
Anonymous End-to-End Communications in

Adversarial Mobile Clouds

Claudio A. Ardagnao, Kanishka Ariyapala†, Mauro Conti‡,
Cristina M. Pinotti∗, and Julinda Stefa

oU. Milan, †U. Florence, ‡U. Padua, ∗U. Perugia, Sapienza U. Rome, Italy.

Abstract

Today’s mobile devices have changed the way we interact with technology. Inter-

net, cloud access, online banking, instant messaging, and file exchange through

the cloud are just a handful of the myriad of smartphone services that we make

use of every day. At the same time, the very enablers of these services—mobile

internet providers and cloud platforms that host them—pose several threats to

the anonymity of our communications. In this paper, we consider the problem

of providing end-to-end anonymous communications and file exchange under the

cooperative privacy threat of involved parties including network operators and

cloud providers, which actively tamper with the communication. We propose

a solution for delay-tolerant applications (similar to Whatsapp or Email) and

prove the security properties of the protocol under this strong attack model.

Finally, we present an experimental analysis of the efficiency of our protocol in

terms of performance overhead.

Keywords: Anonymity, mobile cloud computing, wireless network.

1. Introduction

Mobile cloud computing is the paradigm that was built with the goal to save

a resource very precious to mobile devices—their battery. The idea is simple:

Pushing the execution of (parts of) mobile apps to remote servers residing on

the cloud in order to avoid the energetic cost coming from the local execution

on the device. The paradigm works best with computation-intensive applica-

Preprint submitted to Elsevier September 15, 2016

tions with very limited access to device local resources like sensors, data. In

fact, the more computation-intensive a given task, the more the device will

benefit from executing it remotely. The less a given task needs to access local

resources, the smaller is the device-cloud communication overhead to execute it

remotely. Through the years, researchers have proposed offloading frameworks

that take smart decisions on what to execute remotely [1, 2, 3], and solutions

that boost the security of our devices [4, 5, 6] or enable efficient data/application

backup [7]. Also, solutions that create virtual peer-to-peer networks of smart-

phone software clones in the cloud enable unprecedented and efficient, complex

distributed protocols on mobiles [8, 9].

The nature of the mobile apps, but most importantly, their typical complex-

ity, makes it very hard, if not impossible, to use privacy-preserving execution

mechanisms like homomorphic schemes. In fact, these mechanisms, designed to

operate in hostile environments (e.g., the untrusted cloud) over encrypted user

data, are not suitable for application scenarios considering remote execution of

mobile apps [10]. While offloading to the cloud, a mobile user has then to fully

trust the cloud-side of the process. Not only is the cloud aware of which data

and jobs the user is running, but it also knows exactly who is communicating

to whom and what information is being shared.

In this paper, we advocate that communication and file-exchange privacy

among mobile cloud computing users is achievable, even under very powerful

attacks. To this aim, we propose a protocol that, while supporting storage and

computation offloading, implements anonymous end-to-end communications for

mobile devices in adversarial mobile clouds. Specifically, we consider a strong

attack model (Section 3) in which smartphones, cloud clones, the network op-

erator, and the cloud provider are all adversarial entities and can collude to

de-anonymize a communication. The cloud provider can both monitor the traf-

fic from/to the user’s cloud clones, and have access to the memory within the

machines hosting them. Under this powerful and multifaceted attack model, all

previous solutions for anonymous end-to-end communication in a mobile cloud

computing setting, including ours [11], are unable to provide the requested pri-

2

vacy (Section 2). In this paper we challenge the common belief and come up

with a solution that provides anonymity and unlinkability to the users (Sec-

tion 4). We discuss the security properties of the protocol according to this

new challenging attack model (Section 5). We finally investigate on possible

slow-down effects in the system and show, through experimental evaluations,

that the overhead incurred is affordable (Section 6).

2. Related Work

The mobile cloud computing paradigm, though initially designed with the

offloading of heavy computations in mind [1, 2, 3], brings multifaceted bene-

fits in a large number of application scenarios. It can enable more complex

security mechanisms for smartphones [6], or help exploit the cloud to optimize

incoming data-traffic, minimize the device connections to remote servers, and

ensure efficient data backup in the cloud [4, 7, 12]. It opens the way to complex

peer-to-peer services on mobile devices [5, 8, 9], otherwise impossible to run on

our battery-limited smartphones. All these solutions assume full trust on both

the cloud and the network operators providing the device-cloud communication

channel. Also, encryption can come to hand for the protection of the user data

stored in the cloud. Unfortunately, if the data/application code is encrypted

with a key known only to the user, the cloud cannot be exploited for offloading

anymore. In addition, encryption does not guarantee full user privacy. Both

the cloud and the network operator in fact know how often a user is: i) Of-

floading computation to her cloud server (a.k.a. clone of the device [1, 8, 9]);

ii) storing data on her cloud server; iii) exploiting the clone as a bridge to com-

municate/send the data previously stored on it to other users [8]. If the first

two issues are unavoidable to achieve all the benefits of cloud computation of-

floading and backup, the user is increasingly concerned about her privacy when

communicating with other users through the cloud.

Wired, wireless, and hybrid networked systems, have always brought the

need of anonymous communication protocols [13, 14, 15, 16, 17, 18, 19, 20].

3

Most applicable solutions exploit chains of proxy nodes [21, 22], accumulating

and forwarding source-encrypted messages in batches. Among them, TOR [22] is

probably the most popular one. However, TOR is not applicable in the scenario

in this paper because devices and clones on the cloud are uniquely coupled.

Also, the communication among two devices directly involves the corresponding

clones. If the latter are compromised, they will identify the sender (receiver)

even if TOR is employed when communicating with the corresponding clone.

