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Abstract. Let N ≥ 2, a > 0 and 0 < b ≤ N . Our aim is to clarify the influence of the
constraint Sa,b ∶= { u ∈ W 1,N(RN) ∣ ∥∇u∥aN + ∥u∥bN = 1 } on concentration phenomena
of (spherically symmetric and non-increasing) maximizing sequences for the Trudinger-
Moser supremum

dN(a, b) ∶= sup
u∈Sa,b

∫
RN

φN( αN ∣u∣
N

N−1 )dx

where αN is the sharp exponent of Moser, i.e. αN ∶= Nω1/(N−1)
N−1 and ωN−1 is the sur-

face measure of the (N − 1)-dimensional unit sphere in RN . We obtain a vanishing-
concentration-compactness alternative showing that maximizing sequences for dN(a, b)
cannot concentrate either when b ≠ N or when b = N and a > 0 is sufficiently small.
From this alternative, we deduce the attainability of dN(a, b) for special values of the
parameters a and b.
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1. Introduction

Let a, b > 0 and let us denote by dN,α(a, b) the supremum corresponding to the Trudinger-

Moser inequality in the whole space RN , N ≥ 2, with exponent α > 0 and constraint

∥∇u∥aN + ∥u∥bN = 1 ∀u ∈W 1,N
(RN) (1.1)
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More precisely,

dN,α(a, b) ∶= sup
u∈W 1,N (RN ), ∥∇u∥aN+∥u∥

b
N=1
∫
RN

φN( α∣u∣
N
N−1 )dx (1.2)

where α > 0 and

φN(t) ∶= et −
N−2

∑
k=0

tk

k!
∀t ≥ 0

When a = b = N , we set
dN,α ∶= dN,α(N,N)

and the above supremum dN,α corresponds to the classical Trudinger-Moser inequality in

RN . It is well known that
dN,αN < +∞ (1.3)

where αN ∶= Nω
1/(N−1)
N−1 and ωN−1 is the surface measure of the (N − 1)-dimensional unit

sphere in RN . Moreover, the exponent αN is sharp in the sense that

dN,α = +∞ ∀α > αN

In the 2-dimensional case, the study of the attainability of the supremum d2,α is due to
B. Ruf [21] and M. Ishiwata [13]. Roughly speaking, from the delicate analysis carried out
in [21] and [13], we can deduce that, given a (spherically symmetric and non-increasing)
maximizing sequence {uj}j ⊂W

1,2(R2) for d2,α with 0 < α ≤ αN , the following alternative

occurs: either the weak limit u in W 1,2(R2) of the maximizing sequence {uj}j is non-
trivial (compactness) and it is a maximizer for d2,α or u = 0. In the latter case, the loss of
compactness can be caused by

● either vanishing phenomena, i.e.

lim
j→+∞

∫
R2

∣∇uj ∣
2 dx = 0 and lim

j→+∞
∫
R2

∣uj ∣
2 dx = 1

● or concentration phenomena, i.e.

lim
j→+∞

∫
R2

∣∇uj ∣
2 dx = 1 , lim

j→+∞
∫
R2

∣uj ∣
2 dx = 0 (1.4)

and

lim
j→+∞

∫
R2 ∖BR

∣∇uj ∣
2 dx = 0 for any fixed R > 0 (1.5)

The proper understanding of the above alternative was a priori not obvious. However, the
most valuable results obtained in [21] and [13] cannot be summarized in this way and are
clearly more involved. In the critical case α = α2 = 4π, as showed in [13], it is possible
to rule out vanishing behaviors of maximizing sequences for d2,4π and the most hard and
inspiring part of the result in [21] is to exclude concentration phenomena. In particular

Theorem A ([21]). In the 2-dimensional case, the level of normalized concentrating se-
quences for the Trudinger-Moser functional is exactly eπ. More precisely,

sup { lim
j→+∞

∫
R2

(e4πu2j − 1)dx ∣ {uj}j is a normalized concentrating sequence } = eπ
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where a normalized concentrating sequence is a (spherically symmetric and non-increasing)
sequence {uj}j ∈W

1,2(R2) such that ∥∇uj∥
2
2 + ∥uj∥

2
2 = 1 and satisfying (1.4) and (1.5).

In the subcritical case 0 < α < α2 = 4π, concentration cannot occur, due to the fact that
one can always gain some Lp-uniform integrability with p > 1, and loss of compactness can
be caused only by the failure of the compact embedding of W 1,2(R2) in L2(R2), i.e. by
the fact that the embedding

W 1,2
(R2

) ↪ L2
(R2

)

is continuous but not compact. Therefore vanishing phenomena prevail and, as enlightened
in [13], provoke the non-attainability of d2,α when α > 0 is sufficiently small.

Theorem B ([13], Theorem 1.2). In the 2-dimensional case, if α > 0 is sufficiently small
then the Trudinger-Moser supremum d2,α is not attained.

Concerning the higher dimensional case N ≥ 3, the study of the attainability of dN,αN is
due to Y. Li and B. Ruf [18]. Even if, from [18], one can deduce that no loss of compactness
of maximizing sequences occurs, a very careful blow-up analysis, as developed in [18], is
needed to prove that dN,αN is attained.

Differently from the 2-dimensional case and due to the method of proof adopted in
[18] which is based on blow-up analysis, one cannot deduce from [18] a precise estimate
of the level of (spherically symmetric and non-increasing) concentrating sequences for the
Trudinger-Moser functional in higher dimensions N ≥ 3. This problem is heavily non-trivial
and still open.

In contrast (at least apparently) with the 2-dimensional case, in the subcritical case
0 < α < αN and when N ≥ 3, the supremum dN,α is always attained and also vanishing
phenomena do not play any role. Actually, even in the higher dimensional case N ≥ 3,
the attainability of dN,α(a, b) with (a, b) ≠ (N,N) heavily depends on the value of the
exponent 0 < α < αN , as showed by M. Ishiwata and H. Wadade in [14] (see also [15] and
Remark 1.2). From [14], we can deduce that the constraint (1.1) has an effect on vanishing
phenomena. Then one may wonder

How does the constraint (1.1) influence concentration phenomena?

In a very recent paper, N. Lam, G. Lu and L. Zhang [17] proved that, when dN,αN (a, b) <
+∞, the exponent αN is sharp for the corresponding Trudinger-Moser inequality and it is
not affected by the values of a and b

Theorem C ([17], Theorem 1.2). Let N ≥ 2 and a, b > 0. Then dN,αN (a, b) < +∞ if and
only if b ≤ N . Moreover, if 0 < b ≤ N then the exponent αN is sharp in the sense that

dN,α(a, b) = +∞ ∀α > αN

Remark 1.1. If a > 0 and b > N then it is not difficult to see that for any 0 < α < αN there
exists a constant Cα > 0 such that

sup
u∈W 1,N (RN ), ∥∇u∥aN+∥u∥

b
N=1
∫
RN

φN( α∣u∣
N
N−1 )dx ≤ Cα (1.6)
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and, summarizing, we have

a > 0 and b > N ⇒ dN,α(a, b)

⎧⎪⎪
⎨
⎪⎪⎩

≤ Cα if 0 < α < αN

= +∞ if α ≥ αN

Therefore, when a > 0 and b > N , we have a family of subcritical Trudinger-Moser type
inequalities for which the exponent αN is not admissible, as in the case of Adachi-Tanaka
type inequalities, see [1].

