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ABSTRACT
10 Introduction: Guillain-Barrè syndrome is a rare disease representing the most frequent cause of acute

flaccid symmetrical weakness of the limbs and areflexia usually reaching its peak within a month. The
etiology and pathogenesis remain largely enigmatic and the syndrome results in death or severe
disability in 9–17% of cases despite immunotherapy.
Areas covered: In terms of etiology, Guillain-Barrè syndrome is linked to Campylobacter infection but

15 less than 0.1% of infections result in the syndrome. In terms of pathogenesis, activated macrophages
and T cells and serum antibodies against gangliosides are observed but their significance is unclear.
Expert commentary: Guillain-Barrè syndrome is a heterogeneous condition with numerous subtypes
and recent data point towards the role of ganglioside epitopes by immunohistochemical methods.
Ultimately, we are convinced that the syndrome results from a permissive genetic background on which

20 environmental factors, including infections, vaccination and the influence of aging, lead to disease.
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1. Introduction

Guillain–Barré syndrome (GBS) represents the most common
cause of acute flaccid symmetrical weakness of the limbs and
areflexia in the post-polio era. In general terms, GBS encom-

25 passes a wide range of clinical syndromes with an acute inflam-
matory polyradiculoneuropathy, muscle weakness, and reduced
reflexes. It was first described almost 100 years ago by three
French neurologists Georges Guillain, Jean-Alexandre Barré, and
Andre Strohl in two soldiers with elevated protein concentra-

30 tion and a normal cell count in the cerebrospinal fluid (CSF). In
1949, Haymaker and colleagues described the clinicopathologic
features of 50 fatal GBS cases and noted axonal degeneration,
myelin breakdown, and nerve edema [1]. In 1986, Feasby and
colleagues further described a GBS variant with predominant

35 direct axonal damage rather than demyelination [2], which was
later coined acute motor axonal neuropathy (AMAN) or acute
motor sensory neuropathy (AMSAN), secondary to the molecu-
lar mimicry between bacterial lipooligosaccharide and the
human GM1AQ2 ganglioside [3–5]. Based on these observations

40 and the proposed role for autoimmunity, intravenous immuno-
globulin (IVIg) and plasma exchange are utilized in GBS [6],
without impacting on the risk of death or severe disability
which ensues in 9–17% of cases [7].

Along with enormous progress made in the understanding of
45 � immune-mediated neurological disorders [8,9], particularly multi-

ple sclerosis [10–13], the past 10 years have witnessed substantial
advancements in the epidemiology, immunopathogenesis,

clinical features, and clinical management of GBS, and this manu-
script will provide a comprehensive overview of the past and

50recent lines of evidence. This is well illustrated by the fact of
serum antiganglioside antibodies, often detected although their
levels decrease over time [14], which may represent a good
candidate biomarker in this complex condition, despite their
limited sensitivity particularly in patients with AMAN and virtual

55absence in acute inflammatory demyelinating polyradiculoneuro-
pathy (AIDP) [15].

2. Epidemiology

The term GBS can be used to denote a syndrome that includes
the aforementioned AMAN, the� AIDP� and other variants such as

60AMSAN, and the Miller-Fisher syndrome (MFS), which is char-
acterized by ataxia, ophthalmoplegia, and areflexia. Overall, the
clinical course, severity, and outcomes of GBS are highly vari-
able. However, with the identification of several new pheno-
types in the past years, the conceptual framework of GBS has

65become increasingly complex.
The incidence of typical GBS ranges between 0.81 and 1.89

(median 1.11) cases per 100,000 � person-years, being more
common in men than women (sex ratio 1.5� :1), and available
data are illustrated in Table 1. The prevalence and incidence of

70GBS increase� with age, and age-specific GBS rates are 0.62
cases per 100,000 person� -years among 0–9� -� year-old subjects
versus 2.66 cases per 100,000 person-years in the 80–� 89-� year-
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old population [16]. The crude incidence rate ofAQ3 GBS in
Bangladesh was highest (2.5 per 100,000 person-years)� with

75 seasonal fluctuation and a peak in May [17] and lowest (0.40
per 100,000 person-years) in Brazil [18]. The epidemiology of
the AMAN subphenotype of GBS is limited, and the reported
frequency using electrodiagnostic criteria is highest (65%) in
Chinese patients [19] compared to 6–7% in North American

80 and European series [20,21]. It has been hypothesized that
AMAN is more prevalent with poor hygiene infrastructures
and higher incidence of diarrhea [22]. The severity of GBS
cases also manifests different prevalence rates in different
areas being highest in China compared to Europe and the

85 USA, particularly in cases of AMAN group and Bickerstaff’s
brain stem encephalitis requiring mechanical ventilation with
the former representing 4% of GBS cases in Japan, 6% in India,
and 11% in Bangladesh [22].

3. Prior infections

90 Over� two-thirds of patients with GBS refer symptoms of respira-
tory or digestive infections within� 6 weeks of onset [22,35]. In
30–40% of GBS cases, Campylobacter is the infecting agent, and
it has been estimated that 1/1058 infections results in GBS [36].
The association between GBS and Campylobacter� jejuni was first

95 described around 1982 in clinical anecdotes by Rhodes and
Tatterfield [37]. Other infections preceding GBS may derive
from Mycoplasma pneumoniae, Haemophilus influenzae,
Salmonella species, Mycobacterium bovis, Brucella, Orientia tsut-
sugamushi, Legionella pneumophila, Bartonella henselae,

100 Helicobacter pylori, Francisella tularensis, Borrelia, cytomegalo-
virus, Epstein–Barr virus, varicella-zoster virus, influenza virus,
human immunodeficiency virus, parainfluenza virus type 1,
adenovirus, herpes simplex virus, hepatitis (A, B, and E),
Japanese encephalitis virus, West Nile virus, enterovirus (D68,

105 71), Hantavirus, measles, Parvovirus B19, Norovirus, parecho-
virus, Coxsackieviruses, Echovirus, mumps, rubella, polio (wild-
type 3), dengue, chikungunya, and Zika viruses [37–41]� (for
details, see Table 2). Several vaccines, including influenza A
H1N1, rabies, meningococcal, live-attenuated yellow fever,

110 hepatitis A and B, smallpox, polio, MMR, tetanus–diphtheria,
and � H.� influenzae type B, have also been considered as a
possible trigger of GBS [42,43].

AQ4

The Zika virus is a mosquito-borne flavivirus [140] that was
first observed in 1947 and was demonstrated in numerous

115 cases since 2007 [141] with a most recent outbreak in

numerous countries worldwide [142]. Zika virus infection has
been linked to GBS as cases have been reported within a Zika
and Dengue fever epidemics in French Polynesia [127], but it
remains unclear which infection was related to the neurologi-

120cal manifestations, as previous reports suggested a connection
with Dengue fever. The mechanisms involved would be that of
molecular mimicry, which can exist on� a primary amino acid
basis, secondary, or even tertiary structure [128].

Molecular mimicry is an important mechanism that can
125lead to autoimmune responses, and further data on not only

vaccination� but also infection� will require the ability to do
detailed analysis of the structural homologies and the indivi-
dual host immune response. Certain criteria need to be met
before attributing disease causation to molecular mimicry.

130These include� epidemiological evidence linking the suspected
infectious agent or exogenous substance with the autoim-
mune disease; identification of T-cell responses or specific
antibodies against the target autoantigen; identification of
structural homology between the infectious agent or exogen-

135ous substance and the target autoantigen; and finally, repro-
duction of the autoimmune disease following immunization
with the infectious agent or exogenous substance in an animal
model [143]. The axonal subphenotype of GBS is the only
autoimmune disease at present that fulfills all four criteria for

140molecular mimicry [144]. Other mechanisms explaining the
relationship between infection and GBS may include epitope
spreading, bystander activation, the production of super� anti-
gens, and aberrant activation of the immune response [145].

4. Pathogenesis

145Different mechanisms are proposed for AIDP and� AMAN. In the
former case, Asbury et al. in 1969 first reported the segmental
demyelination restricted to nerve regions infiltrated by T cells
and macrophages in� four patients who died from GBS [146].
This led to the understanding that myelin damage is caused

150predominantly by activated macrophages which penetrate the
basement membrane around nerve fibers ultimately leading
to demyelination [147]. Furthermore, patients with acute GBS
have lower peripheral CD4+ CD25+ T-cell count compared to
controls, thus also supporting the role of T cells in pathogen-

155esis of GBS [148]. The demonstration of complement activa-
tion products on the surface of Schwann cells and the
identification of vesicular myelin degeneration led to hypoth-
esis that complement activation on Schwann cell surface led
to demyelination. The complement activation was mediated

160by the binding of specific antibodies to epitopes on the
Schwann cell surface followed by vesiculation of myelin before
invasion of macrophages [149]. The invasion of Schwann cell
basement membrane was hypothesized to be a consequence
of the increased matrix metalloproteinase 9 (MMP9) observed

165in patients with GBS [44]. Macrophages target antigens on the
surface of Schwann cells or myelin sheath via activated T cells
and MMP9 along with toxic nitric oxide radicals released by
activated macrophages lead to Schwann cell injury and sub-
sequent invasion of the peripheral nerve [150]. Furthermore,

170the inflammatory mediators and cells may induce axonal
damage in severe cases of AIDP in a process referred to as
secondary degeneration [150]. Nonetheless, we should also

Table 1. Reported incidence rates of Guillain–Barré syndrome in different
Countries [16].

Author Reference N Yearly incidence (/100,000) Country

Deceuninck [23] 33 0.81 Canada
Winner and Evans [24] 72 1.1 England
Govoni [25] 69 1.89 Italy
Bogliun and Beghi [26] 138 1.55 Italy
Chiò [27] 126 1.44 Italy
Sedano [28] 63 1.03 Spain
Aladro-Benito [29] 81 1.04 Spain
Cuadrado [30] 337 0.85 Spain
Cuadrado [31] 98 1.25 Spain
Cheng [32] 73 1.63 Sweden
Beghi [33] 48 1.68 USA
Schonberger [34] 418 0.94 USA

2 A. K. JASTI ET AL.



Table 2. The proposed links between Guillain–Barré syndrome and infection, from C. jejuni to Zika virus.

Agent Epidemiology
Subphenotype(s)

association
Physiopathological

mechanism Pathogen characteristics
Anti-gangliosides

antibodies References

Bacterial
Campylobacter
jejuni

C. jejuni has consistently
been identified as the
most frequent
antecedent infection in
GBS, appearing in
approximately a quarter
of patients

Predominantly,
but not
exclusively,
related to
AMAN

Molecular mimicry: cross-
reactivity between
epitopes on C. jejuni
and peripheral nerve
gangliosides

C. jejuni epitopes: surface
LOS, subtyping into
seven classes (A–G)
based on the presence
of specific LOS loci

AMAN: anti-GM1a, GM1b,
GD1a, and GalNAc-
GD1a gangliosides

[6,44–52]

GBS following C.
jejuni infection
may be more
severe than that
caused by other
infectious
agents

Ganglioside expression is
tissue-specific and anti-
ganglioside profiles,
therefore determine
patterns of neurological
involvement

Class A (GBS) and B
(MFS) locus

MFS or MFS–GBS overlap
syndrome: anti-GD1b,
GD3, GT1a, and GQ1b
gangliosides

Polymorphisms: cstII
gene, Thr51 variant
(GBS), Asn51 variant
(MFS), TNF, and MBL2
gene

MFS and BBE: anti-GT1a
and GQ1b

Approximately 1� in 1000
patients with C. jejuni
goes on to develop GBS

Complement activation
seems to contribute to
nerve degeneration in
GBS

C. jejuni serotypes O:19
(GBS), O:2 (FS)

Antibodies against
combinations of
epitopes from
ganglioside complexes

C. jejuni LPO bind to
siglec-7 (sialic acid�
binding
immunoglobulin-like
lectin 7) and activate
dendritic cells via Toll-
like receptor 4 and
CD14. These dendritic
cells produce type 1
interferon and� TNF,
which induce
proliferation of B cells

C. jejuni subspecies� jejuni
HS:41 strains RM3196
(233.94) and RM3197
(308.95)

Mycoplasma
pneumoniae

M. pneumoniae
seropositivity in GBS
patients ranges
significantly (1–25%)

AIDP, BBE, MFS Molecular mimicry Presence of GM1 epitope
in M. pneumoniae.

