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In an interacting continuous time quantum walk, while the walker (the cursor) is moving
on a graph, computational primitives (unitary operators associated to the edges) are
applied to ancillary qubits (the register). The model with one walker was originally
proposed by R. Feynman, who thus anticipated many features of the Continuous Time
Quantum Walk (CTWQ) computing paradigm. In this note we examine the behaviour
of an interacting CTQW with two walkers and examine the interaction of the walkers
with noncommuting primitives. We endow such a walk with a notion of trajectory, in
the sense of sample path of an associated Markov process, in order to use such notions
as sojourn time and first passage time as heuristic tools for gaining intuition about its
behaviour.

Keywords: Continuous time quantum walks; birth and death processes.

1. Introduction

We consider a collection of spin 1/2 systems τ (j) = (τ1(j), τ2(j), τ3(j)),
j ∈ Λs ≡ {1, 2, . . . , s}, coupled to an ancilla qubit σ = {σ1, σ2, σ3} by a Hamil-
tonian of the form:

H(a, b) = −1
2

s−1∑

x=1

Ux ⊗ τ+(x + 1) τ−(x) + U−1
x ⊗ τ+(x) τ−(x+ 1), (1)

where τ±(j) = (τ1(j) ± iτ2(j))/2. The integers a, b are supposed to satisfy 1 < a <

b < s; the unitary operators Ux act on the state space of the ancilla qubit. We will
take, in this note,

Ua = σ1, Ub = σ3 (2)

and will suppose that all the remaining Ux are the identity operator. We will con-
sider an initial condition in the eigenspace belonging to the eigenvalue 2 of the
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conserved number operator

N3 =
s∑

x=1

1 + τ3(x)
2

, (3)

and we will refer the system to the orthonormal basis |(x1, x2), ζ〉, where ζ ∈
{−1, 1} and 1 ≤ x1 < x2 ≤ s, formed by the simultaneous eigenstates of τ3(x),
x ∈ Λs, and σ3, belonging, respectively, to the eigenvalue +1 of τ3(x1) and τ3(x2),
to the eigenvalue −1 of the remaining τ3(x) and to the eigenvalue +1 of ζ.

We will look at the above system from two points of view:

(i) As an Anderson model1 with noise on the hopping parameters relative to the
links {a, a+1} and {b, b+1}, with the peculiarity that the “random values” of
these parameters are determined by the non commuting observables σ1 and σ3.

(ii) As a version of Feynman’s model of a quantum computer,2 where the motion
of spin-up excitations of the τ field (the clock) administers the primitives Ua

and Ub to the ancilla (the register).

For an extensive analysis of related models in the subspace belonging to the eigen-
value 1 ofN3 we refer the reader to Ref. 3. In the N3 = 1 subspace (because of Peres’
conservation laws4) the presence of an ancilla cannot even temporarily affect the
motion of the clocking excitation. In the N3 = 2 subspace we will, on the contrary,
give evidence of a peculiar three-body effect involving the two clocking excitations
and the ancilla qubit, related to the fact that Ua and Ub do not commute.

2. Dynamical Kickback

The study of the system introduced in the previous section is made easy by the fact
that the two following projectors are constants of motion:

P± =
∑

1≤x1<x2≤s

|(x1, x2),±(−1)θ(x1−a)+θ(x2−a)〉

×〈(x1, x2),±(−1)θ(x1−a)+θ(x2−a)|, (4)

where θ(x) = if x > 0 then 1, else 0. If, as we will always do in this note, we
consider the evolution of the system from the initial state

|ψ0〉 = |(1, 2),+1〉, (5)

we will be interested only in the matrix elements of the HamiltonianH(a, b) between
states belonging to the range of P+:

h+((x1, x2), (y1, y2))

≡ 〈(x1, x2), (−1)θ(x1−a)+θ(x2−a)|H(a, b)|(y1, y2), (−1)θ(y1−a)+θ(y2−a)〉

= −1
2

(δx1,y1(δx2,y2+1 + δx2,y2−1) + δx2,y2(δx1,y1+1 + δx1,y1−1))

+ (1 − θ(x1 − a))δx1,y1(δx2,b δy2,b+1 + δx2,b+1 δy2,b). (6)
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Looking at the model from the point of view (ii), it performs quite a trivial com-
putational task: starting with the two clocking excitations in positions 1 and 2 and
with the register “up”, it returns, if the two clocking excitations are found in the
terminal positions s− 1 and s, the register again “up”.