Our aim is to clarify the influence of the constraint (1.1) on concentration phenomena
of (spherically symmetric and non-increasing) maximizing sequences for the corresponding
Trudinger-Moser inequality. Since when a > 0 and b > N , the range of the exponent α
for the validity of (1.6) is an open interval, i.e. α ∈ (0, αN), it is not difficult to exclude
concentration behaviors of maximizing sequences.

For this reason, from now on we will just consider the supremum dN,αN (a, b), with
N ≥ 2, when a > 0 and 0 < b ≤ N and, to simplify notations, we will denote by dN(a, b) the
Trudinger-Moser supremum dN,α(a, b) defined by (1.2) with exponent α = αN , i.e.

dN(a, b) ∶= dN,αN (a, b) (1.7)

Definition 1.1. Let {uj}j ⊂ W
1,N(RN) be a spherically symmetric and non-increasing

sequence and assume that each uj satisfies the constraint (1.1), i.e.

∥∇uj∥
a
N + ∥uj∥

b
N = 1 ∀j ≥ 1

(I) We say that {uj}j is a normalized vanishing sequence if

lim
j→+∞

∥∇uj∥N = 0 and lim
j→+∞

∥uj∥N = 1 (1.8)

(II) We say that {uj}j is a normalized concentrating sequence if

lim
j→+∞

∥∇uj∥N = 1 , lim
j→+∞

∥uj∥N = 0

and

lim
j→+∞

∫
RN ∖BR

∣∇uj ∣
N dx = 0 for any fixed R > 0

Our main result is a vanishing-concentration-compactness alternative for normalized
(spherically symmetric and non-increasing) sequences in W 1,N(RN), that we will state in
Section 2 (see Lemma 2.2). In particular, this alternative entails the following precise
estimates of the energy level of normalized vanishing and concentrating sequences.

Theorem 1.1. Let N ≥ 2, a > 0 and 0 < b ≤ N . Then any normalized vanishing sequence
{uj}j ⊂W

1,N(RN) satisfies

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!
(1.9)
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If we assume in addition that b ≠ N , i.e. a > 0 and 0 < b < N , then any normalized
concentrating sequence {uj}j ⊂W

1,N(RN) satisfies

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

We call the attention to the fact that, when a > 0 and 0 < b < N , the energy level of nor-
malized concentrating sequences is zero, see also Remark 2.4. Therefore, the corresponding
problem of the attainability of the Trudinger-Moser supremum dN(a, b), with this range
of the parameters a and b defining the constraint (1.1), becomes much easier: if a > 0 and
0 < b < N then maximizing sequences for dN(a, b) cannot concentrate. In other words,
concentration phenomena may occur only when b = N , while when

a > 0 and 0 < b < N ,

if we restrict our attention to maximizing sequences for dN(a, b) then the vanishing-
concentration-compactness alternative expressed by Lemma 2.2 reduces to a vanishing-
compactness alternative, see Section 6 and more precisely Lemma 6.2.

Exploiting Lemma 6.2, and in particular the energy level of vanishing sequences (1.9),
we will prove the following attainability result

Theorem 1.2. Let N ≥ 2, a > N
N−1 and 0 < b < N be fixed. Then the Trudinger-Moser

supremum dN(a, b) defined by (1.7) is attained.

Note that, the additional condition

a >
N

N − 1

is meant to exclude possible vanishing behaviors of maximizing sequences for dN(a, b), see
Section 7.

Remark 1.2. The case 0 < a ≤ N
N−1 is beyond our aims, since it is significant for vanishing

phenomena, as one can deduce from the interesting analysis carried out in [14]. We also
refer the reader to the new result by M. Ishiwata and H. Wadade [15], where the authors
address explicitly the problem of the attainability of dN,α(γ, γ), with subcritical exponent
0 < α < αN and γ > 0, showing that vanishing phenomena may prevent the subcritical
supremum dN,α(γ, γ) to be attained.

2. A Vanishing-Concentration-Compactness alternative

In our analysis, the following improved version of the Adachi-Tanaka inequality [1] will
be crucial

Theorem 2.1 ([6] and [17]). Let N ≥ 2. Then there exists a constant CN > 0 such that for
any γ ∈ (0,1) we have

∫
RN

φN( αN γ ∣u∣
N
N−1 )dx ≤

CN
1 − γN−1

∥u∥NN ∀u ∈W 1,N
(RN) with ∥∇u∥N ≤ 1 (2.1)
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We recall that (2.1), in the 2-dimensional case, was deduced in [6, Theorem 1.2] as a
direct consequence of the critical Trudinger-Moser inequality in R2, i.e. (1.3) with N = 2.
N. Lam, G. Lu and L. Zhang in [17, Theorem 1.1] obtained the generalization to the higher
dimensional case N ≥ 3, without assuming a priori the validity of (1.3).

Remark 2.1. In this framework, it is important to mention also a Lions-type result [12,

Theorem 1.1] in the whole space RN . This result tells us that, if a sequence {uj}j ⊂

W 1,N(RN), satisfying the constraint (1.1) with a = b = N , i.e.

∥∇uj∥
N
N + ∥uj∥

N
N = 1 ∀j ≥ 1 ,

weakly converges to a non-trivial function u ≠ 0 then an inequality of Trudinger-Moser
type holds along the sequence with an exponent larger than αN . More precisely,

sup
j
∫
RN

φN( αNp ∣uj ∣
N
N−1 )dx < +∞ for any 0 < p < [ 1 − (∥∇u∥NN + ∥u∥NN) ]

− 1
N−1 (2.2)

The scale invariant inequality (2.1) implies only a weaker version of (2.2) but it is more
flexible to treat the case of normalized sequences with respect to the constraint (1.1).
Moreover, inequality (2.1) will enable us to describe the effect of the constraint (1.1) on
concentration phenomena.

Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. We begin considering a (spherically symmet-

ric and non-increasing) maximizing sequence {uj}j ⊂ W
1,N(RN) for the Trudinger-Moser

supremum dN(a, b) defined by (1.7), i.e. uj ≥ 0 a.e. in RN for any j ≥ 1,

∥∇uj∥
a
N + ∥uj∥

b
N = 1 ∀j ≥ 1

and

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = dN(a, b)

Remark 2.2. By Schwarz symmetrization, it is well know that given a maximizing sequence
{uj}j ⊂ W 1,N(RN) for dN(a, b), one may always assume that each uj is non-negative,
spherically symmetric and non-increasing with respect to the radial variable.

