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Milano, February 6th, 2008

To the Editor 
of Archives of Biochemistry and Biophysics

Subject: revision of ms ABBI-07-950

Dear Editor, 
we would like to thank the Reviewers for their criticisms and suggestions that hopefully 

allowed us to improve our article. We carefully revised the manuscript according to the Reviewer’s 
suggestions. The overall length of the paper has been significantly reduced by shortening longer 
chapters and by deleting three figures.

The major changes in the revised version of the manuscript are as follows:

Reviewer 1.
1) The authors strive to avoid confusion and refer, rightfully, to the ferredoxin reductase-type 
enzymes as the plant-type FNRs. A similar approach should be used to refer to the other subclass of 
FNRs, which is presented initially as the glutathione reductase-type class and referred to later on in 
the paper as the adrenodoxin reductase-type class. The presentation would gain in clarity if the 
second subclass would be defined as the adrenodoxin reductase-type right on in the introduction. 
“GR-type” and “AdR-like” are not synonymous. Indeed, as shown in Fig. 1, GR-type FNRs 
represent a broader group that include both the AdR-like and the ONFR-like enzymes. Thus, we 
prefer to maintain the distinction between the two terms (GR-type and AdR-like). 

2) While most of the chapters have similar lengths, the last two chapters are significantly longer 
than the previous six ones, creating an unpleasant imbalance in the presentation.  The authors 
should try to either condense or split in multiple chapters the two long ones, in order to have a 
more armonious and balanced presentation of the topics.
Large chapters (“Specific features of Plasmodium falciparum FNR” and “Ferredoxin binding and 
electron-transfer”) were significantly shortened (by 35% and 22%, respectively). Previous very long 
paragraphs were broken into smaller ones.

3) The work would significantly gain in strength upon adding a small summary paragraph at the 
end of the review article.  Alternatively, the authors may consider a paragraph in which they 
present open questions that can now be raised and answered based upon current knowledge.
A Conclusion chapter has been added. However, in order to limit the ms length, this chapter is not a 
summary or a list of open questions, but includes just some concluding remarks.

* Response to Reviews
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4) References to the literature should be properly added to backup several statements that are 
made.  For example, and by no means being a comprehensive list: on page 3 lines 3 and 8; page 4 
line 2; page 7 line 7; page 8 line 4 from the bottom; page 13 line 20; page 14 lines 9, 11, 14 and 17.
Several citations have been added throughout the text, in particular at the sites indicated by the 
Reviewer.

5) A list of abbreviations should be included.  For example, what is NMN?
A list of abbreviations has been added.

6) On page 4 line 15, both n and S should be defined. 
The definition of the parameters n and S has been given, and a reference added. 

7) The authors should specify clearly which enzymes have been wrongly identified as adrenodoxin 
reductase-like enzymes (page 6).
What we found is that some AdR-like proteins have been wrongly identified as other enzymes, and 
not the opposite. We think that, for the sake of brevity, it is not possible to give a comprehensive 
list of incorrectly identified entries within this review article. We have provided just one example of 
such observation.

8) Several grammar mistakes and typos are present throughtout the manuscript, which will have to 
be corrected.
We tried to fix all mistakes and typos.

Reviewer #2: 
In general, I think the readability would be improved if the authors were to shorten it by about 
25%+ by removing details that distract from the overall message and flow, and that interested 
readers can get from the original literature. Also, sometimes long paragraphs are very difficult to 
process and retain information from.  For instance, the "NADP binding" is a single long 
paragraph, the "plasmodial FNR" section has a 2 page paragraph and the "ferredoxin binding and 
electron transfer" section appears to be a single 3 page paragraph.  These must be broken up into 
more digestable units with clear points to be gotten.
The "plasmodial FNR" chapter has been radically shortened by removing most details (see reply to 
Reviewer #1, point 2) Three figures have been deleted. Other parts of the ms have been shortened 
as well, although at a lower extent. 

-p3:Having the single name ferredoxin reductase cover what turned out to be two distinct enzyme 
types has long been confusing and this manuscript can help clarify their relationships, but it must 
be careful to not add to the confusion.  The diagram in figure 1 is good, but I suggest adding 
coloring or wording to make clear that all the plant FNR's are one homologous family and all the 
GR-like FNRs are a distinct family.
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Fig. 1 and its legend have been modified in order to make the point raised by the Reviewer clear.
To avoid very confusion, it is crucial that the language in the introduction and throughout be very 
clear: e.g. the sentence on p. 3 "FNRs do not represent a homogeneous group of proteins," should 
be replaced with the more direct "FNRs can be grouped into two phylogenetic/structural families 
that we here refer to as the "plant type" and "GR-like" FNRs (Figure 1)."; the term "subclasses" 
later used on p. 3 needs to be replaced with something like "evolutionary families."  Also p. 3, 
where the reviews on plant-type FNRs are cited, reviews for GR-like FNRs should also be cited so 
up front both families are well introduced.  One other thing that I think would help the reader is if 
the authors explicitly noted right at the start that the nomenclature of having both enzyme families 
sometimes called FNR and other times only one of the families (plant-type) referred to as FNR has 
led to much confusion.

The Introduction and the following chapter were modified as suggested by Reviewer #2. 

-p.4: the sentences "All FNRs have a similar gross structure" and "despite this apparent similarity 
".  Since the folds of the FAD binding domains are totally distinct even at a glance, it is very 
misleading to say they have an apparent similarity that leads it to be surprising they cluster in 
different phylogenetic groups.  The section could be most clearly written simply starting with the 
two groups that were already introduced in the intro and mentioning from their how sequence 
comparisons further break them down. 
The text has been revised as suggested.

-p.5: AdR also has FAD and NADP domains with similar topology, so I don't see how it is different 
from ONFR in that regard?
The misleading term “topology” has been changed to organization. What we meant is that ONFR 
has both domains sharing a β/β/α layered structure, whereas AdR has the FAD- and the NADP-
binding domains adopting a β/β/α and a α /β/α organization, respectively.

p. 11:  the time and figures spent on the dimerization of plasmodial FNR is too much given its 
treatment in the original literature and the lack of evidence it is anything more than a 
crystallization artifact.  I'd suggest deleting figure 9 and 10.
The figures have been deleted.

Fig. 3 - The scale and orientation of panel C should match the scale and orientation of panel D to 
maximize the readers ability to see the structural similarity.
Panels C and D of Fig. 2 have been redrawn according to the Reviewer’s suggestions. 

Fig. 8 is unnecessary.  The simple one sentence point that there are fewer charges at the 2'-
phosphate binding site does not need a figure to illustrate it.
The figure has been deleted.
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We hope that the current revised version of our manuscript is amenable for publication in ABB.

Yours, sincerely

Alessandro Aliverti 
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Abstract

Although all ferredoxin-NADP+ reductases (FNRs) catalyze the same reaction. i. e. the transfer of 

reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of 

proteins: the plant type and the glutathione reductase type of FNRs. Aim of this review is to provide 

a general classification scheme for these enzymes, to be used as a framework for the comparison of 

their properties. Furthermore, we report on some recent findings, which significantly increased the 

understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin 

reductase and its homologs to catalyze the oxidation of NADP+ to its 4-oxo derivative, and the 

properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria 

and Apicomplexan parasites provide examples of novel ways of FAD and NADP(H) binding. The 

recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field 

of drug design.

Keywords: Flavoprotein, FAD, NADP, photosynthesis, induced fit, electron transfer, Apicomplexa, 

Plasmodium falciparum, malaria
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Abbreviations

AdR, adrenodoxin reductase; Adx, adrenodoxin; FNR, ferredoxin:NADP+ oxidoreductase; Fd, 

ferredoxin; GR, glutathione reductase; NADPO, 4-oxo-NADP; NMN; nicotinamide 

mononucleotide; 2’-P-AMP, 2’-phospho-AMP.
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Introduction

Ferredoxin:NADP+ oxidoreductases (FNRs, EC 1.18.1.2) are FAD-containing flavoenzymes that 

catalyze the transfer of reducing equivalents between ferredoxins (Fds) and the NADP+/NADPH 

couple according to the following equation [1]:

2Fdred + NADP+ = 2Fdox + NADPH Eq. 1

In several different organisms and tissues, FNRs participate in electron transfer chains involved in 

metabolic processes as diverse as photosynthesis, nitrogen fixation, isoprenoid biosynthesis, steroid 

metabolism, xenobiotic detoxification, oxidative-stress response, and iron-sulfur cluster biogenesis

[1-5]. Eq. 1 represents the electron flow trough FNR as it occurs in the photosynthetic electron 

chain. However, the physiological direction of the reaction catalyzed by FNRs involved in the other 

pathways is opposite, i. e. toward the production of reduced Fd. On this basis, FNRs are sometimes 

classified as autotrophic (photosynthetic FNRs) and heterotrophic (all other FNRs) [6]. FNRs can 

be grouped into two phylogenetic/structural families that we here refer to as plant-type and 

glutathione reductase (GR)-type FNRs (Fig. 1). It should be noted that the term FNR is 

inconsistently used by different authors to denote either exclusively the plant-type FNRs or both 

enzyme families, thus bringing much confusion. A huge number of papers have been published on 

FNRs since the discovery of photosynthetic FNR and mitochondrial adrenodoxin reductase (AdR)

in the sixties. Excellent reviews on plant-type FNRs appeared in recent years, and the reader is 

referred to them for an introduction to the field [1, 4, 5, 7]. To the best of our knowledge, no 

reviews on the GR-type FNRs have been published so far. The only article about the general 

properties of AdR appeared more than 15 years ago [8]. The scope of the present review is to cover

aspects not adequately considered in previous work, with a special focus on two topics. First, we 

will provide a comparison between plant-type and GR-type FNRs. Second, we will summarize the 

most recent findings on these two highly important enzyme families.
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Structural and phylogenetic classification of FNRs

As anticipated in the Introduction, enzymes that catalyze the reaction described in Eq. 1, and thus 

referred to as FNRs, belong to two phylogenetically and structurally unrelated protein families. The 

sequences of several hundred proteins annotated as FNR have been deposited in the SwissProt and 

GenBank NCBI databases. More than 50 entries dealing with the crystal structures of FNRs are also

currently available in the Protein Data Bank. By comparison of their three-dimensional structures

and sequences the two FNR families have been further subdivided as outlined in Fig. 1. Thus plant-

type FNRs comprise the plastidic and bacterial enzymes, whereas the AdR-like flavoproteins and, 

for the reasons detailed below, the ONFRs belong to the GR-type FNRs. FNRs of both families

possess a two-domain organization with the active site located at the interface between the FAD-

and the NADP-binding domains (Fig. 2). Dym and Eisenberg have identified 4 general folds for 

FAD binding in 32 families of FAD-containing proteins [9]. The FAD-binding domain of the GR-

type and the plant-type FNRs adopt two of such general folds.

The above subdivision of FNRs in two evolutionary families is in agreement with both 

CATH (http://www.cathdb.info) and SCOP (http://scop.berkeley.edu) classifications of protein 

domains [10, 11]. The FAD-binding domain of plant-type FNRs is based on an antiparallel β-barrel 

with a greek-key topology (number of strand, n = 6, and shear number, S = 10) [12]. The 

corresponding domain of AdR-like FNRs adopts a three-layer β/β/α fold, with a central parallel 

five-membered β-sheet of 32145 topology. It should be noted that, while in plant-type FNRs the 

FAD-binding domain is formed by the N-terminal portion of the polypeptide chain, in GR-type 

enzymes two discontinuous segments of the polypeptide form the FAD-binding domain (Fig. 2). 

