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Abstract 

 

Information on species thermal physiology is extremely important to understand species responses 

to environmental heterogeneity and changes. Thermography is an emerging technology that allows 

high resolution and accurate measurement of body temperature, but it has not been used to study 

thermal physiology of amphibians. Hydromantes terrestrial salamanders are of high conservation 

value for European fauna and strongly dependent on ambient temperature for their activity and gas 

exchanges, but information on their body temperature is extremely limited. In this study we tested if 

Hydromantes salamanders are thermoconform, we assessed whether there are temperature 

differences among body regions, and evaluated the time required to reach the thermal equilibrium. 

During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and H. 

italicus) using infrared thermocamera. We photographed salamanders at the moment in which we 

found them and 2, 3, 4, 5 and 15 minutes after having kept them in the hands. Body temperature 

was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8 

minutes, the time required to reach equilibrium was longer in individuals with large body size. We 

detected small temperature differences between body parts, the head being slightly warmer than the 

body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with 

the environment, thus microhabitat measurement allows obtaining accurate information on their 

tolerance limits. 
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1. Introduction 

 

In animals, body temperature is a fundamental trait linked to the execution of all physiological 

activities, such as locomotion, immune resistance, foraging and growth (Angilletta Jr. et al., 2002). 

Each species has its own optimal temperature, which is the best temperature at which the organism 

could realize its functions (Raske et al., 2012). Endothermic species use their metabolism to 

regulate their own temperature and maintain optimal temperature during the time (Macdonald, 

2010). On the other hand, ectotherms often use surrounding environments to maintain their body 

temperature into a specific range, that define conditions in which biological functions could be 

carried out (Angilletta Jr. et al., 2002; Gunderson and Leal, 2016; Navas, 1996; Navas et al., 2008). 

Due to the spatial and temporal heterogeneity of environments, many ectotherms adopt thermal 

behaviour to maintain body temperature close to their preferred one (Feder, 1982; Navas, 1997; 

Raske et al., 2012). Reptiles have a semi-impermeable skin that prevents water loss, so they quite 

easily use solar radiation for reach their favourite temperature (Kaufmann and Bennett, 1989). On 

the other hand, amphibians present some hurdles related to thermoregulation because they have to 

balance the intake of energy with evaporation of water through their skin (Hutchinson and Dupreé, 

1992; Seebacher and Alford, 2002; Spotila, 1972; Tracy et al., 2007). 

Information on species thermal physiology is increasingly used to understand species 

responses to environmental changes. For instance, ecophysiological analyses can use information 

on thermal tolerance of species to identify areas where climatic conditions are suitable, and to 

estimate potential impacts of environmental changes(Kearney and Porter, 2009). Studies on species 

thermal tolerance often use air temperature (Ta) nearby active individuals as a proxy of the thermal 

environment: this information is easily available, but in some cases may be a poor measure of the 

conditions actually experienced by individuals(Sunday et al., 2014). Actually, body temperature 

(Tb) of ectotherms may be strongly different from Ta because it is affected by behaviour, solar 

radiation, metabolism, conduction and evaporation (e.g. Bakken, 1992; Kearney and Porter, 2009; 
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Pough et al., 2013; Tracy, 1976). Understanding whether ectotherms are at thermal equilibrium with 

their environment (thermoconformity) is extremely important, as this information is needed to 

understand species responses to environmental variations, and to predict potential impacts of 

climate changes (Balogová and Gvoždík, 2015). In thermal physiology studies, body temperature is 

traditionally measured with thermometric probes, but this limits the number of body regions for 

which temperature may be recorded, and requires manipulation of individuals, with the risk of 

influencing behaviour and body temperature. Infrared thermocameras are an emerging approach for 

the study of thermal physiology of ectotherms. They provide instantaneous, high resolution images 

of surface temperature without the need of handling individuals, allow to identify thermal 

heterogeneity within individuals and, for small animals, their results are consistent with more 

traditional techniques, such as cloacal thermometers(Luna and Font, 2013; Sannolo et al., 2014; 

Tattersall and Cadena, 2010). Thermocameras have been successfully used to study 

thermoregulation in reptiles, but to our knowledge they have never been applied to amphibians. 