We will set θj ∶= ∥uj∥
b
N ∈ (0,1), so that ∥∇uj∥

a
N = 1−θj . Since {θj}j ∈ (0,1), without loss

of generality, we may assume

lim
j→+∞

θj = θ ∈ [0,1]

and, it becomes natural to distinguish three cases according to θ = 1, θ = 0 and θ ∈

(0,1). Intuitively, in terms of the maximizing sequence {uj}j for dN(a, b), this suggests
the following alternative:

(I) (vanishing) if θ = 1 then {uj}j is a vanishing maximizing sequence for dN(a, b);

(II) (concentration) if θ = 0 then {uj}j is a concentrating maximizing sequence for
dN(a, b);
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(III) (compactness) If θ ∈ (0,1) then

lim
j→+∞

∥∇uj∥N = (1 − θ)
1
a ∈ (0,1) and lim

j→+∞
∥uj∥N = θ

1
b ∈ (0,1)

and {uj}j weakly converges in W 1,N(RN) to a maximizer of dN(a, b). In other
words, dN(a, b) is attained.

In fact, in Section 6, we will show that this intuition can be derived from the following
vanishing-concentration-compactness alternative

Lemma 2.2. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. We consider a (spherically symmetric

and non-increasing) sequence {uj}j ⊂W
1,N(RN) satisfying the constraint (1.1), i.e.

∥∇uj∥
a
N + ∥uj∥

b
N = 1 ∀j ≥ 1

and we assume that uj ⇀ u in W 1,N(RN).
Then

(I) either {uj}j is a normalized vanishing sequence and

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

More precisely,

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!

(II) or {uj}j is such that

lim
j→+∞

∥∇uj∥N = 1 and lim
j→+∞

∥uj∥N = 0

In this case there is a striking difference between the range 0 < b < N and b = N . If
0 < b < N , independently of a > 0, we have

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

While, if b = N
● either {uj}j is a normalized concentrating sequence and

lim
j→+∞

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

● or

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

(III) Finally, if both (I) and (II) do not occur then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx +

αN−1
N

(N − 1)!
( θ

N
b − ∥u∥NN )

where, up to subsequences,

θ
N
b ∶= lim

j→+∞
∥uj∥

N
N
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In particular, if uj → u in LN(RN) then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx

It is important to recall that, in the pioneering work [19], P.-L. Lions developed a version of
his Concentration-Compactness Principle for the limiting case of the Sobolev embedding
theorem, i.e. for the Trudinger-Moser case. The result of P.-L. Lions concerns bounded
domains and has been sharpened by R. C̆erný, A. Cianchi and S. Hencl [8]. The approach
introduced in [8] is different from Lions’ technique and yields to deal, not only with func-
tions vanishing on the boundary but, with functions with unrestricted boundary values on
a fixed bounded domain. The case of unbounded domains has already been considered in
[3], [12] (see Remark 2.1) and [7]. L. Battaglia and G. Mancini in [3] focused their attention

to the 2-dimensional case and in particular to the planar strip R×(−1,1) ⊂ R2. R. C̆erný in
[7] obtained a version of the Concetration-Compactness Principle for the Trudinger-Moser

functional on the whole space RN , i.e.

u ∈W 1,N
(RN) ↦ ∫

RN
φN( αN ∣u∣

N
N−1 )dx

with respect to the constraint

SM ∶= { u ∈W 1,N
(RN) ∣ ∥∇u∥N ≤ 1 and ∥u∥N ≤M } , M > 0 ,

which is different from (1.1).
We mention that Lions’ Concentration-Compactness Principle [19] inspired Adimurthi

and O. Druet [2] to study a valuable improvement of the Trudinger-Moser inequality on
bounded domains of R2. The improved inequality by Adimurthi and O. Druet [2] has been
extended to the higher dimensional case by Y. Yang [23, 24]. Related partial results in the

whole space RN have been approached in [9] and [10]. A new interpretation and a further
generalization of [2] has been introduced by C. Tintarev [22], see also Y. Yang [25] for a
study of the corresponding problem of attainability.

Remark 2.3. Definition 1.1 of vanishing sequences is apparently different from the notion of
vanishing introduced by M. Ishiwata [13, Definition 2.1]. Recall that, a (spherically sym-

metric and non-increasing) sequence {uj}j ⊂W
1,N(RN) is vanishing according to Ishiwata

[13] if each uj satisfies the constraint (1.1) and

lim
R→+∞

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 (2.3)

Nevertheless, as a consequence of (I) of Lemma 2.2, condition (1.8) implies (2.3). In
other words, any normalized vanishing sequence is also a vanishing sequence according to
Ishiwata.

Let {uj}j ⊂W
1,N(RN) be a (spherically symmetric and non-increasing) sequence satis-

fying the constraint (1.1) and suppose

uj ⇀ u in W 1,N
(RN)
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As mentioned above, if we set θj ∶= ∥uj∥
b
N ∈ (0,1), so that ∥∇uj∥

a
N = 1 − θj , then we may

assume, without loss of generality,

lim
j→+∞

θj = θ ∈ [0,1] (2.4)

In the next Sections, we will prove Lemma 2.2 through the following steps:

● if θ = 1 then (I) occurs (see Section 3);

● if θ = 0 then (II) holds (see Section 4). More precisely in this case, either

lim
j→+∞

∫
RN ∖BR

∣∇uj ∣
N dx = 0 for any fixed R > 0

or

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0 (2.5)

In particular, if 0 < b < N then (2.5) holds also for normalized concentrating se-
quences.

● Finally, in Section 4, we will show that if θ ∈ (0,1) then we have the convergence
result expressed by (III), but we do not know a priori whether or not uj → u in

LN(RN).

Remark 2.4. Looking at case (I) and case (II) of Lemma 2.2, we can say that the constraint
(1.1) has not effects on the energy level of normalized vanishing sequences while, in contrast,
the energy level corresponding to normalized concentrating sequences is heavily influenced
by the constraint (1.1). On one hand, in view of (I) of Lemma 2.2, the level of normalized
vanishing sequences is always

αN−1
N

(N − 1)!

independently of the parameters a > 0 and 0 < b ≤ N defining the constraint (1.1). On
the other hand, taking into consideration (II) of Lemma 2.2, if 0 < b < N then the level of
normalized concentrating sequences is zero, independently of a > 0. The same is not true
when b = N , at least in general. This cannot be deduced from (II) of Lemma 2.2 but, as
mentioned in the Introduction (see Theorem A), it is well known that in the 2-dimensional
case and when a = b = 2 then

sup { lim
j→+∞

∫
R2

(e4πu2j − 1)dx ∣ {uj}j is a normalized concentrating sequence } = eπ

It is important to point out that, even if the value of the parameters a > 0 and 0 < b ≤ N
does not influence the energy level of normalized vanishing sequences, we cannot deduce
that the constraint (1.1) has not effects on vanishing phenomena.