In the case b = a+ 1 the only track of the fact that, in applying the identity to
the register, the machine has temporarily flipped it (by applying σ1), can be seen by
comparing the corresponding probability amplitude with the one for the free case
in which all the Ux are the identity operator: the inversion of phase (“dynamical
kickback”) shown in Fig. 1(a) is easily understood by thinking that, while the two
clocking excitations move to the right, they restore the register into the “up” state
by applying minus the identity operator to the register in the successive steps (from
right to left) σ3σ1σ3σ1.

The above simplistic description of the evolution of the “computation” with two
clocking excitations holds only in the particular case b = a + 1 considered up to
now, as made clear by the example with b = a+ 2 shown in Fig. 1(b).

By direct inspection of the Hamiltonian (6) and, in particular, of the weighted
graph on which our quantum walk takes place (Fig. 2), the role of the positions a
and b of the two noncommuting impurities Ua = σ1 and Ub = σ3 is easily understood
in the context of an interference phenomenon. The term

(1 − θ(x1 − a)) δx1,y1(δx1,b δy2,b+1 + δx2,b+1 δy2,b)

in h+((x1, x2), (y1, y2)) shows that in the situation b = a + 1 of Fig. 1(a), all the
amplitudes ψt(x1, b+1), 1 ≤ x1 ≤ b are phase inverted with respect to the free case
evolving according to the finite difference Laplacian

δx1,y1(δx2,y2+1 + δx2,y2−1) + δx2,y2(δx1,y1+1 + δx1,y1−1)).

In the situation b = a+2 of Fig. 1(b), on the contrary, only the amplitudes ψt(x1, b+
1), 1 ≤ x1 ≤ a are phase inverted and deviations with respect to the free case take
place because of interference with the uninverted signal ψt(a + 1, b+ 1): that this
interference can be destructive, suppressing the probability of the two excitations
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Fig. 1. Frame (a): s = 7, a = 4, b = 5. Frame (b): s = 7, a = 3, b = 5. Solid lines: the probability
amplitude −ψt((s−1, s), 1) as a function of time, under the initial condition (5). The dashed lines
refer to the free case.
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Fig. 2. Graphical representation of the Hamiltonian (6) on the weighted graph having the
set of vertices {(x1, x2) ∈ Λs × Λs, 1 ≤ x1 < x2 ≤ s} with edges between nearest neigh-
bour sites. Edges to which (6) attributes a positive weight are represented by thick lines.
Frame (a): s = 7, a = 4, b = a+ 1 = 5. Frame (b): s = 7, a = 3, b = a+ 2 = 5.

ever going beyond the noncommuting impurities, is shown by comparison of the
two frames of Fig. 1. A notational remark: for a wave function ψt((x1, x2), ζ) in the
range of P+ we are suppressing explicit indication of the argument ζ.

3. Sample Paths

It is fairly intuitive to attribute the effect shown in Fig. 1(b) to the fact that, in the
case b = a + 2, not only the computational path σ3σ1σ3σ1 = −I is available, but
also the path σ3σ3σ1σ1 = I, corresponding to the fact that the rightmost cursor
can wait in b for the leftmost cursor to jump in a+1 ( σ1σ1 = I being thus applied
to the register) and then both of them can jump to the right of b (σ3σ3 = I being
thus applied).

