured and quantified. 

 

3.6.3 Vascular Endothelial Growth Factor (VEGF) and endothelial Nitric Oxide 

Synthase (eNOS). 

Immunohistochemical analysis for VEGF and eNOS was performed on HUVEC. 

VEGF is a potent and essential angiogenic growth factor for vascular endothelial 

cells. eNOS plays crucial roles in regulating vascular tone, cellular proliferation, 

leukocyte adhesion and platelet aggregation. The UltraVision Quanto Detection 

System Horseradish Peroxidase (HRP; ThermoScientific, Bio-Optica, Milan, Italy), 

was used to perform the immunohistochemical analysis, followed by development 

with DAB. Cells were first permeabilized with Triton 0,1% for 10 minutes and then 

incubated with the blocking solution for 5 minutes. The primary antibodies used were 

VEGF (1:100, Santa Cruz Biotechnology) and NOS3 or eNOS (1:100, Santa Cruz 

Biotechnology). To better visualize the positive reaction, the cells were 

counterstained with Carazzi’s Hematoxylin (Bio-Optica, Milan, Italy), dehydrated and 

mounted with DPX, for light microscopy detection and quantification of OPN levels. 

Digitally fixed images of cells were analyzed using an image analyzer (Image Pro-

Plus 9.1.4, Milan, Italy) and the Integrated Optical Density was measured and 

quantified. 
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3.7 Statistical Analysis  

 

All data were expressed as mean ± standard error of the mean (SEM). Differences 

among groups were analyzed by a one-way analysis of variance (ANOVA test), using 

Bonferroni’s multiple comparison test for post-hoc analysis. The level of significance 

was accepted at *p < 0.05. Origin v9.0 software was used for all statistical analyses 

performed.   
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4. RESULTS 

 

4.1 FACS analysis and cell count 

 

4.1.1 Cells treated with Sodium Orthosilicate 

 

1) NHDF 

FACS analysis for the quantification of ki-67 percentage, showed that there were no 

statistical differences between NHDF treated and not with Na4SiO4  0,5 and 1 mM. As 

shown in figure 9, in complete medium (FGM) the percentage of Ki-67 positive cells 

(64% ± 2,79) was quite similar to that of FGM + Na4SiO4 0,5 mM (67,6% ± 5,5) and 

FGM + Na4SiO4 1mM (68,2% ± 4,9). In fact there were no statistical differences 

among these treatments. Similar results were obtained also performing a simple cell 

count, using an automated cell counter (Scepter™ 2.0 Cell Counter, Millipore). The 

number of cells didn’t vary significantly in NHDF treated with Na4SiO4 0,5 mM (3,80 X 

104 ± 0,3) and Na4SiO4 1 mM (3,90 X 104 ± 0,3), compared with FGM alone (2,46 X 

104 ± 0,2). Moreover, Na4SiO4 treatment didn’t alter cell morphology. In fact, the cells 

showed a clear characteristic spindle-like morphology, appearing elongated and well 

spread on the plate surface. 
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Figure 9: Ki-67 expression in NHDF. Graph comparing six experimental groups: A) FGM; B) 

FGM + Na4SiO4 0,5mM; C) FGM + Na4SiO4 1mM; D) FGM + CGF; E) FGM + CGF + Na4SiO4 

0,5mM; E) FGM + CGF + Na4SiO4 1mM. The Ki-67 positive cells are reported as % ± SE. 

 

2) HUVEC 

FACS analysis for the quantification of ki-67 expression, showed that in complete 

medium alone (EGM), the percentage of Ki-67 positive cells was lower (67,3% ± 1,2) 

compared with EGM + Na4SiO4 0,5 mM (77,6% ± 0,5) and EGM + Na4SiO4 1 mM 

(70,7% ± 0,6), (Figure 10). In particular, treatment with EGM + Na4SiO4 0,5 mM, 

significantly increased the percentage of ki-67 positive cells, respect to EGM alone. 

Also treatment with EGM + Na4SiO4 1 mM showed a little increase in Ki-67 

percentage but it was no statistically significant. The same data were obtained 

performing a simple cell count, using an automated cell counter (Scepter™ 2.0 Cell 
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Counter, Millipore). The number of cells resulted markedly increased after treatment 

with EGM + Na4SiO4 0,5 mM (3,80 x 105 ± 0,5) and EGM + Na4SiO4 1 mM (3,1 X 105 

± 0,5) respect to EGM alone (2,9 x 105 ± 0,2). Moreover, Na4SiO4 treatment didn’t 

alter cell morphology. In fact, the cells showed their typical polygonal shape 

morphology appearing well attached on the plate surface.   