Anti-GM1 (pathogenic),
Gal-C (possible
epiphenomenon), and
GA1

[53–56]

Haemophilus
influenzae

H. influenzae is a normal
constituent of upper
respiratory tract flora in
80% of humans, and
isolation may occur in
conjunction with other
infectious triggers of
GBS

MFS and AIDP Molecular mimicry Of the six serotypes (a–f)
of capsular strains of
H. influenzae, type b
causes serious chest
infections and appears
to be associated with
GBS

Anti-GM1 (AMAN) and
GQ1b (MFS)

[42,57–62]
GBS following
immunization with the
H. influenzae type b
conjugate vaccine

LOS from some type b
strains have been
shown to bear
ganglioside-like
molecules

Salmonella
species

1% of patients with
typhoid fever
developed GBS

AIDP, MFS, and
BBE

It is unclear whether
molecular mimicry plays
a role in Salmonella-
related GBS

GBS related to enteric
fever caused by
Salmonella Typhi
(typhoid fever) or
Salmonella Paratyphi
(paratyphoid fever)

Anti-GQ1b (BBE) [63–67]

Viral

� CMV 0.6–2.2 cases per 1000
persons

AIDP (up to 70%),
AMSAN, AMAN
(7%), and MFS
(6%)

The roles of anti-
ganglioside antibodies,
cellular immune
responses, and viral
replication are not yet
established

Serological evidence of
primary CMV infection

Anti-GM2 (IgM), more
closely associated with
primary CMV infection
than with GBS

[57,68–75]

Younger, female,
sensory
symptoms, and
facial palsy

T cell-mediated immune
response to neural
antigens

Anti-GalNAc-GD1a, GM1,
GM3, GD2, GD3, GT1b,
and GT1a

(Continued )
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Table 2. (Continued).

Agent Epidemiology
Subphenotype(s)

association
Physiopathological

mechanism Pathogen characteristics
Anti-gangliosides

antibodies References

GBS associated
with CMV
infection after
transplantation

Possible association
between viral
replication and sensory
defects
Molecular mimicry

Antibodies against
moesin, a component
of the ezrin–radixin–
moesin cytoplasmic
complex in Schwann�
cell microvilli that
surround the nodal
axolemma (not
replicated)

� EBV Large population studies
on the incidence of EBV
reactivation and GBS
are lacking

AIDP, AMSAN,
AMAN, and BBE

Immunological (anti-GQ1b
antibodies) mechanism
induced by infection

Acute EBV infection: IgM
and IgG antibodies
against VCA and the
absence of antibodies
to EBNA

Anti-GQ1b, GM1, and
GM3

[37,68,75–
79]

GBS associated
with EBV
infection after
transplantation

Disturb the regulatory
mechanisms that
normally inhibit latent
autoimmunity against
peripheral nerve
antigens rather than
providing a specific
autoimmune antigenic
stimulus

� VZV Risk of developing GBS
18.7-times greater

GBS Molecular mimicry: scarce
data regarding possible
structural mimicry
between VZV and the
molecules of human
peripheral nerves

More likely to have had
a recent infectious
event

Anti-GM1 (IgM) and GD-1
(IgM)

[37,80,[81]
Mainly in the
case of latent
infection
reactivation

Only 1% of antecedent
infections

Short latency
period between
rash onset and
the
development of
neurological
symptoms

HZ could play a
pathogenic role in
triggering GBS

GBS might be associated
with recent infectious
events of pathogens
other than VZV

Fewer than 50 cases
reported

Poor clinical
prognosis

Directly related to
autoimmune-mediated
responses initiated by
the VZV reactivation

Coinfection with
different strains of
pathogen can be
found

Aberrant immunological
status of the host

Imbalance of helper and
suppressor lymphocytes

Influenza virus � Four to� seven cases per
100,000 cases of
influenza

AMAN, AMSAN,
AIDP, and MFS

Influenza virus does not
share structural
homologies with known
gangliosides

Influenza A (H1N1),
influenza B virus

Anti-GD1b, GM1, GD1a,
Gal-C, GM3 (H1N1
vaccination), GQ1b
(MFS)

[68,82–91]

15-fold increased risk of
developing GBS

The mechanisms linking
influenza virus and GBS
are poorly understood
and probably relate to
increased risk of
secondary infection

18% had antecedent
influenza-like illness
and 3.5% had
serological evidence of
recent infection

GBS after seasonal and
2009 H1N1 monovalent
influenza vaccines�

a

� HIV GBS is a well� known but
rare complication of
primary HIV infection

AIDP, AMAN and
MFS

Immune mechanisms
poorly understood

GBS often develops in
early HIV and

Anti-GM1 [92–102]

Increased susceptibility to
infection, direct action
of HIV on nerves, and
generation of� myelin-
specific antibodies

sometimes at the time of
seroconversion and is
only rarely seen in
full-blown AIDS

Elevated titers of IgG
antibodies against
sulfatide, which is a
major
glycosphingolipid in
the myelin sheath
(significance in disease
pathogenesis
questionable)

(Continued )
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note that AID� P-associated Wallerian-like degenerationAQ7 occurs
mainly in the epi� perinerium of nerve trunks, as is the case in

175 P2-induced EANAQ8 , thus suggesting a pathogenic role for trans-
perineurial blood flow dysfunction in endoneurial ische-
mia [151].

C. jejuni induces the unbalance of Th1/Th2/Th17/Treg and
cytokines that is crucial for the development of GBS [14].

180Upregulation of Th1 cytokines in the early disease course
may be associated with immune-mediated disease progres-
sion due to neuronal inflammation, but upregulation of Th2

Table 2. (Continued).

Agent Epidemiology
Subphenotype(s)

association
Physiopathological

mechanism Pathogen characteristics
Anti-gangliosides

antibodies References

CD4+ T cell-mediated
cellular immunity
appears to play a role in
the pathogenesis of
GBS

GBS has also been
reported during
immune
reconstitution
following highly
active antiretroviral
therapy

� DENV Largest GBS-DENV
outbreak ever reported:
New Caledonia (2012–
2013)

AMAN, AIDP,
AMSAN, and
MFS

Molecular mimicry Serotypes (DENV 1–4) Anti-GD1b [103–118]

GBS is reported
during the
recovery phase
of illness

T cells produce cytokines
and chemokines which
open the BBB allowing
antibodies to enter and
Schwann cells to attack

Dengue nonstructural
protein 1 antibody
(anti-NS1) produced
after dengue infection
could be responsible
for the� cross-reactivity
to endothelial cell

There are a few cases of
GBS following dengue
infection (about 20
cases)

Oligosymptomatic
dengue
infection
(underestimates
prevalence of
GBS)

Activated T cells could
cross the vascular
endothelium (BBB) and
recognize an antigen in
the endoneural
compartment

GBS accounted for 30% of
the neurological
manifestations of
dengue infection

Proinflammatory
substances that
participate in immune
response to DENV such
as TNF, complement,
interleukins may have
important role in the
pathogenesis

� CHIKV Incidence per 106: up 22%
from baselineAQ5 (3.3),
Réunion Island

AIDP
GBS associated
with CHIKV
infection has
been rarely
reported yet

Tropism for brain tissue

� has been validated in
several mouse models
of CHIK neuroinfection

The presence of CSF
abnormalities and
CHIK-specific IgM
intrathecal synthesis

� was highly suggestive
of CHIK-induced
pathology in the
nervous system

Not reported [119–126]

The incidence rate of GBS
increased 22% in 2006
(26/787,000, persons)

Neurological
symptoms
started during
the invasion
phase prior to
seroconversion

Disseminated acute CHIKV
infection previous to
GBS development

Genomic products of
CHIKV in serum and
CSF are negative

GBS incidence was
increased four- to
nine� fold during
2014–2015 (French
Polynesia), suggesting a
link to CHIKV infection

� ZIKV 2.4� /10,000 ZIKV infections AMAN A causal relationship
between ZIKV and
neurological
complications is very
likely due to molecular
mimicry mechanism

� Neutralizing antibodies
against ZIKV

Anti-glycolipid antibodies:
anti-GA1, GM1, GM2,
GD1a, GD1b, and GQ1b

[41,127–
139]Incidence was 20-fold

higher than expected
during the time
coinciding with the
ZIKV epidemic in French
Polynesia

�
aThe estimated attributable risk of vaccine-related GBS in the adult population was just under one case per 100,000 vaccinations. Major nervous system gangliosides
include GM1, GM2, GD1a, GD1b, GT1a, GT1b, and GQ1b� .

AIDP: acute inflammatory demyelinating polyneuropathy� ; AMAN: acute motor axonal neuropathy� ; AMSAN: acute motor� sensory axonal neuropathy� ; BBB: blood–brain
barrier� ; BBE: Bickerstaff� brain s� tem encephalitis� ; CSF: cerebrospinal fluid� ; EBNA: antibodies against the EBV nuclear antigen complex� ; Gal-C: galactocerebroside� ; GBS:
Guillain–Barré� syndrome� ; LOS: lipo� oligosaccharide� ; MFS: Miller-Fisher syndrome� ; VCA: viral capsid antigen; EBV: Epstein–Barr virus; VZV: varicella-zoster virus; HIV:
human immunodeficiency virus; DENV: dengue virus; CHIKV: chikungunya virus; ZIKV: Zika virus; CMV: cytomegalovirus; TNF: tumor necrosis factor; Ig:
immunoglobulinAQ6 .
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immune response during the later phase aids recovery from
the disease [152]. In addition, Th17 also plays a pathogenic

185 role, and elevated circulating Th22 cells are correlated with
severity of disease, but not with GBS subphenotypes [153].
Th17 and Th22 cells of GBS patients at acute phase could
express an appropriate cytokine profile, like interleukin (IL)-
17, IL-22, and others (IL-6 and tumor necrosis factor� -α), which

190 can enhance the inflammatory and autoimmune response and
conduce to the development of GBS [153].

In the pathogenesis of AMAN, the early changes include
the lengthening of the node of Ranvier with myelin distortion
while overlying macrophages invade the space between

195 Schwann cell and the axon leaving the internodal myelin
sheath and Schwann cytoplasm intact. These changes may
be initially reversible, thus explaining the rapid recovery of
some patients [44]. The more rapid recovery observed in some
cases suggested that AMAN is associated with a block of

200 axonal conduction or axon terminal degeneration [154]. This
assumption has been challenged by the experimental evi-
dence shown by the preserved neuromuscular transmission
at axonal-stimulating single-fiber electromyography in AMAN,
thus supporting that transmission may be impaired in the

205 motor terminal axons proximal to the neuromuscular junction
[155]. Patients with AMAN manifest little demyelination or
lymphocytic inflammation but demonstrate the presence of
immunoglobulin G (IgG) and the complement activation pro-
duct C3d bound to the axolemma of motor fibers, and in

210 severe cases, IgG and C3d were found within periaxonal
space of the myelinated internodes [149].

