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Ferrocene-quinoxaline Y-shaped chromophores as fascinating 
second-order NLO building blocks for long lasting highly active 
SHG polymeric films 

Kabali Senthilkumar,a Krishnan Thirumoorthy,a Claudia Dragonetti,b,c Daniele Marinotto,b Stefania 
Righetto,b Alessia Colombo,b* Matti Haukka,d Nallasamy Palanisamia* 

The first example of a Y-shaped ferrocene quinoxaline derivative 
with a surprisingly high and stable second harmonic generation 
(SHG) response in composite polymeric films is reported. The 
interesting quadratic hyperpolarizability values of different 
substituted Y-shaped chromophores are also investigated in 
solution by the EFISH technique. 

Materials with second-order nonlinear optical (NLO) properties are 

of great interest since they can be used for various important 

applications such as optical communication, optical data processing 

and storage and electro-optical devices.1 

Organic chromophores with particular shapes (H,2 V,3 Y,4 X5, T6 and 

star7 type) are interesting for electro-optic applications and their 

arrangement assures efficient intramolecular charge transfer (ICT) 

between the donor and acceptor moieties and generates push–pull 

system featuring low-energy and intense CT absorption.8 Due to the 

ICT, push–pull Donor–π-Acceptor (D-π-A) molecules possess distinct 

nonlinear optical (NLO) properties.  

Metal complexes, compared to organic compounds, can offer 

additional flexibility thanks to the presence of NLO-active charge-

transfer transitions between the metal and the ligands usually of 

high intensity and at relatively low energy, tunable by nature, 

oxidation state and coordination sphere of the metal center.9 

Heteroaromatic moieties incorporated into an NLO chromophore 

may act as auxiliary D or A and further improve the optical 

nonlinearity of the chromophore. Quinoxalines/pyrazines have 

been widely used in chromophore systems as strong electron-

acceptor because of their high electron deficiency originated from 

the two symmetric unsaturated nitrogen atoms that lower the π* 

level of the conjugated system.10 Limited information on the Y-

shaped chromophores based on a quinoxaline moiety for NLO and 

dye-sensitized solar cell (DSSC) is available in literature.11 In 

particular Bures et al., studied structure–property relationships and 

NLO properties for different substituted pyrazine push–pull 

chromophores with various π-linkers.5b,6,11b 

In the field of NLO, ferrocene derivatives have been deeply 

investigated and have played the role of electron-donor in charge 

transfer processes in chromophores where ferrocene was linked to 

an acceptor moiety.9b,12 

Although ferrocene-quinoxaline based Y-shaped chromophores, 

recently reported by Kumar et al., show interesting DSSC 

performance,13 and their NLO properties have never been 

investigated. This type of organometallic based Y-shaped 

chromophores structure allows a good coupling between the d 

orbitals of the metal and π* system of the quinoxaline moiety that 

could afford a significant NLO response controlled by low-energy 

metal ligand charge transfer (MLCT) transitions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemical structures of Y-shaped ferrocene-based 

chromophores YQ1-YQ6 and single crystal X-ray structures of 

chromophores YQ1 and YQ2 (30% probability ellipsoids). Hydrogen 

atoms are omitted for clarity.  

Keeping this in mind, we have synthesized Y-shaped chromophores 

by condensation of an 1,6-Bisferrocenyl-hexa-1,5-diene-3,4-dione 

with a substituted 1,2-diamino compound; this is one of the most 

versatile method and was used for the construction of quinoxaline 

derivatives YQ1, YQ2, YQ5, YQ6; for YQ3 and YQ4 a different 

synthetic strategy was used as shown in scheme S1. 
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The Y-shaped substituted quinoxaline derivatives YQ1-YQ6 were 

characterized by using FT-IR, 1H-NMR, mass and single crystal X-ray 

diffraction techniques (ESI†). The single crystal X-ray structure of 

YQ1 and YQ2 (Fig. 1) shows a Y-shaped structure and the ferrocene 

moieties are facing antennae type. The structural parameters 

obtained from X-ray analysis closely matches with optimized 

structures obtained from density functional theory (DFT) studies at 

B3LYP/6-31+G** level of theory (ESI†) except that there is a slight 

difference in the values of the dihedral angles with respect to 

substituents (H and CF3). This may be due to the solid state packing 

and the associated intermolecular hydrogen bonding (ESI†). 

The absorption spectra in CH2Cl2 of chromophores YQ1-YQ6 

show variably intense CT absorption bands as reported in Fig. 2. All 

molecules depict prominent absorption bands in the UV region 

which can safely be ascribed to a high energy ligand-centred (ICT 

transition) π−π* electronic transition. The other bands in the visible 

region can be assigned to other localized excitations with a lower 

energy produced either by two nearly degenerate transitions, a 

Fe(II) d−d transition (assigned to 1E1g ← 1A1g) or by a MLCT process 

(dπ−π*).14 By increasing the strength of R as an electron 

withdrawing group on the quinoxaline scaffold, a bathochromic 

shift is observed. The detailed absorption bands and their energy 

gap are given in Table1.  