 

Figure 10: Ki-67 expression in HUVEC. Graph comparing six experimental groups: A) EGM; 

B) EGM + Na4SiO4 0,5mM; C) EGM + Na4SiO4 1mM; D) EGM + CGF; E) EGM + CGF + 

Na4SiO4 0,5mM; F) EGM + CGF + Na4SiO4 1mM. The Ki-67 positive cells are reported as % 

± SE. *p<0,05 vs EGM; # p<0,05 vs EGM + Na4SiO4 0,5mM; °p<0,05 vs EGM + Na4SiO4 

1mM.   

 

3) HOBs 

FACS analysis for the quantification of ki-67 percentage, showed that there were no 

statistical differences between HOBs treated and not with Na4SiO4 0,5 and 1 mM. As 
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shown in figure 11, in complete medium (OGM) the percentage of Ki-67 positive cells 

(48% ± 3,8) was similar to that of OGM + Na4SiO4 0,5 mM (50,4% ± 3,5) and OGM + 

Na4SiO4 1mM (52,2% ± 1,5). In fact there were no statistical differences among the 

different treatments. Similar results were obtained performing a simple cell count, 

using an automated cell counter (Scepter™ 2.0 Cell Counter, Millipore). In fact, even 

if the number of cells didn’t vary significantly with addition of Na4SiO4 0,5 mM and 

1mM, it was a little bit higher in OGM + Na4SiO4 0,5 mM (1,03 X 105 ± 0,3) and  OGM 

+ Na4SiO4 1 mM (1,31 X 105 ± 0,2), respect to OGM alone (9,64 X 104 ± 0,4). 

Moreover, treatment with Na4SiO4 didn’t alter change cell morphology. In fact, the 

cells showed their typical polygonal and flattened shape morphology and appeared 

well attached on the plate surface. 

 

Figure 11: Ki-67 expression in HOBs. Graph comparing six experimental groups: A) OGM; 

B) OGM + Na4SiO4 0,5mM; C) OGM + Na4SiO4 1mM; D) OGM + CGF; E) OGM + CGF + 

Na4SiO4 0,5mM; F) OGM + CGF + Na4SiO4 1mM. The Ki-67 positive cells are reported as % 

± SE. 
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4.1.2 Cells treated with CGF  

 

1) NHDF 

As reported in figure 12, FACS analysis for the quantification of ki-67 percentage, 

showed that in basal medium (FBM), free of serum and growth factors, the 

percentage of Ki-67 positive cells was lower (18,68% ± 1,8) compared with the other 

experimental conditions. Moreover, the cells did not show a clear spindle-like 

morphology, appearing short and not well spread on the plate surface. In complete 

medium (FGM), the percentage of Ki-67 positive cells was significantly higher 

(61,98% ± 6,35) respect to FBM and the cells showed a clear characteristic spindle-

like morphology, appearing elongated and well spread on the plate surface. In basal 

medium with CGF (FBM + CGF), the percentage of Ki-67 positive cells significantly 

increased (51,51% ± 7,12) compared with FBM alone and the cells showed a clear 

characteristic spindle-like morphology, appearing elongated but not well spread on 

the plate surface as in FBM. In complete medium with CGF (FGM + CGF), the 

percentage of Ki-67 positive cells was significantly higher  (75,9% ± 4,13) respect to 

both FBM alone and FBM + CGF. Moreover the cells showed a clear characteristic 

spindle-like morphology, appearing well elongated, larger and well spread on the 

plate surface compared with the other culture conditions. 
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Figure 12: Effect of CGF on NHDF. Graph comparing four experimental groups: A) Basal 

medium (BM); B) Complete medium (CM); C) Basal medium + CGF (BM+CGF); D) Complete 

medium + CGF (CM + CGF). The Ki-67 positive cells are reported as % ± SE. *P<0,05 vs 

BM; °P<0,05 vs BM+CGF.  

 

2) HUVEC 

As reported in figure 13, FACS analysis for the quantification of ki-67 percentage 

showed that in basal medium (EBM), free of serum and growth factors, the 

percentage of Ki-67 positive cells was significantly lower (5,05% ± 0,19) compared 

with the other experimental conditions. This because HUVEC are extremely delicate 

and their growth is strongly influenced by culture conditions. In fact the cells showed 

a round shape morphology and appeared not well attached on the plate surface. In 

complete medium (EGM), the percentage of Ki-67 positive cells was significantly 
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higher (26,03% ± 2,79) compared with EBM alone and the cells showed their typical 

polygonal shape morphology, appearing well attached on the plate surface.  Also in 

basal medium with CGF (EBM + CGF), the percentage of Ki-67 positive cells 

markedly increased (26,94% ± 1,96) compared with the EBM alone and the cells 

showed a more defined polygonal shape morphology appearing larger and well 

attached on the plate surface compared with EBM and EGM alone. In EGM + CGF, 

the percentage of Ki-67 positive cells markedly increased (38,62% ± 4,03) compared 

with all the other culture conditions. The cells showed a more defined polygonal 

shape morphology appearing larger and well attached on the plate surface compared 

all the other culture conditions.   