Serum antiganglioside antibodies represent a major player
in the induction and perpetuation of GBS pathology.
Gangliosides are sialic acid containing subgroup of glyco-

215 sphingolipids with N-acetylneuraminic acid linked to an oligo-
saccharide core portion which is expressed on cell surface
[156]. Major nervous system gangliosides include GM1, GM2,
GD1a, GD1b, GT1a, GT1b, and GQIb, with specific localizations
at immunohistochemistry of peripheral nerves, as in the case

220 of GD1a in motor fibers and GD1b in large dorsal root ganglia
[154] and are illustrated in Table 3. Conversely, the GQ1b
epitope is predominant in oculomotor, trochlear, and abdu-
cens nerves [156], and Kusu� noki and colleagues demonstrated
that large neurons in dorsal ganglia had localization of GQ1b

225 epitope which could explain ataxia associated with opthalmo-
plegia seen in MFS [157]. GQ1b, GT1a, and GD1b mainly
localize in the extraocular muscles and limb muscle spindles
but are scarcely represented in the limb and axial muscle
neuromuscular junctions [157,158]. Anti-GQ1b antibodies

230 cross-react with GT1a and GD1b, thus explaining the paralytic
effects observed in the MFS in limited groups of muscles.
Kaida et al. described antibodies that are specific for a new
conformational epitope formed by two gangliosides such as
GD1a/GD1b or GQIb/GM1 ganglioside complexes with antibo-

235 dies associated with severe GBS requiring artificial ventilation
[159]. Bickerstaff’s brain stem encephalitis, characterized by
acute ophthalmoplegia, ataxia, and drowsiness, shares some
similar features with MFS including a prior C. jejuni infection
and positive serum� anti-GQ1b IgG antibody [160]. The phar-

240 yngeal–cervical–brachial weakness is associated with anti-
GT1a IgG with or without GQ1b reactivity [161]. Authors

from Japan reported the molecular mimicry of the lipopoly-
saccharide of C. jejuni with the GM1 ganglioside from a patient
with GBS� and with GQ1b from patients with MFS [148]. The

245AMAN subphenotype of GBS is associated with serum anti-
body to ganglioside GM1 in 64%, GM1b in 66%, GD1a in 45%,
and GalNac-GD1a in 33% of cases. Furthermore, 90% of
patients with MFS have serum antibodies to GQ1b, while the
AIDP subphenotype is frequently seronegative [4,150,162]. C.

250jejuni isolated from patients with GBS and � MFS frequently
express ganglioside mimics in their lipopolysaccharides, thus
possibly inducing antiganglioside antibodies and neurological
symptoms, while the heterogeneity in the LPS AQ9structure also
determines the specificity of the anti-glycolipid response [149].

255Specific C. jejuni strains have a set of polymorphic genes and
enzymes that can alter ganglioside-mimicking lipooligosac-
charide outer core [44], and only a subset of C. jejuni strains
contain lipo� polysaccharide that mimic gangliosides in periph-
eral nerves.

2605. Clinical subphenotypes

The clinical array of GBS varies widely from pure sensory [163]
to autonomic variants [164], but these classifications have
been challenged by recent reports, as will be discussed in
detail. AIDP and AMAN are the most common GBS subpheno-

265types. Other variants include MFS, AMSAN, Bickerstaff brain
stem encephalitis, and pharyngeal–cervical–brachial weakness
(the main characteristics are listed in Table 4). AIDP is some-
times mistaken for AMAN if conventional electrodiagnostic
data� are applied as patients with AMAN have a rapidly rever-

270sible conduction block or slowing evident on sequential stu-
dies, but numerous issues remain open, suggesting that AIDP
may be overestimated and AMAN underestimated. Such con-
duction blocks disappear with no electrophysiologic evidence
of remyelination in patients with AMAN [45]. Cranial nerve

275involvement is less frequent in AMAN compared to AIDP
[165]. The disease progression� in terms of muscle weakness
differs between AMAN and AIDP, being more rapid and with
an earlier peak in AMAN with a variable recovery pattern [166].

Table 3. Serum antibodies directed against specific gangliosides and the loca-
lization of the antigens in Guillain–Barré syndrome and subphenotypes [154–
158].

Ganglioside Localization Clinical association

GQ1b Oculomotor nerve Miller-Fisher syndrome
Trochlear nerve Bickerstaff’s brain� stem encephalitis
Abducens nerve Acute ataxic neuropathy (without

opthalmoplegia)
Dorsal root ganglion Acute ophthalmoparesis (without

ataxia)
Muscle spindle

GD1b Dorsal root ganglion Sensory ataxic GBS
Muscle spindle

GM1,
GD1a,

Myelinated axons in
both motor

AMAN

GalNac-
GD1a,

and sensory nerves AMSAN

Gm1b
GT1a, Glossopharyngeal nerve Pharyngeal–cervical–brachial

weakness
GQ1b Vagus nerve

GBS: Guillain–Barré� syndrome� ; AMAN: acute motor axonal neuropathy� ; AMSAN:
acute motor� sensory axonal neuropathy.
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An irreversible conduction block is associated with slow recov-
280 ery and extensive axonal degeneration at the nerve roots with

poor recovery.
AIDP is characterized by autonomic dysfunction such as

hyperhidrosis and fluctuations in blood pressure� ; autonomic
dysfunction is uncommon in AMAN [167]. In general terms,

285 AMAN has been classically addressed as the pure motor form
of GBS with no sensory deficits and the acute motor sensory
axonal neuropathy is the most severe variant [168], but more

recent pathology reported that pure motor GBS is associated
with primary demyelination mainly involving the ventral roots

290[169,170], while 11% of patients with AIDP manifest a pure
motor GBS [21].

The MFS is associated with ophthalmoplegia, ataxia, and
areflexia in its classical form but may present in a limited form
with bilateral internal ophthalmoplegia or bilateral abducent

295nerve palsies. In the majority (up to 76%) of patients, MFS is
anticipated by an upper respiratory tract infection [171] and
associated with serum GQ1b antibody in approximately 90%
of cases. Patients with pharyngeal–cervical–brachial weakness
manifest with symptoms affecting the oropharyngeal, neck,

300and shoulder muscles� and have detectable serum anti-GT1a
antibody as GT1a is expressed predominantly in the glosso-
pharyngeal nerve and vagal nerves [172].

6. Diagnosis

Diagnostic criteria for GBS were first published in 1981 and
305later modified in 1990 [173,174]� to include features that make

the diagnosis more or less likely (Table 5) and to verify the
proposed rise in the frequency of GBS following vaccination
for swine influenza virus. New diagnostic classification has
been recently published in order to enable neurologists and

310non-neurologists to diagnose GBS and all its variants using a
simple yet all-inclusive classification system [175]. The typical
onset of GBS is characterized by the rapidly progressive, sym-
metrical weakness of limbs usually reaching its maximum
severity within 4 weeks [150]. In a large cohort of patients, a

315monophasic course was observed in 95% of patients, and 97%
of patients had reached the clinical nadir by 4 weeks� and 80%
by 2 weeks [176]. An atypical presentation of GBS, such as
paraparesis, is seen in approximately 8% of patients which can
persist up to 6 months, while 9% of patients have normal

320tendon reflexes in the weak arms and 2% in the weak legs

Table 4. Clinical subphenotypes and major features in Guillain–Barré syndrome
(GBS) [45–168].

GBS subphenotype Clinical features Notes

AIDP Multifocal patchy Most common in
Demyelination Europe/USA
Secondary axonal
degeneration in

85–90% of cases

small percentage of
patients

� Association with CMV�
and

Autonomic
dysfunction

EBV infections.

Common includingAQ10
HTN,

No AB association

� hyperhidrosis, and
blood pressure
fluctuation.

Cranial nerve palsy
Frequent sensory loss

� AMAN Cranial nerves rarely
affected

Ab to GM1a, GD1a

Tendon reflexes might
be preserved

Preceding infection is
C.

or exaggerated in 20%
of patients.

jejuni

Progression more
rapid and recovery

5� –10% of GBS in USA

longer compared to
AIDP

30� –65% of GBS
patients in Asia,

South America, and
Central

America
Acute motor and sensory
axonal neuropathy�

Severe form of AMAN Antibody to GM 1a and
GD1a ganglioside

� MFS Ophthalmoplegia,
ataxia, areflexia

Anti-GQ1b, anti-GT1a

No impaired
consciousness

Antibodies in 90% of

Incomplete MFS patients.
Acute
ophthalmoparesis

Preceding infections
include

without C. jejuni, Haemophilus
ataxia � influenzae
Acute ataxic
neuropathy
(no
ophthalmoparesis)

Bickerstaff brain
stem

Ophthalmoplegic
ataxia

GQ1b antibodies

brain Areflexia GT 1a antibodies
stem Absence of limb
encephalitis Weakness

Impaired
consciousness

Pharyngeal– Oropharyngeal neck
and arm

Anti-GT1a antibodies

� cervical– weakness Anti-GQ 1b IgG
antibodies

� brachial Absence of leg
weakness

weakness

CMV: cytomegalovirus� ; EBV: Epstein–Barr virus; Ab: antibody; AIDP: acute inflam-
matory demyelinating polyradiculoneuropathy; AMAN: acute motor axonal
neuropathy; MFS: Miller-Fisher syndromeAQ11 .

Table 5. Diagnostic criteria for Guillain–Barré syndrome [174–175].

Features necessary for the diagnosis of GBS:

● Progressive weakness in both arms and both legs
● Areflexia
Features strongly supporting the diagnosis of GBS:

● Progression of symptoms over days to 4 weeks
● Relative symmetry of symptoms
● Mild sensory symptoms or signs
● Autonomic dysfunction
● Cranial nerve involvement, especially bilateral weakness of facial muscles
● Absence of fever at onset
● Typical electrodiagnostic features
● High concentration of protein in cerebrospinal fluid, with fewer cells than

10� × 10/l
● Recovery beginning 2–4 weeks after progression ceases

Features making the diagnosis of GBS less likely:

● Bladder or bowel dysfunction at onset
● Persistent bladder or bowel dysfunction
● Sharp spinal cord sensory level
● Marked persistent asymmetry of weakness
● Increased number of mononuclear cells in CSF (>50 cells/μl)
● Severe pulmonary dysfunction with limited limb weakness at onset
● Fever at onset of neurological symptoms
● Polymorphonuclear cells in CSF

CSF: cerebrospinal fluid� ; GBS: Guillain–Barré� syndrome.
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at presentation [176]. Severe respiratory muscle weakness
necessitating ventilatory support develops in 10–30% of
patients.

MFS is diagnosed in patients with opthalmoplegia, ataxia,
325 and areflexia but may also present with incomplete forms

without ataxia and in association with serum anti-GQ1b anti-
body. Different incomplete forms of MFS are known as ataxic
GBS to include ataxia without opthalmoplegia and negative
Romberg test and acute sensory ataxic neuropathy with ataxia

330 and a positive Romberg test but no opthalmoplegia.
Paraparetic GBS is another uncommon and localized variant
in which patients develop isolated flaccid lower limb weakness
and absent deep tendon reflexes in lower limbs but without
neurological findings in the upper limbs [176]. The facial mus-

335 cle weakness with paresthesias may also appear as a GBS
variant coined in the absence of opthalmoplegia or limb
weakness, to be distinguished from Lyme disease, sarcoidosis,
and bilateral Bell palsy by the presence of serum antiganglio-
side antibodies. In general terms, atypical and incomplete

340 presentations of GBS should be included in the diagnostic
work-up of patients with new onset peripheral symptoms
and addressed with a careful history and serological panel.

A CSF analysis is frequently obtained in the differential
diagnosis of GBS, and the Brighton Collaboration criteria for

345 GBS and MFS include a cell count in the CSF lower than 50
cells/μl [177]. The albumin-cytological dissociation is a combi-
nation of elevated protein level and normal CSF cell count and
is observed in only � two-thirds of cases, as elevated protein
concentration is dependent on the timing of the lumbar

350 puncture. One large Dutch cohort of patients manifested ele-
vated CSF protein in 53% of cases when puncture was per-
formed in the first 3 days after onset of weakness and
increased to 80% after� 7 days. A CSF cell count between 5
and 50 cells/μl was found in 15% of patients [177]. In an Asian

355 cohort, there was a lower prevalence of elevated CSF protein
concentration (55%) and a higher proportion of mild pleocy-
tosis up to 26% [178]. Therefore, normal CSF protein concen-
tration in the first week of weakness does not rule out GBS as
the sensitivity is as low as 50%. Only in a subgroup of cases,

360 CSF cell count is higher than 50 cells/μl, and differential diag-
noses include Lyme disease or� human immunodeficiency virus
(HIV)-related radiculitis [178].