The NADP-binding domain of both FNR families is a three-layer sandwich α/β/α, with a 

Rossmann-like topology and a parallel 5-membered β-sheet. However, these domains differ in 

several details in the two families of FNRs, particularly in the precise mode in which NADP(H) is 

bound.

http://www.cathdb.info/
http://scop.berkeley.edu/
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It is worth to mention that a family of flavoproteins exists, which, although NAD-dependent, 

are clearly structurally and functionally related to the AdR-like FNRs. This family includes the 

bacterial oxygenase-coupled NADH-ferredoxin reductases (ONFRs), of which the Pseudomonas

ferredoxin reductase component of biphenyl dioxygenase (BphA4) is the best characterized member

[13]. ONFR-like enzymes (EC 1.18.1.3), though not formally FNRs, will be shortly dealt with in 

this review, since their properties help in understanding the structure-function relationships of AdR-

like proteins. ONFRs-like enzymes mainly differ from AdR-like FNRs in having both FAD- and 

NAD-domain sharing the same organization (a three-layer β/β/α fold related to the FAD-binding 

domain of AdR) and in possessing a third C-terminal domain involved in protein homodimerization 

(Fig. 2).

Finally, it is interesting to note that both families of FNRs are part of wider protein 

superfamilies that include non-FNR members. The “FNR superfamily” consists of proteins that 

share the two-domain unit of plant-type FNR and possess a variety of additional domains [7, 14, 

15]. It comprises nitrate reductase, phthalate dioxygenase reductase, sulfite reductase and the dual 

flavin oxidoreductases such as cytochrome P450 reductase, NO synthase and methionine synthase 

reductase. Similarly, AdR-like and ONFR-like enzymes belong to the “two dinucleotide binding 

domains” flavoprotein superfamily (tDBDF) [16], which includes the Baeyer-Villiger 

monooxygenase, glutamate synthase β subunit, dehydropyridine dehydrogenase, thioredoxin 

reductase, and glutathione reductase.

Plant-type FNRs have been studied extensively, with the functional and structural 

characterization of enzymes from several eukaryotic and prokaryotic organisms. In particular, high 

resolution three-dimensional structures have been solved for the FNRs from spinach (Spinacia 

oleracea) leaf [17], corn (Zea mays) leaf and root [18, 19], pea (Pisum sativum) leaf [20], paprika 

(Capsicum annuum) leaf [21], the protozoon Plasmodium falciparum [22], the cyanobacteria

Anabaena [23, 24] and Synecochococcus (PDB accession no. 2B5O), and the bacteria Escherichia 

coli [25], Azotobacter vinelandii [26] and Rhodobacter capsulatus [27]. The 3D structure and the 
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amino acid sequences of these proteins have been compared in detail leading to the definition of the 

consensus of six sequence motifs highly conserved in plant-type FNRs [1] and to the identification

of the groups in which these enzymes can be further subdivided (Fig. 1), each characterized by

specific structural features [1, 7].

Conserved structural features in AdR-like FNRs

As mentioned before, AdR-like FNRs have been studied to a lower extent than the plant-type ones. 

For instance, three-dimensional structures have been obtained only for bovine AdR [28, 29] and 

Mycobacterium tuberculosis FprA [30]. With the aim to partially fill the gap between the 

knowledge on the two types of FNR we searched the UniProt Knowledgebase 

(http://expasy.org/sprot) with the program BLAST for proteins homologous to human AdR, 

Saccharomyces cerevisiae ARH1 and M. tuberculosis FprA (SwissProt accession nos. P22570, 

P48360 and O05783, respectively). A non-redundant set of retrieved sequences exhibiting 

similarity to the query sequences over their entire length were aligned using the program

CLUSTALW [31]. Visual inspection of the conserved residues allowed us to define the consensus 

sequence of four highly conserved peptide segments (Table 1). As shown in Fig. 3, all these 

polypeptide motifs map in the active site of the AdR-like FNRs and make contacts with both FAD 

and NADP. Three of the motifs are involved in binding FAD. This binding site thus represents the 

most conserved feature in this FNR type. Motif 1 and 3 include the turns interacting with the 

pyrophosphate groups of FAD and NADP, respectively. More than 150 entries of the UniProt 

Knowledgebase contain all the four motifs of Table 1. Thus, they are likely to represent AdR-like 

enzymes, although several of them are annotated as unknown proteins or incorrectly identified (as, 

for example, the entry A4TDE6, which, although displaying more than 69% identity with FprA, is 

annotated as a disulfide oxidoreductase).

NADP(H) binding in different types of FNRs

http://expasy.org/sprot
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In all FNR types, in order to allow for hydride transfer between the two redox-active moieties of the 

cosubstrate and the prosthetic group, NADP(H) binds to the enzyme in an extended conformation, 

with the 2’-P-AMP half accommodated within the NADP-binding domain and the NMN portion 

inserted in a cleft at the domain interface, where the nicotinamide ring can contact the FAD 

isoalloxazine. Various crystal forms of bovine AdR and M. tuberculosis FprA in complex with 

either NADP+ or NADPH have been studied by X-ray crystallography [28, 30]. In all cases well-

defined electron density maps have been obtained for the entire molecule of the bound ligand. In 

AdR-like enzymes, NADP(H) binds in a solvent accessible position, contacting several ordered

water molecules. Minor conformational changes in the protein molecule have been observed as the 

result of NADP(H)-binding to AdR [28]. It can be concluded that in AdR-like FNRs the NADP-

binding site is essentially preformed in the free enzyme and it is easily accessible by the ligand.

The interaction between NADP(H) and plant-type FNRs has been studied in detail from a 

structural point of view in both higher plant and Anabaena enzymes [4]. The NADP-binding site is 

much less solvent exposed in plant-type FNRs than in AdR-like enzymes. More interestingly, in the 

conformation of the free plant-type enzymes there is no room for binding the NMN moiety of the 

substrate in a catalytically competent conformation. Moreover, the X-ray analysis of the complex of 

spinach FNR with NADP yielded electron density only for the adenylate moiety of the ligand [17], 

while in Anabaena FNR, the NMN portion of NADP+ was actually observed in crystal structures of 

the enzyme-substrate complex. Nevertheless, its conformation was not compatible with hydride 

transfer, i. e. the nicotinamide ring was far away from the isoalloxazine [23, 24]. The main 

structural feature disfavoring the occupation by the NMN moiety of its binding subsite is the 

conformation of the side-chain of the C-terminal Tyr that stacks on the re-face of the isoalloxazine, 

the site where the nicotinamide is expected to be during hydride transfer (Fig. 4). The C-terminal 

aromatic residue is highly conserved in plastidic-type FNRs, and it is also maintained in most 

members of the FNR superfamily [7, 14]. The current view of NADP(H) binding by plant-type 

FNRs during the catalysis, which takes into consideration results from the characterization of 
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several side-directed mutant forms, assumes that the NMN moiety of the bound substrate adopts a 

catalytically competent conformation only for a limited part of the catalytic cycle [20, 32, 33]. In 

other words, the NADP(H)-binding to plant-type FNR has been proposed to occur through a

bipartite mechanism: the adenylate moiety has a leading role in enzyme-substrate interaction, and it 

remains firmly bound to the C-terminal domain in the NADP(H)-FNR complex, while the 

nicotinamide ring approaches the flavin ring only for a short fraction of the catalytic cycle, 

sufficient to provide the adequate hydride transfer rate [20, 32].

Catalysis of hydride transfer in FNRs

The catalytically competent conformation of NADP(H) bound to plastidic-type FNRs has been 

directly observed for the first time in the crystal structure of site-directed mutants of pea leaf FNR, 

where the C-terminal Tyr308 has been replaced with Ser or Trp (Fig. 4) [20]. This conformation, 

compatible with hydride transfer, has been confirmed by X-ray crystallographic studies on the 

corresponding mutant forms of cyanobacterial FNR [33], and by NMR studies on maize leaf FNR

[34]. The residues most directly involved in the interaction with the nicotinamide ring of the 

cosubstrate have been shown to be Ser96, Cys272 and Glu312 (spinach leaf FNR numbering), and 

all of them are highly conserved in the plant-type FNRs. Glu312 makes an H-bond with the 

nicotinamide carboxamide [20, 35], while Ser96 and Cys272 interact with the C4 atom of the 

nicotinamide from opposing sides, possibly polarizing this position in order to favor hydride 

transfer [20, 36, 37]. Ser96 also interacts with the N5 atom of the FAD isoalloxazine [17]. The 

actual role of the triad formed by these residues (Ser, Cys, Glu) has been evaluated by protein 

engineering, showing that all of them contribute, although at different extents, to the kcat of the 

plastidic-type enzymes [35-37]. 

A comparison of the active site of plant-type and AdR-like FNRs is shown in Fig. 5. 

Obviously, the environments of the bound nicotinamide ring differ substantially in the two groups 

of enzymes, as expected on the basis of their different stereospecificity [38, 39]. Indeed, whereas 
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hydride transfer involves the re-face of the flavin in all FNRs, it occurs at the A- or B-side of the 

nicotinamide ring in plant-type and GR-type FNRs, respectively [40]. A complete description of the 

stereochemistry of the interacting ring moieties in FNRs is given in Table 2. Notwithstanding large 

differences in active site organization, a common structural feature is present in all FNRs, namely,

the side-chain carboxylate of a residue of the NADP-binding domain interacts with the 

nicotinamide carboxamide (Glu 211 in FprA; Glu312 and Glu306 in spinach leaf and pea leaf FNR, 

respectively; Fig. 5) [20, 30, 35]. An unusual feature of AdR-like FNRs is the lack of protein groups 

making direct contacts with the N5 and C4 positions of the isoalloxazine and nicotinamide rings,

respectively [28-30]. In the crystal structure of the FprA-NADPH complex two ordered water 

molecules (water 1 and water 3 in Fig. 5) have been observed [30]. These water molecules lay at a 

position close to that occupied by the terminal groups of the side-chains of the active site Cys and 

Ser in plant-type FNRs. Thus, they are believed to have a role in favoring hydride transfer. Water 1 

is likely highly reactive and it may initiate nicotinamide oxidation yielding 4-oxo-NADP (NADPO) 

when NADP+ is incubated with M. tuberculosis FprA or bovine AdR [30, 41]. The ability of 

oxidize NADP+ to NADPO seems a unique feature of AdR-like enzymes, which is absent in other 

types of FNR [41].

The highly divergent group of ONFR-like enzymes within the GR-type FNRs presents an 

active site highly dissimilar from that of AdR-like FNRs (Fig. 6) [13, 42-44]. Again, the only 

common feature is a carboxylate interacting with the nicotinamide ring (Glu159 in Pseudomonas

BphA4), also in this case provided by the NAD-binding domain [13]. The side-chains of two 

residues, Glu159 and Lys53, conserved in ONFR-like enzymes and, more generally, in GR-related 

flavoproteins, interact with the nicotinamide C4 and the flavin N5 atoms, and they have been 

proposed to have a role in catalysis [13, 42]. However, site-directed mutagenesis studies on the 

corresponding residues (Glu313 and Lys176) of mouse AIF indicated their critical role in FAD 

binding and protein stability [44]. Lys176 replacement with Ala had a negligible effect on catalysis, 

while the Glu313Ala mutation mainly affected the Km for NADPH [44].
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Site-directed mutagenesis experiments targeting residues of GR-type FNRs putatively 

involved in hydride-transfer have also been performed on M. tuberculosis FprA. His57, whose side-

chain interacts with both active-site water 1 and water 3, has been shown to markedly affect the 

ferredoxin-dependent reaction of the enzyme and to modulate the hydride transfer rate by 

controlling the precise positioning of the nicotinamide ring in the active site [45].