With the increasing popularity of social networks, several works put the trust

among friends as a means to achieve anonymity of communications [14, 15, 16,

17, 18, 19, 20]. However, these solutions either not fit at all for mobile-cloud

computing scenarios, or are computationally heavy for battery-limited devices.

To the best of our knowledge, our previous work [11] was the first attempt to

address the issue of anonymous communications through the mobile cloud. It

provided a user-tunable level of anonymity to sender (indistinguishable among

α users) and receiver (indistinguishable among β users), the (α, β)-anonymity,

as defined Section 3, in presence of colluding adversaries, including both cloud

providers and network operators. The protocol worked under the assumption

that the cloud clones of friend users could trust each other, and rely on each other

to thwart anonymity breaches of communicating users. Differently from [11],

in this work we consider a much stronger attack model: The cloud provider

is able to look into a hosted clone’s memory and read encryption keys stored

therein; other clones, even friend ones, are malicious and can collude with both

the cloud provider and the network operator to de-anonymize other user’s com-

munication. Our solution also supports computation offloading, in addition to

storage offloading, balancing it with data confidentiality.

Other works have addressed a variety of issues in research areas similar to

the ones considered in this paper. Senftleben et al. [23] propose a decentralized

privacy-preserving microblogging infrastructure based on a distributed peer-to-

peer network of mobile users. The infrastructure, using device-to-device commu-

nications, is robust against censorship and provides high availability. Daubert

et al. [24] present a solution to privacy-preserving sharing of smartphone sensor

4

data and user-generated content via Twitter. The proposed solution ensures

both confidentiality and anonymity of users and their messages. Finally, au-

thentication, a milestone in sensitive-data handling platforms like the mobile

cloud computing, is exahustely reviewed in the survey in [25].

3. System and Attack Models

The goal of our proposal is to achieve (α, β)–anonymity, that is, given a

sender s and a receiver r , an adversary Adv should not be able to associate s

to less than α users, and r to less than β users. In this section, we present the

system and attack models at the basis of our proposal.

System Model. Our system involves different entities, namely mobile devices

and standalone apps belonging to users, cloud providers hosting clones of the

devices, telco operators, and a supporting proxy acting as a middleware between

devices and clones. Mobile devices communicate through both the cellular net-

work infrastructure and short-range ad-hoc wireless communication links (we

will consider Wi-Fi from now on as a representative technology for this layer).

Each device dk of user k is mapped with a clone ck (i.e., a virtual machine) in

the cloud, as well as with a standalone application stdk in the Internet. Hav-

ing clones in the cloud is an emergent practice for offloading computations and

communications, and for backup purposes. Hence, clones, connected through

P2P links in the cloud, are likely to be entities already present and not neces-

sarily introduced for the sake of our protocol. Also, we assume that information

on friendship relations involving the system users are freely available (e.g., the

public friendship information available in Facebook).

Key Distribution and User Registration. In our setting, all entities in the

system (device, clone, cloud provider, standalone application, and proxy) have a

private/public key pair and can securely verify the authenticity of others public

keys. The clone keys are distributed by the hosting cloud provider, while the

device and standalone public/private key pairs are locally generated and then

certified by the trusted proxy. To enter the system a user needs to first register

5

its device with the proxy, and certify device and standalone app keys. Then,

the user registers its device with a cloud provider of her choice and have a clone

assigned to her. During the registration phase the device exchanges the public

keys with her clone. Finally, each device dk shares a secret key SK k with the

corresponding standalone application stdk in the Internet, generated locally on

the corresponding device and distributed when necessary through appropriate

encryption mechanisms.

The standalone application, the user device, and the proxy are not controlled

by the cloud provider. So, their private and secret keys are unknown to it.

Attack Model. We assume a strong adversarial model, where all communi-

cation channels in our protocol can be the target of an attack. We consider

attacks on wireless communications among devices, communications with the

telco operator and proxy, and communications between the clones in the cloud.

We also assume different types of adversaries that are either malicious (i.e.,

possibly diverging by the protocol flow) or just honest but curious (i.e., aiming

to violate the privacy, but without tampering with the exchanged messages).

In particular, we consider malicious devices, malicious clones, and malicious

standalone applications, while we assume honest but curious cellular network

operator and cloud provider. Adversaries might collude among them and share

their knowledge, such as for instance the device position within the cellular

network and keys stored within clones.

Adversaries aim to identify sender s and receiver r of the communication

or, in other words, to reduce the anonymity to (1,1)–anonymity. We note that

the proxy is trusted and does not collude with any of the adversaries, although

our solution is resilient to the scenario in which it is compromised by malicious

adversaries [11]. In addition, a device or clone can attack or collude with an

adversary to compromise the anonymity of a friend device or clone.

We underline that, when compared to the attack model considered in [11],

our work considers a significantly stronger adversary model. In particular, i) we

consider the ability of the cloud provider to look into the memory of the clones

6

and search for encryption keys; ii) we depart from the assumption of having

trusted friend clones (including cs and cr); iii) files can be stored by the clones

in the clear.

4. Anonymity Protocol

Our solution provides an end-to-end anonymity communication protocol be-

tween mobile devices accessing the Internet. We assume a user carrying a mobile

device associated with a clone on the cloud, and installing a standalone appli-

cation supporting anonymity activities on its personal computer. Smartphone

data are stored in the clear in the clone and synchronized with it through an

encrypted channel. This approach allows to support full computation offloading

in addition to storage offloading, while reducing as much as possible the par-

ties able to access private data of the users. We note that, although our focus

is on (α,β) end-to-end anonymity with support for storage/remote offloading,

the offloading can be balanced with data confidentiality as discussed in Sec-

tion 5. Clearly, the opposite scenario of full computation offloading is that of

full data confidentiality, which can be provided by encrypting all data stored

in the clones at a price of a reduced/nullified computational capability of the

clones. An approach balancing full computation offloading (all data in the clear

to the cloud provider) and full data confidentiality (all data encrypted) can

selectively encrypt sensitive data, while storing the remaining data in the clear.

