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Widespread Disruption of Repressor Element-1 Silencing
Transcription Factor/Neuron-Restrictive Silencer Factor
Occupancy at Its Target Genes in Huntington’s Disease
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Huntingtin is a protein that is mutated in Huntington’s disease (HD), a dominant inherited neurodegenerative disorder. We previously
proposed that, in addition to the gained toxic activity of the mutant protein, selective molecular dysfunctions in HD may represent the
consequences of theloss of wild-type protein activity. We first reported that wild-type huntingtin positively affects the transcription of the
brain-derived neurotrophic factor (BDNF) gene, a cortically derived survival factor for the striatal neurons that are mainly affected in the
disease. Mutation in huntingtin decreases BDNF gene transcription. One mechanism involves the activation of repressor element
1/neuron-restrictive silencer element (RE1/NRSE) located within the BDNF promoter. We now show that increased binding of the RE1
silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) repressor occurs at multiple genomic REI/NRSElociin HD
cells, in animal models, and in postmortem brains, resulting in a decrease of RE1/NRSE-mediated gene transcription. The same molec-
ular phenotype is produced in cells and brain tissue depleted of endogenous huntingtin, thereby directly validating the loss-of-function
hypothesis of HD. Through a ChIP (chromatin immunoprecipitation)-on-chip approach, we examined occupancy of multiple REST/
NRSF target genes in the postmortem HD brain, providing the first example of the application of this technology to neurodegenerative
diseases. Finally, we show that attenuation of REST/NRSF binding restores BDNF levels, suggesting that relief of REST/NRSF mediated
repression can restore aberrant neuronal gene transcription in HD.
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Introduction

Huntingtin is a 348 kDa protein containing a polyglutamine
(polyQ) tract in its N terminus that when expanded beyond 35
glutamines causes Huntington’s disease (HD), an autosomal
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dominant neurodegenerative disorder (The Huntington’s Dis-
ease Research Collaborative Group, 1993). Although wild type
and polyQ-expanded huntingtin are ubiquitously expressed, HD
is associated with selective neuronal loss, especially in the stria-
tum and cerebral cortex (Reiner et al., 1988). The dominant in-
heritance of the mutation causes disease predominantly by a
gain-of-function mechanism, but there is considerable evidence
that loss of normal huntingtin function(s) in postmitotic neu-
rons may also contribute to HD (Cattaneo et al., 2001, 2005).

In the search for a more direct role of wild-type huntingtin in
neuronal activity, we have demonstrated that the normal but not
the mutant protein promotes cortical brain-derived neurotro-
phic factor (BDNF) gene transcription and that BDNF mRNA
and protein levels are reduced in HD (Zuccato et al., 2001),
pointing at BDNF loss as one of the potential noncell-
autonomous effectors of striatal vulnerability in HD (for review,
see Zuccato and Cattaneo, 2007).

In previous studies, we have shown that the stimulatory effect
of wild-type huntingtin on BDNF transcription is mediated
through the repressor element 1/neuron restrictive silencer ele-
ment (RE1/NRSE) at the BDNF promoter II (Zuccato et al.,
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2003). REL1 silencing transcription factor/neuron-restrictive si-
lencer factor (REST/NRSF) is a transcription factor (Chong et
al.,1995; Schoenherr and Anderson, 1995) that is recruited to
RE1/NRSE sites, repressing or silencing neuron-specific genes in
both neural (Palm et al., 1998, 1999; Wood et al., 2003) and
non-neural (Belyaev et al., 2004) cells. We reported that wild-
type huntingtin sequesters REST/NRSF in the cytoplasm, thereby
permitting activated transcription of the BDNF gene. In contrast,
in the presence of mutant huntingtin, REST/NRSF accumulates
in the nucleus and represses BDNF gene transcription, resulting
in a decrease in BDNF synthesis (Zuccato et al., 2003).

Because bioinformatic studies have shown that there are
>1300 RE1/NRSE sites in the human genome (Bruce et al., 2004;
Johnson et al., 2006), we reasoned that increased nuclear local-
ization of REST/NRSF will likely lead to repression of other genes
in addition to BDNF. We have therefore examined the direct
interaction of REST/NRSF with potential target genes in cells and
mice expressing mutant huntingtin and depleted by endogenous
huntingtin. We also evaluated the impact of REST/NRSF rescue
in HD cell models after infection with a dominant-negative form
of REST/NRSF. Finally, we examined occupancy of multiple
REST/NRSF target genes in postmortem HD brains by using a
“ChIP-on-chip” approach.

Our results indicate that an increase in RE1/NRSE genomic
binding is found in HD, resulting in repression of REST/NRSF-
regulated gene transcription. We also found that the abnormal
RE1/NRSE phenotype observed in HD is strictly dependent on
the level/activity of wild-type huntingtin, implying that a loss-of-
function mechanism is in operation in HD at the level of the
RE1/NRSEs. Finally, we show that attenuation of REST/NRSF
binding can restore REST/NRSF aberrant neuronal gene tran-
scription in HD.