NADP/NAD selectivity

AdR-like FNRs discriminates against NADH essentially by means of a significantly higher values 

of Km for this substrate in comparison to that for NADPH [46, 47]. On the other hand, plastidic-type 

FNRs display both lower values of Km and higher values of kcat for NADP(H) as compared to 

NAD(H) [18, 32, 48, 49]. As a result, plant-type FNRs are usually far more specific than AdR-like 

enzymes in cosubstrate preference. In principle, a much lower value of kcat displayed by a NADPH-

dependent enzyme when NADH is used as the electron donor can imply either an incorrect 

positioning of NADH in the active site or, alternatively, substrate binding through an induced fit 

mechanism that makes the enzyme active-site adopting its optimal conformation only when the 2’-

phosphorylated cosubstrate is bound.

A major determinant of substrate specificity in all FNRs are the residues, some of which 

carrying a net positive charge, that directly interact with the 2’-phosphate of NADP(H). In AdR-like 

enzymes the negative charge of the 2’-phosphate is compensated by the side chain of Arg199 and 

Arg200 (FprA numbering) [28, 30]. Similarly, in plant-type FNRs, in addition to the hydroxyl 

groups of Ser234 and Tyr246, two positively-charged groups, provided by Arg235 and Lys244

(spinach leaf FNR numbering), make contacts with the 2’-phosphate [17, 23]. The role of these 

residues in substrate binding and catalysis has been studied in spinach and Anabaena FNRs by 

protein engineering [49-51]. Quite surprisingly, a second, very critical specificity determinant in 

plastidic-type FNR has been identified in the side chain of the C-terminal Tyr. Indeed, the 

Tyr308Ser mutation in pea FNR caused a drop in NADPH/NADH selectivity (measured as the ratio 



12

of the kcat/Km for NADPH over that for NADH) from 36,000 to 77 [32]. Even more interestingly, 

the FNR-Y308S variant displayed a kcat with NADH equal to that of the wild-type enzyme with 

NADPH [32]. This finding suggests that the side-chain of the C-terminal Tyr could have a role in 

the inducted-fit mechanism that prevents the enzyme from accepting the hydride ion from bound 

NADH with high efficiency. 

Gomez-Moreno, Medina and coworkers have performed an exaustive analysis of the factors 

that govern the cosubstrate specificity in plant-type FNRs, and identified two additional peptide 

regions involved in the conformational changes that control NADP(H) binding, i. e. the loops of the 

NADP-binding domains involved in the interaction with the pyrophosphate moiety of the substrate

[49, 52]. According to these authors, the NMN-binding subsite of plastidic-type FNRs has to 

undergo a general rearrangement and reshaping in order to nest the second half of the substrate, 

once its adenylate moiety is bound [52]. This reorganization should somehow be favored by the 

presence of the 2’-phosphate of NADP(H), although the underlying mechanism is still unknown. 

Specific features of Plasmodium falciparum FNR

The phylum Apicomplexa comprises several species of protist parasites [53] that cause major 

human pathologies, including toxoplasmosis [54] and malaria [55]. These protozoa are 

characterized by specific organelles essential for parasite survival and virulence [53], including the 

apicoplast [56, 57], Most probably, the apicoplast represents the remnant of a secondary 

endosymbiotic event, in which the Apicomplexa ancestor engulfed an algal cell [56]. Consistently 

with its vegetal origin, the apicoplast possesses a typical plastidic metabolism [58], including

isoprenoid and fatty acids biosyntheses, by using the methylerythritol 4-phosphate pathway [59], 

and type-II fatty acid synthase complex (FAS-II) [60], respectively. In the apicomplexan genomes

several genes encoding homologs of plant proteins, harboring transit peptides for apicoplast 

targeting [61], have been identified, including Fd and FNR [2, 62].
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T. gondii e P. falciparum FNRs have been cloned and characterized in detail [3, 22, 63-66]. 

Apicomplexan FNRs display highest sequence similarity to the root-type FNRs [62]. Whereas the 

kinetic properties of the T. gondii enzyme are very similar to those of other plastidic-type FNRs

[65], the P. falciparum FNR displayed a significantly lower catalytic efficiency [22], as observed in

bacterial-type FNRs [1]. The crystal structure of the enzyme has been solved in both the free and 

the 2’P-AMP bound forms [22]. The overall conformation of the polypeptide chain of the P. 

falciparum FNR is superposable to that of other plastidic-type FNRs (Fig. 7), although significant 

differences in important details were detected. The structural basis for the relatively low affinity of 

the plasmodial enzyme for NADP(H) is probably the lack of positively-charged groups stabilizing 

the 2’-phosphate of the bound substrate [22]. Another unexpected structural feature of the P. 

falciparum enzyme is a large conformational change that the site interacting with the 2’-P-AMP

portion of NADP(H) undergoes when it is occupied [22]. Furthermore, a peculiar characteristic of 

the P. falciparum enzyme, unprecedented in other FNRs, is its susceptibility to undergo a NADP-

dependent disulfide-linked dimerization process, resulting in enzyme inactivation [22]. The inactive 

homodimer produced in the presence of oxidizing agents, such as O2, H2O2 or diamide, can be 

reconverted to the functional monomer by reducing agents such as DTT. The single disulfide bridge 

stabilizing the homodimer involves Cys99 from both enzyme protomers [22]. The reason for the 

low activity of the dimeric form of the enzyme (ca. 5% of that of the monomeric form) is most 

probably related to its quaternary structure, in which both electron transfer from reduced FAD, and 

NADP+ release are hampered. Cys99 is highly, although not completely, conserved in plasmodial 

FNRs, and a Cys residue is present in the same sequence region also in the T. gondii homolog. The 

presence of the covalent dimer of apicoplast FNR in vivo has not been demonstrated yet. 

Nevertheless it could be suggested that inactivation by dimerization may represent part of a 

physiological process of FNR regulation in Plasmodium.

A possible anabolic role for the apicoplast FNR/Fd system has been demonstrated in vitro, 

through the reconstruction of a functional system comprising FNR, Fd, and LytB of P. falciparum
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[3]. The latter enzyme catalyzes the last step of the mevalonate-independent 1-deoxy-D-xylulose-5-

phosphate (DOXP) biosynthetic pathway of isoprenoid precursors. P. falciparum FNR/Fd system 

was found to be able to transfer to LytB the reducing equivalents needed to support its reductase 

activity [3]. Since isoprenoid biosynthesis is an essential pathway in P. falciparum and a known site 

of action of antimalarial drugs such as fosmidomycin [59], FNR represents a novel attractive target 

for the development of new antiplasmodial drugs [67]. 

Specific features of bacterial-type FNRs

Bacterial-type FNRs represent the most divergent group of plant-type FNRs [1]. Biochemically 

well-characterized members of this group of enzymes are from Azotobacter vinelandii, Escherichia 

coli and Rhodobacter capsulatus. Bacterial-type FNRs differ from plastidic-type FNRs by having 

additional physiological functions related to nitrogen fixation (in Azotobacter and Rhodobacter) and 

to the detoxification of reactive oxygen species, by using both Fd and flavodoxin as electron 

acceptors, and by displaying kcat values two orders of magnitude lower than that of the plastidic-

type counterparts [1]. Flavodoxin substitutes for Fd under conditions in which the [Fe-S] cluster of 

Fd cannot be assembled (e.g. under limiting iron availability) [5]. The use of flavodoxin as a redox 

partner is not restricted to bacterial-type FNRs, as it is an alternative substrate also for the plastidic-

type FNRs of cyanobacteria and some algae [1]. One of the most peculiar structural features of the 

bacterial FNRs is the lack of the large FAD-binding domain loop that in plastidic-type enzymes 

interacts with the adenylate moiety of the prosthetic group (Fig. 2). As a result, in the former FNRs 

the FAD adopts a bent conformation with the adenine folded back and interacting with the

isoalloxazine [1, 25-27]. Another striking difference between bacterial- and plastidic-type FNRs is 

that the stacking interaction between the re-face of the flavin and the aromatic side-chain of the C-

terminal residue is lacking in both A. vinelandii [26] e R. capsulatus [27] enzymes . 

Ferredoxin binding and electron-transfer
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Electron transfer between FNR and Fd requires the transient formation of a protein-protein complex 

that puts their respective FAD and [Fe-S] prosthetic groups at a proper distance. The involvement of 

specific portions of the two proteins in the recognition process has been investigated using several 

different techniques, including chemical modification [68, 69], cross-linking [70], microcalorimetry

[71, 72], protein engineering [5, 73-75], X-ray crystallography [19, 76-78], NMR [34, 79], and 

molecular interaction simulations [79]. A very large numbers of site-directed mutants of both 

Anabaena FNR and Fd have been characterized by transient absorption spectroscopy, leading to a 

quite complete picture of the respective interacting molecular surfaces and of the role of specific 

side chains in electron transfer [73]. Basically, the complex interface is formed by a hydrophobic 

core surrounded by charged residues, where basic side chains are mostly provided by the reductase 

and acidic ones by Fd. The dipole moment of the two protein molecules has probably a significant 

role in increasing the association rate and in favoring their mutual orientation [69]. The electron-

transfer process is highly affected (up to four orders of magnitude) by non-conservative substitution 

at specific sites of the Fd surface: Phe65, Glu94, Ser47 (Anabaena numbering) [73]. The Fd-

binding site of FNR was found to be much less sensitive to mutations, with the replacement of the 

most critical residues (Leu76, Lys75, Glu301, Anabaena numbering) leading to a decrease in the 

rate of electron transfer of up to 150 fold [73].

The crystal structure of four different Fd-FNR complexes has been solved by X-ray 

crystallography. Three of them involve plastidic-type proteins [19, 76, 78] and one AdR and 

adrenodoxin (Adx) [80]. In all cases, the iron-sulfur protein binds to a concave surface formed by 

both reductase domains. The resulting complexes have a compact, roughly spherical shape. The 

distance between the FAD and the [Fe-S] cluster is significantly shorter in the plastidic-type 

complexes (6-8 vs ca. 10 Å). The isoalloxazine ring of FAD is differently oriented with respect to 

the [Fe-S] cluster in the two types of complex. The pyridine ring of the flavin points towards the 

[Fe-S] cluster in the AdR-Adx complex, whereas the dimethylbenzene ring of the isoalloxazine 

faces the cluster of Fd in the plant-type complexes.
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Adx binding to AdR induces a domain reorientation by several degrees in the latter protein 

molecule [80]. Small induced-fit conformational changes have been proposed to occur also in the 

formation of plant-type complexes [76, 78]. These backbone and side-chain movements have been 

proposed to favor the electron- and hydride-transfer steps of the catalytic cycle of plastidic-type 

FNRs [76, 78, 81]. It should be mentioned that Karplus [7] has proposed that, under physiological

conditions, the photosynthetic FNR would always bind either NADP+ or NADPH, while Fd would 

interact with the reductase in a collisional fashion, i.e. the protein-protein complex would be

essentially unpopulated during the catalytic cycle. According to this view, any effect of Fd binding 

to the interaction between FNR and NADP(H) or to hydride transfer would be physiologically 

irrelevant.