3. Alternative (I) – Vanishing

In this Section, we consider the case of normalized vanishing sequences, i.e. (spherically

symmetric and non-increasing) sequences {uj}j ⊂ W
1,N(RN) such that each uj satisfies

the constraint (1.1), namely

∥∇uj∥
a
N + ∥uj∥

b
N = 1 ∀j ≥ 1 ,
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and

lim
j→+∞

∥∇uj∥N = 0 and lim
j→+∞

∥uj∥N = 1

First, we will show that the energy of any normalized vanishing sequence {uj}j ⊂

W 1,N(RN) can be localized in the exterior of any fixed ball of radius R > 0; more pre-
cisely,

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

To this aim, we will use the classical Trudinger-Moser inequality on balls BR ⊂ RN of radius
R > 0 and centered at the origin, i.e.

Theorem 3.1 ([20]). There exists a constant CN > 0 such that for any R > 0

∫
BR

φN( αN ∣u∣
N
N−1 )dx ≤ CN R

N
∥∇u∥NN ∀u ∈W 1,N

0 (BR) ∖ {0} with ∥∇u∥N ≤ 1 (3.1)

We point out that the local estimate expressed by (3.1) is not the original version of
Moser’s inequality [20], but it can be deduced directly from the famous inequality in [20]
with the aid of the rescaled function ũ ∶= u/∥∇u∥N , see for instance [26, Lemma 2.1].

Lemma 3.2. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. If {uj}j ⊂W
1,N(RN) is a (spherically

symmetric and non-increasing) sequence satisfying, for some θ > 0,

lim
j→+∞

∥∇uj∥N = 0 and sup
j

∥uj∥N ≤ θ

then

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

Proof. Let R > 0 be arbitrarily fixed. In order to apply Theorem 3.1, the idea is to
reconstruct zero-Dirichlet boundary conditions on the boundary of BR letting

wj ∶= uj − uj(R) on BR

By construction wj ∈W
1,N
0 (BR) and

∥∇wj∥LN (BR) = ∥∇uj∥LN (BR) → 0 as j → +∞

Note that, for any fixed α > 0, if we set

w̃j ∶= (
α

αN
)

N−1
N
wj on BR

then there exists j ≥ 1 such that

∥∇w̃j∥
N
N = (

α

αN
)
N−1

∥∇wj∥
N
N ≤ 1 ∀j ≥ j

Therefore in view of Lemma 3.1, for any fixed α > 0, there exists j ≥ 1 such that

∫
BR

φN( αw
N
N−1
j )dx = ∫

BR
φN( αN w̃

N
N−1
j )dx ≤ CN (

α

αN
)
N−1

RN ∥∇wj∥
N
N ∀j ≥ j (3.2)
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Next, applying the one-dimensional inequality

(1 + x)p ≤ (1 + ε)xp + ( 1 −
1

(1 + ε)1/(p−1)
)

1−p

x ≥ 0, p > 1, ε > 0 (3.3)

we get

αN ∣uj ∣
N
N−1 = αN(wj + uj(R) )

N
N−1 ≤ C1u

N
N−1
j (R) +C2w

N
N−1
j on BR

for some constants C1, C2 > 0 depending on N . We do not need to explicitly write the
value of the constant C2 > 0 and the reason for that is essentially (3.2).

Summarizing,

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx ≤ ∫

BR
φN(C1u

N
N−1
j (R) +C2w

N
N−1
j )dx

and, if we show that

lim
j→+∞

∫
BR
φN(C1u

N
N−1
j (R) +C2w

N
N−1
j )dx

≤ lim
j→+∞

exp(C1u
N
N−1
j (R) ) ∫

BR
φN(C2w

N
N−1
j )dx

(3.4)

then the proof is complete.
On one hand, by means of the following Radial Lemma, which holds for any spherically

symmetric and non-increasing function ϕ ∈W 1,N(RN)

ϕN(∣x∣) ≤
N

ωN−1∣x∣N−1
∥ϕ∥N−1

N ∥∇ϕ∥N whenever ∣x∣ ≠ 0 (3.5)

we may estimate

exp(C1u
N
N−1
j (R) ) ≤ exp(C̃1 θ

∥∇uj∥
1

N−1

N

R
)

On the other hand, by means of (3.2) with α = C2 > 0, we get

∫
BR

φN(C2w
N
N−1
j )dx ≤ C̃N R

N
∥∇wj∥

N
N ∀j ≥ j

Hence,

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx ≤ lim

j→+∞
exp(C1u

N
N−1
j (R) ) ∫

BR
φN(C2w

N
N−1
j )dx

≤ lim
j→+∞

C̃N R
N

∥∇wj∥
N
N exp(C̃1 θ

∥∇uj∥
1

N−1

N

R
) = 0

To complete the proof, it remains to show that (3.4) holds. To this aim, we begin with
an elementary one-dimensional estimate. For any s, t ≥ 0, we have

φN(s + t) = es+t ± es
N−2

∑
k=0

tk

k!
−
N−2

∑
k=0

(s + t)k

k!
≤ esφN(t) + es

N−2

∑
k=1

tk

k!
+ (es − 1)
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In particular, when N = 2,

es+t − 1 = es(et − 1) + (es − 1)

If we set

Aj(2) = 0 and Aj(N) ∶= exp(C1u
N
N−1
j (R) )

N−2

∑
k=1

Ck2
k!
∫
BR

w
N
N−1

k

j dx when N ≥ 3

and

Bj(N) ∶= [ exp(C1u
N
N−1
j (R) ) − 1 ] ∣BR∣

then

∫
BR
φN(C1u

N
N−1
j (R) +C2w

N
N−1
j )dx

≤ exp(C1u
N
N−1
j (R) ) ∫

BR
φN(C2w

N
N−1
j )dx +Aj(N) +Bj(N)

Therefore, it suffices to prove that

lim
j→+∞

Aj(N) = 0 (3.6)

and

lim
j→+∞

Bj(N) = 0 (3.7)

From the Radial Lemma (3.5), we deduce (3.7) and

Aj(N) ≤ exp(C̃1 θ
∥∇uj∥

1
N−1

N

R
)
N−2

∑
k=1

Ck2
k!
∫
BR

w
N
N−1

k

j dx

Moreover, wj ⇀ 0 in W 1,N
0 (BR) and the embedding

W 1,N
0 (BR) ↪ L

N
N−1

k
(BR)

is compact for any 1 ≤ k ≤ N − 2 with N ≥ 3. Hence, also (3.6) holds and the proof is
complete. �

We complete this Section with a precise estimate of the level of vanishing sequences.