Neurophysiological studies are frequently used in the diag-
nostic process of suspect GBS cases, and nerve conduction

365 studies are helpful to identify the subphenotype of GBS type
and exclude disorders that may mimic GBS. AIDP, AMAN, and
AMSAN are difficult to distinguish based only on clinical
grounds; electrophysiology is the key test. Nerve conduction
studies can be normal in nearly� one-third of patients when

370 done during the first 4 days, but the absence of F waves or a
prolonged F wave latency� is frequently observed, especially in
the lower limbs. Selective lesions in proximal nerve trunks may
explain the discrepancy between nerve conduction and the
established paralysis, as elegantly illustrated in electrophysio-

375 logical [179] and ultrasonographic [180,181] studies of the
ventral spinal nerves in AIDP and AMAN/AMSAN. The sensory
nerve conduction study of sural nerve is normal in greater
proportion of patients [182]. Nerve conduction studies sug-
gestive of demyelination in early AIDP are nonspecific and

380may occur in disorders that mimic the acute-stage GBS, includ-
ing acute myelopathy or critical illness polyneuropathy, but
more specific finding suggestive of early demyelinating GBS� is
the presence of a spared normal sural sensory nerve action
potential with abnormal ulnar sensory nerve action potential

385in one retrospective study [183]. Patients with normal EMG AQ12

have significantly milder weakness at the lowest peak of dis-
ease progression compared to patients with abnormal nerve
conduction study [176]. Almost 85% of patients with GBS have
abnormal nerve conduction studies after 3 weeks and includ-

390ing additional nerves in the study improves sensitivity. Motor
conduction slowing exceeding 30% below the lower limit of
normal, prolongation of motor distal latency of >150% of
upper limit of normal, and prolongation of F wave latency
over 120% in� two nerves� are specific for primary demyelina-

395tion [184]. The compound muscle action potential� is reduced
<80% of the lower limit of the normal range in at least two
nerves without signs of demyelination in AMAN. However,
patients with AMAN may present reversible conduction failure
likely derived from an impaired conduction at the� nodes of

400Ranvier due to antibodies to gangliosides and can be falsely
diagnosed as having AIDP instead of AMAN due to nerve
conduction features suggesting demyelination [185]. Nerve
conduction studies need to be interpreted with caution espe-
cially when performed early in the disease course, and some-

405times, serial studies need to be performed to improve
sensitivity, and reversible conduction failure has to be taken
into account and most importantly should not delay treat-
ment. Almost 40% of GBS cases did not meet criteria for one
of the defined subphenotypes of GBS [176].

4107. Differential diagnosis

Careful history, physical examination, CSF analysis, nerve con-
duction studies, and imaging studies help differentiate GBS and
its subphenotypes from other mimics. These include infectious
causes, leptomeningeal malignancy, and disorders of the neu-

415romuscular junction (Table 6). GBS manifests a monophasic
course in 90% of cases, but 10% of patients develop recurrent
or relapsing form. A course not showing improvements after
8 weeks is not typical for GBS, and chronic inflammatory
demyelinating neuropathy� needs to be ruled out, particularly

420since patients with this latter condition may mimic GBS at the
early stages of progression [186]. Poliomyelitis should be con-
sidered in unvaccinated individuals with travel to endemic
areas, and � non-polio enteroviruses may cause acute flaccid
paraparesis with high mortality. West Nile virus and herpes

425simplex virus can cause extensive necrotizing myelopathy
[187]. Herpes, hepatitis A, and rabies viruses may cause trans-
verse myelitis manifesting with back pain with sharp sensory
disturbances and changes at MRI based. AQ13Elevated CSF lympho-
cytes with painful asymmetric polyradiculoneuropathy that

430occurs several months after a tick bite could be due to Lyme
disease. Gadolinium MRI allows to discriminate the paraparetic
variants of GBS from cauda equina syndrome and lumbosacral
plexopathy. Findings of nerve root enhancement support� a
diagnosis of GBS. Diphtheria can cause neuropathy involving

435either cranial or peripheral nerves, which is demyelinating in
nature as opposed to other acute peripheral neuropathies
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which are of axonal type [187]. Different from virus-induced
transverse myelitis, Listeria, Mycobacteria, and Lyme disease
may associate with brain stem encephalitis that, however, may

440 also be based on autoimmune mechanisms and mimic MFS and
Bickerstaff brain stem encephalitis. The Bickerstaff brain stem
encephalitis may mimic Wernicke’s encephalopathy from thia-
mine deficiency in alcoholism or other causes of dietary imbal-
ance such as major gastrointestinal surgery [188]. HIV infection

445 may directly involve spinal cord, nerve root, and peripheral
nerves, and opportunistic infections with cytomegalovirus,
Epstein–Barr virus, and� varicella-zoster virus can cause acute
flaccid paralysis.

8. Treatment

450 Patients with GBS need a multidisciplinary approach, which
includes careful monitoring of vital capacity, prevention of
infections, monitoring for possible autonomic dysfunction,
physical therapy, and rehabilitation.

Approximately� one-third of patients with GBS need to be
455 admitted to the intensive care unit because of respiratory

failure, dysautonomia, or � medical complications [189].
Adequate ventilation relies on the triad of adequate inspira-
tory effort, effective expiratory force, and ability to protect the
airway. The decision to intubate the patient with GBS is based

460 on clinical and paraclinical evidence of impending or overt

respiratory failure, including impaired mentation, air hunger,
increased respiratory rate, the inability to count on one breath
to 20, forehead sweating, staccato speech, paradoxical respira-
tion, inability to lift the head from the bed, shoulder weakness,

465and signs of bulbar muscle weakness [189]. Chronic ventilatory
failure should be suspected by a history of fatigue, lethargy,
difficulty concentrating, poor sleep and daytime somnolence,
and morning headache (indicating� hypercapnia) [190].

Prednisolone or intravenous methylprednisolone treatment
470in GBS patients did not improve patient outcomes [191,192].

Plasmapheresis and IVIg are the only known effective treat-
ments for GBS. Plasmapheresis was found to be most effective
in GBS cases who received treatment within the first 2 weeks
of disease onset and who are unable to walk [193]. Two

475plasma exchanges were found to ameliorate mildly affected
GBS cases who were able to walk. Patients with severe GBS
who need mechanical ventilator had to undergo at least� four
plasma exchange sessions to improve outcomes [194]. In a
randomized controlled trial, IVIg given daily for 5 consecutive

480days were as effective as � five sessions of plasma exchange
started within 14 days [195]. IVIg inhibits the binding of auto-
antibodies to GQ1b and also complement activation by anti-
GQ1b in a mouse model [196]. IVIg is preferred in young
children over plasma exchange where it can be technically

485difficult and also patients with cardiovascular instability, given
large volume shifts that occur with plasma exchange. Patients
with GBS who received IVIg showed significant pharmacoki-
netic variation, and patients with low rise in serum IgG

� 2 weeks after treatment have a more severe clinical course
490and poor outcomes at � 6 months after � standard-dose treat-

ment independent of other prognostic factors [197]. IVIg ther-
apy did not affect recovery outcomes in patients with MFS,
and excellent recovery from ophthalmoplegia and ataxia was
noted in patients who did not receive plasmapheresis or IVIg

495treatment at the end of� 1 year [198]. A double-blind, placebo-
controlled randomized trial showed no additional benefit
when combining methylprednisolone and IVIg [199]. Adverse
prognostic indicators include previous diarrhea, older age,
disease severity, and rapid disease onset [7].

500Pain is a common symptom in GBS patients, occurring in
up to 50% of all GBS patients, and should be diagnosed and
treated promptly [200]. Another priority to consider is mon-
itoring nutritional status.

Death or severe residual disability has varied widely with
505rates between 1%� and 18% despite immunotherapy [7,201� ].

Death results from pneumonia, sepsis, adult respiratory dis-
tress syndrome, and autonomic dysfunction [201], and data
are awaited from an ongoing prospective international multi-
center observational trial assessed whether a second dose of

510IVIg (I-SID-GBS AQ16) improved outcomes in poor-prognosis cases.
Erythropoietin has been associated with the amelioration of
nerve regeneration/repair with reversal of inhibitory effects of
anti-ganglioside antibodies on nerve repair in an animal
model [191]. Eculizumab is a humanized monoclonal antibody

515against the complement protein C5 which appeared protec-
tive against complement-mediated motor neuropathy and
respiratory paralysis in a mouse model [192], and phase II
clinical trials are currently recruiting patients in Scotland and
Japan. Clinical studies are still lacking on the use of

Table 6. Conditions mimicking Guillain–Barré syndrome� to be included in the
differential diagnosis� .�
Peripheral neuropathy

● Chronic inflammatory demyelinating polyneuropathy
● Lead, thallium, and arsenic poisoning
● Acute intermittent porphyria
● Critical illness polyneuropathy (associated with use of� high-dose� intravenous

steroids)
● Tick paralysis
● Metabolic disturbances of serum potassium, phosphate, magnesium, and

glucose
● Severe vitamin B1 deficiency
● Puffer fish poisoning
Neuromuscular junction disorders

● Myasthenia gravis
● Lambert–Eaton myasthenic syndrome
● Botulism
Spinal cord involvement

● Transverse myelitis (CMV, herpes simplex virus, Epstein–Barr virus, and� var-
icella-zoster virus)

● Anterior spinal artery occlusion
● Epidural abscess
Anterior horn cell involvement

● Poliomyelitis� and� non-polio enterovirus (enterovirus 71)
● West Nile virus, herpes simplex virus, CMV, and� varicella-zoster virus
● Rabies virus� and HIV
Muscle disorders

● Acute myositis (postinfectious can be sec to influenza AAQ14 )
● Acute hypokalemic periodic paralysis (often familial)
● Thyrotoxic periodic paralysis (more common in Asians and Hispanics)
Brain stem stroke
Brain stem encephalitis

● Listeriosis, tuberculosis, brucellosis, JC virus, and toxoplasmosis
● Multiple sclerosis, sarcoidosis, and systemic lupus erythematosus
Wernicke encephalopathy

Adapted from Ref. [187].
CMV: cytomegalovirus� ; HIV: human immunodeficiency virusAQ15 .
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520 erythropoietin or eculizumab. New and more effective treat-
ments are required to improve the prognosis.

9. Expert commentary

GBS encompasses numerous common paradigms of autoim-
mune and chronic inflammatory diseases, including but not

525 limited to the specific serum autoantibodies, the infectious
trigger, and the response to immunosuppressants, similar to
other conditions [202]. First described almost a century ago by
three French neurologists, GBS is an uncommon disease (with
incidence rates ranging between 0.81 and 1.89� [median 1.11� ]

530 cases per 100,000� person-years) but is the most frequent cause
of acute flaccid symmetrical weakness of the limbs and areflexia
following the polio era. Different from other autoimmune or
chronic inflammatory diseases, GBS is more prevalent in men
(male to female ratio of 1� :5). The syndrome typically appears

535 with a rapidly progressive, symmetrical weakness of limbs
usually reaching its peak within a month and respiratory or
gastrointestinal infections precede the symptoms within
6 weeks in the majority of patients [203,204]. GBS is strongly
linked to Campylobacter infection, but less than 0.1% of infec-

540 tions result in the syndrome. The most recent outbreak of Zika
virus infection raises concerns also for GBS as cases have been
reported within a Zika and Dengue fever epidemics in French
Polynesia and South America. Diagnostic criteria include fea-
tures that make the diagnosis more or less likely and were first

545 published in 1981 to be modified recently, but clinical suspicion
and physician awareness remain the limiting factors of the
diagnostic approach. The AMAN and the AIDP represent the
most common clinical subphenotypes along with the more rare
MFS, AMSAN, Bickerstaff brain stem encephalitis, and pharyn-

550 geal–cervical–brachial weakness. Besides the activation of
macrophages and T cells, serum antibodies are associated
with GBS being directed at gangliosides, sialic acid containing
subgroup of glycosphingolipids with N-acetylneuraminic acid
linked to an oligosaccharide core portion. Nervous system

555 gangliosides include GM1, GM2, GD1a, GD1b, GT1a, GT1b, and
GQIb, with specific localizations by immunohistochemistry pos-
sibly predicting the associated clinical phenotype. GBS results in
death or severe disability in near 20% of cases despite immu-
notherapy, which is represented by plasmapheresis and IVIg� s

560 which remain the cornerstone of the medical management.
Cumulatively, GBS is a heterogeneous condition with numerous
subphenotypes, and advances have been made over the past
20 years on the understanding of GBS immunopathogenesis�
and localization of ganglioside epitopes by immunohistochem-

565 ical methods. Ultimately, we are convinced that GBS, similar to
other inflammatory diseases, is the result of a permissive
genetic background on which environmental factors, including
infections, vaccination, and the influence of aging, lead to
disease onset and the natural history of disease [203–210].