Comparison of the crystal structure of the available plastidic-type FNR-Fd complexes has 

led to the unexpected observation that, although the structure of the corresponding proteins is highly 

conserved, the geometry of their interaction is not [76]. Indeed, whereas the interacting surfaces are 

the same in the three complexes, the proteins are differently oriented. In this respect it is interesting 

to mention the comprehensive survey of the intermolecular interacting surfaces in redox protein 

complexes carried out by Crowley and Carrondo [82]. Among the FNR-Fd complexes, the AdR-

Adx couple is the one displaying the largest interface area with the highest number of H-bond and 

ionic interactions. The interfaces in plant-type FNR-Fd complexes are particularly poorly packed 

and display a low geometric fitting, in comparison to the non-redox protein complexes. In addition,

while Coulombic attraction is predicted to be the major driving force determining the fast 

association rates of such complexes, it is not optimized in terms of precisely oriented intermolecular 

charge interactions. These structural properties are probably required to guarantee also a fast 

dissociation process and are known to be a general feature of the redox-protein complexes [82]. It 

seems reasonable to conclude that the heterogeneity in the mode of protein-protein interaction 

observed in the various plant-type FNR-Fd complexes probably reflects the absence of strict 
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geometric constrains in the interaction between the partners rather than actual species-specific 

differences. 

Conclusions

FNR enzymology is representing for about half of a century a fertile and exciting area of research 

that had provided many clues on fundamental biochemical processes such as substrate recognition, 

protein-protein interaction, enzyme specificity and catalysis. Despite several important 

accomplishments, studies on FNRs are far from being concluded since a complete picture of their

catalytic cycle is still lacking. FNRs endowed with novel properties from both bacteria and protozoa 

are being characterized and are expected to shed new light on the structure-function relationships of 

this important class of enzymes. 
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Figure legends

Figure 1. Structural/phylogenetic classification of ferredoxin-NAD(P)+ reductases. Outline of 

the most relevant groups of FNRs, as determined by both sequence and three-dimensional structure 

comparison. Plant-type and GR-type FNRs represent two structurally/phylogenetically-unrelated 

protein families, making them a remarkable case of convergent evolution. On the other hand, 

further subdivisions within each family reflect increasing levels of evolutionary relationship.

Figure 2. Three-dimensional structure and domain organization of plant-type, bacterial-type, 

AdR-like and ONFR-like FNRs. A, Plasmodium falciparum FNR (PDB accession no. 2OK7, 

chain A). B, Escherichia coli FNR (PDB accession no. 1FDR). C, Mycobacterium tuberculosis

FprA (PDB accession no. 1LQU, chain A). D, Pseudomonas sp. Strain KKS102 BphA4 (PDB 

accession no. 1F3P). Below each ribbon model, the contributions of the polypeptide chain to the 

different domains are reported. FAD-binding and NAD(P)-binding domains are shown in yellow 

and blue respectively. The C-terminal domain of BphA4 is shown in green. Bound FAD (A-D), 

2’P-AMP (A), NADPH (C) and NADH (D) are represented as ball-and-stick models.

Figure 3. Highly conserved peptide regions in AdR-like FNRs. Ribbon model of the three-

dimensional structure of FprA (1LQU, chain A) with FAD (right) and NADPH (left) represented as 

wireframes. The FAD-binding domain, the NADP-binding domain and the connecting β-sheet are 

colored in yellow, blue and magenta, respectively. The regions corresponding to the four sequence 

motifs highly conserved in AdR-like enzymes are highlighted in red. Motifs 1, 2 and 4 are located 

in the middle, upper and lower parts of the FAD-binding domain as depicted in the figure; motif 3 is 

located in the NADP-binding domain.

Figure 4. Induced-fit conformational change determined by NADP(H) binding to plant-type 

FNRs. Overlay of the three-dimensional structures of wild-type pea leaf FNR (PDB accession no. 

1QG0) (yellow ribbon) and NADP+-bound pea leaf FNR-Y308S (PDB accession no. 1QFY, chain 
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A). C-terminal Tyr308 and FAD belonging to wild-type FNR and NADP+ bound to the mutant

enzyme are shown as wireframes. Note how the nicotinamide ring of the bound co-substrate stacks 

on the isoalloxazine ring in the same position occupied by the Tyr308 side-chain in wild-type FNR. 

Figure 5. Superposition of the active-site regions of AdR-like and plant-type FNRs. Stereo 

view of the groups involved in hydride-transfer between NAD(P)H and FAD in FprA (PDB 

accession no. 1LQU, chain A) and leaf pea FNR-Y308S (PDB accession no. 1QFY, chain A). 

FprA: NADPH, FAD, active-site acidic residues and ordered water 1 and water 3 are shown in red. 

FNR-Y308S: NADP+, FAD, and relevant active-site residues are shown in green. Note how the 

terminal groups of the side chains of Cys266 (left) and Ser90 (right) of FNR-Y308S closely match 

the position of water 1 and 3, respectively, of FprA.

Figure 6. Superposition of the active-site regions of AdR-like and ONFR-like FNRs. Stereo 

view of the groups involved in hydride-transfer between NAD(P)H and FAD in FprA (PDB 

accession no. 1LQU, chain A) and BphA4 (PDB accession no. 1D7Y). FprA: NADPH, FAD, 

Glu214, Glu211, Asp161, His57, water 1 and water 3 are shown in red. BphA4: FAD, Glu159, 

Ser321, Ser52 and Lys53 are shown in blue. Note how the terminal groups of the side chains of 

Glu159 and Lys53 of BphA4 closely match the position of water 1 and 3, respectively, of FprA.

Figure 7. Comparison between the overall fold of photosynthetic and apicomplexan FNRs.

Overlaid models of spinach leaf FNR (PDB accession no. 1FND) and P. falciparum FNR (PDB 

accession no. 2OK7, chain A). Spinach FNR backbone and ligands (FAD and 2’P-AMP) are shown 

as a green ribbon and dark green wireframes, respectively. P. falciparum FNR backbone and 

ligands (FAD and 2’P-AMP) are shown as an orange ribbon and red wireframes, respectively. Two 

alternative conformations of the 5’-phosphate group of the 2’P-AMP bound to spinach FNR are 

shown. Note that the adenylate moiety of the bound FAD adopts different conformations in the two 

FNRs, with the adenosine group rotated by ca. 180 degrees. The conformation of FAD in P. 

falciparum FNR is very similar to that observed in root-type FNRs.
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Table 1. Conserved sequence motifs in AdR-like FNRs.

Motif Consensus sequence

(Prosite syntax)1

Sequence 

range in 

FprA

Domain Function

1 [VI]-[VI]-G-X-G-P 8-13 FAD FAD-pyrophosphate 

binding

2 G-L-X-R-X-G-X-A-P-D-H-X(3)-[KR] 47-61 FAD FAD-isoalloxazine 

binding

3 G-X-G-N-V-X(2)-D-X(2)-R 154-164 NADP NADP-pyrophosphate 

binding

4 G-W-X(3)-G-X(2)-G 358-366 FAD FAD-ribityl binding

1 http://www.expasy.ch/prosite [83].

http://www.expasy.ch/prosite
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Table 2. Complete configuration of the interacting NADP(H) and FAD in plant-type and GR-

type FNRs 1

Nicotinamide FlavinFNR 

subgroup

NMN-flavin 

orientation Stereospecificity Conformation Stereospecificity Conformation

Plant-type exo A anti re anti

GR-type endo B anti re syn

1 The configuration of the nicotinamide/isoalloxazine couple is described according to the 

conventions adopted by Sem and Kasper [40]. The conformations of the nicotinamide and flavin 

moieties are both relative to the NMN ribose ring.
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Abstract

Although all ferredoxin-NADP+ reductases (FNRs) catalyze the same reaction. i. e. the transfer of 

reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of 

proteins: the plant type and the glutathione reductase type of FNRs. Aim of this review is to provide 

a general classification scheme for these enzymes, to be used as a framework for the comparison of 

their properties. Furthermore, we report on some recent findings, which significantly increased the 

understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin 

reductase and its homologs to catalyze the oxidation of NADP+ to its 4-oxo derivative, and the 

properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria 

and Apicomplexan parasites provide examples of novel ways of FAD and NADP(H) binding. The 

recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field 

of drug design.

Keywords: Flavoprotein, FAD, NADP, photosynthesis, induced fit, electron transfer, Apicomplexa, 

Plasmodium falciparum, malaria
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Abbreviations

AdR, adrenodoxin reductase; Adx, adrenodoxin; FNR, ferredoxin:NADP+ oxidoreductase; Fd, 

ferredoxin; GR, glutathione reductase; NADPO, 4-oxo-NADP; NMN; nicotinamide 

mononucleotide; 2’-P-AMP, 2’-phospho-AMP.
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Introduction

Ferredoxin:NADP+ oxidoreductases (FNRs, EC 1.18.1.2) are FAD-containing flavoenzymes that 

catalyze the transfer of reducing equivalents between ferredoxins (Fds) and the NADP+/NADPH 

couple according to the following equation [1]:

2Fdred + NADP+ = 2Fdox + NADPH Eq. 1

In several different organisms and tissues, FNRs participate in electron transfer chains involved in 

metabolic processes as diverse as photosynthesis, nitrogen fixation, isoprenoid biosynthesis, steroid 

metabolism, xenobiotic detoxification, oxidative-stress response, and iron-sulfur cluster biogenesis

[1-5]. Eq. 1 represents the electron flow trough FNR as it occurs in the photosynthetic electron 

chain. However, the physiological direction of the reaction catalyzed by FNRs involved in the other 

pathways is opposite, i. e. toward the production of reduced Fd. On this basis, FNRs are sometimes 

classified as autotrophic (photosynthetic FNRs) and heterotrophic (all other FNRs) [6]. FNRs can 

be grouped into two phylogenetic/structural families that we here refer to as plant-type and 

glutathione reductase (GR)-type FNRs (Fig. 1). It should be noted that the term FNR is 

inconsistently used by different authors to denote either exclusively the plant-type FNRs or both 

enzyme families, thus bringing much confusion. A huge number of papers have been published on 

FNRs since the discovery of photosynthetic FNR and mitochondrial adrenodoxin reductase (AdR)

in the sixties. Excellent reviews on plant-type FNRs appeared in recent years, and the reader is 

referred to them for an introduction to the field [1, 4, 5, 7]. To the best of our knowledge, no 

reviews on the GR-type FNRs have been published so far. The only article about the general 

properties of AdR appeared more than 15 years ago [8]. The scope of the present review is to cover

aspects not adequately considered in previous work, with a special focus on two topics. First, we 

will provide a comparison between plant-type and GR-type FNRs. Second, we will summarize the 

most recent findings on these two highly important enzyme families.



5

Structural and phylogenetic classification of FNRs

As anticipated in the Introduction, enzymes that catalyze the reaction described in Eq. 1, and thus 

referred to as FNRs, belong to two phylogenetically and structurally unrelated protein families. The 

sequences of several hundred proteins annotated as FNR have been deposited in the SwissProt and 

GenBank NCBI databases. More than 50 entries dealing with the crystal structures of FNRs are also 

currently available in the Protein Data Bank. By comparison of their three-dimensional structures

and sequences the two FNR families have been further subdivided as outlined in Fig. 1. Thus plant-

type FNRs comprise the plastidic and bacterial enzymes, whereas the AdR-like flavoproteins and, 

for the reasons detailed below, the ONFRs belong to the GR-type FNRs. FNRs of both families

possess a two-domain organization with the active site located at the interface between the FAD-

and the NADP-binding domains (Fig. 2). Dym and Eisenberg have identified 4 general folds for 

FAD binding in 32 families of FAD-containing proteins [9]. The FAD-binding domain of the GR-

type and the plant-type FNRs adopt two of such general folds. 