4.1. High-Level Overview of the Protocol

Each communication between sender s and receiver r is composed of three

phases as follows [11]: i) Sender communication; ii) clone communication; iii)

receiver communication.

Sender communication implements an anonymous communication between

the sender s and corresponding clone cs , through the proxy and a set of clones.

The sender s initially sends its message through a multi-hop WiFi communi-

cation on an ad hoc WiFi network of devices. Randomly, a receiving device

7

forwards the message to the proxy using the cellular network. The proxy re-

ceiving the message forwards it to a friend clone of cs , which in turn broadcasts

the message to all its friends including cs . The last communications are carried

out on the cloud.

Clone communication implements the part of the communication responsible

for anonymously distributing a message between cs and clone cr of receiver

r . Each friend clone of cs involved in the sender communication forwards the

received message to its standalone app through the Internet. Standalone apps

then forward the message to a friend clone, say cj , of clone cr via the proxy.

Clone cj finally uses cloud-based communications to broadcast the message to

all its friends in the cloud including cr .

Receiver communication implements the communication between cr and

corresponding receiver r . It is the inverse of the sender communication and

involves a proxy, the cellular operator, and a device in the proximity of r .

Each friend clone of cr involved in the clone communication sends the received

message to its standalone app through the Internet, which is then forwarded to

the proxy. The received messages are filtered by the proxy, which forwards only

the real message of s to r via a supporting device (WiFi peer of the destination).

The last step uses a mix of cellular and wireless communications.

The following subsections formalize each of the aforementioned high-level

phases by presenting, in details, the activities carried out by all the parties

involved. Figures 1, 2, and 3 summarize the distribution of packets among

parties illustrating also the content of each message in all three communication

phases. Edges with a dotted line refer to wireless communications carried out on

either ad hoc WiFi network (between peers) or cellular network (between peers

and the proxy); edges with a dashed line refer to communications over the cloud

(between clones and proxy); edges with a solid line refer to communications over

the Internet (between clones, standalone apps, and proxy). The edge labels

denote the messages exchanged on the corresponding links while the description

at the bottom of each figure presents the messages in their entirety.

8

s d1 . . . dt dt+1 pr ci

c1

c2
. . .
cs
. . .
cn

M M M M M Mpr

Mpr

M={[idcm, α, β, ci, cj ,nonce1,nonce2]Kp
pr
, id f , [idcm]Kp

pr
, [cs ,nonce1]SK s

,

[cr , β,nonce2]SK s
}

Mpr={id f , [idcm]Kp
pr
, [cs ,nonce1]SK s

, [cr , β,nonce2]SK s
}

Figure 1: Protocol flow for Sender Communication

4.2. Sender Communication

Sender communication (Figure 1) determines the activities carried out in

order to anonymously send a message from s to cs .

User. Similarly to [11], for each communication, user s defines preferences α

and β at the basis of the anonymous communication and selects: i) One friend

clone ci whose social network (Sci) has at least α members, that is, |Sci | ≥ α;

ii) one friend clone cj of cr whose social network (Scj) has at least β members,

that is, |Scj | ≥ β. This selection is done using the friendship database. Then,

user s prepares a message M to be sent to cs that includes: (a) The id idcm

of the communication, preferences α and β, the identity of ci and cj , and two

nonces nonce1 and nonce2 encrypted with K p
pr (the public key of pr); (b) the

id id f of the file to be sent, a number carrying no information neither on the

user nor on the device; (c) the identifier idcm of the communication encrypted

with K p
pr (the public key of pr); (d) the identity of cs and nonce1 encrypted

with SK s (the secret key shared between s and its standalone app std s); (e)

the identity of cr , parameter β, and nonce nonce2 encrypted with SK s (the

secret key shared between s and its standalone app std s). We note that, to

counteract an attack by the cloud provider that aims to uncover the sender s by

identifying all clones with less than id f files, s exploits a concealed file identifier.

The same operation is performed by all involved clones to blindly identify the

file to be sent according to the protocol. In this way, all selected files will be

valid (including the correct file by clone cs), and the attacker cannot gain any

9

information on the sender. We also note that nonce1 is used to let i) standalone

app std s know that it is the standalone app of sender s of the communication

and ii) pr distinguish the correct messages among the received ones. Nonce

nonce2 has the same role as nonce1 when stdr and r are involved. In addition,

it is used to allow replies from r to s over the same anonymized channel (see

Section 4.5).

The message M , prepared by the user as described above and depicted in

Figure 1, is then sent to proxy pr using a probabilistic multi–hop Wi-Fi forward

to devices in its physical proximity. To guarantee α anonymity, s sends M only

when it is surrounded by at least α devices. This process prevents the re-

identification from nearby devices [11]. To this aim, all devices periodically

broadcast a probe request with their identity to surrounding devices.

Device. Upon receiving M , device dt forwards the message to either another

device dt+1 in its proximity, or to proxy pr , through the cellular network, using

a probabilistic function. The same process is repeated by all involved peers.

Proxy. Upon receiving messageM , pr decrypts [idcm, α, β, ci, cj ,nonce1,nonce2]Kp
pr

using its private key K s
pr and stores them for future computations. It then for-

wards Mpr = {id f , [idcm]Kp
pr
, [cs ,nonce1]SK s

, [cr , β,nonce2]SK s
} to ci.