570 10. Five-year view

Further research efforts are needed to identify GBS biomarkers
to help in the early diagnosis,� predict progression, and initiate
adequate treatment. Similar to what observed in other auto-
immune conditions [202,211], serum autoantibodies currently

575represent the only option for diagnostic and prognostic pur-
poses, but our understanding is limited by the relative rarity of
the disease. New powerful tools should be used in GBS to
determine additional serum autoantibodies, including protein
and RNA immunoprecipitation. Alternative research directions

580should be sought for a better understanding of GBS patho-
genesis, including the collection of large multicenter series of
patients, including twins [212], or the study of sex-related
factors [213] via epigenetics [214–217]. Ultimately, we are
convinced AQ17that the enormous number of biotechnological

585drugs, i.e., monoclonal antibodies� and small molecules, may
prove useful also in GBS by tackling pivotal pathogenesis� of
effector inflammatory mechanisms [218,219].

Key issues

● Guillain-Barré syndrome was first described almost a cen-
590tury ago by three French neurologists and remains the

most frequent cause of acute flaccid symmetrical weakness
of the limbs and areflexia;

● Guillain-Barré syndrome yearly incidence ranges between
0.81 and 1.89 (median 1.11) cases per 100,000 person;

595● Guillain-Barré syndrome is more prevalent in men by 50%;
● Guillain-Barré syndrome onset is observed with a rapidly

progressive, symmetrical weakness of limbs;
● Guillain-Barré syndrome follows respiratory or gastrointest-

inal infections within 6 weeks in the majority of patients,
600often by Campylobacter;

● The most recent outbreak of Zika virus infection raises
concerns also for Guillain-Barré syndrome as cases have
been reported within Zika and Dengue fever epidemics;

● Most frequently observed subphenotypes include the acute
605motor axonal neuropathy (AMAN) and the acute inflamma-

tory demyelinating polyradiculoneuropathy (AIDP);
● Rare forms are represented by Miller-Fisher syndrome

(MFS), acute motor and sensory axonal neuropathy
(AMSAN), Bickerstaff brain stem encephalitis, and pharyn-

610geal-cervical-brachial weakness;
● Serum autoantibodies are detected against gangliosides

mainly GM1, GM2, GD1a, GD1b, GT1a, GT1b and GQIb;
● Despite treatment, Guillain-Barré syndrome mortality or

severe disability occur in near 20%;
615● Immunotherapy includes high-dose steroids, plasmapher-

esis, and intravenous immunoglobulins.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any
organization or entity with a financial interest in or financial conflict with

620the subject matter or materials discussed in the manuscript. This includes
employment, consultancies, honoraria, stock ownership or options, expert
testimony, grants or patents received or pending, or royalties.

References

Papers of special note have been highlighted as either of interest (•) or of
625considerable interest (••) to readers.

1. Haymaker WE, Kernohan JW. The Landry-Guillain-Barré syndrome; a
clinicopathologic report of 50 fatal cases and a critique of the
literature. Medicine (Baltimore). 1949;28:59–141. AQ18

10 A. K. JASTI ET AL.



• The first report of Guillain–Barré syndrome in a historically
630 relevant report.

2. Feasby TE, Gilbert JJ, Brown WF, et al. An acute axonal form of
Guillain-Barré polyneuropathy. Brain. 1986;109:1115–1126.

3. Sheikh KA, Nachamkin I, Ho TW, et al. Campylobacter jejuni lipo-
polysaccharides in Guillain-Barre syndrome: molecular mimicry and

635 host susceptibility. Neurology. 1998;51:371–378.
4. Willison HJ. The immunobiology of Guillain-Barré syndromes. J

Peripher Nerv Syst. 2005;10:94–112.
5. Yuki N, Susuki K, Koga M, et al. Carbohydrate mimicry between

human ganglioside GM1 and Campylobacter jejuni lipooligosac-
640 charide causes Guillain-Barre syndrome. Proc Natl Acad Sci U S A.

2004;101:11404–11409.
•• A solid demonstration of the mechanisms linking Campylobacter

infection and Guillain–Barré syndrome autoantibodies by mole-
cular mimicry.

645 6. Yuki N, Hartung H-P. Guillain-Barré syndrome. N Engl J Med.
2012;366:2294–2304.

7. Hughes RAC, Swan AV, Raphaël J-C, et al. Immunotherapy for
Guillain-Barré syndrome: a systematic review. Brain. 2007;130:2245–
2257.

650 8. Aharoni R. Immunomodulation neuroprotection and remyelination
– the fundamental therapeutic effects of glatiramer acetate: a
critical review. J Autoimmun. 2014;54:81–92.

9. Schwartz M, Baruch K. Breaking peripheral immune tolerance to
CNS antigens in neurodegenerative diseases: boosting autoimmu-

655 nity to fight-off chronic neuroinflammation. J Autoimmun.
2014;54:8–14.

10. Ben-Nun A, Kaushansky N, Kawakami N, et al. From classic to
spontaneous and humanized models of multiple sclerosis: impact
on understanding pathogenesis and drug development. J

660 Autoimmun. 2014;54:33–50.
11. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple

sclerosis: a comprehensive review. J Autoimmun. 2015;64:13–25.
12. Karussis D. The diagnosis of multiple sclerosis and the various

related demyelinating syndromes: a critical review. J Autoimmun.
665 2014;48-49:134–142.

13. Steinman L, Shoenfeld Y. From defining antigens to new therapies
in multiple sclerosis: honoring the contributions of Ruth Arnon and
Michael Sela. J Autoimmun. 2014;54:1–7.

14. Saariaho A-H, Vuorela A, Freitag TL, et al. Autoantibodies against
670 ganglioside GM3 are associated with narcolepsy-cataplexy devel-

oping after Pandemrix vaccination against 2009 pandemic H1N1
type influenza virus. J Autoimmun. 2015;63:68–75.

15. Wang Y, Sun S, Zhu J, et al. Biomarkers of Guillain-Barre syndrome:
some recent progress, more still to be explored. Mediators

675 Inflamm. 2015;2015:564098.
16. Sejvar JJ, Baughman AL, Wise M, et al. Population incidence of

Guillain-Barré syndrome: a systematic review and meta-analysis.
Neuroepidemiology. 2011;36:123–133.

• A meta-analysis of the Guillain–Barré syndrome epidemiology
680 data which also highlights the study limitations.

17. Islam Z, Jacobs BC, Islam MB, et al. High incidence of Guillain-Barre
syndrome in children, Bangladesh. Emerg Infect Dis. 2011;17:1317–
1318.

18. Rocha MSG, Brucki SMD, Carvalho AADS, et al. Epidemiologic fea-
685 tures of Guillain-Barré syndrome in São Paulo, Brazil. Arq

Neuropsiquiatr. 2004;62:33–37.
19. Zhang G, Li Q, Zhang R, et al. Subtypes and prognosis of Guillain-

Barré syndrome in Southwest China. PLoS One. 2015;10:e0133520.
20. Nachamkin I, Arzarte Barbosa P, Ung H, et al. Patterns of Guillain-

690 Barre syndrome in children: results from a Mexican population.
Neurology. 2007;69:1665–1671.

21. Hadden RD, Cornblath DR, Hughes RA, et al. Electrophysiological
classification of Guillain-Barré syndrome: clinical associations and
outcome. Plasma Exchange/Sandoglobulin Guillain-Barré

695 Syndrome Trial Group. Ann Neurol. 1998;44:780–788.
22. Islam Z, Jacobs BC, van Belkum A, et al. Axonal variant of Guillain-

Barre syndrome associated with Campylobacter infection in
Bangladesh. Neurology. 2010;74:581–587.

23. Deceuninck G, Boucher R-M, De Wals P, et al. Epidemiology of
700Guillain-Barré syndrome in the province of Quebec. Can J Neurol

Sci. 2008;35:472–475.
24. Winner SJ, Evans JG. Age-specific incidence of Guillain-Barré syn-

drome in Oxfordshire. Q J Med. 1990;77:1297–1304.
25. Govoni V, Granieri E, Manconi M, et al. Is there a decrease in

705Guillain-Barré syndrome incidence after bovine ganglioside with-
drawal in Italy? A population-based study in the Local Health
District of Ferrara, Italy. J Neurol Sci. 2003;216:99–103.

26. Bogliun G, Beghi E, Italian GBS Registry Study Group. Incidence and
clinical features of acute inflammatory polyradiculoneuropathy in

710Lombardy, Italy, 1996. Acta Neurol Scand. 2004;110:100–106.
27. Chiò A, Cocito D, Leone M, et al. Guillain-Barré syndrome: a pro-

spective, population-based incidence and outcome survey.
Neurology. 2003;60:1146–1150.

28. Sedano MJ, Calleja J, Canga E, et al. Guillain-Barre syndrome in
715Cantabria, Spain. An epidemiological and clinical study. Acta

Neurol Scand. 1994;89:287–292.
29. Aladro-Benito Y, Conde-Sendin MA, Munoz-Fernandez C, et al.

Guillain-Barre syndrome in the northern area of Gran Canaria and
the island of Lanzarote. Rev Neurol. 2002;35:705–710.

72030. Cuadrado JI, de Pedro-Cuesta J, Ara JR, et al. Guillain-Barre syn-
drome in Spain, 1985–1997: epidemiological and public health
views. Eur Neurol. 2001;46:83–91.

31. Cuadrado JI, de Pedro-Cuesta J, Ara JR, et al. Public health surveil-
lance and incidence of adulthood Guillain-Barré syndrome in Spain,

7251998–1999: the view from a sentinel network of neurologists.
Neurol Sci. 2004;25:57–65.

32. Cheng Q, Jiang GX, Fredrikson S, et al. Incidence of Guillain-Barré
syndrome in Sweden 1996. Eur J Neurol. 2000;7:11–16.

33. Beghi E, Kurland LT, Mulder DW, et al. Guillain-Barré syndrome.
730Clinicoepidemiologic features and effect of influenza vaccine. Arch

Neurol. 1985;42:1053–1057.
34. Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ, et al. Guillain-Barre

syndrome following vaccination in the National Influenza
Immunization Program, United States, 1976–1977. Am J Epidemiol.

7351979;110:105–123.
35. Hughes RAC� , Rees JH. Clinical and epidemiologic features of

Guillain-Barré syndrome. J Infect Dis. 1997;176(� s2):� SS92–SS98.
36. Tam CC, Rodrigues LC, Petersen I, et al. Incidence of Guillain-Barre

syndrome among patients with Campylobacter infection: a general
740practice research database study. J Infect Dis. 2006;194:95–97.

37. Jacobs BC, Rothbarth PH, van der Meché FG, et al. The spectrum of
antecedent infections in Guillain-Barré syndrome: a case-control
study. Neurology. 1998;51:1110–1115.

38. Wakerley BR, Yuki N. Infectious and noninfectious triggers in
745Guillain-Barre syndrome. Expert Rev Clin Immunol. 2013;9:627–639.

39. Hadden RD, Karch H, Hartung HP, et al. Preceding infections,
immune factors, and outcome in Guillain-Barre syndrome.
Neurology. 2001;56:758–765.