The above subdivision of FNRs in two evolutionary families is in agreement with both 

CATH (http://www.cathdb.info) and SCOP (http://scop.berkeley.edu) classifications of protein 

domains [10, 11]. The FAD-binding domain of plant-type FNRs is based on an antiparallel β-barrel 

with a greek-key topology (number of strand, n = 6, and shear number, S = 10) [12]. The 

corresponding domain of AdR-like FNRs adopts a three-layer β/β/α fold, with a central parallel 

five-membered β-sheet of 32145 topology. It should be noted that, while in plant-type FNRs the 

FAD-binding domain is formed by the N-terminal portion of the polypeptide chain, in GR-type 

enzymes two discontinuous segments of the polypeptide form the FAD-binding domain (Fig. 2). 

The NADP-binding domain of both FNR families is a three-layer sandwich α/β/α, with a 

Rossmann-like topology and a parallel 5-membered β-sheet. However, these domains differ in 

several details in the two families of FNRs, particularly in the precise mode in which NADP(H) is 

bound.

http://www.cathdb.info/
http://scop.berkeley.edu/
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It is worth to mention that a family of flavoproteins exists, which, although NAD-dependent, 

are clearly structurally and functionally related to the AdR-like FNRs. This family includes the 

bacterial oxygenase-coupled NADH-ferredoxin reductases (ONFRs), of which the Pseudomonas

ferredoxin reductase component of biphenyl dioxygenase (BphA4) is the best characterized member

[13]. ONFR-like enzymes (EC 1.18.1.3), though not formally FNRs, will be shortly dealt with in 

this review, since their properties help in understanding the structure-function relationships of AdR-

like proteins. ONFRs-like enzymes mainly differ from AdR-like FNRs in having both FAD- and 

NAD-domain sharing the same organization (a three-layer β/β/α fold related to the FAD-binding 

domain of AdR) and in possessing a third C-terminal domain involved in protein homodimerization 

(Fig. 2).

Finally, it is interesting to note that both families of FNRs are part of wider protein 

superfamilies that include non-FNR members. The “FNR superfamily” consists of proteins that 

share the two-domain unit of plant-type FNR and possess a variety of additional domains [7, 14, 

15]. It comprises nitrate reductase, phthalate dioxygenase reductase, sulfite reductase and the dual 

flavin oxidoreductases such as cytochrome P450 reductase, NO synthase and methionine synthase 

reductase. Similarly, AdR-like and ONFR-like enzymes belong to the “two dinucleotide binding 

domains” flavoprotein superfamily (tDBDF) [16], which includes the Baeyer-Villiger 

monooxygenase, glutamate synthase β subunit, dehydropyridine dehydrogenase, thioredoxin 

reductase, and glutathione reductase.

Plant-type FNRs have been studied extensively, with the functional and structural 

characterization of enzymes from several eukaryotic and prokaryotic organisms. In particular, high 

resolution three-dimensional structures have been solved for the FNRs from spinach (Spinacia 

oleracea) leaf [17], corn (Zea mays) leaf and root [18, 19], pea (Pisum sativum) leaf [20], paprika 

(Capsicum annuum) leaf [21], the protozoon Plasmodium falciparum [22], the cyanobacteria

Anabaena [23, 24] and Synecochococcus (PDB accession no. 2B5O), and the bacteria Escherichia 

coli [25], Azotobacter vinelandii [26] and Rhodobacter capsulatus [27]. The 3D structure and the 
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amino acid sequences of these proteins have been compared in detail leading to the definition of the 

consensus of six sequence motifs highly conserved in plant-type FNRs [1] and to the identification

of the groups in which these enzymes can be further subdivided (Fig. 1), each characterized by

specific structural features [1, 7].

Conserved structural features in AdR-like FNRs

As mentioned before, AdR-like FNRs have been studied to a lower extent than the plant-type ones. 

For instance, three-dimensional structures have been obtained only for bovine AdR [28, 29] and 

Mycobacterium tuberculosis FprA [30]. With the aim to partially fill the gap between the 

knowledge on the two types of FNR we searched the UniProt Knowledgebase 

(http://expasy.org/sprot) with the program BLAST for proteins homologous to human AdR, 

Saccharomyces cerevisiae ARH1 and M. tuberculosis FprA (SwissProt accession nos. P22570, 

P48360 and O05783, respectively). A non-redundant set of retrieved sequences exhibiting 

similarity to the query sequences over their entire length were aligned using the program

CLUSTALW [31]. Visual inspection of the conserved residues allowed us to define the consensus 

sequence of four highly conserved peptide segments (Table 1). As shown in Fig. 3, all these 

polypeptide motifs map in the active site of the AdR-like FNRs and make contacts with both FAD 

and NADP. Three of the motifs are involved in binding FAD. This binding site thus represents the 

most conserved feature in this FNR type. Motif 1 and 3 include the turns interacting with the 

pyrophosphate groups of FAD and NADP, respectively. More than 150 entries of the UniProt 

Knowledgebase contain all the four motifs of Table 1. Thus, they are likely to represent AdR-like 

enzymes, although several of them are annotated as unknown proteins or incorrectly identified (as, 

for example, the entry A4TDE6, which, although displaying more than 69% identity with FprA, is 

annotated as a disulfide oxidoreductase). 

NADP(H) binding in different types of FNRs

http://expasy.org/sprot
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In all FNR types, in order to allow for hydride transfer between the two redox-active moieties of the 

cosubstrate and the prosthetic group, NADP(H) binds to the enzyme in an extended conformation, 

with the 2’-P-AMP half accommodated within the NADP-binding domain and the NMN portion 

inserted in a cleft at the domain interface, where the nicotinamide ring can contact the FAD 

isoalloxazine. Various crystal forms of bovine AdR and M. tuberculosis FprA in complex with 

either NADP+ or NADPH have been studied by X-ray crystallography [28, 30]. In all cases well-

defined electron density maps have been obtained for the entire molecule of the bound ligand. In 

AdR-like enzymes, NADP(H) binds in a solvent accessible position, contacting several ordered 

water molecules. Minor conformational changes in the protein molecule have been observed as the 

result of NADP(H)-binding to AdR [28]. It can be concluded that in AdR-like FNRs the NADP-

binding site is essentially preformed in the free enzyme and it is easily accessible by the ligand.

The interaction between NADP(H) and plant-type FNRs has been studied in detail from a 

structural point of view in both higher plant and Anabaena enzymes [4]. The NADP-binding site is 

much less solvent exposed in plant-type FNRs than in AdR-like enzymes. More interestingly, in the 

conformation of the free plant-type enzymes there is no room for binding the NMN moiety of the 

substrate in a catalytically competent conformation. Moreover, the X-ray analysis of the complex of 

spinach FNR with NADP yielded electron density only for the adenylate moiety of the ligand [17], 

while in Anabaena FNR, the NMN portion of NADP+ was actually observed in crystal structures of 

the enzyme-substrate complex. Nevertheless, its conformation was not compatible with hydride 

transfer, i. e. the nicotinamide ring was far away from the isoalloxazine [23, 24]. The main 

structural feature disfavoring the occupation by the NMN moiety of its binding subsite is the 

conformation of the side-chain of the C-terminal Tyr that stacks on the re-face of the isoalloxazine, 

the site where the nicotinamide is expected to be during hydride transfer (Fig. 4). The C-terminal 

aromatic residue is highly conserved in plastidic-type FNRs, and it is also maintained in most 

members of the FNR superfamily [7, 14]. The current view of NADP(H) binding by plant-type 

FNRs during the catalysis, which takes into consideration results from the characterization of 
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several side-directed mutant forms, assumes that the NMN moiety of the bound substrate adopts a 

catalytically competent conformation only for a limited part of the catalytic cycle [20, 32, 33]. In 

other words, the NADP(H)-binding to plant-type FNR has been proposed to occur through a

bipartite mechanism: the adenylate moiety has a leading role in enzyme-substrate interaction, and it 

remains firmly bound to the C-terminal domain in the NADP(H)-FNR complex, while the 

nicotinamide ring approaches the flavin ring only for a short fraction of the catalytic cycle, 

sufficient to provide the adequate hydride transfer rate [20, 32].

Catalysis of hydride transfer in FNRs

The catalytically competent conformation of NADP(H) bound to plastidic-type FNRs has been 

directly observed for the first time in the crystal structure of site-directed mutants of pea leaf FNR, 

where the C-terminal Tyr308 has been replaced with Ser or Trp (Fig. 4) [20]. This conformation, 

compatible with hydride transfer, has been confirmed by X-ray crystallographic studies on the 

corresponding mutant forms of cyanobacterial FNR [33], and by NMR studies on maize leaf FNR

[34]. The residues most directly involved in the interaction with the nicotinamide ring of the 

cosubstrate have been shown to be Ser96, Cys272 and Glu312 (spinach leaf FNR numbering), and 

all of them are highly conserved in the plant-type FNRs. Glu312 makes an H-bond with the 

nicotinamide carboxamide [20, 35], while Ser96 and Cys272 interact with the C4 atom of the 

nicotinamide from opposing sides, possibly polarizing this position in order to favor hydride 

transfer [20, 36, 37]. Ser96 also interacts with the N5 atom of the FAD isoalloxazine [17]. The 

actual role of the triad formed by these residues (Ser, Cys, Glu) has been evaluated by protein 

engineering, showing that all of them contribute, although at different extents, to the kcat of the 

plastidic-type enzymes [35-37]. 

A comparison of the active site of plant-type and AdR-like FNRs is shown in Fig. 5. 

Obviously, the environments of the bound nicotinamide ring differ substantially in the two groups 

of enzymes, as expected on the basis of their different stereospecificity [38, 39]. Indeed, whereas 
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hydride transfer involves the re-face of the flavin in all FNRs, it occurs at the A- or B-side of the 

nicotinamide ring in plant-type and GR-type FNRs, respectively [40]. A complete description of the 

stereochemistry of the interacting ring moieties in FNRs is given in Table 2. Notwithstanding large 

differences in active site organization, a common structural feature is present in all FNRs, namely,

the side-chain carboxylate of a residue of the NADP-binding domain interacts with the 

nicotinamide carboxamide (Glu 211 in FprA; Glu312 and Glu306 in spinach leaf and pea leaf FNR, 

respectively; Fig. 5) [20, 30, 35]. An unusual feature of AdR-like FNRs is the lack of protein groups 

making direct contacts with the N5 and C4 positions of the isoalloxazine and nicotinamide rings,

respectively [28-30]. In the crystal structure of the FprA-NADPH complex two ordered water 

molecules (water 1 and water 3 in Fig. 5) have been observed [30]. These water molecules lay at a 

position close to that occupied by the terminal groups of the side-chains of the active site Cys and 

Ser in plant-type FNRs. Thus, they are believed to have a role in favoring hydride transfer. Water 1 

is likely highly reactive and it may initiate nicotinamide oxidation yielding 4-oxo-NADP (NADPO) 

when NADP+ is incubated with M. tuberculosis FprA or bovine AdR [30, 41]. The ability of 

oxidize NADP+ to NADPO seems a unique feature of AdR-like enzymes, which is absent in other 

types of FNR [41].