 

Figure 13: Effect of CGF on HUVEC. Graph comparing four experimental groups: A) Basal 

medium (BM); B) Complete medium (CM); C) Basal medium + CGF (BM+CGF); D) Complete 

medium + CGF (CM + CGF). The Ki-67 positive cells are reported as % ± SE. *P<0,05 vs 

BM; °P<0,05 vs BM+CGF; ^P<0,05 vs CM. 
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3) HOBs 

As shown in figure 14, FACS analysis for the quantification of ki-67 percentage 

showed that in basal medium (OBM), free of serum and growth factors, the cells 

showed the lowest percentage of Ki-67 (15,07% ± 0,39), compared with the other 

experimental conditions. The cells showed their typical polygonal and flattened shape 

morphology and appeared well attached on the plate surface.  In complete medium 

(OGM), the percentage of Ki-67 positive cells significantly increased (35,31% ± 1,21) 

compared with the basal medium and the cells showed a more elongated polygonal 

and flattened shape morphology with the presence of extensions or very thin 

filopodia compared with OBM. In basal medium with CGF (OBM + CGF), the 

percentage of Ki-67 positive cells markedly increased (32,3% ± 2,46), resulting 

statistically different from OBM alone. The cells showed a more elongated, larger 

polygonal and flattened shape morphology with the presence of more extensions or 

very thin filopodia respect to OBM and OGM. In complete medium with CGF (OGM + 

CGF), the percentage of Ki-67 positive cells markedly increased (38,13% ± 2,72) 

compared with OBM alone. The cells showed a more elongated, larger polygonal and 

flattened shape morphology with the presence of more extensions or very thin 

filopodia compared with OBM and OGM. 
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Figure 14: Effect of CGF on HOBs. Graph comparing four experimental groups: A) Basal 

medium (BM); B) Complete medium (CM); C) Basal medium + CGF (BM+CGF); D) Complete 

medium + CGF (CM + CGF). The Ki-67 positive cells are reported as % ± SE. *P<0,05 vs 

BM. 

 

4.1.3 Cells treated with Sodium Orthosilicate and CGF 

 

1) NHDF 

FACS analysis for the quantification of ki-67 percentage, showed that treatment with 

Sodium Orthosilicate and CGF did not significantly influence NHDF growth and 

proliferation (Figure 9, page 46), even if the percentage of Ki-67 positive cells was 

higher in NHDF treated with both CGF and Na4SiO4 0,5 mM and 1 mM, respect to 

FGM supplemented and not with Sodium Orthosilicate. In FGM + CGF, the 
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percentage of Ki-67 positive cells (73,8% ± 2,79) was slightly lower compared with 

FGM + CGF + Na4SiO4 0,5 mM (81,6% ± 3,5) and FGM + CGF + Na4SiO4 1 mM 

(83,1% ± 2,03). However this difference was not statistically significant. In FGM + 

CGF + Na4SiO4 0,5 mM and FGM + CGF + Na4SiO4 1 mM, the percentage of Ki-67 

positive cells was very similar but it was higher respect to FGM + CGF and also 

compared with FGM supplemented and not with Na4SiO4 0,5 and 1 mM. Similar 

results were obtained performing a simple cell count, using an automated cell 

counter (Scepter™ 2.0 Cell Counter, Millipore). In fact, even if the number of cells did 

not vary significantly with addition of Na4SiO4 0,5 mM and 1 mM, it was higher in 

FGM + CGF + Na4SiO4 0,5 mM (5,22 x 104 ± 0,4) and FGM + Na4SiO4 1 mM (6,23 x 

104 ± 0,4) respect to FGM + CGF (3,27 x 104 ± 0,3). Moreover, treatment with 

Na4SiO4 did not alter cell morphology. In fact, the cells showed their typical polygonal 

and flattened shape morphology and appeared well attached on the plate surface. 

 

2) HUVEC 

FACS analysis for the quantification of ki-67 percentage, showed that treatment with 

Na4SiO4 and CGF significantly influenced HUVEC growth and proliferation, as 

reported in figure 10 (page 47). In fact, in EGM + CGF, the percentage of Ki-67 

positive cells (83% ± 1) markedly increased respect to EGM alone (67,3% ± 1,2) and 

EGM + Na4SiO4 1 mM (70,7 ± 0,6). In EGM + CGF + Na4SiO4 0,5 mM, the 

percentage of Ki-67 positive cells (90,2% ± 2,7) markedly increased respect to EGM 

alone, EGM + Na4SiO4 0,5 mM (77,6% ± 0,5) and EGM + Na4SiO4 1 mM (70,7% ± 

0,6). Similarly to EGM + CGF + Na4SiO4 0,5 mM, also in EGM + CGF + Na4SiO4 1 

mM, the percentage of Ki-67 positive cells (86,4% ± 2) markedly increased respect to 

EGM alone, EGM + Na4SiO4 0,5 mM and EGM + Na4SiO4 1 mM. Moreover, 

comparing the percentage of Ki-67 positive cells in EGM + CGF with EGM + 
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Na4SiO4, it was statistically different respect to  EGM + Na4SiO4 1 mM. Similar results 

were obtained counting the number of cells (EGM + CGF: 4,20 x 105 ± 0,2; EGM + 

CGF + Na4SiO4 0,5 mM: 4,95 x 105 ± 0,6; EGM + CGF + Na4SiO4 1 mM: 4,95 x 105 ± 

0,5). 