Clone ci. It forwards the received message Mpr to all clones in its social

network including cs . We note that, by sending Mpr to all clones, α and β

become lower bounds to anonymity, and ci and cj behavior is then independent

from their value.

4.3. Clone-to-Clone Communication

Clone-to-Clone communication (Figure 2) includes all activities aimed to

anonymously send a message from cs to cr .

Clone. Each clone ck receiving Mpr blindly identifies the file to be sent by

applying a function (e.g., a modulo operation) on the received id f . It then

replaces id f with f generating a new message M̃={f, [idcm]Kp
pr
, [cs , nonce1]SK s

,

[cr , β, nonce2]SK s
}, and forwards it to the corresponding stdk on the Internet.

10

c1

c2
. . .
cs
. . .
cn

std1

std2

. . .
stds

. . .
stdn

pr cj

c1

c2
. . .
cr
. . .
cm

M̃std2

M̃stds

M̃stdn

M̃

M̃

M̃

M̃

M̃std1

M̃pr

M̃cj

M̃={f, [idcm]Kp
pr
, [cs ,nonce1]SK s

, [cr , β,nonce2]SK s
}

M̃stds
={[f]

K
p
stdr

, [cr , β,nonce2]Kp
stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
, [nonce1]Kp

pr
}

M̃stdk
={[f]

K
p
stdr

, [cr , β,nonce2]Kp
stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
, [rnd]Kp

pr
}

M̃pr={[idcm]Kp
pr
, [f]

K
p
stdr

, [cr , β,nonce2]Kp
stdr

, [nonce2]Kp
cj
}Kp

cj

M̃cj={[idcm]Kp
pr
, [f]

K
p
stdr

, [cr , β,nonce2]Kp
stdr

}

Figure 2: Protocol flow for Clone-to-Clone Communication

Each clone ck then sends a file in the clear with the same identifier to the

corresponding standalone application, showing the same behavior to all observ-

ing parties. We note that this approach based on blind file selection is robust to

a scenario where the clone cs is compromised and malicious (see Section 5 for

more details). In this case in fact cs behaves as any other clone in the system

and is not able to understand what is going on in the communication, unless it

also owns the corresponding standalone app std s .

Standalone app. Upon receiving M̃ , a standalone app first decrypts [cs ,nonce1]SK s

using its secret key SK k. If SK k=SK s , the decrypted chipertext contains ck=cs,

and stdk identifies itself as std s , that is, the application of the sender of a com-

munication. std s decrypts [cr , β, nonce2]SK s
using its secret key SK s, encrypts

[cr , β, nonce2] using K
p

stdr
(the public key of stdr), and encrypts nonce2 using

K p
cj

(the public key of cj). It also encrypts f using K
p

stdr
(the public key of stdr)

and adds [idcm]Kp
pr

to the message. Nonce nonce1 is finally added to the new

message and encrypted with K p
pr (the public key of pr).

After these activities have been completed, message M̃stds
={[f]Kp

stdr

, [cr ,

β, nonce2]Kp

stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
, [nonce1]Kp

pr
} is generated and sent by

std s to pr . The message sent by stdk 6=stds involved in the communication is

the same as M̃stds
with the only difference that [nonce1]Kp

pr
contains a random

number rnd.

11

c1

c2
. . .
cr
. . .
cm

std1

std2

. . .
stdr

. . .
stdm

pr dm

d1

d2
. . .
dr
. . .
dz

M std2

M stdr

M stdm

M̃cj

M̃cj

M̃cj

M̃cj

M std1

M

M

Mstdr
={[f,nonce2]SK r

, [idcm]Kp
pr
, [nonce2, dm]Kp

pr
}

Mstdk
={[f,nonce2]SK r

, [idcm]Kp
pr
, [rnd]Kp

pr
}

M={[f,nonce2]SK r
}Kp

dr

Figure 3: Protocol flow for Receiver Communication

Proxy. Upon receiving a message M̃stdk
sent by stdk, proxy pr decrypts the

last two fields of M̃stdk
using K s

pr . The first field contains the identifier idcm of

the communication to which M̃stdk
belongs, while the second field either nonce1

in case the decrypted message is the correct one (M̃stds
) or a random number

rnd otherwise. Upon identifying M̃stds
, the proxy waits until at least αmessages

belonging to the same communication id idcm are collected. It then prepares

message M̃pr={[idcm]Kp
pr
, [f]Kp

stdr

, [cr , β, nonce2]Kp

stdr

,[nonce2]Kp
cj
}Kp

cj
and for-

wards it to cj . We note that waiting for at least α messages and encrypting the

whole message with the public key K p
cj

of cj forbids re-identification by attack-

ers able to observe the cloud and the standalone apps as discussed in Section 5.

We also note that α and cj are identified using idcm previously stored by the

proxy with α, β, ci, cj , nonce1, and nonce2.

Clone cj. Upon receiving message M̃pr , cj first decrypts it using its private

key K s
cj
. It then decrypts nonce2 again with its private key K s

cj
. We note

that nonce2 is used to support bidirectional communications as discussed in

Section 4.5. Clone cj then forwards message M̃cj={[idcm]Kp
pr
, [f]Kp

stdr

, [cr , β,

nonce2]Kp

stdr

} to all ck in its social network.

4.4. Receiver Communication

Receiver communication (Figure 3) includes all activities aimed to anony-

mously send a message from cr to r .

12

Clone. Each clone ck receiving M̃cj forwards the message to its corresponding

stdk on the Internet.