Lemma 3.3. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. If {uj}j ⊂W
1,N(RN) is a (spherically

symmetric and non-increasing) sequence satisfying, for some θ > 0,

lim
j→+∞

∥∇uj∥N = 0 and lim
j→+∞

∥uj∥N = θ

then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!
θ
N
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Proof. Since

φN(t) ≥
tN−1

(N − 1)!
∀t ≥ 0

it is easy to see that

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx ≥ lim

j→+∞

αN−1
N

(N − 1)!
∥uj∥

N
N =

αN−1
N

(N − 1)!
θ
N

Therefore, the proof of Lemma 3.3 is complete if we show that

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx ≤

αN−1
N

(N − 1)!
θ
N

To obtain the preceding estimate from above, let us fix R > 0 and let us rewrite

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN ∖BR
+∫

BR
φN( αN ∣uj ∣

N
N−1 )dx

To this aim, it is clear from Lemma 3.2 that, it suffices to show that

lim
j→+∞

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx ≤

αN−1
N

(N − 1)!
θ
N

(3.8)

Using the elementary inequality

φN(t) ≤
tN−1

(N − 1)!
et ∀t ≥ 0 (3.9)

and the Radial Lemma (3.5), we get

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx ≤

αN−1
N

(N − 1)!
∫
RN ∖BR

∣uj ∣
N eαN ∣uj ∣

N
N−1

dx

≤
αN−1
N

(N − 1)!
θ
N

exp(
1

R
N

N
N−1 ∥∇uj∥

1
N−1

N )

which gives (3.8). �

Note that, the case of normalized vanishing sequence is included in Lemma 3.2 and
Lemma 3.3 with θ = 1 and hence

Corollary 3.4. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. If {uj}j ⊂ W 1,N(RN) is a
(spherically symmetric and non-increasing) normalized vanishing sequence then

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

Moreover,

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!
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4. Alternative (II) – Concentration

Let {uj}j ⊂W
1,N(RN) be a (spherically symmetric and non-increasing) sequence satis-

fying the constraint (1.1), i.e.

∥∇uj∥
a
N + ∥uj∥

b
N = 1 ∀j ≥ 1 ,

and

lim
j→+∞

∥∇uj∥N = 1 and lim
j→+∞

∥uj∥N = 0

which is the case of normalized concentrating sequences. In fact, we have

Lemma 4.1. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. If {uj}j ⊂W
1,N(RN) is a (spherically

symmetric and non-increasing) sequence satisfying the constraint (1.1) and

lim
j→+∞

∥∇uj∥N = 1 and lim
j→+∞

∥uj∥N = 0

then

● either {uj}j is a normalized concentrating sequence and

lim
j→+∞

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0 (4.1)

● or

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0 (4.2)

Proof. First, recalling the elementary inequality (3.9) and the Radial Lemma (3.5), we may
estimate for any fixed R > 0

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx ≤

αN−1
N

(N − 1)!
∫
RN ∖BR

∣uj ∣e
αN ∣uj ∣

N
N−1

dx

≤
αN−1
N

(N − 1)!
eC(N)/R ∥uj∥

N
N → 0 as j → +∞

(4.3)

and this gives (4.1).
Next, we consider the case when the sequence {uj}j is not a normalized concentrating

sequence. More precisely, we assume the existence of R > 0, δ ∈ (0,1) and j ≥ 1 such that

∫
RN ∖B

R

∣∇uj ∣
N dx ≥ δ

Under this assumption, if we show that (4.2) holds then the proof is complete. Even if the
arguments are standard, we give a sketch for the convenience of the reader.

Note that, from (4.3), we deduce

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = lim

j→+∞
∫
BR

φN( αN ∣uj ∣
N
N−1 )dx

for any fixed R > 0.



VANISHING-CONCENTRATION-COMPACTNESS ALTERNATIVE 15

To obtain a uniform estimate of the integral on balls of fixed radius 0 < R ≤ R, we argue
as in the proof of Lemma 3.2 and we set

wj ∶= uj − uj(R) ∈W 1,N
0 (BR) ∀j ≥ 1

Applying the one-dimensional inequality (3.3), with p = N
N−1 > and ε = δ

2 > 0, and the
Radial Lemma (3.5), we may estimate

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx ≤ ∫

BR
exp( αNu

N
N−1
j )dx

≤ exp(C(δ)u
N
N−1
j (R) ) ∫

BR
exp( αN(1 +

δ

2
)w

N
N−1
j )dx

≤ exp(C(δ,N)
1

R
∥uj∥N ) ∫

BR
exp( αN(1 +

δ

2
)w

N
N−1
j )dx

If 0 < R ≤ R then

∥∇wj∥
N
LN (BR)

= ∥∇wj∥
N
LN (BR)

≤ ∥∇uj∥
N
LN (B

R
)
= ( 1 − ∥uj∥

b
N )

N
a − ∥∇uj∥

N
LN (RN ∖B

R
)

≤ ( 1 − ∥uj∥
b
N )

N
a − δ

where we also used the constraint (1.1), and

lim
j→+∞

∥∇wj∥
N
LN (BR)

≤ 1 − δ

Therefore, there exists j ≥ 1 such that

∥∇wj∥
N
LN (BR)

≤ 1 −
δ

2
∀j ≥ j

and, from the classical Trudinger-Moser inequality on bounded domains, we deduce

sup
j≥j
∫
BR

exp( αN(1 +
δ

2
)w

N
N−1
j )dx ≤ sup

v∈W 1,N
0 (BR),∥∇v∥N=1

∫
BR

exp( αN ∣v∣
N
N−1 )dx ≤ CNR

N

In conclusion, for any fixed 0 < R ≤ R,

lim
j→+∞

∫
BR

φN( αN ∣uj ∣
N
N−1 )dx ≤ lim

j→+∞
CNR

N exp(C(δ,N)
1

R
∥uj∥N ) = CNR

N

and

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx ≤ CNR

N for any fixed 0 < R ≤ R

from which we deduce (4.2), letting R → 0. �

We will see that the alternative expressed by Lemma 4.1 is meaningful only when b = N .
In fact, we are going to show that if 0 < b < N then the level of normalized concentrat-
ing sequences is zero; more precisely, if 0 < b < N then (4.2) holds also for normalized
concentrating sequences.
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Let {uj}j ⊂W
1,N(RN) be a (spherically symmetric and non-increasing) sequence satis-

fying the assumptions of Lemma 4.1. If we set θj ∶= ∥uj∥
b
N ∈ (0,1) then, by assumptions,

lim
j→+∞

θj = 0

and ∥∇uj∥
a
N = 1−θj . In order to apply the improved version of the Adachi-Tanaka inequality