 

3) HOBs 

FACS analysis for the quantification of ki-67 percentage, showed that there were no 

statistical differences after cell treatment with Sodium Orthosilicate and CGF (Figure 

11, page 48). In OGM + CGF, the percentage of Ki-67 positive cells (54% ± 2,4) was 

similar compared with FGM + CGF + Na4SiO4 0,5 mM (55,2 ± 0,3) and FGM + CGF 

+ Na4SiO4 1 mM (56,4 ± 0,6), as reported in figure 10. Also the number of cells was 

similar among the different treatments (OGM + CGF: 1,70 x 105 ± 0,2; OGM + CGF + 

Na4SiO4 0,5 mM: 1,72 x 105 ± 0,1; OGM + CGF + Na4SiO4 1 mM: 1,75 x 105 ± 0,1). 

However, comparing these data with those obtained using only Na4SiO4 0,5 mM and 

1 mM without CGF, the percentage of Ki-67 positive cells progressively increased 

using CGF togheter with Na4SiO4, even if this increment was not statistically 

significant.  
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4.2 Immunohistochemistry on fixed cells 

 

4.2.1 Collagen type I (Col I) 

 

NHDF 

 

A positive immunostaining for Col I was observed in NHDF, in matrix and intracellular 

compartment and the intensity of the reaction progressively increased in cells treated 

with CGF supplemented and not with Na4SiO4 (Figures 15-16). In fact, in FGM 

immunopositivity was lower (20,8 ± 0,2), compared with the other experimental 

conditions. In FGM + Na4SiO4 0,5 mM immunopositivity (21,6 ± 0,4) was similar to 

FGM but lower than FGM + Na4SiO4 1 mM (23,3 ± 0,4). Immunopositivity for Col I, 

progressively increased in FGM + CGF (26,11 ± 1,6), FGM + CGF + Na4SiO4 0,5 mM 

(27,7 ± 0,6) and FGM + CGF + Na4SiO4 1 mM (29,1 ± 1,2), being statistically 

significant compared with FGM, FGM + Na4SiO4  0,5 mM and FGM + Na4SiO4 1 mM.  
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Figure 15: Integrated Optical Density analysis (IOD) after immunohistochemistry for 

Collagen type 1 in NHDF. Graph comparing six experimental groups: A) FGM; B) FGM + 

Na4SiO4 0,5mM; C) FGM + Na4SiO4 1mM; D) FGM + CGF; E) FGM + CGF + Na4SiO4 

0,5mM; E) FGM + CGF + Na4SiO4 1mM. Data are expressed as means ± SEM.  
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Figure 16: (A-G) Immunohistochemistry analysis (20X) for Collagen type 1 on NHDF 

comparing different experimental groups: A)  Negative Control Group; B) Complete medium 

(FGM); C) FGM + Na4SiO4 0,5mM; D) FGM + Na4SiO4 1mM; E) FGM + CGF; F) FGM + CGF 

+ Na4SiO4 0,5 mM; G) FGM + CGF + Na4SiO4 1mM (Bar=40μm).   
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HOBs 

 

A positive immunostaining for Col I was found also around osteoblasts. The intensity 

of the reaction increased progressively among the different treatments (Figures 17-

18). In fact, in OGM, immunopositivity for Col I was lower (10,01 ± 0,4), compared 

with the other experimental conditions. In OGM + Na4SiO4 0,5 mM immunopositivity 

was slightly higher (14,96 ± 0,6) compared with OGM alone but lower respect to the 

other treatments. In OGM + Na4SiO4 1 mM, there was a small increase in collagen I 

immunopositivity (16,65 ± 0,3) respect to OGM + Na4SiO4 0,5 mM and OGM but it 

was lower compared with the other experimental conditions. In hobs treated with 

OGM + CGF, Col I immunopositivity markedly increased (21,04 ± 0,4) compared with 

OGM, OGM + Na4SiO4 0,5 mM and OGM + Na4SiO4 1 mM but it was lower respect 

to OGM + CGF + Na4SiO4 0,5 mM (24,54 ± 0,7) and OGM + CGF + Na4SiO4 1 mM ( 

26,16 ± 0,5). Both in  OGM + CGF + Na4SiO4 0,5 mM and OGM + CGF + Na4SiO4 1 

mM, immunopositivity greatly increased, being statistically significant respect to all 

the other treatments.   
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Figure 17: Integrated Optical Density analysis (IOD) after immunohistochemistry for 