Standalone app. Upon receiving M̃cj , a standalone app first decrypts [cr , β,

nonce2]Kp

stdr

using its private key K
s

stdk
. If K

s

stdk
=K

s

stdr
, the decrypted chiper-

text contains ck=cr, and stdk identifies itself as stdr , that is, the application

of the receiver of a communication. stdr decrypts [f]Kp

stdr

using K
s

stdr
(the pri-

vate key of stdr), and encrypts f and nonce2 using SK r (the secret key of r).

[idcm]Kp
pr

is then added to the message. Nonce nonce2 and dm are finally added

to the new message and encrypted with K p
pr (the public key of pr).

After these activities have been completed, message M stdr
={[f, nonce2]SK r

,

[idcm]Kp
pr
, [nonce2, dm]Kp

pr
} is generated and sent by stdr to pr . The message

sent by stdk 6=stds involved in the communication is the same as M stdr
with the

only difference that [nonces, dm]Kp
pr

contains a random number rnd. We assume

the standalone application to know devices in the proximity of r . Supporting

device dm is then selected based on β by extending the probe request-based

mechanism used by user s to start the communication [11]. In particular, the

probe request in sender communication phase is extended with the information

about the number of devices surrounding the sender of the probe request. Then,

r periodically collects and notifies stdr of neighboring devices around it, that

is, the ones from which it received a Probe request including the number of their

neighboring devices. In fact, neighboring devices with less than β devices in their

proximity would expose the anonymity of r , whether selected as destination dm.

If this privacy condition is not met, then stdr would simply ask pr to stop the

procedure (as for the scenario where cr is the final destination).

Proxy. Similarly to the previous phase, upon receiving a message M stdk
sent

by stdk, pr decrypts the last two fields of M stdk
using K s

pr (the private key of

pr). The first field contains the identifier idcm of the communication to which

M stdk
belongs, while the second field either dm and nonce2 in case the decrypted

message is the correct one (M stds
) or a random number rnd otherwise. Upon

identifying M stds
, the proxy waits until at least β messages belonging to the

13

same communication id idcm are received. It then prepares message M={[f,

nonce2]SK r
}Kp

dr
and forwards it to dm, via the cellular operator. Again, waiting

for at least β messages and encrypting the whole message with the public key

K p
dr

of dr forbid re-identification by attackers able to observe the cloud and the

standalone apps as discussed in Section 5.

Device. Upon receiving message M={[f,nonce2]SK r
}Kp

dr
, dm broadcasts the

received message to the nearby devices. Among other devices, r receives the

broadcasted message, decrypts it with K s
dr

and SK r , and reads the file.

4.5. Discussion

The proposed protocol provides an end-to-end anonymity approach for a

mobile cloud environment, which supports storage and computation offloading.

It allows for a tunable tradeoff between the amount of computation that can be

offloaded to the clones in the cloud and the amount of data that are potentially

disclosed to the cloud operator. In our protocol, for easy of exposition, we

considered one of the extreme scenarios where data in the clone’s memory are

all stored in the clear (high computation offloading, no confidentiality).

Our protocol employs encryption facilities to hide the two endpoints of a

communication according to α and β anonymity preferences. Its behavior can

slightly differ from the working discussed in this section depending on α and β.

For preference α=1, sender s does not involve Wi-Fi neighbors in its proximity

during the sender communication phase, while it directly sends M to cs via

pr . For preference β=1, clone cr directly receives message M̃pr from pr in the

clone-to-clone communication phase, and sends message M={[f,nonce2]SK r
}Kp

dr

to r via pr , bypassing dm, in the receiver communication phase.

Bi-directional communications between s and r can be supported by adding

a response communication phase to the protocol. This phase can be imple-

mented either as a one-way communication switching s with r or by re-using

the anonymous channel created for the communication from s to r . In the latter

case, as discussed in [11], involved clones ci and cj must be the same for both

14

directions, r must keep track of the identity of cj , and in turn cj of the identity

of ci. This can be done by using nonce2 and the knowledge at the proxy.

Finally, there is a subtlety to consider when our anonymous protocol is

executed. The file received by r using our protocol is not synchronized with the

corresponding clone cr to avoid sender-receiver re-identification by the cloud

provider. If synchronized, in fact, the cloud provider could be able to observe a

file stored in cs that is then stored in cr . A file received by r can be synchronized

with cr , if and only if the file has been previously modified by r .

5. Security Analysis

We assess the security of our protocol against possible adversarial entities

aiming to reduce preserved anonymity to (1,1)-anonymity. In particular, we

focus on the novel security features introduced by our proposal and evaluate:

i) The security of our solution against a malicious cloud operator that tam-

pers with the memory of clones (Section 5.1), ii) the security against malicious

clones and standalone apps (Section 5.2), iii) the security against colluding

cloud provider, clones, and standalone apps (Section 5.3). We note that, as far

as malicious devices, malicious cellular network operator, and adversary tam-

pering with the proxy are concerned, the security of the scheme proposed in this

paper is the same as the one discussed in [11].

5.1. Cloud operator tampering with clones’ memory

Adversary and capabilities. We consider an adversarial cloud operator that,

beyond eavesdropping and analyzing all the traffic going through his domain,

can also tamper with the memory of the clones it hosts.

Execution of the attack. Since clones (e.g., Android virtual machines) are de-

ployed in the physical architecture of the cloud operator, a malicious cloud

can indeed inspect the memory of the clones, retrieve cryptographic keys, and

decrypt all the communications involving the clone.