40. Williams CJ, Thomas RH, Pickersgill TP, et al. Cluster of atypical adult
750Guillain-Barré syndrome temporally associated with neurological ill-

ness due to EV-D68 in children, South Wales, United Kingdom,
October 2015 to January 2016. Eur Commun Dis Bull. 2016;21. AQ19

41. Smith DW, Mackenzie J. Zika virus and Guillain-Barré syndrome:
another viral cause to add to the list. Lancet. 2016;387:1486–

7551488. pii: S0140-6736(16)00564-X
42. Gervaix A, Caflisch M, Suter S, et al. Guillain-Barré syndrome follow-

ing immunisation with Haemophilus influenzae type b conjugate
vaccine. Eur J Pediatr. 1993;152:613–614.

43. Israeli E, Agmon-Levin N, Blank M, et al. Guillain-Barre syndrome – a
760classical autoimmune disease triggered by infection or vaccination.

Clin Rev Allergy Immunol. 2012;42:121–130.
44. Gilbert M, Karwaski M-F, Bernatchez S, et al. The genetic bases for

the variation in the lipo-oligosaccharide of the mucosal pathogen,
Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics

765in the core oligosaccharide. J Biol Chem. 2002;277:327–337.
45. Kokubun N, Shahrizaila N, Hirata K, et al. Conduction block and

axonal degeneration co-occurring in a patient with axonal Guillain-
Barré syndrome. J Neurol Sci. 2012;319:164–167.

EXPERT REVIEW OF CLINICAL IMMUNOLOGY 11



46. Kuwabara S, Ogawara K, Misawa S, et al. Does Campylobacter jejuni
770 infection elicit ‘demyelinating’ Guillain-Barre syndrome? Neurology.

2004;63:529–533.
47. Drenthen J, Yuki N, Meulstee J, et al. Guillain-Barré syndrome

subtypes related to Campylobacter infection. J Neurol Neurosurg
Psychiatry. 2011;82:300–305.

775 48. Yuki N, Yoshino H, Sato S, et al. Acute axonal polyneuropathy
associated with anti-GM1 antibodies following Campylobacter
enteritis. Neurology. 1990;40:1900–1902.

49. Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is
associated with axonal but not demyelinating forms of Guillain-

780 Barré syndrome. Ann Neurol. 1999;45:168–173.
50. Yuki N, Taki T, Inagaki F, et al. A bacterium lipopolysaccharide that

elicits Guillain-Barré syndrome has a GM1 ganglioside-like struc-
ture. J Exp Med. 1993;178:1771–1775.

51. van den Berg B, Walgaard C, Drenthen J, et al. Guillain-Barré
785 syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat

Rev Neurol. 2014;10:469–482.
52. Nyati KK, Nyati R. Role of Campylobacter jejuni infection in the

pathogenesis of Guillain-Barre syndrome: an update. Biomed Res
Int. 2013;2013:852195.

790 53. Sharma MB, Chaudhry R, Tabassum I, et al. The presence of
Mycoplasma pneumoniae infection and GM1 ganglioside antibodies
in Guillain-Barré syndrome. J Infect Dev Ctries. 2011;5:459–464.

54. Kusunoki S, Shiina M, Kanazawa I. Anti-Gal-C antibodies in GBS
subsequent to mycoplasma infection: evidence of molecular mimi-

795 cry. Neurology. 2001;57:736–738.
55. Yuki N, Taki T, Handa S. Antibody to GalNAc-GD1a and GalNAc-

GM1b in Guillain-Barre syndrome subsequent to Campylobacter
jejuni enteritis. J Neuroimmunol. 1996;71:155–161.

56. Susuki K, Odaka M, Mori M, et al. Acute motor axonal neuropathy
800 after Mycoplasma infection: evidence of molecular mimicry.

Neurology. 2004;62:949–956.
57. Winer JB. An update in Guillain-Barré syndrome. Autoimmune Dis.

2014;2014:793024.
58. Houliston RS, Koga M, Li J, et al. A Haemophilus influenzae strain

805 associated with Fisher syndrome expresses a novel disialylated
ganglioside mimic. Biochemistry. 2007;46:8164–8171.

59. Miller B, Kassenborg H, Dunsmuir W, et al. Syndromic surveillance
for influenzalike illness in ambulatory care� setting. Emerg Infect Dis.
2004;10:1806–1811.

810 60. Koga M, Koike S, Hirata K, et al. Ambiguous value of Haemophilus
influenzae isolation in Guillain-Barre and Fisher syndromes. J Neurol
Neurosurg Psychiatry. 2005;76:1736–1738.

61. Moran AP, Prendergast MM, Appelmelk BJ. Molecular mimicry of
host structures by bacterial lipopolysaccharides and its contribu-

815 tion to disease. FEMS Immunol Med Microbiol. 1996;16:105–115.
62. Mori M, Kuwabara S, Miyake M, et al. Haemophilus influenzae

infection and Guillain-Barré syndrome. Brain. 2000;123:2171–2178.
63. Nahata MC. Ophthalmoplegia following enteric fever. J Indian Med

Assoc. 1961;37:134–135.
820 64. Nager F, Regli F. Polyneuritis with flaccid tetraplegia in typhoid

fever. Schweiz Med Wochenschr. 1963;93:1030–1033.
65. Samantray SK, Johnson SC, Mathai KV, et al. Landry-Guillain-Barré-

Strohl syndrome. A study of 302 cases. Med J Aust. 1977;2:84–91.
66. Osuntokun BO, Bademosi O, Ogunremi K, et al. Neuropsychiatric

825 manifestations of typhoid fever in 959 patients. Arch Neurol.
1972;27:7–13.

67. Khan FY, Kamha AA, Abbas MT, et al. Guillain-Barré syndrome
associated with Salmonella paratyphi A. Clin Neurol Neurosurg.
2007;109:452–454.

830 68. Nafissi S, Vahabi Z, Sadeghi Ghahar M, et al. The role of cytome-
galovirus, Haemophilus influenzae and Epstein Barr virus in Guillain
Barre syndrome. Acta Med Iran. 2013;51:372–376.

69. Orlikowski D, Porcher R, Sivadon-Tardy V, et al. Guillain-Barré syn-
drome following primary cytomegalovirus infection: a prospective

835 cohort study. Clin Infect Dis. 2011;52:837–844.
70. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome.

Lancet. 2016. S0140-6736(16)00339-1.AQ20

71. Klemola E, Weckman N, Haltia K, et al. The Guillain-Barré syndrome
associated with acquired cytomegalovirus infection. Acta Med

840Scand. 1967;181:603–607.
72. Yuki N, Tagawa Y. Acute cytomegalovirus infection and IgM anti-

GM2 antibody. J Neurol Sci. 1998;154:14–17.
73. Alhefzi M, Aycart MA, Bueno EM, et al. Guillain-Barré syndrome

associated with resistant cytomegalovirus infection after face trans-
845plantation. Transpl Infect Dis. 2016;18:288–292.

74. Spagnoli C, Iodice A, Salerno GG, et al. CMV-associated axonal
sensory-motor Guillain-Barre syndrome in a child: case report and
review of the literature. Eur J Paediatr Neurol. 2016;20:168–175.

75. Taheraghdam A, Pourkhanjar P, Talebi M, et al. Correlations
850between cytomegalovirus, Epstein-Barr virus, anti-ganglioside anti-

bodies, electrodiagnostic findings and functional status in Guillain-
Barre syndrome. Iran J Neurol. 2014;13:7–12.

76. Kennedy M, Apostolova M. A rare case of infectious mononucleosis
complicated by Guillain-Barre syndrome. Neurol Int. 2013;5:20–22.

85577. Rho Y II. Overlapping Guillain-Barre syndrome and Bickerstaff’s
brainstem encephalitis associated with Epstein Barr virus. Korean
J Pediatr. 2014;57:457–460.

78. Bitan M, Or R, Shapira MY, et al. Early-onset Guillain-Barré syn-
drome associated with reactivation of Epstein-Barr virus infection

860after nonmyeloablative stem cell transplantation. Clin Infect Dis.
2004;39:1076–1078.

79. Kim SY, Choe K-W, Park S, et al. Mild form of Guillain-Barre syn-
drome in a patient with primary Epstein-Barr virus infection. Korean
J Intern Med. 2016. AQ21

86580. Kang J-H, Sheu J-J, Lin H-C. Increased risk of Guillain-Barré
Syndrome following recent herpes zoster: a population-based
study across Taiwan. Clin Infect Dis. 2010;51:525–530.

81. Tatarelli P, Garnero M, Del Bono V, et al. Guillain-Barre syndrome
following chickenpox: a case series. Int J Neurosci. 2016;126:478–

870479.
82. Tam CC, O’Brien SJ, Petersen I, et al. Guillain-Barré syndrome and

preceding infection with campylobacter, influenza and Epstein-Barr
virus in the general practice research database. PLoS One. 2007;2:
e344.

87583. Stowe J, Andrews N, Wise L, et al. Investigation of the temporal
association of Guillain-Barre syndrome with influenza vaccine and
influenzalike illness using the United Kingdom General Practice
Research Database. Am J Epidemiol. 2009;169:382–388.

84. Sivadon-Tardy V, Orlikowski D, Porcher R, et al. Guillain-Barré syn-
880drome and influenza virus infection. Clin Infect Dis. 2009;48:48–56.

85. Cortese A, Baldanti F, Tavazzi E, et al. Guillain-Barré syndrome
associated with the D222E variant of the 2009 pandemic influenza
A (H1N1) virus: case report and review of the literature. J Neurol
Sci. 2012;312:173–176.

88586. Kutlesa M, Santini M, Krajinović V, et al. Acute motor axonal neuro-
pathy associated with pandemic H1N1 influenza A infection.
Neurocrit Care. 2010;13:98–100.

87. Grimaldi-Bensouda L, Alpérovitch A, Besson G, et al. Guillain-Barre
syndrome, influenzalike illnesses, and influenza vaccination during

890seasons with and without circulating A/H1N1 viruses. Am J
Epidemiol. 2011;174:326–335.

88. Simpson BS, Rajabally YA. Sensori-motor Guillain-Barré syndrome
with anti-GD1b antibodies following influenza A infection. Eur J
Neurol. 2009;16:e81.

89589. Yuki N, Takahashi Y, Ihara T, et al. Lack of antibody response to
Guillain-Barré syndrome-related gangliosides in mice and men
after novel flu vaccination. J Neurol Neurosurg Psychiatry.
2012;83:116–117.

90. Beadling C, Slifka MK. How do viral infections predispose patients
900to bacterial infections? Curr Opin Infect Dis. 2004;17:185–191.

91. Vellozzi C, Iqbal S, Broder K. Guillain-Barre syndrome, influenza, and
influenza vaccination: the epidemiologic evidence. Clin Infect Dis.
2014;58:1149–1155.

92. Cornblath DR, McArthur JC, Kennedy PG, et al. Inflammatory
905demyelinating peripheral neuropathies associated with human

T-cell lymphotropic virus type III infection. Ann Neurol.
1987;21:32–40.

12 A. K. JASTI ET AL.



93. Wagner JC, Bromberg MB. HIV infection presenting with motor
axonal variant of Guillain-Barré syndrome. J Clin Neuromuscul Dis.

910 2007;9:303–305.
94. Hiraga A, Kuwabara S, Nakamura A, et al. Fisher/Gullain-Barré over-

lap syndrome in advanced AIDS. J Neurol Sci. 2007;258:148–150.
95. Berger JR, Difini JA, Swerdloff MA, et al. HIV seropositivity in

Guillain-Barré syndrome. Ann Neurol. 1987;22:393–394.
915 96. Piette AM, Tusseau F, Vignon D, et al. Acute neuropathy coincident

with seroconversion for anti-LAV/HTLV-III. Lancet. 1986;� 327:852.
97. Parry O, Mielke J, Latif AS, et al. Peripheral neuropathy in indivi-

duals with HIV infection in Zimbabwe. Acta Neurol Scand.
1997;96:218–222.

920 98. Piliero PJ, Fish DG, Preston S, et al. Guillain-Barré syndrome asso-
ciated with immune reconstitution. Clin Infect Dis. 2003;36:e111–4.