 

 

 

 

 

 

 

 

 

Figure 2. Absorption spectra of YQ1- YQ6 in CH2Cl2 at 298 K. 

To gain insight into the structural and electronic properties of 

chromophores YQ1-YQ6, we performed DFT and time-dependent 

DFT (TD-DFT) calculations using Gaussian 09 software.15 Main 

optimized geometrical parameters and calculated highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) energies, absorption maxima (λmax), are reported in Table 1 

(ESI†). The lowest energy electronic transitions for all the 

quinoxaline chromophores are originated from the HOMO to 

LUMO. The HOMO-LUMO energy gap decreases by increasing the 

strength of acceptor, and the experimental results confirm this 

trend as evidenced by a red shift of the MLCT band. The density 

plots of HOMO and LUMO levels and their energy gaps are 

influenced by electron donor ferrocene, π-spacer and acceptor 

quinoxaline derivative strength. The HOMO is mainly localized on 

the ferrocene moiety and π-spacer double bond, whereas the 

electron density in the LUMO is mainly localized on the substituted 

quinoxaline moiety (Fig. 3). The HOMO energies of chromophores 

YQ1-YQ6 are quite similar (-5.6 to -5.3 eV) while their LUMO 

energies are influenced by virtue of the nature of R substituents. 

The biggest destabilizations are observed when R is an electron-

donor substituent (YQ5 and YQ6) reaching -2.80 to 2.24 eV. 

Therefore, the increased HOMO - LUMO gap calculated for all the 

chromophores is essentially related to LUMO destabilization. The 

calculated absorption maxima of chromophores are originated by 

single HOMO - LUMO transitions (at 3.12 to 2.64 eV / 397 to 469 

nm) based on the DFT calculations. The theoretically observed trend 

is comparable with experimental values. The absolute values vary 

by the range of 100nm with experimental values which is due to the 

limitation in the basis set used for calculations. The calculated data 

and main transitions involved in the principle orbitals are given as 

density plot in ESI†.  

Figure 3. Schematic representation of the energy levels of 

chromophores YQ1−YQ6 at B3LYP/6-31+G** level of theory. 

Isodensity surface plots (isodensity contour: 0.02) of HOMO and 

LUMO molecular orbitals are also shown. 

Here we report the second-order NLO properties in CHCl3 solution 

of all the chromophores, using the electric field induced second 

harmonic (EFISH) generation technique.16 This technique offers a 

valuable alternative to Hyper-Rayleigh scattering (HRS) which 

suffers from the limitation of possible overestimation of values of 

the quadratic hyperpolarizability due to multiphoton fluorescence. 

EFISH can provide direct information on the intrinsic molecular NLO 

properties through eqn. (1):  

    0,,;25/    KTEFISH
      (1) 

where µβEFISH/5kT is the dipolar orientational contribution to the 

molecular nonlinearity, and γ(-2ω, ω, ω, 0), the third order 

polarizability at frequency ω of the incident light, is a purely 

electronic cubic contribution to γEFISH which can usually be neglected 

when studying the second-order NLO properties of dipolar 

compounds. Chromophores YQ1-YQ6 are characterized by good to 

excellent values of µβEFISH (-430 to -960 x 10-48esu), see Table 1, 

working in CHCl3 at a concentration of 10-3 M with a non-resonant 

incident wavelength of 1.907 µm, obtained by Raman-shifting under 

high H2 pressure by using a Q-switched, mode-locked Nd3+:YAG 

laser. The largest µβEFISH values are observed for CF3 (YQ2) and NO2 

(YQ3) derivatives. In order to obtain the projection along the dipole 

moment axis of vectorial component of tensor of the quadratic 

hyperpolarizability (EFISH), it is necessary to know the dipole 

moment, . So in this work, we have calculated the theoretical 

dipole moments (B3LYP/6-31+G**) of all the chromophores. For 

comparison, we have also experimentally determined the dipole 

moments in CHCl3 for compounds YQ2, YQ3, and YQ4 (Table 1) 

using the Guggenheim’s method.17 Experimental values follow the 

same trend of theoretical ones but are lower than the calculated 

dipole moments,  in accordance with the literature.18 
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Table 1. Photophysical data and second order NLO properties of the investigated chromophores YQ1-YQ6. 

 

 

 

 

 

 

 

 
 

 

a experimental data (HE= High energy, LE = low energy), b theoretical data calculated with B3LYP/6-31+G** theory, c shoulder, d for 

compounds YQ2, YQ3 and YQ4, the values were also determined experimentally in CHCl3 (3.3, 3.4 and 2.1 x 10-18 esu respectively).e In 

anhydrous CHCl3estimated uncertainty in EFISH measurements ± 10%. 