Within amphibians, Plethodontid salamanders are a very interesting taxon for studies on 

thermal ecology. Plethodontids represent about 66% of currently described caudate amphibians 

(AmphibiaWeb, 2016), and are among the tetrapods with the lowest metabolic rate (Chong and 

Mueller, 2012). This family is characterized by absence of lungs, so their respiration mainly occurs 

through their skin (Spotila, 1972). Gas exchanges require a constantly moist skin, thereby imposing 

limits on their habitat selection and thermoregulation (Feder, 1983; Huey, 1991; Peterman and 

Semlitsch, 2014). Several plethodontids are often associated with underground environments, in 

which humidity is very high but the heat sources are very limited (Camp et al., 2014). Early studies 

suggested that plethodontids generally are thermoconforms (Brattstrom, 1963), but it is possible 

that individuals regulate temperatures by selecting specific microhabitats (Spotila, 1972), or that the 

evaporative water loss reduces Tb at values significantly lower than ambient temperature (Bressin 

and Willmer, 2000). 
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European plethodontids (genus Hydromantes) often exploit underground environments, in 

which microclimatic features are suitable for their physiological needs (Ficetola et al., 2012; 

Ficetola et al., 2013; Lunghi et al., 2014). Underground environments are dynamic systems in 

which few heat sources (e.g. rocks and external heat) seasonally interact with air flow and high 

moisture in determining complex thermal landscapes (De Freitas, 1982, 1987; Lunghi et al., 2015), 

and this affects the physiology and distribution of cave dwelling species (Sunday et al., 2014). In 

this study we use thermocamera images to study the thermal ecology of Hydromantes salamanders. 

First, we assessed whether body temperature of salamanders is equal to air temperature (i.e. whether 

salamanders are at the thermal equilibrium with the environment). Air temperature is a quick and 

easy approach to the characterization of microhabitat for these salamanders and, if Tb = Ta, air 

temperature can be a good proxy of operative conditions actually experienced by individuals 

(Kearney and Hewitt, 2009; Sunday et al., 2014). Second, we evaluated whether there are 

temperature differences among body regions. Finally, we manipulated animals to evaluate the time 

required to reach the thermal equilibrium, and to assess whether body size confers a higher thermal 

inertia, thus increasing the time needed to reach equilibrium. 

  

2. Methods 

 

2.1. Study system 

 

We used a Fluke Ti32 infrared thermal imager (thermal sensitivity < 0.045 C°, spatial 

resolution 1.25 mRad) to measure the body temperature Tb of salamanders. Overall, we analysed 31 

H. ambrosii from two nearby caves (Cave A1: 44.18°N, 9.72°E and Cave A2, 44.12°N and 9.77°E) 

and 25 H. italicus from two nearby caves (Cave I1: 44.04°N, 10.25°E and Cave I2: 44.04°N and 
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10.26°E). Individuals were photographed, without manipulation, at a distance of 35 cm, on the cave 

wall where they have been observed to be naturally active. For each individual, we calculated the 

average temperature of pixels on head, trunk and tail (in average, 570 pixels per individual 

measured). , and bBody temperature Tb (i.e. was the mean temperature of pixels on head, trunk and 

tail). 

 

2.2. Does air temperature represents body temperature of individuals? 

 

Caves were divided in 3-m longitudinal intervals (hereafter: sectors); the size of sectors 

approximately corresponds to home range size (Ficetola et al., 2013; Lanza et al., 2006), covering 

the whole cave or until the position of the last salamander. In each sector, we used visual encounter 

surveys to detect the presence of active salamanders, and measured air temperature (°C) using a 

Lafayette TDP92 digital thermometer (accuracy: 0.1°C). We then photographed active salamanders 

using the infrared thermal imager to measure Tb, and calculated the average difference between the 

air temperature Ta of the sector and Tb. Subsequently, we used linear mixed models to assess the 

relationship between Ta and Tb. All mixed models considered sector, cave and species identity as 

random factors; this analysis was performed on 29 individuals for which data on body temperature 

and air temperature at the beginning of the experiment were available. Sample size was not 

homogeneous among groups, therefore in mixed models degrees of freedom were approximated and 

in some cases were not integer (Satterthwaite, 1946); the overall amount of variation explained by 

mixed models was assessed using conditional R
2
 (Nakagawa and Schielzeth, 2013). Mixed models 

were also used to test whether temperature was significantly different between head, trunk and tail 

within the individuals (regional differences in temperature). Analyses were performed using the 

lme4 and lmerTest packages in R (Bates et al., 2014; Kuznetsova et al., 2015). 
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2.3. Differences between body parts 

 

2.3. Test of equilibrium of body temperature. 

 

To confirm that in our study system salamanders body temperature is at equilibrium, and to test the 

time required to reach thermal equilibrium, we manipulated 56 individuals. Individuals were 

captured within their habitat, weighed (accuracy: 0.1g), kept in the hands of an observer for 30 

seconds, and then released at the collection point. Individuals were photographed using the infrared 

thermal imager to measure body temperature at the release and 1, 2, 3, 4, 5 and 15 min after release. 

Due to the difficult field conditions, some individuals were not photographed at all the time 

occasions (mean sample size: 38.4 individuals per time occasion). 