Collagen type 1 in HOBs. Graph comparing six experimental groups: A) OGM; B) OGM + 

Na4SiO4 0,5mM; C) OGM + Na4SiO4 1mM; D) OGM + CGF; E) OGM + CGF + Na4SiO4 

0,5mM; F) OGM + CGF + Na4SiO4 1mM. Data are expressed as means ± SEM. *p<0,05 vs 

OGM; # p<0,05 vs OGM + Na4SiO4 0,5mM; °p<0,05 vs OGM + Na4SiO4 1mM; Λ p<0,05 vs 

OGM + CGF. 
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Figure 18: (A-G) Immunohistochemistry analysis (20X) for Collagen type 1 on HOBs 

comparing different experimental groups: A)  Negative Control Group; B) Complete medium 

(OGM); C) OGM + Na4SiO4 0,5mM; D) OGM + Na4SiO4 1mM; E) OGM + CGF;  F) OGM + 

CGF + Na4SiO4 0,5 mM; G) OGM + CGF + Na4SiO4 1mM (Bar=40μm).   
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4.2.2 Vascular Endothelial Growth Factor (VEGF) 

 

HUVEC 

 

A positive immunostaining for VEGF was observed in endothelial cells (Figures 19-

20) and immunopositivity significantly increased in cells treated with CGF and  

Na4SiO4 0,5mM and 1 mM. In EGM + Na4SiO4 0,5 mM (35,15 ± 0,4) and EGM + 

Na4SiO4 1 mM (36,14 ± 0,3), VEGF immunopositivity was quite the same and it was 

statistically significant compared with EGM alone (28,52 ± 0,5), but lower respect to 

the other treatments. In EGM + CGF, VEGF immunopositivity markedly increased 

(40,8 ± 0,4), being statistically significant respect to EGM, EGM + Na4SiO4 0,5 mM 

and EGM + Na4SiO4 1 mM, but lower than EGM + CGF + Na4SiO4 0,5 mM and  EGM 

+ CGF + Na4SiO4 1 mM. EGM + CGF + Na4SiO4 0,5 mM (46,84  ± 0,8) and EGM + 

CGF + Na4SiO4 1mM (47,5 ± 1,2) showed a similar immunopositivity which was 

significantly higher compared with the other treatments but there was no statistical 

difference between this two treatments. 
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Figure 19: Integrated Optical Density analysis (IOD) after immunohistochemistry for VEGF 

on HUVEC. Graph comparing six experimental groups: A) EGM; B) EGM + Na4SiO4 0,5mM; 

C) EGM + Na4SiO4 1mM; D) EGM + CGF; E) EGM + CGF + Na4SiO4 0,5mM; F) EGM + CGF 

+ Na4SiO4 1mM. Data are expressed as means ± SEM. *p<0,05 vs EGM; # p<0,05 vs EGM + 

Na4SiO4 0,5mM; °p<0,05 vs EGM + Na4SiO4 1mM; Λ p<0,05 vs EGM + CGF.   
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Figure 20: (A-G) Immunohistochemistry analysis (40X) for VEGF on HUVEC comparing 

different experimental groups: A) Negative Control Group; B) Complete medium (EGM); C) 

EGM + Na4SiO4 0,5mM; D) EGM + Na4SiO4 1mM; E) EGM + CGF; F) EGM + CGF + 

Na4SiO4 0,5 mM; G) EGM + CGF + Na4SiO4 1mM (Bar=60μm).   
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4.2.3 endothelial Nitric Oxide Synthase (eNOS) 

 

A positive immunostaining for eNOS was observed in endothelial cells (Figures 21-

22) and similarly to VEGF, immunopositivity significantly increased in cells treated 

with CGF and Na4SiO4 0,5mM and 1 mM. In EGM + Na4SiO4 0,5 mM (34,75 ± 0,7) 

and EGM + Na4SiO4 1 mM (35,86 ± 0,6), immunopositivity was quite the same and it 

was statistically significant compared with EGM alone (27,85 ± 0,5), but lower respect 

to the other treatments. In EGM + CGF, eNOS immunopositivity markedly increased 

(40,6 ± 0,8), being statistically significant respect to EGM, EGM + Na4SiO4 0,5 mM 

and EGM + Na4SiO4 1 mM, but lower than EGM + CGF + Na4SiO4 0,5 mM and  EGM 

+ CGF + Na4SiO4 1 mM. EGM + CGF + Na4SiO4 0,5 mM (47,43  ± 1,2) and EGM + 

CGF + Na4SiO4 1mM (48,64 ± 1,1) showed a similar immunopositivity which was 

significantly higher compared with the other treatments but there was no statistical 

differences between this two treatments. 
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Figure 21: Integrated Optical Density analysis (IOD) after immunohistochemistry for eNOS 

on HUVEC. Graph comparing six experimental groups: A) EGM; B) EGM + Na4SiO4 0,5mM; 