 

The investigated chromophores show a “push-pull” Y-shaped 

structure which is the origin of a non- zero dipole moment and it is 

directed from the symmetrical ferrocenyl moiety as a positive pole 

to quinoxaline moiety as a negative pole (ESI†). 

The substituents are responsible for the different ground state 

dipole moments: going from YQ1 (R=H) to YQ2-YQ4 (R=electron 

withdrawing group) there is an increase of the dipole moment, 

whereas going from YQ1 (R=H) to YQ5-YQ6 (R=electron donor 

group) a decrease of the dipole moment occurs (Table 1). These 

data show that the origin of high µβ values of YQ2 and YQ3 is a 

particularly high dipole moment. Surprisingly, although second 

order NLO properties both in solution and in the solid-state of many 

ferrocene derivatives have been investigated,9b only a few works of 

thin films of pure ferrocene or ferrocene derivatives have been 

published.19 Host-guest polymethylmethacrylate (PMMA) films with 

ferrocene were reported20 but the films were studied for their 

luminescent properties only. To our knowledge, no SHG 

measurements of PMMA films with ferrocene guests have been 

reported. When dipolar chromophores are introduced into 

polymeric systems as dopants, high polar push-pull structure 

usually leads to centrosymmetric alignment, due to the strong 

electronic interactions. However, only those materials lacking 

centrosymmetry could exhibit nonzero macroscopic second-order 

susceptibility. A convenient way to achieve the non-

centrosymmetric alignment of chromophore moieties with high µ is 

to heat the film to a temperature near the glass transition 

temperature of polymer (Tg) in the presence of an electric field, 

leading to the poling-induced non-centrosymmetric alignment of 

chromophores.21 

The high quadratic hyperpolarizability value of chromophore 

YQ2 in solution prompted us to investigate its potential as a 

molecular building block for composite films with SHG properties. It 

was dispersed both in PMMA and polystyrene (PS) matrices (5% wt. 

of chromophore with respect to the matrix) and oriented by poling 

(ESI†). The corona wire poling dynamics of the SHG behavior of 

polystyrene and PMMA composite film are reported in Fig. 4. The 

UV−Vis absorption spectra after and before poling and the SEM 

images of YQ2 in polystyrene and in PMMA films are reported in 

Figures S1 and S3 respectively. The second order NLO coefficient d33 

for poled films was obtained by following the standard Maker fringe 

technique (see ESI†).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. In situ corona-wire poling dynamics for chromophore YQ2 
in polystyrene (A) and in PMMA (B) thin films. The film thicknesses 
are 1.85 µm and 0.85 µm respectively. 

We found excellent d33 values both in PS and in PMMA (a d33 of 2.96 
pm/V and 5.27 pm/V respectively. For d33 calculation see ESI†); 
remarkably to our knowledge, the d33 value in PMMA is the highest 
ever reported for a host/guest system based on an organometallic 
chromophores. Surprisingly, the SHG signal remains unchanged also 
when the electric field is switched off. Its stability is remarkable, 
after four months we found a d33 value of 1.72 pm/V, with a 
stability of 33%. It is worth pointing out that the PMMA system 
gives an SHG response higher than polystyrene, but a higher 
stability (50%) is reached using polystyrene as a matrix (d33 of 1.47 
pm/V). 

In conclusion, the reported Y-shaped chromophores containing 

ferrocene and a quinoxaline core have good second order nonlinear 

optical properties in solution and the really high d33 value of the 

host/guest film in PMMA of YQ2 makes those chromophores 

fascinating building blocks to obtain long lasting NLO-active 

polymeric films. 

Sample 

λmax
HE 

[nm (eV)] / 
ε (x103) 

[M-1 cm-1]a 

λmax
LE 

[nm (eV)] / 
ε (x103) 

[M-1 cm-1]a 

HOMOb 

(eV) 
LUMOb 

(eV) 
λmax, 

[nm (eV)]b 
μb,d 

(x 10-18esu) 
µβe 

(x 10-48esu) 

YQ1 349 (3.55) /17.5 498 (2.48) /0.55 -5.40 -2.29 397 (3.12) 3.4 -790 
YQ2 356 (3.48) /22.1 522 (2.37) /0.68 -5.37 -2.37 413 (2.99) 5.9 -960 
YQ3 389 (3.18) /18.7 558 (2.22) /0.57 -5.45 -2.80 469 (2.64) 6.3 -820 
YQ4 379 (3.27) /12.8 536 (2.31) /0.39 -5.63 -2.74 430 (2.88) 5.5 -560 
YQ5 350 (3.54) /20.1 501 (2.47) /0.61 -5.37 -2.25 397 (3.11) 1.1 -580 
YQ6 352 (3.52) /19.8 499 (2.48) /0.64c -5.35 -2.24 398 (3.11) 1.3 -430 
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