15

Defense. Our proposal is resilient against this attack, for a simple but effective

reason: All clones involved in the protocol (i.e., cs, cr, as well as the support-

ing clones) will “blindly” execute a set of operations according to the received

messages. Since these operation are, for all the clones involved, “meaningful”

operations (e.g., selecting and sending one of the files they store), the cloud

operator cannot discern the actual cs and cr from the supporting nodes. More

specifically, let us consider the Sender Communication phase of our protocol,

as discussed in Section 4.2. Message Mpr received by each clone involved in

this step does not require any computation. The clone just needs to select the

file f corresponding to idf and send it (in the Clone-to-Clone Communication

phase) to the corresponding standalone application. Therefore, in the last step

of Clone-to-Clone Communication and the first step of Receiver Communica-

tion, each of the supporting clones acts simply as a forwarder of message M̃cj ,

while cj only decrypts a random number nonce2 in M̃pr .

Result of the attack. Our protocol provides at least (α,β)-anonymity in the

worst case.

5.2. Malicious clones and standalone apps

Adversary and capabilities. In this scenario the clones can be honest-but-curios

or act in a malicious way by tampering with the protocol. At the same time, the

standalone apps can support the corresponding malicious clone, or co-operate

with either the sender s (receiver r) to identify the other party involved.

Execution of the attack. Honest-but-curious clones obeys to the protocol, while

trying to understand whether they are cs and cr. Malicious clones also tamper

with the protocol by dropping messages. Malicious standalone app of supporting

clones can only retrieve the information about the fact that it is the app of

neither the sender nor the receiver of the communication. On the other side,

if the standalone app of the of the sender s (receiver r) is compromised, the

standalone app knows it belongs to s (r).

16

Defense. Similar to the previous scenario, nor the cloud provider neither honest-

but-curios clones involved in a communication channel are able to infer the

identity of cs or cr, and thus the one of the sender or the receiver. This simply

follows by the fact that the knowledge of the clones cannot be bigger than

the one of the cloud provider that hosts them. Malicious clones tampering

with the protocol by dropping messages do not endanger the anonymity of

senders or receivers either—note that, our protocol is general enough to forbid

an adversarial clone from understanding its role in the protocol. All this attack

could achieve is at most a denial of service—the messages are dropped by either

cs or cr. However, in this case the corresponding users will eventually detect

this behavior, and possibly change cloud provider to mitigate it.

If the standalone app of a malicious clone is also malicious, the user privacy

is still preserved. In fact, even in the worst case scenario, when this happens

for the sender (receiver) standalone app, the identity of the sender (receiver) is

protected by the fact that the malicious std does not know the real identity of

the corresponding clone. We achieve this by storing random numbers in cs and

cr of M̃ , which are pre-installed in the standalone app without any link to the

real identities of the involved parties.

Result of the attack. Our protocol provides at least (α,β)-anonymity in the

worst case.

5.3. Colluding cloud provider, clones, and standalone apps

Adversary and capabilities. We consider the possibility of collusion among cloud

provider, clones, and standalone apps.

Execution of the attack. The attacker controls the network on the cloud, and

either the couple (cs, stds), the couple (cr, stdr), or both.

Defense. The defense against this attack is given by the complexity of the attack

itself. The attack might be very costly to be implemented, while it might

provide limited results in terms of retrieved information. In fact, it requires to

17

compromise clones and standalone apps of both sender and receiver, and have

control of the cloud network (e.g., support by the cloud provider), to access

communications involving a single pair of sender and receiver.

Result of the attack. When only one among the couples (cs, stds) and (cr, stdr)

is compromised by an attacker also controlling the network in the cloud, our

protocol can still guarantee (1, β)–anonymity when (cs, stds) is compromised,

and (α,1)–anonymity when (cr, stdr) is compromised. But, if the attacker

compromises cs, cr, stds, and stdr at the same time, and have the support of

the cloud, it can violate the privacy of both sender and receiver. This is the

only case in which the attacker fully identifies both parties in a communication.

We note that the proposed attack is very expensive since standalone apps

and cloud clones reside on different platforms—the clones on the cloud, whereas

the standalone apps on decoupled machines on the Internet—and requires a

supporting cloud provider. Also, a single occurrence of this attack would uncover

communications only involving a single pair s and d. Thus, though possible, it

is almost impossible for an attacker to simultaneously have a full control of

both clones and standalone apps for all possible sender–receiver couples in the

system.

All remaining combinations including an attacker observing the cloud and

the standalone apps are not able to achieve (1,1)–anonymity.

6. Experiments

In this section we investigate on the possible overheads induced by our

anonymity protocol. The evaluation focuses on the entities that suffer from

hardware-related limits (the battery-limited smartphones), and on the proxy,

which could introduce bottlenecks that harm the usability of the system. The

protocol is tested for messages with two types of content: A regular text message

of 160 Bytes (SMS) and a mp3 file of 3.87 MBytes (MP3). Each experiment

is repeated 30 times and the results are aggregated. To measure the energy-

18

related costs on the phone side we used the Power Monitor1 meter. It samples

the smartphone battery with high frequency (i.e., 5,000 Hz) so to yield accu-

rate results on the battery power, current, and voltage. The mobile devices

in our testbed were Samsung Galaxy S+ devices, 1.4 GHz Scorpion CPU, and

512 MB of RAM running Android 2.3. The proxy and the clones were running

on a commodity laptop with the following characteristics: Ubuntu 14.04, Intel

Core i7–4500U CPU, 1.80GHzX4, 8GB RAM. Algorithm AES with 192 bit key

length was used for symmetric encryption and RSA with 1024 bit key length

for asymmetric encryption.2

6.1. Evaluation on the proxy-side

The proxy plays a crucial role in the system and its anonymity: It is respon-

sible of “coupling” device traffic towards clones and standard applications and

vice versa. As such, it is important to study the amount of traffic per message

the proxy needs to handle during a single one-to-one communication among

devices. Recall that the proxy is involved in all the three steps of the protocol,

while the traffic overhead is determined by the number of clones (standalone

apps) involved in a single communication. Indeed, the proxy needs to receive

as many messages as clones (standalone apps) both in the clone-to-clone and

receiver communication steps, from which it discriminates the correct message

to push forward in the protocol (see Figures 2 and 3). This number is strictly

related to the (α, β) anonymity preferences of the communication: There are

at least α clones (standalone apps) involved in the clone-to-clone step, and at

least β clones (standalone apps) involved in the receiver communication step.