(2.1), it turns out to be convenient to introduce the normalized sequence with respect to
the Dirichlet norm,

vj ∶=
uj

∥∇uj∥N

so that

∫
RN

φN( αN (1 − θj)
N
N−1

1
a ∣vj ∣

N
N−1 )dx ≤

CN

1 − (1 − θj)
N
a

∥vj∥
N
N =

CN

1 − (1 − θj)
N
a

θ
N
b
j

(1 − θj)
N
a

Note that

lim
j→+∞

CN

1 − (1 − θj)
N
a

θ
N
b
j

(1 − θj)
N
a

= lim
j→+∞

aCN
N

θ
N
b
−1

j

Hence,

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = lim

j→+∞
∫
RN

φN( αN (1 − θj)
N
N−1

1
a ∣vj ∣

N
N−1 )dx

≤ lim
j→+∞

aCN
N

θ
N
b
−1

j

(4.4)

In the case 0 < b < N , the above estimate yields

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

Therefore, if b ≠ N we have

Lemma 4.2. Let N ≥ 2, a > 0 and 0 < b < N be fixed. If {uj}j ⊂W
1,N(RN) is a (spherically

symmetric and non-increasing) sequence satisfying the constraint (1.1) and

lim
j→+∞

∥∇uj∥N = 1 and lim
j→+∞

∥uj∥N = 0

then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

Remark 4.1. If b = N then (4.4) is not useful to obtain a precise estimate of the level of
normalized concentrating sequences. However, from (4.4), we can deduce that for any fixed
δ > 0 there exists a = a(δ) > 0 such that if b = N and 0 < a ≤ a then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx < δ
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5. Alternative (III) – Compactness

We will use the following convergence result, which holds for sequences which are neither
vanishing nor concentrating, i.e. in particular θ ≠ 1 and θ ≠ 0, see (2.4).

Lemma 5.1. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. We consider a (spherically

symmetric and non-increasing) sequence {uj}j ⊂W
1,N(RN) satisfying the constraint (1.1)

with θj ∶= ∥uj∥
b
N , so that ∥∇uj∥

a
N = 1−θj. Assume, up to subsequences, uj ⇀ u in W 1,N(RN)

and

lim
j→+∞

θj = θ ∈ (0,1)

Then

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx +

αN−1
N

(N − 1)!
( θ

N
b − ∥u∥NN )

Proof. It is enough to show that

lim
j→+∞

∫
RN

[ φN( αN ∣uj ∣
N
N−1 ) −

αN−1
N

(N − 1)!
∣uj ∣

N
] dx

=∫
RN

[ φN( αN ∣u∣
N
N−1 ) −

αN−1
N

(N − 1)!
∣u∣N ] dx

(5.1)

In view of the improved version of the Adachi-Tanaka inequality (2.1), we will obtain (5.1)
simply by means of Strauss’ Lemma (see [4, Theorem A.I])

Since θ ∈ (0,1), we have also that (1 − θ)
N
N−1

1
a ∈ (0,1) and there exists ε > 0 and j ≥ 1

such that

αN(1 − θ)
N
N−1

1
a ≤ αN(1 − ε) ∀j ≥ j

Let

PN(t) ∶= φN( ∣t∣
N
N−1 ) −

tN

(N − 1)!
and QN(t) ∶= φN( (1 + ε)∣t∣

N
N−1 )

then

lim
∣t∣→+∞

PN(t)

QN(t)
= 0 and lim

t→0

PN(t)

QN(t)
= 0

Next, we introduce the normalized sequence with respect to the Dirichlet norm

vj ∶=
uj

∥∇uj∥N
=

uj

(1 − θj)
1
a

∀j ≥ 1

By construction

∫
RN

QN( α
N−1
N
N uj ) = ∫

RN
QN( α

N−1
N
N (1 − θj)

1
a vj )dx
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Applying the improved version of the Adachi-Tanaka inequality (2.1) to the Dirichlet-
normalized sequence {vj}j , we get for any j ≥ j

∫
RN
QN( α

N−1
N
N (1 − θj)

1
a vj )dx ≤ ∫

RN
φN( αN(1 − ε2

)v
N
N−1
j )dx

≤
CN

1 − (1 − ε2)N−1
∥vj∥

N
N =

CN
1 − (1 − ε2)N−1

θ
N
b
j

(1 − θj)
N
a

Hence,

sup
j
∫
RN

QN( α
N−1
N
N uj )dx ≤

CN
1 − (1 − ε2)N−1

sup
j

θ
N
b
j

(1 − θj)
N
a

< +∞

Recalling that the sequence {uj}j is spherically symmetric, we can apply Strauss’ Lemma
(see [4, Theorem A.I]) obtaining

lim
j→+∞

∫
RN

PN( α
N−1
N
N uj )dx = ∫

RN
PN( α

N−1
N
N u )dx

that is (5.1). �

To complete the proof of Lemma 2.2, in view of the analysis carried out in Section 3
and Section 4, we just need to consider the case for which the assumptions of the above
convergence result are fulfilled. More precisely, we consider a (spherically symmetric and

non-increasing) sequence {uj}j ⊂W
1,N(RN) satisfying the constraint (1.1) and we assume,

up to subsequences, that uj ⇀ u in W 1,N(RN) and

lim
j→+∞

∥uj∥
N
N = θ

N
b ∈ (0,1)

In this case, we can apply Lemma 5.1, to conclude that alternative (III) holds. Moreover,

if uj → u in LN(RN) then

lim
j→+∞

∥uj∥
N
N = ∥u∥NN

and, from Lemma 5.1, we deduce

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx

6. The case of maximizing sequences for the Trudinger-Moser inequality

Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. We begin this Section deducing a useful lower
bound for the Trudinger-Moser supremum dN(a, b) defined by (1.7).

Recalling that

φN(t) ≥
tN−1

(N − 1)!
+
tN

N !
∀t ≥ 0 ,

for any u ∈W 1,N(RN) satisfying the constraint (1.1), i.e.

∥∇u∥aN + ∥u∥bN = 1
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we may estimate

dN(a, b) ≥ ∫
RN

φN( αN ∣u∣
N
N−1 )dx ≥

αN−1
N

(N − 1)!
∥u∥NN +

αNN
N !