The above intuition (involving correlations between positions of the cursors
at different times) can be made more precise in terms of the stochastic process
(q1(t), q2(t)) associated, according to the prescription of Ref. 5 (as specialized to
the present context in Ref. 6) to the time evolution ψt(x1, x2), in H+ = range(P+),
of the initial condition (5). The transition probability per unit time from site (x1, x2)
to site (y1, y2) is given by

vt(y1, y2|x1, x2) = |h+((x1, x2), (y1, y2))|
∣∣∣∣
ψt(y1, y2)
ψt(x1, x2)

∣∣∣∣ · [1 + sin(Arg(ψt(x1, x2))

−Arg(ψt(y1, y2)) + Arg(h+((x1, x2), (y1, y2))))]. (7)
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Fig. 3. s = 25, a = 11, b = a + 2 = 13. Frames (a) and (b): sample paths of the interacting
processes q1(t) and q2(t) respectively. Only the trajectories, in our sample of size 104, that hit
the site (a + 1, b) are shown. In the insets, the corresponding trajectories of the free process
(q01(t), q02(t)) are shown for comparison purposes.

We will indicate by (q01(t), q02(t)), v0
t (y1, y2|x1, x2), . . . , the analogously defined

quantities in the absence of interaction. Simulation of processes with the above
transition fields are performed, in what follows, according to the first order algo-
rithm outlined in Ref. 6.

The free process (q01(t), q02(t)) (some sample paths of which are shown in the
insets of Fig. 3) can, in the region {(x1, x2) ∈ Λs × Λs : 1 ≤ x1 < x2 ≤ s},
be described in much the same way as the paradigmatic example of Ref. 6: each
component starts as a pure birth process (only steps to the right (x1 → x1 + 1)
or upwards (x2 → x2 + 1) are allowed in an initial time interval); at each instant
each link (edge between nearest neighbour lattice sites) can be traversed only in one
direction; the allowed direction along a link is inverted each time the probability
mass at one vertex of the link vanishes.

Mastering the slalom at (a + 1, b) in the interacting case, as shown by Fig. 3,
requires subtle time correlations. There is an instant of time at which most of
the trajectories that hit (a + 1, b) are there simultaneously. At a later time they
radiate from (a+ 1, b) in many different directions. As Fig. 4(b) shows, given that
the process hits (a + 1, b), it stays there, on the average, for a longer time in the
interacting case than in the free case.

4. Conclusions and Outlook

We have tried, in this note, to contribute to the effort of looking at quantum
mechanics as a source of metaphors suggesting Markov processes with interesting
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Fig. 4. s = 25, a = 11, b = a+ 2 = 13. Conditional cumulative distribution function of the first
passage time [Frame (a)] and sojourn time [Frame (b)] at site (a + 1, b), given that in the time
interval (0, s) the process visits (a + 1, b). Solid line: the interacting case. Dashed line: the free
case. Both distribution functions are estimated from the subsample of those trajectories that do
hit (a + 1, b).

dynamical behaviour, interesting from the point of view of, say, efficiently crossing
(in the sense of Ref. 7) a graph or a decision tree, or sampling a function to be
minimized.8,9

In Ref. 6 we have, in this spirit, shown how to mimic, by a Markov process of the
class proposed in Ref. 5, the diffraction effect due to a sharp initial position. Here we
have tried to formulate in the same stochastic language the interference effects due
to different localizations, as shown in Fig. 2, of discontinuities of the Hamiltonian.

In the process of doing so we have explored the notions of first passage and
sojourn times for a quantum walk, which might prove useful from the point of view
of suggesting heuristics of quantum algorithms, in a context, such as Feynman’s,2

in which timing and synchronization issues play a major role.
From the point of view of physics, our analysis raises the question of finding,

in the quantum mechanics of Anderson localization by non-commuting impurities,
an analog of the time dependent phenomenon shown by the stochastic process in
Figs. 3 and 4: the sudden formation [see Fig. 4(a)], in the situation of Fig. 2(b), of
a probability bubble at (a+ 1, b) and its delayed [see Fig. 4(b)] bursting in random
directions.
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