The highly divergent group of ONFR-like enzymes within the GR-type FNRs presents an 

active site highly dissimilar from that of AdR-like FNRs (Fig. 6) [13, 42-44]. Again, the only 

common feature is a carboxylate interacting with the nicotinamide ring (Glu159 in Pseudomonas

BphA4), also in this case provided by the NAD-binding domain [13]. The side-chains of two 

residues, Glu159 and Lys53, conserved in ONFR-like enzymes and, more generally, in GR-related 

flavoproteins, interact with the nicotinamide C4 and the flavin N5 atoms, and they have been 

proposed to have a role in catalysis [13, 42]. However, site-directed mutagenesis studies on the 

corresponding residues (Glu313 and Lys176) of mouse AIF indicated their critical role in FAD 

binding and protein stability [44]. Lys176 replacement with Ala had a negligible effect on catalysis, 

while the Glu313Ala mutation mainly affected the Km for NADPH [44].
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Site-directed mutagenesis experiments targeting residues of GR-type FNRs putatively 

involved in hydride-transfer have also been performed on M. tuberculosis FprA. His57, whose side-

chain interacts with both active-site water 1 and water 3, has been shown to markedly affect the 

ferredoxin-dependent reaction of the enzyme and to modulate the hydride transfer rate by 

controlling the precise positioning of the nicotinamide ring in the active site [45].

NADP/NAD selectivity

AdR-like FNRs discriminates against NADH essentially by means of a significantly higher values 

of Km for this substrate in comparison to that for NADPH [46, 47]. On the other hand, plastidic-type 

FNRs display both lower values of Km and higher values of kcat for NADP(H) as compared to 

NAD(H) [18, 32, 48, 49]. As a result, plant-type FNRs are usually far more specific than AdR-like 

enzymes in cosubstrate preference. In principle, a much lower value of kcat displayed by a NADPH-

dependent enzyme when NADH is used as the electron donor can imply either an incorrect 

positioning of NADH in the active site or, alternatively, substrate binding through an induced fit 

mechanism that makes the enzyme active-site adopting its optimal conformation only when the 2’-

phosphorylated cosubstrate is bound.

A major determinant of substrate specificity in all FNRs are the residues, some of which 

carrying a net positive charge, that directly interact with the 2’-phosphate of NADP(H). In AdR-like 

enzymes the negative charge of the 2’-phosphate is compensated by the side chain of Arg199 and 

Arg200 (FprA numbering) [28, 30]. Similarly, in plant-type FNRs, in addition to the hydroxyl 

groups of Ser234 and Tyr246, two positively-charged groups, provided by Arg235 and Lys244

(spinach leaf FNR numbering), make contacts with the 2’-phosphate [17, 23]. The role of these 

residues in substrate binding and catalysis has been studied in spinach and Anabaena FNRs by 

protein engineering [49-51]. Quite surprisingly, a second, very critical specificity determinant in 

plastidic-type FNR has been identified in the side chain of the C-terminal Tyr. Indeed, the 

Tyr308Ser mutation in pea FNR caused a drop in NADPH/NADH selectivity (measured as the ratio 
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of the kcat/Km for NADPH over that for NADH) from 36,000 to 77 [32]. Even more interestingly, 

the FNR-Y308S variant displayed a kcat with NADH equal to that of the wild-type enzyme with 

NADPH [32]. This finding suggests that the side-chain of the C-terminal Tyr could have a role in 

the inducted-fit mechanism that prevents the enzyme from accepting the hydride ion from bound 

NADH with high efficiency. 

Gomez-Moreno, Medina and coworkers have performed an exaustive analysis of the factors 

that govern the cosubstrate specificity in plant-type FNRs, and identified two additional peptide 

regions involved in the conformational changes that control NADP(H) binding, i. e. the loops of the 

NADP-binding domains involved in the interaction with the pyrophosphate moiety of the substrate

[49, 52]. According to these authors, the NMN-binding subsite of plastidic-type FNRs has to 

undergo a general rearrangement and reshaping in order to nest the second half of the substrate, 

once its adenylate moiety is bound [52]. This reorganization should somehow be favored by the 

presence of the 2’-phosphate of NADP(H), although the underlying mechanism is still unknown. 

Specific features of Plasmodium falciparum FNR

The phylum Apicomplexa comprises several species of protist parasites [53] that cause major 

human pathologies, including toxoplasmosis [54] and malaria [55]. These protozoa are 

characterized by specific organelles essential for parasite survival and virulence [53], including the 

apicoplast [56, 57], Most probably, the apicoplast represents the remnant of a secondary 

endosymbiotic event, in which the Apicomplexa ancestor engulfed an algal cell [56]. Consistently 

with its vegetal origin, the apicoplast possesses a typical plastidic metabolism [58], including

isoprenoid and fatty acids biosyntheses, by using the methylerythritol 4-phosphate pathway [59], 

and type-II fatty acid synthase complex (FAS-II) [60], respectively. In the apicomplexan genomes

several genes encoding homologs of plant proteins, harboring transit peptides for apicoplast 

targeting [61], have been identified, including Fd and FNR [2, 62].
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T. gondii e P. falciparum FNRs have been cloned and characterized in detail [3, 22, 63-66]. 

Apicomplexan FNRs display highest sequence similarity to the root-type FNRs [62]. Whereas the 

kinetic properties of the T. gondii enzyme are very similar to those of other plastidic-type FNRs

[65], the P. falciparum FNR displayed a significantly lower catalytic efficiency [22], as observed in

bacterial-type FNRs [1]. The crystal structure of the enzyme has been solved in both the free and 

the 2’P-AMP bound forms [22]. The overall conformation of the polypeptide chain of the P. 

falciparum FNR is superposable to that of other plastidic-type FNRs (Fig. 7), although significant 

differences in important details were detected. The structural basis for the relatively low affinity of 

the plasmodial enzyme for NADP(H) is probably the lack of positively-charged groups stabilizing 

the 2’-phosphate of the bound substrate [22]. Another unexpected structural feature of the P. 

falciparum enzyme is a large conformational change that the site interacting with the 2’-P-AMP

portion of NADP(H) undergoes when it is occupied [22]. Furthermore, a peculiar characteristic of 

the P. falciparum enzyme, unprecedented in other FNRs, is its susceptibility to undergo a NADP-

dependent disulfide-linked dimerization process, resulting in enzyme inactivation [22]. The inactive 

homodimer produced in the presence of oxidizing agents, such as O2, H2O2 or diamide, can be 

reconverted to the functional monomer by reducing agents such as DTT. The single disulfide bridge 

stabilizing the homodimer involves Cys99 from both enzyme protomers [22]. The reason for the 

low activity of the dimeric form of the enzyme (ca. 5% of that of the monomeric form) is most 

probably related to its quaternary structure, in which both electron transfer from reduced FAD, and 

NADP+ release are hampered. Cys99 is highly, although not completely, conserved in plasmodial 

FNRs, and a Cys residue is present in the same sequence region also in the T. gondii homolog. The 

presence of the covalent dimer of apicoplast FNR in vivo has not been demonstrated yet. 

Nevertheless it could be suggested that inactivation by dimerization may represent part of a 

physiological process of FNR regulation in Plasmodium. 

A possible anabolic role for the apicoplast FNR/Fd system has been demonstrated in vitro, 

through the reconstruction of a functional system comprising FNR, Fd, and LytB of P. falciparum
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[3]. The latter enzyme catalyzes the last step of the mevalonate-independent 1-deoxy-D-xylulose-5-

phosphate (DOXP) biosynthetic pathway of isoprenoid precursors. P. falciparum FNR/Fd system 

was found to be able to transfer to LytB the reducing equivalents needed to support its reductase 

activity [3]. Since isoprenoid biosynthesis is an essential pathway in P. falciparum and a known site 

of action of antimalarial drugs such as fosmidomycin [59], FNR represents a novel attractive target 

for the development of new antiplasmodial drugs [67]. 

Specific features of bacterial-type FNRs

Bacterial-type FNRs represent the most divergent group of plant-type FNRs [1]. Biochemically 

well-characterized members of this group of enzymes are from Azotobacter vinelandii, Escherichia 

coli and Rhodobacter capsulatus. Bacterial-type FNRs differ from plastidic-type FNRs by having 

additional physiological functions related to nitrogen fixation (in Azotobacter and Rhodobacter) and 

to the detoxification of reactive oxygen species, by using both Fd and flavodoxin as electron 

acceptors, and by displaying kcat values two orders of magnitude lower than that of the plastidic-

type counterparts [1]. Flavodoxin substitutes for Fd under conditions in which the [Fe-S] cluster of 

Fd cannot be assembled (e.g. under limiting iron availability) [5]. The use of flavodoxin as a redox 

partner is not restricted to bacterial-type FNRs, as it is an alternative substrate also for the plastidic-

type FNRs of cyanobacteria and some algae [1]. One of the most peculiar structural features of the 

bacterial FNRs is the lack of the large FAD-binding domain loop that in plastidic-type enzymes 

interacts with the adenylate moiety of the prosthetic group (Fig. 2). As a result, in the former FNRs 

the FAD adopts a bent conformation with the adenine folded back and interacting with the

isoalloxazine [1, 25-27]. Another striking difference between bacterial- and plastidic-type FNRs is 

that the stacking interaction between the re-face of the flavin and the aromatic side-chain of the C-

terminal residue is lacking in both A. vinelandii [26] e R. capsulatus [27] enzymes . 

Ferredoxin binding and electron-transfer
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Electron transfer between FNR and Fd requires the transient formation of a protein-protein complex 

that puts their respective FAD and [Fe-S] prosthetic groups at a proper distance. The involvement of 

specific portions of the two proteins in the recognition process has been investigated using several 

different techniques, including chemical modification [68, 69], cross-linking [70], microcalorimetry

[71, 72], protein engineering [5, 73-75], X-ray crystallography [19, 76-78], NMR [34, 79], and 

molecular interaction simulations [79]. A very large numbers of site-directed mutants of both 

Anabaena FNR and Fd have been characterized by transient absorption spectroscopy, leading to a 

quite complete picture of the respective interacting molecular surfaces and of the role of specific 

side chains in electron transfer [73]. Basically, the complex interface is formed by a hydrophobic 

core surrounded by charged residues, where basic side chains are mostly provided by the reductase 

and acidic ones by Fd. The dipole moment of the two protein molecules has probably a significant 

role in increasing the association rate and in favoring their mutual orientation [69]. The electron-

transfer process is highly affected (up to four orders of magnitude) by non-conservative substitution 

at specific sites of the Fd surface: Phe65, Glu94, Ser47 (Anabaena numbering) [73]. The Fd-

binding site of FNR was found to be much less sensitive to mutations, with the replacement of the 

most critical residues (Leu76, Lys75, Glu301, Anabaena numbering) leading to a decrease in the 

rate of electron transfer of up to 150 fold [73].

The crystal structure of four different Fd-FNR complexes has been solved by X-ray 

crystallography. Three of them involve plastidic-type proteins [19, 76, 78] and one AdR and 

adrenodoxin (Adx) [80]. In all cases, the iron-sulfur protein binds to a concave surface formed by 

both reductase domains. The resulting complexes have a compact, roughly spherical shape. The 

distance between the FAD and the [Fe-S] cluster is significantly shorter in the plastidic-type 

complexes (6-8 vs ca. 10 Å). The isoalloxazine ring of FAD is differently oriented with respect to 

the [Fe-S] cluster in the two types of complex. The pyridine ring of the flavin points towards the 

[Fe-S] cluster in the AdR-Adx complex, whereas the dimethylbenzene ring of the isoalloxazine 

faces the cluster of Fd in the plant-type complexes.
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Adx binding to AdR induces a domain reorientation by several degrees in the latter protein 

molecule [80]. Small induced-fit conformational changes have been proposed to occur also in the 

formation of plant-type complexes [76, 78]. These backbone and side-chain movements have been 

proposed to favor the electron- and hydride-transfer steps of the catalytic cycle of plastidic-type 

FNRs [76, 78, 81]. It should be mentioned that Karplus [7] has proposed that, under physiological

conditions, the photosynthetic FNR would always bind either NADP+ or NADPH, while Fd would 

interact with the reductase in a collisional fashion, i.e. the protein-protein complex would be

essentially unpopulated during the catalytic cycle. According to this view, any effect of Fd binding 

to the interaction between FNR and NADP(H) or to hydride transfer would be physiologically 

irrelevant.