C) EGM + Na4SiO4 1mM; D) EGM + CGF; E) EGM + CGF + Na4SiO4 0,5mM; F) EGM + CGF 

+ Na4SiO4 1mM. Data are expressed as means ± SEM. *p<0,05 vs EGM; # p<0,05 vs EGM + 

Na4SiO4 0,5mM; °p<0,05 vs EGM + Na4SiO4 1mM; Λ p<0,05 vs EGM + CGF.   
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Figure 22: (A-G) Immunohistochemistry analysis (40X) for eNOS on HUVEC comparing 

different experimental groups: A) Negative Control Group; B) Complete medium (EGM); C) 

EGM + Na4SiO4 0,5mM; D) EGM + Na4SiO4 1mM; E) EGM + CGF; F) EGM + CGF + 

Na4SiO4 0,5 mM; G) EGM + CGF + Na4SiO4 1mM (Bar=60μm).   
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4.2.4 Osteopontin (OPN) 

 

OPN immunopositivity was observed in osteoblast cells and it showed a similar trend 

to Col I, progressively increasing among the different treatments (Figures 23-24). In 

OGM + Na4SiO4 0,5 mM (19,45 ± 0,5) and OGM + Na4SiO4 1 mM (20,23 ± 0,9), OPN 

immunopositivity was quite the same and it was statistically significant compared with 

OGM alone (11,65 ± 0,3) but lower compared with CGF supplemented and not with 

Na4SiO4. In OGM + CGF immunopositivity markedly increased (23,41 ± 0,9), being 

statistically different from OGM. OGM + CGF + Na4SiO4 0,5 mM (25,97 ± 0,6) and 

OGM + CGF + Na4SiO4 1 mM (26,05 ± 0,6), showed a very similar amount in OPN 

(even if it was slightly higher in CGF + Na4SiO4 1 mM) and so there were not 

statistically differences between these two treatments which were statistically 

significant respect to the other treatments, except to OGM + CGF.  
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Figure 23: Integrated Optical Density analysis (IOD) after immunohistochemistry for 

Osteopontin in HOBs. Graph comparing six experimental groups: A) OGM; B) OGM + 

Na4SiO4 0,5mM; C) OGM + Na4SiO4 1mM; D) OGM + CGF; E) OGM + CGF + Na4SiO4 

0,5mM; F) OGM + CGF + Na4SiO4 1mM. Data are expressed as means ± SEM. *p<0,05 vs 

OGM; # p<0,05 vs OGM + Na4SiO4 0,5mM; °p<0,05 vs OGM + Na4SiO4 1mM. 

 

 

 

 

 

 



81 
 

 

 

 

 

Figure 24: (A-G) Immunohistochemistry analysis (20X) for Osteopontin on HOBs comparing 

different experimental groups: A) Negative Control Group; B) Complete medium (OGM); C) 

OGM + Na4SiO4 0,5mM; D) OGM + Na4SiO4 1mM; E) OGM + CGF; F) OGM + CGF + 

Na4SiO4 0,5 mM; G) OGM + CGF + Na4SiO4 1mM (Bar=40μm).   
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5. DISCUSSION 

 

The present in vitro study showed that Silicon, in the soluble form of Sodium 

Orthosilicate (Na4SiO4) and the platelet concentrate CGF, had a positive effect on the 

growth, proliferation and metabolic activity, in all the three human cell lines used 

(NHDF, HUVEC and HOBs), even if better results were obtained for endothelial cells. 

In NHDF, FACS analysis for the quantification of the intracellular proliferation marker 

ki-67, showed that treatment with Sodium Orthosilicate and CGF did not significantly 

influence cell growth and proliferation, even if the percentage of Ki-67 positive cells 

was higher in cells treated with both CGF and Na4SiO4, respect to complete medium 

(FGM) supplemented and not with Na4SiO4. Also the immunohistochemistry for 

Collagen type 1 showed that immunopositivity progressively increased in NHDF 

treated with CGF and Na4SiO4, being statistically significant compared with FGM 

supplemented and not with Na4SiO4. In literature there are several studies which 

suggest a beneficial effect of Silicon in skin and its appendages (Wickett et al., 2007; 

Barel et al., 2005; Refitt et al., 2003). In particular, it is reported that Silicon is 

important for optimal synthesis of collagen and for activating the hydroxylation 

enzymes, improving skin strength and elasticity. According to Refitt and colleagues 

(Refitt et al., 2003), Collagen type 1 was significantly increased in cultures of skin 

fibroblasts treated with orthosilicic acid at 10 and 20 μm. This is probably due to the 