99. Brannagan TH, Zhou Y. HIV-associated Guillain-Barré syndrome. J
Neurol Sci. 2003;208:39–42.

100. Sorvillo FJ, Lieb LE, Waterman SH. Incidence of campylobacteriosis
925 among patients with AIDS in Los Angeles County. J Acquir Immune

Defic Syndr. 1991;4:598–602.
101. Dalakas MC, Pezeshkpour GH. Neuromuscular diseases associated

with human immunodeficiency virus infection. Ann Neurol. 1988;23
(� S1):� SS38–SS48.

930 102. Souayah N, Mian NF, Gu Y, et al. Elevated anti-sulfatide antibodies
in Guillain-Barré syndrome in T cell depleted at end-stage AIDS. J
Neuroimmunol. 2007;188:143–145.

103. Garcia-Rivera EJ, Vorndam V, Rigau-Perez JG, et al. Use of an
enhanced surveillance system for encephalitis and aseptic menin-

935 gitis for the detection of neurologic manifestations of dengue in
Puerto Rico, 2003. P R Health Sci J. 2009;28:114–120.

104. Kumar S, Prabhakar S. Guillain-Barre syndrome occurring in the
course of dengue fever. Neurol India. 2005;53:250–251.

105. Sulekha C, Kumar S, Philip J. Guillain-Barre syndrome following
940 dengue fever. Indian Pediatr. 2004;41:948–950.

106. Puccioni-Sohler M, Soares CN, Papaiz-Alvarenga R, et al. Neurologic
dengue manifestations associated with intrathecal specific immune
response. Neurology. 2009;73:1413–1417.

107. Palma-da Cunha-Matta A, Soares-Moreno SA, Cardoso-de Almeida
945 A, et al. Neurological complications arising from dengue virus

infection. Rev Neurol. 2004;39:233–237.
108. Oehler E, Le Henaff O, Larre P, et al. Guillain-Barré syndrome

following type 4 dengue in Polynesia. Méd Trop (Mars).
2011;71:203–204.

950 109. Gonçalves E. Acute inflammatory demyelinating polyradiculo-
neuropathy (Guillain-Barré syndrome) following dengue fever. Rev
Do Inst Med Trop São Paulo.� 2011;53:223–225.

110. Jackson ST, Mullings A, Bennett F, et al. Dengue infection in
patients presenting with neurological manifestations in a dengue

955 endemic population. West Indian Med J. 2008;57:373–376.
111. Chen T-Y, Lee C-T. Guillain-Barré syndrome following dengue fever.

Ann Emerg Med. 2007;50:94–95.
112. Santos NQ, Azoubel ACB, Lopes AA, et al. Guillain-Barré syndrome

in the course of dengue: case report. Arq Neuropsiquiatr.
960 2004;62:144–146.

113. Esack A, Teelucksingh S, Singh N. The Guillain-Barré syndrome
following dengue fever. West Indian Med J. 1999;48:36–37.

114. Soares CN, Cabral-Castro M, Oliveira C, et al. Oligosymptomatic
dengue infection: a potential cause of Guillain Barré syndrome.

965 Arq Neuropsiquiatr. 2008;66:234–237.
115. Chaudhary SC, Mohanty D, Sonkar SK, et al. Unusual manifestation

of dengue fever. BMJ Case Rep. 2011;2011.AQ22
116. Hira HS, Kaur A, Shukla A. Acute neuromuscular weakness asso-

ciated with dengue infection. J Neurosci Rural Pract. 2012;3:36–39.
970 117. Verma R, Sahu R, Holla V. Neurological manifestations of dengue

infection: a review. J Neurol Sci. 2014;346:26–34.
118. Ralapanawa DMP� , Kularatne SAM� , Jayalath WATA� . Guillain-Barre

syndrome following dengue fever and literature review. BMC Res
Notes. 2015;8:729.

975 119. Oehler E, Fournier E, Leparc-Goffart I, et al. Increase in cases of
Guillain-Barré syndrome during a chikungunya outbreak, French
Polynesia, 2014 to 2015. Euro Surveill. 2015;20(48).AQ23

120. Villamil-Gómez W, Silvera LA, Páez-Castellanos J, et al. Guillain-
Barré syndrome after chikungunya infection: A case in Colombia.

980Enfermedades Infecc Y Microbiol Clínica. 2016;34:140–141.
121. Jaffar-Bandjee MC, Ramful D, Gauzere BA, et al. Emergence and

clinical insights into the pathology of chikungunya virus infection.
Expert Rev Anti Infect Ther. 2010;8:987–996.

122. Lebrun G, Chadda K, Reboux A-H, et al. Guillain-Barré syndrome
985after chikungunya infection. Emerg Infect Dis. 2009;15:495–496.

123. Tournebize P, Charlin C, Lagrange M. Neurological manifestations
in chikungunya: about 23 cases collected in Reunion Island. Rev
Neurol. 2009;165:48–51.

124. Lemant J, Boisson V, Winer A, et al. Serious acute chikungunya virus
990infection requiring intensive care during the Reunion Island out-

break in 2005–2006. Crit Care Med. 2008;36:2536–2541.
125. Wielanek AC, De Monredon J, El Amrani M, et al. Guillain-Barré

syndrome complicating a chikungunya virus infection. Neurology.
2007;69:2105–2107.

995126. Economopoulou A, Dominguez M, Helynck B, et al. Atypical chi-
kungunya virus infections: clinical manifestations, mortality and risk
factors for severe disease during the 2005–2006 outbreak on
Réunion. Epidemiol Infect. 2009;137:534–541.

127. Oehler E, Watrin L, Larre P, et al. Zika virus infection complicated by
1000Guillain-Barre syndrome – case report, French Polynesia, December

2013. Euro Surveill. 2014;19:9.
128. Anaya J-M, Ramirez-Santana C, Salgado-Castaneda I, et al. Zika virus

and neurologic autoimmunity: the putative role of gangliosides.
BMC Med. 2016;14:49.

1005• A convincing discussion of the link between Zika virus infec-
tion and Guillain–Barré syndrome.

129. Weaver SC, Costa F, Garcia-Blanco MA, et al. Zika virus: history,
emergence, biology, and prospects for control. Antiviral Res.
2016;130:69–80.

1010130. Ladhani SN, O’Connor C, Kirkbride H, et al. Outbreak of Zika virus
disease in the Americas and the association with microcephaly,
congenital malformations and Guillain-Barré syndrome. Arch Dis
Child. 2016. AQ24

131. Malkki H. CNS infections: Zika virus infection could trigger Guillain-
1015Barré syndrome. Nat Rev Neurol. 2016;12:187.

132. Carod-Artal FJ. Epidemiology and neurological complications of
infection by the Zika virus: a new emerging neurotropic virus. Rev
Neurol. 2016;62:317–328.

133. Roze B, Najioullah F, Ferge J-L, et al. Zika virus detection in urine
1020from patients with Guillain-Barre syndrome on Martinique, January

2016. Euro Surveill. 2016;21(9). AQ25
134. Cao-Lormeau V-M, Blake A, Mons S, et al. Guillain-Barré Syndrome

outbreak associated with Zika virus infection in French Polynesia: a
case-control study. Lancet. 2016;387:1531–1539.

1025135. Wise J. Study links Zika virus to Guillain-Barré syndrome. BMJ.
2016;352:i1242.

136. Chang C, Ortiz K, Ansari A, et al. The Zika outbreak of the 21st
century. J Autoimmun. 2016;68:1–13.

137. Thomas DL, Sharp TM, Torres J, et al. Local transmission of Zika
1030virus – Puerto Rico, November 23, 2015-January 28, 2016. MMWR

Morb Mortal Wkly Rep. 2016;65(6):154–158.
138. Pinto Junior VL, Luz K, Parreira R, et al. Zika virus: a review to

clinicians. Acta Médica Port. 2015;28:760–765.
139. Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads

1035rapidly through the Americas. J Gen Virol. 2016;97:269–273.
140. Ayres CFJ. Identification of Zika virus vectors and implications for

control. Lancet Infect Dis. 2016;16:278–279.
141. Ioos S, Mallet H-P, Leparc Goffart I, et al. Current Zika virus epide-

miology and recent epidemics. Médecine Mal Infect. 2014;44:302–
1040307.

142. Lucey DR. Time for global action on Zika virus epidemic. BMJ.
2016;352:i781.

143. Ang CW, Jacobs BC, Laman JD. The Guillain-Barré syndrome: a true
case of molecular mimicry. Trends Immunol. 2004;25:61–66.

1045144. Shahrizaila N, Yuki N. Guillain-Barré syndrome animal model: the
first proof of molecular mimicry in human autoimmune disorder. J
Biomed Biotechnol. 2011;2011:829129.

EXPERT REVIEW OF CLINICAL IMMUNOLOGY 13



145. Anaya J, Shoenfeld Y, Rojas-Villarraga A, et al. Autoimmunity. From
bench to bedside. Bogotá: El Rosario University Press; 2013.

1050 146. Asbury AK, Arnason BG, Adams RD. The inflammatory lesion in
idiopathic polyneuritis. Its role in pathogenesis. Medicine
(Baltimore). 1969;48:173–215.

147. Prineas JW. Pathology of the Guillain-Barré syndrome. Ann Neurol.
1981;9(� S1):6–19.

1055 148. Pritchard J, Makowska A, Gregson NA, et al. Reduced circulating
CD4+CD25+ cell populations in Guillain-Barré syndrome. J
Neuroimmunol. 2007;183:232–238.

149. Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuro-
pathy: an antibody-mediated attack on axolemma. Ann Neurol.

1060 1996;40:635–644.
150. Hughes RAC, Cornblath DR. Guillain-Barré syndrome. Lancet.

2005;366:1653–1666.
• A comprehensive overview of Guillain–Barré syndrome.

151. Berciano J, García A, Figols J, et al. Perineurium contributes to
1065 axonal damage in acute inflammatory demyelinating polyneuro-

pathy. Neurology. 2000;55:552–559.
152. Nyati KK, Prasad KN, Rizwan A, et al. TH1 and TH2 response to

Campylobacter jejuni antigen in Guillain-Barre syndrome. Arch
Neurol. 2011;68:445–452.

1070 153. Li S, Jin T, Zhang H-L, et al. Circulating Th17, Th22, and Th1 cells are
elevated in the Guillain-Barré syndrome and downregulated by IVIg
treatments. Mediators Inflamm. 2014;2014:740947.

154. Gong Y, Tagawa Y, Lunn MPT, et al. Localization of major ganglio-
sides in the PNS: implications for immune neuropathies. Brain.

1075 2002;125:2491–2506.
•• The article reports the association between gangliosides

recognized by serum autoantibodies, their tissue distribution,
and the clinical phenotype.

155. Kuwabara S, Kokubun N, Misawa S, et al. Neuromuscular transmis-
1080 sion is not impaired in axonal Guillain–Barré syndrome. J Neurol

Neurosurg Psychiatry. 2011;82:1174–1177.
156. Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQ1b IgG antibody

is associated with ophthalmoplegia in Miller Fisher syndrome and
Guillain-Barré syndrome: clinical and immunohistochemical studies.

1085 Neurology. 1993;43:1911–1917.
157. Kusunoki S, Chiba A, Kanazawa I. Anti-GQ1b IgG antibody is asso-

ciated with ataxia as well as ophthalmoplegia. Muscle Nerve.
1999;22:1071–1074.

158. Liu J-X, Willison HJ, Pedrosa-Domellöf F. Immunolocalization of
1090 GQ1b and related gangliosides in human extraocular neuromuscu-

lar junctions and muscle spindles. Invest Ophthalmol Vis Sci.
2009;50:3226–3232.

159. Kaida K, Morita D, Kanzaki M, et al. Ganglioside complexes as new
target antigens in Guillain-Barré syndrome. Ann Neurol.

1095 2004;56:567–571.
160. Ito M, Kuwabara S, Odaka M, et al. Bickerstaff’s brainstem encepha-

litis and Fisher syndrome form a continuous spectrum: clinical
analysis of 581 cases. J Neurol. 2008;255:674–682.