Comparison of the crystal structure of the available plastidic-type FNR-Fd complexes has 

led to the unexpected observation that, although the structure of the corresponding proteins is highly 

conserved, the geometry of their interaction is not [76]. Indeed, whereas the interacting surfaces are 

the same in the three complexes, the proteins are differently oriented. In this respect it is interesting 

to mention the comprehensive survey of the intermolecular interacting surfaces in redox protein 

complexes carried out by Crowley and Carrondo [82]. Among the FNR-Fd complexes, the AdR-

Adx couple is the one displaying the largest interface area with the highest number of H-bond and 

ionic interactions. The interfaces in plant-type FNR-Fd complexes are particularly poorly packed 

and display a low geometric fitting, in comparison to the non-redox protein complexes. In addition,

while Coulombic attraction is predicted to be the major driving force determining the fast 

association rates of such complexes, it is not optimized in terms of precisely oriented intermolecular 

charge interactions. These structural properties are probably required to guarantee also a fast 

dissociation process and are known to be a general feature of the redox-protein complexes [82]. It 

seems reasonable to conclude that the heterogeneity in the mode of protein-protein interaction 

observed in the various plant-type FNR-Fd complexes probably reflects the absence of strict 
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geometric constrains in the interaction between the partners rather than actual species-specific 

differences. 

Conclusions

FNR enzymology is representing for about half of a century a fertile and exciting area of research 

that had provided many clues on fundamental biochemical processes such as substrate recognition, 

protein-protein interaction, enzyme specificity and catalysis. Despite several important 

accomplishments, studies on FNRs are far from being concluded since a complete picture of their

catalytic cycle is still lacking. FNRs endowed with novel properties from both bacteria and protozoa 

are being characterized and are expected to shed new light on the structure-function relationships of 

this important class of enzymes. 

Acknowledgements

This work has been supported in part by a grant from the Ministry of University and Research of 

Italy and from Fondazione Cariplo, Milano, Italy.



18

References

[1] E.A. Ceccarelli, A.K. Arakaki, N. Cortez, N. Carrillo, Biochim. Biophys. Acta 1698 (2004) 

155-165.

[2] F. Seeber, A. Aliverti, G. Zanetti, Curr. Pharm. Des. 11 (2005) 3159-3172.

[3] R.C. Rohrich, N. Englert, K. Troschke, A. Reichenberg, M. Hintz, F. Seeber, E. Balconi, A. 

Aliverti, G. Zanetti, U. Kohler, M. Pfeiffer, E. Beck, H. Jomaa, J. Wiesner, FEBS Lett. 579 (2005) 

6433-6438.

[4] N. Carrillo, E.A. Ceccarelli, Eur. J. Biochem. 270 (2003) 1900-1915.

[5] M. Medina, C. Gomez-Moreno, Photosynth. Res. 79 (2004) 113-131.

[6] A.K. Arakaki, E.A. Ceccarelli, N. Carrillo, Faseb J. 11 (1997) 133-140.

[7] P.A. Karplus, H.R. Faber, Photosynth. Res. 81 (2004) 303-315.

[8] Y. Nonaka, R. Miura, T. Yamano, in: F. Müller (Ed.), Chemistry and Biochemistry of 

Flavoenzymes, CRC Press, Boca Raton, 1991, pp. 329-341.

[9] O. Dym, D. Eisenberg, Protein Sci. 10 (2001) 1712-1728.

[10] F. Pearl, A. Todd, I. Sillitoe, M. Dibley, O. Redfern, T. Lewis, C. Bennett, R. Marsden, A. 

Grant, D. Lee, A. Akpor, M. Maibaum, A. Harrison, T. Dallman, G. Reeves, I. Diboun, S. Addou, 

S. Lise, C. Johnston, A. Sillero, J. Thornton, C. Orengo, Nucleic Acids Res 33 (2005) D247-251.

[11] A. Andreeva, D. Howorth, J.M. Chandonia, S.E. Brenner, T.J. Hubbard, C. Chothia, A.G. 

Murzin, Nucleic Acids Res. (2007).

[12] R.M. Castillo, K. Mizuguchi, V. Dhanaraj, A. Albert, T.L. Blundell, A.G. Murzin, Structure 

7 (1999) 227-236.



19

[13] T. Senda, T. Yamada, N. Sakurai, M. Kubota, T. Nishizaki, E. Masai, M. Fukuda, Y. 

Mitsuidagger, J. Mol. Biol. 304 (2000) 397-410.

[14] P.A. Karplus, M.J. Daniels, J.R. Herriott, Science 251 (1991) 60-66.

[15] P.A. Karplus, C.M. Bruns, J. Bioenerg. Biomembr. 26 (1994) 89-99.

[16] S. Ojha, E.C. Meng, P.C. Babbitt, PLoS Comput. Biol. 3 (2007) e121.

[17] C.M. Bruns, P.A. Karplus, J. Mol. Biol. 247 (1995) 125-145.

[18] A. Aliverti, R. Faber, C.M. Finnerty, C. Ferioli, V. Pandini, A. Negri, P.A. Karplus, G. 

Zanetti, Biochemistry 40 (2001) 14501-14508.

[19] G. Kurisu, M. Kusunoki, E. Katoh, T. Yamazaki, K. Teshima, Y. Onda, Y. Kimata-Ariga, T. 

Hase, Nat. Struct. Biol. 8 (2001) 117-121.

[20] Z. Deng, A. Aliverti, G. Zanetti, A.K. Arakaki, J. Ottado, E.G. Orellano, N.B. Calcaterra, 

E.A. Ceccarelli, N. Carrillo, P.A. Karplus, Nat. Struct. Biol. 6 (1999) 847-853.

[21] A. Dorowski, A. Hofmann, C. Steegborn, M. Boicu, R. Huber, J. Biol. Chem. 276 (2001) 

9253-9263.

[22] M. Milani, E. Balconi, A. Aliverti, E. Mastrangelo, F. Seeber, M. Bolognesi, G. Zanetti, J.

Mol. Biol. 367 (2007) 501-513.

[23] J.A. Hermoso, T. Mayoral, M. Faro, C. Gomez-Moreno, J. Sanz-Aparicio, M. Medina, J.

Mol. Biol. 319 (2002) 1133-1142.

[24] L. Serre, F.M. Vellieux, M. Medina, C. Gomez-Moreno, J.C. Fontecilla-Camps, M. Frey, J.

Mol. Biol. 263 (1996) 20-39.

[25] M. Ingelman, V. Bianchi, H. Eklund, J. Mol. Biol. 268 (1997) 147-157.

[26] G. Sridhar Prasad, N. Kresge, A.B. Muhlberg, A. Shaw, Y.S. Jung, B.K. Burgess, C.D. 

Stout, Protein Sci. 7 (1998) 2541-2549.

[27] I. Nogues, I. Perez-Dorado, S. Frago, C. Bittel, S.G. Mayhew, C. Gomez-Moreno, J.A. 

Hermoso, M. Medina, N. Cortez, N. Carrillo, Biochemistry 44 (2005) 11730-11740.

[28] G.A. Ziegler, G.E. Schulz, Biochemistry 39 (2000) 10986-10995.



20

[29] G.A. Ziegler, C. Vonrhein, I. Hanukoglu, G.E. Schulz, J. Mol. Biol. 289 (1999) 981-990.

[30] R.T. Bossi, A. Aliverti, D. Raimondi, F. Fischer, G. Zanetti, D. Ferrari, N. Tahallah, C.S. 

Maier, A.J. Heck, M. Rizzi, A. Mattevi, Biochemistry 41 (2002) 8807-8818.

[31] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. 

Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, 

Bioinformatics 23 (2007) 2947-2948.

[32] L. Piubelli, A. Aliverti, A.K. Arakaki, N. Carrillo, E.A. Ceccarelli, P.A. Karplus, G. Zanetti, 

J. Biol. Chem. 275 (2000) 10472-10476.

[33] J. Tejero, I. Perez-Dorado, C. Maya, M. Martinez-Julvez, J. Sanz-Aparicio, C. Gomez-

Moreno, J.A. Hermoso, M. Medina, Biochemistry 44 (2005) 13477-13490.

[34] M. Maeda, Y.H. Lee, T. Ikegami, K. Tamura, M. Hoshino, T. Yamazaki, M. Nakayama, T. 

Hase, Y. Goto, Biochemistry 44 (2005) 10644-10653.

[35] A. Aliverti, Z. Deng, D. Ravasi, L. Piubelli, P.A. Karplus, G. Zanetti, J. Biol. Chem. 273 

(1998) 34008-34015.

[36] A. Aliverti, C.M. Bruns, V.E. Pandini, P.A. Karplus, M.A. Vanoni, B. Curti, G. Zanetti, 

Biochemistry 34 (1995) 8371-8379.

[37] A. Aliverti, L. Piubelli, G. Zanetti, T. Lubberstedt, R.G. Herrmann, B. Curti, Biochemistry 

32 (1993) 6374-6380.

[38] G. Krakow, R.N. Ammeraal, B. Vennesland, J. Biol. Chem. 240 (1965) 1820-1823.

[39] D.R. Light, C. Walsh, J. Biol. Chem. 255 (1980) 4264-4277.

[40] D.S. Sem, C.B. Kasper, Biochemistry 31 (1992) 3391-3398.

[41] M. de Rosa, A. Pennati, V. Pandini, E. Monzani, G. Zanetti, A. Aliverti, Febs J. 274 (2007) 

3998-4007.

[42] M. Senda, S. Kishigami, S. Kimura, M. Fukuda, T. Ishida, T. Senda, J. Mol. Biol. (2007).

[43] I.F. Sevrioukova, H. Li, T.L. Poulos, J. Mol. Biol. 336 (2004) 889-902.



21

[44] M.J. Mate, M. Ortiz-Lombardia, B. Boitel, A. Haouz, D. Tello, S.A. Susin, J. Penninger, G. 

Kroemer, P.M. Alzari, Nat. Struct. Biol. 9 (2002) 442-446.

[45] A. Pennati, A. Razeto, M. de Rosa, V. Pandini, M.A. Vanoni, A. Mattevi, A. Coda, A. 

Aliverti, G. Zanetti, Biochemistry 45 (2006) 8712-8720.

[46] F. Fischer, D. Raimondi, A. Aliverti, G. Zanetti, Eur. J. Biochem. 269 (2002) 3005-3013.

[47] J.W. Chu, T. Kimura, J. Biol. Chem. 248 (1973) 2089-2094.

[48] A. Aliverti, V. Pandini, G. Zanetti, Biochim. Biophys. Acta 1696 (2004) 93-101.

[49] M. Medina, A. Luquita, J. Tejero, J. Hermoso, T. Mayoral, J. Sanz-Aparicio, K. Grever, C. 

Gomez-Moreno, J. Biol. Chem. 276 (2001) 11902-11912.

[50] M. Martinez-Julvez, J. Hermoso, J.K. Hurley, T. Mayoral, J. Sanz-Aparicio, G. Tollin, C. 

Gomez-Moreno, M. Medina, Biochemistry 37 (1998) 17680-17691.

[51] A. Aliverti, T. Lubberstedt, G. Zanetti, R.G. Herrmann, B. Curti, J. Biol. Chem. 266 (1991) 

17760-17763.