Silicon biological mechanism of action. In fact, an increase in Silicon concentration in 

the blood is progressively followed by an increase in the maturation of L-proline to 

Hydroxyproline, leading to a more efficient synthesis of collagen. All this suggests 

that, acting on the synthesis of collagen and glycosaminoglycans, we can improve 

the mechanical properties and appearance of various tissues and organs, including 

the skin. As regards platelet concentrates, several studies (Kushida et al., 2013; 
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Kakudo et al., 2008; Liu et al., 2002) showed that the use of PRP on human dermal 

fibroblasts markedly increased cell proliferation, supporting the clinical application of 

platelet preparations for cell-based wound repair and regeneration. These data were 

in agreement with the results obtained in the present work, in which treatment with 

Sodium Orthosilicate and CGF, markedly increase Collagen type I levels in human 

fibroblasts. A possible explanation of this effect could be that platelet preparations 

are rich in growth factors that once released, play an important role in NHDF growth 

and proliferation. In fact fibroblast proliferation can be induced by tumour necrosis 

factor alpha (TNF-α), transforming growth factor beta (TGF-β) and also by others 

factors that are present in platelets preparations. Moreover, TGF-β can induce 

collagen type 1 synthesis (Ohji et al., 1993) increasing the secretion of the enzyme 

collagenase. So the combination of CGF and Sodium Orthosilicate have a synergistic 

effect on NHDF growth and proliferation and markedly increased Collagen type 1 

sinthesys.  

Similar results were obtained for human edndothelial cells (HUVEC). Unlike NHDF, 

facs analysis for the quantification of the intracellular proliferation marker ki-67, 

showed that treatment with Sodium Orthosilicate and CGF significantly influenced 

HUVEC growth and proliferation. The highest expression of Ki-67 was observed in 

cells treated with CGF and Na4SiO4 0,5mM, even if a significantly amount was 

obtained also with CGF supplemented with Na4SiO4 1mM. Some evidences suggest 

a positive correlation between Silicon consumption and vascular homeostasis 

(Schwarz et al., 1977). In particular, it seems that dietary Si intake improves the 

cardiovascular system, being essential to the structural integrity, elasticity and 

permeability of the arteries and exerting a protective and preventive anti-

atherosclerotic effect. In fact, immunohistochemistry for the angiogenetic factor 

VEGF and the vasoactive molecule eNOS, showed that immunopositivity 
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progressively increasd after Na4SiO4 treatment, reaching the highest amount in cells 

treated with CGF and Na4SiO4. As regards Silicon effect on endothelial cells, the 

exact mechanism of action is not fully known and requires further in-depth 

investigation. However, according to Buffoli and colleagues (Buffoli et al., 2013), 

Silicon consumption results in an increase of some vasoactive molecules involved in 

the processes of oxidative stress, the endothelial nitric oxide synthase (eNOS) and 

aquaporin-1 (AQP1) and could therefore act as a protective factor against vascular 

alterations. These data were in agreement with the results obtained in the present 

study. Moreover, it was reported that also platelet preparations such as PRP, 

promote angiogenesis both in vivo and in vitro, even if few studies have been 

published on the effects of platelet concentrates on endothelial cells. In the work of 

Kakudo and collaborators (Kakudo et al., 2014), the in vitro use of PRP, showed to 

induce the proliferation, migration and tube formation of vascular endothelial cells, 

that are major processes in angiogenes. Other evidences (Bertrand-Duchesne et al., 

2010; Frechette et al., 2005) also demonstrated the mitogenic potential of PRP on 

HUVECs. The reason of this effect is probably because platelet concentrates are rich 

in different growth factors among which there are also powerful angiogenic factors 

such as VEGF and PDGF, which act synergistically, promoting angiogenesis. 

Moreover PRP is thought to participate in activation of the PI3K/AKT pathway. This 

pathway is known to play a key role in numerous cellular functions including 

proliferation, adhesion, migration, invasion, metabolism, survival and angiogenesis 

(Bader et al., 2005). The PI3K/AKT pathway increases VEGF secretion and it also 

regulates angiogenesis by modulating expression of nitric oxide (NO) and 

angiopoietins (ANG1 and ANG2). It has been reported that VEGF up-regulates the 

expression of eNOS in endothelial cells (Bouloumié et al., 1999), playing a key role in 

VEGF-induced angiogenesis and vascular permeability. Our data are in agreement 
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with these evidences, showing a significant increase in both VEGF and eNOS levels, 

after treatment with CGF and Na4SiO4. 