For this reason, we have studied the traffic handled by the proxy varying α and

1https://www.msoon.com/LabEquipment/PowerMonitor/
2We note that, for convenience, we used 1024 bit length for asymmetric encryp-

tion though the latest NIST recommendations suggest using a 2048 bit long RSA

key (http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800–57Pt3r1.pdf). This

choice does not affect our experimental results as the RSA key is mostly used to encrypt the

192 bit long symmetric key in secret session communications.

19

 0

 5

 10

 15

 20

 25

 30

 35

 40

(1,1) (1,5) (5,1) (5,5) (10,10)

K
B

(a) SMS Overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

(1,1) (1,5) (5,1) (5,5) (10,10)

M
B

(b) MP3 Overhead.

Figure 4: Traffic overhead per message varying (α, β) anonymity preferences. The graphics

include the max, min, and quartiles values.

β in the set {1, 5, 10}. The corresponding results are shown in Figure 4. As one

might expect, the traffic handled by the proxy is higher for higher values of α

and β, for both types of content exchanged among devices. What is surprising,

however, is that the amount of traffic does not grow in a proportional way w.r.t.

the anonymity parameters. This observation indicates that higher anonymity

guarantees can be met by our protocol without inducing severe traffic overheads

to the proxy. Recall that in our testbed the proxy runs on a commodity laptop.

Nonetheless, we believe that in real deployments the proxy could be efficiently

implemented and deployed on a distributed set of high-performing servers, which

will boost its performance and that of the overall protocol.

6.2. Evaluation on the device-side

The anonymity protocol involves costly encryption/decryption operations as

well as sending message bundles that include the file index to be transmitted and

other data necessary to guarantee the anonymity of the communication. In this

section we discuss these costs from the perspective of the devices and compared

them with the ones of a plain email protocol. Although the email protocol does

not involve the cloud and does not guarantee any anonymity properties to users,

it served as a benchmark in our evaluation.

20

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AN EM-SMS EM-MP3

J
o
u
le

s

(a) Energetic Overhead on the source de-

vice: Anonymity protocol (AN) vs E-mail

(EM).

 0

 2

 4

 6

 8

 10

 12

AN-SMS AN-MP3 EM-SMS EM-MP3

J
o
u
le

s

(b) Energetic Overhead on the receiving de-

vice: Anonymity protocol (AN) vs E-mail

(EM).

Figure 5: Energetic overhead on the source and destination devices. The graphics include the

max, min, and quartiles values.

6.2.1. Overhead on sender device

We start with the energetic costs on the sender device. They include the

costs of i) the generation of the bundle M to be forwarded to the next hop

by short ad hoc links (sender communication step) and ii) the communication

through WiFi direct. We note that these costs are content-independent. Indeed,

according to our protocol, the content is already on the cloud, and only the id

of the corresponding file is sent within the message bundle to identify the corre-

sponding file within the cloud and forward it anonymously towards destination.

The results are presented in Figure 5(a). It is clear how, despite the several

cryptographic operations involved, the energetic overhead on the source-side is

less than 1.25 J.3 When compared to the plain email protocol the sender spends

2 times less for short messages (comparable to SMS) and up to around 20 times

less for larger content (mp3 file).

21

6.2.2. Overhead on receiver device

Now let us consider the costs on the receiver side. Again, they include the

energy spent for receiving the message bundle by dm (receiver communication

step), and for decrypting the bundle to finally read the content. We note that, in

this case, the file is included in the bundle. This makes the costs dependent on

the type of content that is being sent. The results are presented in Figure 5(b)

and show that the consumption of our anonymity protocol is again considerably

lower than that of the plain email protocol. In particular, it results 0.78 J for the

short text case and around 6 J for the mp3 audio file. Considering the capacity

of almost 22KJ of the battery of the involved devices, these values are partic-

ularly low. Most importantly, when compared to the plain email protocol the

consumption is 3.5 times lower for the short text case, and around 2 times lower

for the mp3 file. Our investigation showed that this difference is mostly due to

the considerably longer download time of the email content, which is certainly

dependent on the mailing server. This forces the destination device to keep its

communication interface up for a longer time, which induces considerably more

energy consumption. Differently, in our protocol, the communication is ad hoc

between the receiving device and dm. The communication link exploits the WiFi

direct protocol for device-to-device communication, which results more efficient

from the receiving device’s perspective.

6.2.3. Overhead on relay devices

The anonymity protocol involves also other devices—those that behave as

relays through ad hoc links on both the sender and the receiver communication

steps of the protocol. The devices involved in the sender communication step,

however, have a much easier job than those involved in the latter. Indeed,

they only need to forward the bundle M generated by the source a step further.

According to our experiments, the energetic cost is less than 1 Joule. Differently,

3When fully charged, the capacity of the battery of the devices involved in the testbed

contains around 22KJ of energy.

22

in the receiver communication step, we distinguish two types of devices: The dm,

in charge of broadcasting the message bundle to all β devices in its proximity,

and a given device dx which is not the destination of the message, but does

not know it yet. It is clear that the cost induced to dx is similar to that of

the receiver. However, the cost of dm is dependent on the parameter β of the

protocol, which determines the number of WiFi-direct transmissions dm needs

to perform. According to our experiments, dm will spend 1.8 J, 8.9 J, and 17.8

J for β=1, β=5, and β=10. Again, these values are very low w.r.t. the 22 KJ

battery capacity of the devices involved in the testbed.