∥u∥
N2/(N−1)

N2/(N−1)

=
αN−1
N

(N − 1)!
( ∥u∥NN +

αN
N

∥u∥
N2/(N−1)

N2/(N−1)
)

If we consider the supremum

DN(a, b) ∶= sup
u∈W 1,N (RN ), ∥∇u∥aN+∥u∥

b
N=1

( ∥u∥NN +
αN
N

∥u∥
N2/(N−1)

N2/(N−1)
)

then it is clear that

dN(a, b) ≥
αN−1
N

(N − 1)!
DN(a, b) (6.1)

Remark 6.1. When a = b, we set

DN(γ) ∶=DN(γ, γ) with 0 < γ ≤ N

This is a particular case of the more general maximizing problem considered by M. Ishiwata
and H. Wadade in [14]. As pointed out in [14], the attainability of the supremum dN(γ, γ)
associated with the Trudiger-Moser inequality is closely related to the behavior of DN(γ).
In fact, we can observe that the constant appearing on the right hand side of (6.1)

αN−1
N

(N − 1)!

corresponds to the level of normalized vanishing sequences (see (I) of Lemma 2.2). Intu-
itively, when we look at maximizing sequences for dN(γ, γ) then the behavior of DN(γ)
could be crucial to exclude possible vanishing phenomena. More precisely, if 0 < γ ≤ N is
such that

DN(γ) > 1

then maximing sequences for dN(γ, γ) cannot vanish, i.e. cannot be normalized vanishing
sequences. The careful study developed in [14] shows that both the behavior of DN(γ)
and its attainability are intimately related to the value of γ in the range (0,N].

We mention that the attainability of DN(γ) is not only interesting in the limiting case
of the Sobolev embedding theorem but also in the classical Sobolev case. We refer the
reader to [16], where the authors approach the study of the existence of maximizers for

sup
u∈W 1,p(RN ), ∥∇u∥γp+∥u∥γp=1

( ∥u∥pp + α ∥u∥qq )

with N ≥ 2, 1 < p < N , p < q < Np
N−p and α, γ > 0.

Following the arguments introduced by M. Ishiwata and H. Wadade [14], it is not difficult
to show that
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Lemma 6.1. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. Then

DN(a, b) ≥ 1 (6.2)

and hence, the Trudinger-Moser supremum dN(a, b) defined by (1.7) satisfies

dN(a, b) ≥
αN−1
N

(N − 1)!
(6.3)

Proof. The proof of (6.2) can be deduced arguing exactly as in [14]; for the convenience of
the reader, we briefly sketch it.

As showed in [14, Section 2.2], given any u ∈W 1,N(RN) satisfying the constraint (1.1),
i.e.

∥∇u∥aN + ∥u∥bN = 1

the family of comparison functions wt ∈W
1,N(RN) depending on the parameter t ∈ (0,1)

and defined by

wt(x) ∶=
(1 − t)

1
a

∥∇u∥N
u( λt x ) λt ∶=

(1 − t)
1
a

t
1
b

∥u∥N
∥∇u∥N

(6.4)

still satisfies the constraint (1.1). In fact,

∥∇wt∥N = (1 − t)
1
a

and

∥wt∥N =
(1 − t)

1
a

∥∇u∥N

1

λt
∥u∥N = t

1
b

Therefore, we may estimate

DN(a, b) ≥ ∥wt∥
N
N +

αN
N

∥wt∥
N2/(N−1)

N2/(N−1)
≥ ∥wt∥

N
N = t

N
b ∀t ∈ (0,1) (6.5)

and (6.2) follows. �

Remark 6.2. We mention that (6.3) can also be directly deduced from [17, Theorem 1.2].
In fact, denoting by

ATN(γ) ∶= sup
u∈W 1,N (RN )∖{0}

1

∥u∥NN
∫
RN

φN( αNγ∣u∣
N
N−1 )dx γ ∈ (0,1) ,

N. Lam, G. Lu and L. Zhang in [17] obtained the following more precise version of (2.1)

dN(a, b) = sup
γ∈(0,1)

( 1 − γ
N−1
N

a )
N
b

γN−1
ATN(γ) a > 0, 0 < b ≤ N (6.6)

Now, a simple scaling argument shows that

ATN(γ) = sup
u∈W 1,N (RN ), ∥∇u∥N=∥u∥N=1

∫
RN

φN( αNγ∣u∣
N
N−1 )dx (6.7)

Note that the supremum on the right hand side of the above identity corresponds to the
inequality first studied in [11]. Combining (6.6) with (6.7), it is easy to see that (6.3)
follows.
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Next, we consider a (spherically symmetric and non-increasing) maximizing sequence

{uj}j ⊂W
1,N(RN) for the Trudinger-Moser supremum dN(a, b) defined by (1.7), i.e. uj ≥ 0

a.e. in RN for any j ≥ 1,
∥∇uj∥

a
N + ∥uj∥

b
N = 1 ∀j ≥ 1

and

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = dN(a, b)

Dealing with a maximizing sequence for dN(a, b), the alternative expressed by Lemma 2.2
becomes simpler.

Case (I) – If {uj}j is a vanishing maximizing sequence then

dN(a, b) = lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!

Case (II) – If 0 < b < N then the following conditions

lim
j→+∞

∥∇uj∥N = 1 and lim
j→+∞

∥uj∥N = 0 (6.8)

cannot hold, since otherwise

dN(a, b) = lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = 0

which would contradict Lemma 6.1. While when b = N , if (6.8) holds then {uj}j must be
a concentrating maximizing sequence and

lim
j→+∞

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

Moreover, in the latter case, combining Remark 4.1 with the estimate from below of
dN(a,N) (i.e. Lemma 6.1), we deduce the existence of a > 0 such that if 0 < a < a
and (6.8) holds then

αN−1
N

(N − 1)!
≤ dN(a,N) = lim

j→+∞
∫
RN

φN( αN ∣uj ∣
N
N−1 )dx <

αN−1
N

(N − 1)!

which is a contradiction. Consequently, if b = N and a > 0 is sufficiently small then
concentration cannot occur.

Case (III) – Finally, let θj ∶= ∥uj∥
b
N ∈ (0,1) and let us consider a subsequence still

denoted by {θj}j such that

lim
j→+∞

θj = θ

Since we already discussed the cases θ = 1 and θ = 0, without loss of generality, we may
assume θ ∈ (0,1). We may also assume, up to subsequences,

uj ⇀ u in W 1,N
(RN)

From Lemma 2.2, we deduce that

lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx +

αN−1
N

(N − 1)!
( θ

N
b − ∥u∥NN ) (6.9)
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In particular, this implies that u ≠ 0. In fact, if not then

dN(a, b) = lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!
θ
N
b <

αN−1
N

(N − 1)!