We then used non-linear mixed models (nlmm) (Pinheiro et al., 2014) to evaluate how and 

how fast body temperature goes at equilibrium. We considered two potential models: 

1) Exponential loss of temperature:  

∆𝑇° = 𝑘 + 𝑒𝑎×𝑡+𝑏 

2) Loss of temperature following an inverse power law:  

∆𝑇° = 𝑘 + 𝑎 × 𝑡𝑏 

Where ΔT° is Tb - Ta, t is the time after release, and k, a and b are the parameters to be estimated by 

the models. The fit of the two models was compared using Akaike’s information criterion (AIC), 

and we then estimate model parameters, their significance, and the time required to achieve body 

equilibrium (defined as ΔT° ≤ 0.1°C). 

Formattato: Inglese (Regno Unito)

Codice campo modificato

Formattato: Inglese (Regno Unito)

Formattato: Inglese (Regno Unito)

Formattato: Inglese (Regno Unito)

Formattato: Inglese (Regno Unito)



We also tested whether the velocity at which body temperature goes at equilibrium was 

slower in large individuals. Unfortunately, if we put both time after release and body size as 

independent variables in the nlmm, the model showed convergence problems. We therefore used 

standard mixed models to analyse the relationship between ΔT° and body mass at the six intervals 

after the release (1, 2, 3 ,4, 5 and 15 min.). 

 

3. RESULTS 

 

3.1. Relation between Ta and Tb 

The infrared camera provided clear pictures of salamanders’ body, with a spatial resolution 

sufficiently fine to measure the temperature of different body regions (Fig. 1). Before any 

manipulation, body temperature ranged between 8.17 and 15.89°C. Salamanders were at thermal 

equilibrium with the air: the average difference between Ta and Tb was small (mean difference = -

0.129°C; 95% CI = -0.541/0.282), and Tb was strongly related to Ta (mixed model: F1,22.6 = 18.8, P 

= 0.0002; R
2

c = 0.98). Nevertheless, we detected small but significant differences between head, 

body and tail (F2,107.8 = 9.86, P = 0.0001, Fig. 1, Fig. 2). Specifically, within individuals, head was 

slightly warmer than both the body (Tukey’s post hoc: mean difference ± SE: 0.05 ± 0.02°C, P = 

0.02) and the tail (mean difference: 0.07 ± 0.02°C, P < 0.0001), while the difference between body 

and tail temperature was not significant (mean difference: 0.01 ± 0.02°C, P = 0.70). 

 

3.2. Relation between Ta and TbTemperature differences among body parts 

WNevertheless, we detected small but significant differences between head, body and tail 

(F2,107.8 = 9.86, P = 0.0001, Fig. 1, Fig. 2). Specifically, within individuals, head was slightly 
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warmer than both the body (Tukey’s post hoc: mean difference ± SE: 0.05 ± 0.02°C, P = 0.02) and 

the tail (mean difference: 0.07 ± 0.02°C, P < 0.0001), while the difference between body and tail 

temperature was not significant (mean difference: 0.01 ± 0.02°C, P = 0.70). 

 

3.23. eEquilibrium between Tb-Tabody temperature and air temperature 

Keeping individuals in hand for 30 seconds determined an increase of Tb of 6-10°C. When 

animals were released, the difference between body temperature and air temperature (ΔT°) quickly 

decreased with time; after 15 minutes ΔT° was essentially zero (Fig. 3). The mixed model assuming 

exponential decrease showed much better fit than the one following an inverse power law 

(exponential model: AIC = 766.0; inverse power law model: AIC = 1044.9). 

In the exponential model ∆𝑇° = 𝑘 + 𝑒𝑎×𝑡+𝑏 the parameter k was not significantly different 

from zero (Table 1), confirming that ΔT° quickly approaches zero. According to this model, ΔT° ≤ 

0.1°C after 8.2 minutes, i.e. body temperature reaches the equilibrium very quickly. 

Salamanders with large body size required more time to reach thermal equilibrium. At the 

release, ΔT° was unrelated to weight of salamanders, but ΔT° decreased more quickly with time in 

small than in large salamanders. As a consequence, for a given time after release, ΔT° remained 

larger in the heaviest salamanders (Table 2, Fig. 4). For instance, 5 minutes after release small 

salamanders (weight < 1g) were essentially at the thermal equilibrium, while the largest 

salamanders showed a ΔT° of 2-3°C (Fig. 4b). 