7. Conclusions

We presented a protocol for anonymous end-to-end communications among

users in a mobile cloud environment, where the cloud clones handle part of

the communication towards destination. The attack model considered is un-

precedented. It includes devices, network operators, and the cloud provider

behaving as malicious entities, and the possibility of all of them to collude. In

this scenario, we built a delay-tolerant solution that provably guarantees (α, β)-

anonymity, and evaluated its performance on a real-life testbed. Our future

work will extend our approach to scenarios where exchanged files may contain

information on sender/receiver, will depart from the assumption of having a

standalone app available for each user in the Internet, and will provide a for-

mal security analysis of our protocol using automatic cryptographic protocol

verifiers, such as ProVerif.

References

[1] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic

execution between mobile device and cloud, in: EuroSys’11.

[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chan-

dra, P. Bahl, Maui: making smartphones last longer with code offload, in:

MobiSys’10.

23

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code of-

floading., in: IEEE INFOCOM’12.

[4] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, J. Stefa, Mobile Offloading in

the Wild: Findings and Lessons Learned Through a Real-life Experiment

with a New Cloud-aware System, in: IEEE INFOCOM’14.

[5] M. V. Barbera, S. Kosta, J. Stefa, P. Hui, A. Mei, CloudShield: Efficient

anti-malware smartphone patching with a P2P network on the cloud, in:

IEEE P2P’12.

[6] G. Portokalidis, P. Homburg, K. Anagnostakis, H.Bos, Paranoid android:

versatile protection for smartphones, in: ACSAC’10.

[7] M. V. Barbera, S. Kosta, A. Mei, J. Stefa, To Offload or Not to Offload?

The Bandwidth and Energy Costs of Mobile Cloud Computing, in: IEEE

INFOCOM’13.

[8] S. Kosta, C. Perta, J. Stefa, P. Hui, A. Mei, Clone2Clone (C2C): Peer-to-

Peer Networking of Smartphones on the Cloud, in: HotCloud’13.

[9] S. Kosta, V. C. Perta, J. Stefa, P. Hui, A. Mei, CloneDoc: Exploiting

the Cloud to Leverage Secure Group Collaboration Mechanisms for Smart-

phones, in: IEEE INFOCOM’13.

[10] M. Van Dijk, A. Juels, On the impossibility of cryptography alone for

privacy-preserving cloud computing, in: USENIX HotSec’10.

[11] C. Ardagna, M. Conti, M. Leone, J. Stefa, An anonymous end-to-end com-

munication protocol for mobile cloud environments, IEEE TSC 7 (3).

[12] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, J. Stefa, CDroid: Towards

a Cloud-Integrated Mobile Operating System, in: IEEE INFOCOM’13.

[13] C. Ardagna, S. Jajodia, P. Samarati, A. Stavrou, Providing users’

anonymity in mobile hybrid networks, ACM TOIT 12 (2013) 1–33.

24

[14] P. Mittal, M. Wright, N. Borisov, Pisces: Anonymous communication using

social networks, in: arXiv:1208.6326, 2012.

[15] A. Mohaisen, Y. Kim, Dynamix: anonymity on dynamic social structures,

in: ASIACCS’13.

[16] A. Mohaisen, H. Tran, A. Chandra, Y. Kim, Trustworthy distributed com-

puting on social networks, in: ACM ASIACCS’13.

[17] K. Puttaswamy, A. Sala, O. Egecioglu, B. Zhao, Rome: Performance and

anonymity using route meshes, in: IEEE INFOCOM’09.

[18] K. Puttaswamy, A. Sala, B. Zhao, Starclique: guaranteeing user privacy in

social networks against intersection attacks, in: CoNEXT’09.

[19] S. Seys, B. Preneel, ARM: anonymous routing protocol for mobile ad hoc

networks, Int. J. Wire. Mob. Comput. 3 (2009) 145–155.

[20] Y. Zhang, W. Liu, W. Lou, Y. Fang, MASK: Anonymous on-demand rout-

ing in mobile ad hoc networks, IEEE TWC 21 (2006) 2376–2385.

[21] L. Chaum, Untraceable electronic mail, return addresses, and digital

pseudonyms, CACM 24 (1981) 84–90.

[22] R. Dingledine, N. Mathewson, P. Syverson, Tor: The Second–Generation

Onion Router, in: USENIX Security’04.

[23] M. Senftleben, M. Bucicoiu, E. Tews, F. Armknecht, S. Katzenbeisser,

A.-R. Sadeghi, Mop-2-mop mobile private microblogging, in: Financial

Cryptography and Data Security, Vol. 8437, 2014, pp. 384–396.

[24] J. Daubert, L. Bock, P. Kikirasy, M. Muhlhauser, M. Fischer, Twitterize:

Anonymous micro-blogging, in: AICCSA’14.

[25] M. Alizadeh, S. Abolfazli, M. Zamani, S. Baharun, K. Sakurai, Authen-

tication in mobile cloud computing: A survey, Journal of Network and

Computer Applications 61 (2015) 59–80.

25

	Introduction
	Related Work
	System and Attack Models
	Anonymity Protocol
	High-Level Overview of the Protocol
	Sender Communication
	Clone-to-Clone Communication
	Receiver Communication
	Discussion

	Security Analysis
	Cloud operator tampering with clones' memory
	Malicious clones and standalone apps
	Colluding cloud provider, clones, and standalone apps

	Experiments
	Evaluation on the proxy-side
	Evaluation on the device-side
	Overhead on sender device
	Overhead on receiver device
	Overhead on relay devices

	Conclusions