contradicting Lemma 6.1. Therefore, we can define

τ ∶=
θ

1
b

∥u∥N
=

1

∥u∥N
lim
j→+∞

∥uj∥N ≥ 1

Note that, in view of Brezis-Lieb Lemma [5], if we show that τ = 1 then we can conclude

that uj → u in LN(RN) and

dN(a, b) = lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx = ∫

RN
φN( αN ∣u∣

N
N−1 )dx

from which we deduce that u is a maximizer for dN(a, b).
Let

uτ(x) ∶= u(
x

τ
) x ∈ RN

so that ∥∇uτ∥N = ∥∇u∥N , ∥uτ∥N = τ∥u∥N = θ
1
b and

∥∇uτ∥
a
N + ∥uτ∥

b
N = ∥∇u∥aN + θ ≤ lim

j→+∞
( ∥∇uj∥

a
N + ∥uj∥

b
N ) = 1

Therefore, we may estimate

dN(a, b) ≥ ∫
RN

φN( αN ∣uτ ∣
N
N−1 )dx = τN ∫

RN
φN( αN ∣u∣

N
N−1 )dx

= ∫
RN

φN( αN ∣u∣
N
N−1 )dx + (τN − 1)∫

RN
φN( αN ∣u∣

N
N−1 )dx

and, using (6.9), we get

dN(a, b) ≥ dN(a, b) −
αN−1
N

(N − 1)!
( θ

N
b − ∥u∥NN ) + (τN − 1)∫

RN
φN( αN ∣u∣

N
N−1 )dx

= dN(a, b) −
αN−1
N

(N − 1)!
∥u∥NN(τN − 1) + (τN − 1)∫

RN
φN( αN ∣u∣

N
N−1 )dx

= dN(a, b) + (τN − 1)∫
RN

φN+1( αN ∣u∣
N
N−1 )dx

(6.10)

Since u ≠ 0, we have

∫
RN

φN+1( αN ∣u∣
N
N−1 )dx = ∫

RN
( eαN ∣u∣

N
N−1

−
N−1

∑
k=0

αkN
k!

∣u∣
Nk
N−1 )dx > 0

Consequently, τ = 1. In fact, if not then τ > 1 and (6.10) gives a contradiction.
Summarizing,
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Lemma 6.2. Let N ≥ 2, a > 0 and 0 < b ≤ N be fixed. We consider a (spherically

symmetric and non-increasing) maximizing sequence {uj}j ⊂W
1,N(RN) for the Trudinger-

Moser supremum defined by (1.7) and we assume that uj ⇀ u in W 1,N(RN).
If b = N then one of the following alternatives occurs:

(I) either {uj}j is a vanishing maximizing sequence and

dN(a, b) = lim
j→+∞

∫
RN

φN( αN ∣uj ∣
N
N−1 )dx =

αN−1
N

(N − 1)!

(II) or {uj}j is a concentrating maximizing sequence and

lim
j→+∞

∫
RN ∖BR

φN( αN ∣uj ∣
N
N−1 )dx = 0 for any fixed R > 0

(III) or the weak limit u is non-trivial and it is a maximizer for dN(a, b).

If either
0 < b < N and a > 0

or
b = N and 0 < a << 1

then maximizing sequences for dN(a, b) cannot concentrate and we have just two alterna-
tives: either vanishing (I) or attainability (III) occurs.

When either
0 < b < N and a > 0

or
b = N and 0 < a << 1

since concentration cannot occur, the lack of compactness of maximizing sequences for
dN(a, b) can be only caused by vanishing phenomena. This possible lack of compactness
may prevent the supremum dN(a, b) to be attained. In this respect, the analysis carried
out in [14] plays a crucial role, see also [15] and Remark 6.1.

7. Proof of Theorem 1.2 – Attainability of the supremum

Let N ≥ 2, a > N
N−1 and 0 < b < N . To prove the attainability of the Trudinger-Moser

supremum dN(a, b) defined by (1.7), we will follow the arguments introduced by M. Ishiwata
and H. Wadade in [14] (see also [15]). In fact, since

0 < b < N

Lemma 6.2 expresses a vanishing-compactness alternative for (spherically symmetric and
non-increasing) maximizing sequences of dN(a, b). More precisely, if 0 < b < N and

{uj}j ⊂ W
1,N(RN) is a (spherically symmetric and non-increasing) maximizing sequence

for dN(a, b) then {uj}j cannot concentrate and if it would be possible to exclude vanishing
phenomena then dN(a, b) would be attained. In this respect, the restriction to the case

a >
N

N − 1
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plays a crucial role. If a > N
N−1 then it is possible to improve the lower bound of dN(a, b)

expressed by Lemma 6.1 showing that (I) of Lemma 6.2 cannot occur.

Proposition 7.1. Let N ≥ 2, a > N
N−1 and 0 < b ≤ N . Then the Trudinger-Moser supremum

dN(a, b) defined by (1.7) satisfies

dN(a, b) >
αN−1
N

(N − 1)!
(7.1)

If in addition b ≠ N then dN(a, b) is attained.

Proof. As already mentioned, in view of Lemma 6.2, if 0 < b < N then the validity of
(7.1) would enable to conclude the attainability of dN(a, b). Therefore, we just need to
prove (7.1) and for this, we have to restrict the range of the parameter a > 0 defining the
constraint (1.1).

Following [14, Section 2.2], we consider a suitable family of comparison functions {wt}t∈(0,1) ⊂

W 1,N(RN), generated by a fixed function u ∈W 1,N(RN) satisfying the constraint (1.1). We
used the same argument in the proof of Lemma 6.1 and we refer to (6.4) for the definition
of wt with t ∈ (0,1).

Note that

∥wt∥
p
p = t

N
b (1 − t)

p−N
a

∥u∥pp

∥∇u∥p−NN ∥u∥NN
∀p ≥ N

Let

B(u) ∶=
∥u∥

N2/(N−1)

N2/(N−1)

∥∇u∥
N
N−1

N ∥u∥NN

> 0

and

f(t) = fN,a,b(t) ∶= ∥wt∥
N
N +

αN
N

∥wt∥
N2/(N−1)

N2/(N−1)
= t

N
b ( 1 +

αN
N

(1 − t)
N
N−1

1
a B(u) )

Combining (6.1) with (6.5), we get

dN(a, b) ≥
αN−1
N

(N − 1)!
DN(a, b) ≥

αN−1
N

(N − 1)!
f(t) ∀t ∈ (0,1)

If
f(t) > 1 for some t ∈ (0,1) (7.2)

then it would be possible to conclude that (7.1) holds. Note that f(1) = 1, therefore (7.2)
would follow if

f ′(t) < 0 for some t ∈ (0,1) sufficiently close to 1

We can compute

f ′(t) =
N

b
t
N
b
−1

( 1 +
αN
N

(1 − t)
N
N−1

1
a B(u) ) −

αN
N − 1

1

a
t
N
b (1 − t)

N
N−1

1
a
−1 B(u)

and, if
N

N − 1

1

a
− 1 < 0 , i.e. a >

N

N − 1
,
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we have

lim
t→1−

f ′(t) = −∞

�
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Universidade Federal da Paráıba, 58051-900, João Pessoa, PB, Brazil
E-mail address: jmbo@pq.cnpq.br
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