Finally, as regards human osteoblast cells, facs analysis for the quantification of ki-67 

percentage, showed that there were no statistical difference after cell treatment with 

Sodium Orthosilicate and CGF. This was probably due because these cells 

proliferate more quickly than NHDF and HUVEC and so when submitted to facs 

analysis the cells were not in active proliferation. In fact observing the cells at the end 

of the experimental period (72 hours), they were almost to confluence. On the 

contrary, immunohistochemistry for Collagen type 1 and Osteopontin showed that 

immunopositivity progressively increased among the different treatments, reaching 

the highest amount in HOBs treated with CGF and Na4SiO4. These results were in 

agreement with results obtained in the present study and with data present in 

literature. In fact, there are several studies performed both in vitro and in vivo (Kim et 

al.,2013; Shie et al., 2011), which support the beneficial effects of Silicon on bone 

cell growth and proliferation, increasing bone matrix synthesis and deposition and the 

osteoblasts metabolic activity. Kim and colleagues (Kim et al., 2013) analyzed the 

role of Silicon, in form of Sodium Metasilicate, on the MC3T3 murine cell line, 

showing an increase in bone formation and mineralization. An additional study (Zou 

et al., 2009) evaluated the effects of silicate ions treatment on human osteoblast cells 

(HOBs), showing an increase in cellular metabolic activity and proliferation. Studies in 

rats have demonstrated that Silicon at physiological levels improved calcium 

incorporation in bone when compared to rats that are Silicon deficient (Seaborn et 

al., 2002; Rico et al., 2000; Hott et al., 1993).  Keting and colleagues (Keeting et al., 

1992) showed that Zeolite A, a particulate material containing Silicon, stimulates the 

proliferation and differentiation of osteoblast-like cells in culture. Carlisle (Carlisle, 

1980) found that silicon deprivation reduced the collagen content in skull and long 
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bone. The author also reported that silicon stimulated the activity of prolyl 

hydroxylase in frontal bones of chick embryos in vitro (Carlisle 1976, 1972). Refitt 

and collaborators (Refitt et al., 2003) demonstrated that physiological concentrations 

(10–20 μM) of soluble silicon stimulate collagen type I synthesis in human osteoblast-

like cells and promote osteoblast differentiation. These evidences were in agreement 

with the results obtained. In fact immunopositivity for Collagen type 1 progressively 

increased after Sodium Orthosilicate treatment respect to complete medium alone. 

Similar trend was observed for Osteopontin, a prominent bone matrix protein that is 

synthesized by osteoblastic cells but also by several cell types other than bone cells, 

including hypertrophic chondrocytes, kidney proximal tubule epithelial cells, and 

arterial smooth muscle cells. In bone, Osteopontin is involved in bone cell attachment 

to the bone matrix and generates intracellular signals that affect osteoclast motility. 

An in vitro study in rats (Nielsen et al., 2004), showed that circulating osteopontin 

was decreased by both silicon deprivation and ovariectomy. Also in vivo and in vitro 

studies using artificial scaffolds containing Silicon, showed osteoconductive, 

osteoproductive and osteoinductive properties, increasing osteoblasts proliferation 

and differentiation. According to the results obtained in the present work, levels of 

Collagen type 1 and Osteopontin were significantly higher in HOBs treated with CGF 

and Sodium Orthosilicate, suggesting that the stimulatory effect of Silicon is probably 

potentiated by the addition of CGF. In fact there are several studies (He et al., 

2009;Kanno et al., 2005; Ogino et al., 2005) that show a beneficial effect of platelet 

preparations (PRP, PRF and CGF) on osteoblasts growth, proliferation and 

differentiation, being these platelet preparations reach in growth factors. Among 

these growth factors, BMPs, FGFs, VEGFs, PDGFs and IGFs have significant 

impacts on osteoblast behavior, enhancing osteoblasts proliferation (Yun et al., 2012) 

and the expression of bone markers such as Collagen type 1 and Osteopontin 
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(Ramchandani et al., 2015; Li et al., 2012), and thus have been widely utilized for 

bone tissue regeneration  

According to Ogino and colleagues (Ogino et al., 2005), PDGF and TFG-β released 

from PRP, contribute to the proliferation of osteoblastic-like cells. Ling and 

colleagues (He et al., 2009) compared the effect of PRF and PRP on the proliferation 

and differentiation of rats osteoblasts in vitro, showing that PRF released growth 

factors gradually and expressed stronger and more durable effect on proliferation 

and differentiation of rat osteoblasts that PRP. There are also several evidences 

(Qiao et al. 2016; Wang et al., 2016; Takeda et al., 2015) which suggest a beneficial 

role of CGF in bone regeneration. It is used also in combination with bioactive 

materials, such as beta Tricalcium Phosphate (β-TCP) and Bio-Oss (Wang et al., 

2016) improving osteogenesis and so promoting new bone formation.  

 

 

 

Overall the findings of the present study suggest that in vitro treatment with CGF and 

Sodium Orthosilicate seems to be promised in promoting cell growth and proliferation 

and so in tissue regeneration. On the basis of these results, animal studies should be 

performed to evaluate the regenerative capacity of CGF and Sodium Orthosilicate 

also in vivo. 
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