[52] J. Tejero, M. Martinez-Julvez, T. Mayoral, A. Luquita, J. Sanz-Aparicio, J.A. Hermoso, J.K. 

Hurley, G. Tollin, C. Gomez-Moreno, M. Medina, J. Biol. Chem. 278 (2003) 49203-49214.

[53] N.D. Levine, The Protozoan Phylum Apicomplexa, CRC Press, Boca Raton, 1988.

[54] J.G. Montoya, O. Liesenfeld, Lancet 363 (2004) 1965-1976.

[55] K. Maitland, P. Bejon, C.R. Newton, Curr. Opin. Infect. Dis. 16 (2003) 389-395.

[56] B.J. Foth, G.I. McFadden, Int. Rev. Cytol. 224 (2003) 57-110.

[57] M.E. Fichera, D.S. Roos, Nature 390 (1997) 407-409.

[58] S.A. Ralph, G.G. van Dooren, R.F. Waller, M.J. Crawford, M.J. Fraunholz, B.J. Foth, C.J. 

Tonkin, D.S. Roos, G.I. McFadden, Nat. Rev. Microbiol. 2 (2004) 203-216.

[59] H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. 

Turbachova, M. Eberl, J. Zeidler, H.K. Lichtenthaler, D. Soldati, E. Beck, Science 285 (1999) 

1573-1576.



22

[60] R. McLeod, S.P. Muench, J.B. Rafferty, D.E. Kyle, E.J. Mui, M.J. Kirisits, D.G. Mack, 

C.W. Roberts, B.U. Samuel, R.E. Lyons, M. Dorris, W.K. Milhous, D.W. Rice, Int. J. Parasitol. 31 

(2001) 109-113.

[61] R.F. Waller, P.J. Keeling, R.G. Donald, B. Striepen, E. Handman, N. Lang-Unnasch, A.F. 

Cowman, G.S. Besra, D.S. Roos, G.I. McFadden, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 12352-

12357.

[62] M. Vollmer, N. Thomsen, S. Wiek, F. Seeber, J. Biol. Chem. 276 (2001) 5483-5490.

[63] V. Pandini, G. Caprini, G. Tedeschi, F. Seeber, G. Zanetti, A. Aliverti, Biochemistry 45 

(2006) 3563-3571.

[64] N. Thomsen-Zieger, V. Pandini, G. Caprini, A. Aliverti, J. Cramer, P.M. Selzer, G. Zanetti, 

F. Seeber, FEBS Lett. 576 (2004) 375-380.

[65] V. Pandini, G. Caprini, N. Thomsen, A. Aliverti, F. Seeber, G. Zanetti, J. Biol. Chem. 277 

(2002) 48463-48471.

[66] Y. Kimata-Ariga, G. Kurisu, M. Kusunoki, S. Aoki, D. Sato, T. Kobayashi, K. Kita, T. 

Horii, T. Hase, J. Biochem. (Tokyo) 141 (2007) 421-428.

[67] F. Seeber, Curr. Drug. Targets Immune Endocr. Metabol. Disord. 3 (2003) 99-109.

[68] I. Jelesarov, A.R. De Pascalis, W.H. Koppenol, M. Hirasawa, D.B. Knaff, H.R. Bosshard, 

Eur. J. Biochem. 216 (1993) 57-66.

[69] A.R. De Pascalis, I. Jelesarov, F. Ackermann, W.H. Koppenol, M. Hirasawa, D.B. Knaff, 

H.R. Bosshard, Protein Sci. 2 (1993) 1126-1135.

[70] G. Zanetti, D. Morelli, S. Ronchi, A. Negri, A. Aliverti, B. Curti, Biochemistry 27 (1988) 

3753-3759.

[71] L. Piubelli, G. Zanetti, H.R. Bosshard, Biol. Chem. 378 (1997) 715-718.

[72] I. Jelesarov, H.R. Bosshard, Biochemistry 33 (1994) 13321-13328.

[73] J.K. Hurley, R. Morales, M. Martinez-Julvez, T.B. Brodie, M. Medina, C. Gomez-Moreno, 

G. Tollin, Biochim. Biophys. Acta 1554 (2002) 5-21.



23

[74] T. Mayoral, M. Martinez-Julvez, I. Perez-Dorado, J. Sanz-Aparicio, C. Gomez-Moreno, M. 

Medina, J.A. Hermoso, Proteins 59 (2005) 592-602.

[75] M.E. Brandt, L.E. Vickery, J. Biol. Chem. 268 (1993) 17126-17130.

[76] G.T. Hanke, G. Kurisu, M. Kusunoki, T. Hase, Photosynth. Res. 81 (2004) 317-327.

[77] R.E. Blankenship, Nat. Struct. Biol. 8 (2001) 94-95.

[78] R. Morales, M.H. Charon, G. Kachalova, L. Serre, M. Medina, C. Gomez-Moreno, M. Frey, 

EMBO Rep. 1 (2000) 271-276.

[79] P.N. Palma, B. Lagoutte, L. Krippahl, J.J. Moura, F. Guerlesquin, FEBS Lett. 579 (2005) 

4585-4590.

[80] J.J. Muller, A. Lapko, G. Bourenkov, K. Ruckpaul, U. Heinemann, J. Biol. Chem. 276 

(2001) 2786-2789.

[81] R. Morales, M.H. Charon, G. Hudry-Clergeon, Y. Petillot, S. Norager, M. Medina, M. Frey, 

Biochemistry 38 (1999) 15764-15773.

[82] P.B. Crowley, M.A. Carrondo, Proteins 55 (2004) 603-612.

[83] E. de Castro, C.J. Sigrist, A. Gattiker, V. Bulliard, P.S. Langendijk-Genevaux, E. Gasteiger, 

A. Bairoch, N. Hulo, Nucleic Acids Res. 34 (2006) W362-365.



24

Figure legends

Figure 1. Structural/phylogenetic classification of ferredoxin-NAD(P)+ reductases. Outline of 

the most relevant groups of FNRs, as determined by both sequence and three-dimensional structure 

comparison. Plant-type and GR-type FNRs represent two structurally/phylogenetically-unrelated 

protein families, making them a remarkable case of convergent evolution. On the other hand, 

further subdivisions within each family reflect increasing levels of evolutionary relationship.

Figure 2. Three-dimensional structure and domain organization of plant-type, bacterial-type, 

AdR-like and ONFR-like FNRs. A, Plasmodium falciparum FNR (PDB accession no. 2OK7, 

chain A). B, Escherichia coli FNR (PDB accession no. 1FDR). C, Mycobacterium tuberculosis

FprA (PDB accession no. 1LQU, chain A). D, Pseudomonas sp. Strain KKS102 BphA4 (PDB 

accession no. 1F3P). Below each ribbon model, the contributions of the polypeptide chain to the 

different domains are reported. FAD-binding and NAD(P)-binding domains are shown in yellow 

and blue respectively. The C-terminal domain of BphA4 is shown in green. Bound FAD (A-D), 

2’P-AMP (A), NADPH (C) and NADH (D) are represented as ball-and-stick models.

Figure 3. Highly conserved peptide regions in AdR-like FNRs. Ribbon model of the three-

dimensional structure of FprA (1LQU, chain A) with FAD (right) and NADPH (left) represented as 

wireframes. The FAD-binding domain, the NADP-binding domain and the connecting β-sheet are 

colored in yellow, blue and magenta, respectively. The regions corresponding to the four sequence 

motifs highly conserved in AdR-like enzymes are highlighted in red. Motifs 1, 2 and 4 are located 

in the middle, upper and lower parts of the FAD-binding domain as depicted in the figure; motif 3 is 

located in the NADP-binding domain.

Figure 4. Induced-fit conformational change determined by NADP(H) binding to plant-type 

FNRs. Overlay of the three-dimensional structures of wild-type pea leaf FNR (PDB accession no. 

1QG0) (yellow ribbon) and NADP+-bound pea leaf FNR-Y308S (PDB accession no. 1QFY, chain 
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A). C-terminal Tyr308 and FAD belonging to wild-type FNR and NADP+ bound to the mutant

enzyme are shown as wireframes. Note how the nicotinamide ring of the bound co-substrate stacks 

on the isoalloxazine ring in the same position occupied by the Tyr308 side-chain in wild-type FNR. 

Figure 5. Superposition of the active-site regions of AdR-like and plant-type FNRs. Stereo 

view of the groups involved in hydride-transfer between NAD(P)H and FAD in FprA (PDB 

accession no. 1LQU, chain A) and leaf pea FNR-Y308S (PDB accession no. 1QFY, chain A). 

FprA: NADPH, FAD, active-site acidic residues and ordered water 1 and water 3 are shown in red. 

FNR-Y308S: NADP+, FAD, and relevant active-site residues are shown in green. Note how the 

terminal groups of the side chains of Cys266 (left) and Ser90 (right) of FNR-Y308S closely match 

the position of water 1 and 3, respectively, of FprA.

Figure 6. Superposition of the active-site regions of AdR-like and ONFR-like FNRs. Stereo 

view of the groups involved in hydride-transfer between NAD(P)H and FAD in FprA (PDB 

accession no. 1LQU, chain A) and BphA4 (PDB accession no. 1D7Y). FprA: NADPH, FAD, 

Glu214, Glu211, Asp161, His57, water 1 and water 3 are shown in red. BphA4: FAD, Glu159, 

Ser321, Ser52 and Lys53 are shown in blue. Note how the terminal groups of the side chains of 

Glu159 and Lys53 of BphA4 closely match the position of water 1 and 3, respectively, of FprA.

Figure 7. Comparison between the overall fold of photosynthetic and apicomplexan FNRs.

Overlaid models of spinach leaf FNR (PDB accession no. 1FND) and P. falciparum FNR (PDB 

accession no. 2OK7, chain A). Spinach FNR backbone and ligands (FAD and 2’P-AMP) are shown 

as a green ribbon and dark green wireframes, respectively. P. falciparum FNR backbone and 

ligands (FAD and 2’P-AMP) are shown as an orange ribbon and red wireframes, respectively. Two 

alternative conformations of the 5’-phosphate group of the 2’P-AMP bound to spinach FNR are 

shown. Note that the adenylate moiety of the bound FAD adopts different conformations in the two 

FNRs, with the adenosine group rotated by ca. 180 degrees. The conformation of FAD in P. 

falciparum FNR is very similar to that observed in root-type FNRs.
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Table 1. Conserved sequence motifs in AdR-like FNRs.

Motif Consensus sequence

(Prosite syntax)1

Sequence 

range in 

FprA

Domain Function

1 [VI]-[VI]-G-X-G-P 8-13 FAD FAD-pyrophosphate 

binding

2 G-L-X-R-X-G-X-A-P-D-H-X(3)-[KR] 47-61 FAD FAD-isoalloxazine 

binding

3 G-X-G-N-V-X(2)-D-X(2)-R 154-164 NADP NADP-pyrophosphate 

binding

4 G-W-X(3)-G-X(2)-G 358-366 FAD FAD-ribityl binding

1 http://www.expasy.ch/prosite [83].

http://www.expasy.ch/prosite
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Table 2. Complete configuration of the interacting NADP(H) and FAD in plant-type and GR-

type FNRs 1

Nicotinamide FlavinFNR 

subgroup

NMN-flavin 

orientation Stereospecificity Conformation Stereospecificity Conformation

Plant-type exo A anti re anti

GR-type endo B anti re syn

1 The configuration of the nicotinamide/isoalloxazine couple is described according to the 

conventions adopted by Sem and Kasper [40]. The conformations of the nicotinamide and flavin 

moieties are both relative to the NMN ribose ring.
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