161. Nagashima T, Koga M, Odaka M, et al. Continuous spectrum of
1100 pharyngeal-cervical-brachial variant of Guillain-Barre syndrome.

Arch Neurol. 2007;64:1519–1523.
162. Yuki N, Yamada M, Koga M, et al. Animal model of axonal Guillain-

Barré syndrome induced by sensitization with GM1 ganglioside.
Ann Neurol. 2001;49:712–720.

1105 163. Uncini A, Yuki N. Sensory Guillain-Barré syndrome and related
disorders: an attempt at systematization. Muscle Nerve.
2012;45:464–470.

164. Koike H, Watanabe H, Sobue G. The spectrum of immune-mediated
autonomic neuropathies: insights from the clinicopathological fea-

1110 tures. J Neurol Neurosurg Psychiatry. 2013;84:98–106.
165. Yuki N, Kokubun N, Kuwabara S, et al. Guillain-Barré syndrome

associated with normal or exaggerated tendon reflexes. J Neurol.
2012;259:1181–1190.

166. Hiraga A, Mori M, Ogawara K, et al. Differences in patterns of
1115 progression in demyelinating and axonal Guillain-Barré syndromes.

Neurology. 2003;61:471–474.

167. Asahina M, Kuwabara S, Suzuki A, et al. Autonomic function in
demyelinating and axonal subtypes of Guillain-Barré syndrome.
Acta Neurol Scand. 2002;105:44–50.

1120168. Kuwabara S, Yuki N. Axonal Guillain-Barré syndrome: concepts and
controversies. Lancet Neurol. 2013;12:1180–1188.

169. Kanda T, Hayashi H, Tanabe H, et al. A fulminant case of Guillain-
Barré syndrome: topographic and fibre size related analysis of
demyelinating changes. J Neurol Neurosurg Psychiatry.

11251989;52:857–864.
170. Berciano J, Coria F, Montón F, et al. Axonal form of Guillain-Barré

syndrome: evidence for macrophage-associated demyelination.
Muscle Nerve. 1993;16:744–751.

171. Mori M, Kuwabara S, Fukutake T, et al. Clinical features and prog-
1130nosis of Miller Fisher syndrome. Neurology. 2001;56:1104–1106.

172. Koga M, Yoshino H, Morimatsu M, et al. Anti-GT1a IgG in Guillain-
Barré syndrome. J Neurol Neurosurg Psychiatry. 2002;72:767–771.

173. Asbury AK. Diagnostic considerations in Guillain-Barré syndrome.
Ann Neurol. 1981;9(� S1):1–5.

1135174. Asbury AK, Cornblath DR. Assessment of current diagnostic criteria
for Guillain-Barré syndrome. Ann Neurol. 1990;27(� S1):� SS21–SS24.

175. Wakerley BR, Uncini A, Yuki N, GBS Classification Group. Guillain-
Barré and Miller Fisher syndromes – new diagnostic classification.
Nat Rev Neurol. 2014;10:537–544.

1140176. Fokke C, van den Berg B, Drenthen J, et al. Diagnosis of Guillain-
Barré syndrome and validation of Brighton criteria. Brain.
2014;137:33–43.

•• An overview and validation effort for Guillain–Barré syndrome
diagnostic criteria.

1145177. Sejvar JJ, Kohl KS, Gidudu J, et al. Guillain-Barré syndrome and
Fisher syndrome: case definitions and guidelines for collection,
analysis, and presentation of immunization safety data. Vaccine.
2011;29:599–612.

178. Wong AHY, Umapathi T, Nishimoto Y, et al. Cytoalbuminologic
1150dissociation in Asian patients with Guillain-Barré and Miller Fisher

syndromes. J Peripher Nerv Syst. AQ26
179. Kurt Incesu T, Secil Y, Tokucoglu F, et al. Diagnostic value of lumbar

root stimulation at the early stage of Guillain-Barré syndrome. Clin
Neurophysiol. 2013;124:197–203.

1155180. Gallardo E, Sedano MJ, Orizaola P, et al. Spinal nerve involvement
in early Guillain-Barré syndrome: a clinico-electrophysiological,
ultrasonographic and pathological study. Clin Neurophysiol.
2015;126:810–819.

181. Grimm A, Décard BF, Schramm A, et al. Ultrasound and electro-
1160physiologic findings in patients with Guillain-Barré syndrome at

disease onset and over a period of six months. Clin Neurophysiol.
2016;127:1657–1663.

182. Luigetti M, Servidei S, Modoni A, et al. Admission neurophysiologi-
cal abnormalities in Guillain-Barré syndrome: A single-center

1165experience. Clin Neurol Neurosurg. 2015;135:6–10.
183. Derksen A, Ritter C, Athar P, et al. Sural sparing pattern discrimi-

nates Guillain-Barré syndrome from its mimics. Muscle Nerve.
2014;50:780–784.

184. Van den Bergh PYK, Piéret F. Electrodiagnostic criteria for acute and
1170chronic inflammatory demyelinating polyradiculoneuropathy.

Muscle Nerve. 2004;29:565–574.
185. Uncini A, Kuwabara S. Electrodiagnostic criteria for Guillain-Barrè

syndrome: a critical revision and the need for an update. Clin
Neurophysiol. 2012;123:1487–1495.

1175186. Mori K, Hattori N, Sugiura M, et al. Chronic inflammatory demyeli-
nating polyneuropathy presenting with features of GBS. Neurology.
2002;58:979–982.

187. Wakerley BR, Yuki N. Mimics and chameleons in Guillain-Barre and
Miller Fisher syndromes. Pract Neurol. 2015;15:90–99. doi:10.1136/

1180practneurol-2014-000937.
188. Koike H, Iijima M, Sugiura M, et al. Alcoholic neuropathy is clinico-

pathologically distinct from thiamine-deficiency neuropathy. Ann
Neurol. 2003;54:19–29.

189. Chalela JA. Pearls and pitfalls in the intensive care management of
1185Guillain-Barré syndrome. Semin Neurol. 2001;21:399–406� .

14 A. K. JASTI ET AL.



190. Polkey MI, Lyall RA, Moxham J, et al. Respiratory aspects of neuro-
logical disease. J Neurol Neurosurg Psychiatry. 1999;66:5–15.

191. Zhang G, Lehmann HC, Bogdanova N, et al. Erythropoietin
enhances nerve repair in anti-ganglioside antibody-mediated mod-

1190 els of immune neuropathy. PLoS One. 2011;6:e27067.
192. Zhang G, Lehmann HC, Manoharan S, et al. Anti-ganglioside anti-

body-mediated activation of RhoA induces inhibition of neurite
outgrowth. J Neurosci. 2011;31:1664–1675.

193. The Guillain-Barré syndrome Study Group. Plasmapheresis and
1195 acute Guillain-Barré syndrome. Neurology. 1985;35:1096–1104.

194. The French Cooperative Group on Plasma Exchange in Guillain-
Barré Syndrome. Appropriate number of plasma exchanges in
Guillain-Barré syndrome. Ann Neurol. 1997;41:298–306.

195. van der Meché FG, Schmitz PI. A randomized trial comparing
1200 intravenous immune globulin and plasma exchange in Guillain-

Barré syndrome. Dutch Guillain-Barré Study Group. N Engl J Med.
1992;326:1123–1129.

196. Jacobs BC, O’Hanlon GM, Bullens RWM, et al. Immunoglobulins
inhibit pathophysiological effects of anti-GQ1b-positive sera at

1205 motor nerve terminals through inhibition of antibody binding.
Brain. 2003;126:2220–2234.

197. Kuitwaard K, de Gelder J, Tio-Gillen AP, et al. Pharmacokinetics of
intravenous immunoglobulin and outcome in Guillain-Barré syn-
drome. Ann Neurol. 2009;66:597–603.

1210 198. Mori M, Kuwabara S, Fukutake T, et al. Intravenous immunoglobu-
lin therapy for Miller Fisher syndrome. Neurology. 2007;68:1144–
1146.

199. van Koningsveld R, Schmitz PIM, Meché FGA, et al. Effect of methyl-
prednisolone when added to standard treatment with intravenous

1215 immunoglobulin for Guillain-Barré syndrome: randomised trial.
Lancet. 2004;363:192–196.

200. Vega D, Peña M, Lorenzana P. Sindrome de Guillain-Barré (SGB).
Acta Colomb Cuid Intensivo. 2008;8:219–228.

201. Netto AB, Taly AB, Kulkarni GB, et al. Mortality in mechanically
1220 ventilated patients of Guillain Barré Syndrome. Ann Indian Acad

Neurol. 2011;14:262–266.
202. Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and

Sjögren’s syndrome: autoimmune epithelitis. J Autoimmun.
2012;39:34–42.

1225 203. Miller FW, Pollard KM, Parks CG, et al. Criteria for environmentally
associated autoimmune diseases. J Autoimmun. 2012;39:253–258.

204. Selmi C, Leung PSC, Sherr DH, et al. Mechanisms of environmental
influence on human autoimmunity: a National Institute of

Environmental Health Sciences expert panel workshop. J
1230Autoimmun. 2012;39:272–284.

205. Selmi C, Gershwin ME. The role of environmental factors in primary
biliary cirrhosis. Trends Immunol. 2009;30:415–420.

206. D’Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in sys-
temic sclerosis: on the possible mechanisms underlying the

1235female disease preponderance. Clin Rev Allergy Immunol.
2014;47:334–343.

207. Saito Y, Saito H, Liang G, et al. Epigenetic alterations and microRNA
misexpression in cancer and autoimmune diseases: a critical
review. Clin Rev Allergy Immunol. 2014;47:128–135.

1240208. Selmi C, Lu Q, Humble MC. Heritability versus the role of the
environment in autoimmunity. J Autoimmun. 2012;39:249–252.

209. Adutler-Lieber S, Zaretsky I, Platzman I, et al. Engineering of syn-
thetic cellular microenvironments: implications for immunity. J
Autoimmun. 2014;54:100–111.

1245210. Jenkinson WE, McCarthy NI, Dutton EE, et al. Natural Th17 cells are
critically regulated by functional medullary thymic microenviron-
ments. J Autoimmun. 2015;63:13–22.

211. Tsuda M, Torgerson TR, Selmi C, et al. The spectrum of autoanti-
bodies in IPEX syndrome is broad and includes anti-mitochondrial

1250autoantibodies. J Autoimmun. 2010;35:265–268.
212. Bogdanos DP, Smyk DS, Rigopoulou EI, et al. Twin studies in auto-

immune disease: genetics, gender and environment. J Autoimmun.
2012;38:J156–69.

213. Selmi C. The X in sex: how autoimmune diseases revolve around
1255sex chromosomes. Best Pract Res Clin Rheumatol. 2008;22:913–922.

214. Selmi C, Feghali-Bostwick CA, Lleo A, et al. X chromosome gene
methylation in peripheral lymphocytes from monozygotic twins
discordant for scleroderma. Clin Exp Immunol. 2012;169:253–262.

215. Mitchell MM, Lleo A, Zammataro L, et al. Epigenetic investigation of
1260variably X chromosome inactivated genes in monozygotic female

twins discordant for primary biliary cirrhosis. Epigenetics.
2011;6:95–102.

216. Rogatsky I, Chandrasekaran U, Manni M, et al. Epigenetics and the
IRFs: a complex interplay in the control of immunity and autoim-

1265munity. Autoimmunity. 2014;47:242–255.
217. Zan H. Epigenetics in lupus. Autoimmunity. 2014;47:213–214.
218. Meda F, Folci M, Baccarelli A, et al. The epigenetics of autoimmu-

nity. Cell Mol Immunol. 2011;8:226–236.
219. Lu Q, Renaudineau Y, Cha S, et al. Epigenetics in autoimmune

1270disorders: highlights of the 10th Sjögren’s syndrome symposium.
Autoimmun Rev. 2010;9:627–630.

EXPERT REVIEW OF CLINICAL IMMUNOLOGY 15