 

4. DISCUSSION 

 

4.1. Thermoconformity of Hydromantes 
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Our results show that, in Hydromantes salamanders, body temperature is at equilibrium with 

environment temperature. Even though the thermal environment within caves may be 

heterogeneous, salamanders have extremely limited movements and may remain in the same cave 

sector for days (Lanza et al., 2006). If body temperature Tb is at equilibrium, Tb corresponds to the 

operative temperature Te of individuals (Bakken, 1992), which is the steady-state temperature 

organism would attain if placed indefinitely in a given environment(Kearney and Porter, 2009). As 

a consequence, in these salamanders important ecophysiological parameters, such as Tb and Te, can 

be easily estimated from air temperature, indicating that, at least for temperature, microhabitat 

features can be a good representation of operative conditions of individuals. 

In several salamanders, it has been proposed that individuals can move within the thermal 

landscape to keep their body close to their preferred temperatures (Balogová and Gvoždík, 2015; 

Heath, 1975; Spotila, 1972). Hydromantes salamanders are not strictly cave-dwelling species, and 

can be active at the surface during cold, humid seasons (i.e. autumn and spring), but they have to 

move underground when outdoor conditions are too warm and dry, such as during Mediterranean 

summer. In summer, caves constitute a relatively continuous thermal gradient: cave sectors close to 

the surface have higher temperature, and temperature decreases in the deepest sectors (Lunghi et al., 

2015). On the one hand, food is more abundant close to the surface (Ficetola et al., 2013; Lunghi et 

al., 2015), thus salamanders are restricted to a few tens of meters from the surface. On the other 

hand, given that salamanders are at thermal equilibrium (Fig. 3), they must remain in relatively deep 

sectors, where conditions are within the physiological tolerance limits of the species. The trade-off 

between these and other factors (e.g. humidity, not investigated by the present study) limits the 

distribution of salamanders to a narrow region of the underground space. The time needed to reach 

thermal equilibrium was slightly longer in salamanders with large body size (Fig. 4). These 

individuals might have slightly better opportunities to move toward unsuitable places for short time, 

and then coming back to more suitable areas. Large individuals can also have additional advantages, 

such as a better resistance to desiccation and to food shortage, and higher mobility. Actually, in the 
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closely related H. strinatii, juvenile salamanders are restricted to a very narrow region (5-15 m from 

the surface), while adults can exploit a relatively broader region of the underground space, 5-30 m 

from the surface (Ficetola et al., 2013; Salvidio and Pastorino, 2002), suggesting that the improved 

tolerance of large individuals may allow them to exploit broader niches. 

Body temperature showed regional differences along salamanders body, the head being 

slightly but significantly warmer (Figs 1 & 2). Until now, very limited information was available on 

regional differences of body temperature in salamanders. The high thermal resolution of 

thermocamera allowed to clearly detect the very small (about 0.05°C) temperature differences 

between the head and the rest of the body (Fig 1, Fig. 2). Plethodontid salamanders are sit-and-wait 

predators with a very low metabolism (Lanza et al., 2006). Even though they perform very limited 

movements, sensorial organs, such as eyes, Jacobson’s organ and, buccal mucous are grouped in the 

head area (Lanza et al., 2006), and. tThe activities of metabolism and sensory system probably 

adsorb most of the metabolism of these salamanders, which in turn likely produces a small amount 

of metabolic heat ().  

In conclusion, thermocamera offers a valuable tool for the study of thermal ecology of 

ectotherms. On the one hand, it allows to measure small temperature differences between body parts 

without manipulating individuals, thus enabling us to obtain new insights on the complexity of 

thermal properties of ectotherms. Furthermore, it is possible to quickly measure the major 

ecophysiological parameters of individuals in the wild, and to obtain data that can be used to better 

identify the thermal requirements of species, thus helping the characterization of species niches and 

improving our understanding of species responses to environmental variation.  
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Table 1 Results of the exponential non-linear mixed effect model ∆𝑇° = 𝑘 + 𝑒𝑎×𝑡+𝑏, evaluating the 

decrease of difference between body temperature and air temperature with time. 

 

Parameter B SE F d.f. P 

      

a -0.48 0.04 301.8 1,215 <0.0001 

b 2.11 0.02 19604.3 1,215 <0.0001 

k  -0.06 0.10 0.3 1,215 0.561 
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Table 2. Relationships between salamander weight and ΔT°, at specific moments after release. 

Sample size was not identical in the six test periods. 

 

Time B SE F d.f. P 

      

At release -0.05 0.20 0.1 1,23 0.810 

1 min after release 0.52 0.17 9.4 1,47 0.004 

2 min after release 0.81 0.12 42.4 1,44 <0.001 

3 min after release 0.77 0.12 40.0 1,33 <0.001 

4 min after release 0.55 0.12 22.8 1,33 <0.001 

5 min after release 0.44 0.11 15.7 1,41 <0.001 

15 min after release 0.04 0.02 5.7 1,36 0.022 

 

 

 