Materials and Methods

Cell lines and tissues. Knock-in cells were generated by immortalization of
primary embryonic day 14 (E14) brain cells from wild-type littermate
mice (Hdh”'” cells) and from homozygous knock-in mice, having two
copies of the huntingtin allele, each bearing 109 CAG repeats (Hdh '°°/'*
cells) (Trettel et al., 2000). Cells were propagated in DMEM supple-
mented with 10% fetal calf serum at 33°C in a 5% CO, atmosphere.

Hdh"/Hdh* (ES+/+), Hdh™"*>/Hdh* (ES+/—), and Hdh™"*>/
Hdh™"*3 (ES—/—) cells are routinely propagated without feeders on
gelatin-coated plastic in Glasgow’s modified Eagle’s medium, supple-
mented with 1 mm sodium pyruvate, 100 M nonessential amino acids, 2
mM L-glutamine, 100 U/ml penicillin, 100 ug/ml streptomycin, 0.1 mm
B-mercaptoethanol, 10% FBS (EuroClone, Milano, Italy), and 1000
U/ml leukemia inhibitory factor (LIF; Millipore, Billerica, MA).

We analyzed frozen brain tissues obtained from R6/2 transgenic mice
(Mangiarini et al., 1996) mutant huntingtin knock-in mice (Wheeler et al.,
1999) and huntingtin conditional knock-out mice (Dragatsis et al., 2000).

Human postmortem brain tissues (parietal cortical tissues, Brodma-
nn’s area 7) were obtained by the Massachusetts General Hospital
(Charlestown, MA) and by the Harvard Brain Tissue Resource Center
(Belmont, MA). See supplemental Table 1 (available at www.jneuro-
sci.org as supplemental material) for the list of human brain tissues used
in this study.

RNA isolation and reverse transcription. We isolated total RNA from
cells and tissues with Trizol Reagent (Invitrogen, Carlsbad, CA).
Genomic DNA was digested with DNA-free (Applied Biosystems, Foster
City, CA) at 37°C for 15 min. Total RNA (1 ug) was reverse-transcribed
to single-stranded ¢cDNA using Superscript III RNaseH™ reverse tran-
scriptase (Invitrogen) and random primers in a volume of 20 ul, accord-
ing to the manufacturer’s instructions.

Chromatin immunoprecipitation. Cells (20 X 10°) were harvested with
trypsin treatment and washed three times with PBS (1X) and then
treated with 1% formaldehyde in PBS by rotation for 8—10 min at 4°C.
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Fixation was stopped by addition of glycine to a final concentration of
125 mm. Cells were washed two times with PBS, and pellets were sus-
pended in chromatin immunoprecipitation (ChIP) lysis buffer [10 mm
Tris-HCL, pH 8, 140 mm NaCl, 1 mm EDTA, 1% Triton X-100, 0.1%
sodium deoxycholate supplemented with 1 mm phenylmethylsulfonyl
fluoride, and protease inhibitors mixture MINI (Roche, Basel, Switzer-
land)] and passed through 25-21 ga needles.

For ChIP on mouse tissue, a whole cortex and liver were used. The
tissue was chopped into small pieces in 5 ml PBS and then treated with
1% formaldehyde with rotation for 10 min at 4°C. Fixation was stopped
by addition of glycine to a final concentration of 125 mwm. Fixed tissues
were washed three times in PBS and homogenized in 2 ml PBS in a
Dounce homogenizer and spun at 400 X g for 10 min at 4°C. Pellets were
resuspended in 250 wl cell lysis buffer plus 1% SDS (final concentration)
and passed through 25-21 ga needles. An additional 2 ml of lysis buffer
without SDS was then added to each sample before sonication.

ChIP on human parietal cortex tissue was performed using 500—700
mg frozen tissue. The tissue was frozen in liquid nitrogen, diced into
small pieces in 5 ml PBS containing 1% formaldehyde, and agitated at
4°C for 10 min. A 125 mu final concentration of glycine was used to
quench fixation, and the tissue was transferred to a Falcon tube and
centrifuged at 400 X gfor 5 min at 4°C. The pellet was washed three times
in PBS and centrifuged again at 400 X g for 5 min at 4°C and homoge-
nized in 3 ml PBS in a Dounce homogenizer. Homogenized tissue was
centrifuged at 400 X g for 5 min at 4°C and resuspended in 300 ul of cell
lysis buffer plus 1% SDS (final concentration). An additional 3 ml of lysis
buffer without SDS was then added to each sample before sonication.

Sonication of the cell and tissue extract was performed four times with
15 s pulses with the microprobe at 40-50% output and 70% duty cycle.
To minimize foaming of the solution, sonications were performed in
glass tubes. Under these conditions, DNA fragments with an average size
of 200—700 bp were obtained. Sonicated extracts were centrifuged, and
chromatin yield has been evaluated by UV spectrometry. Equal amounts
of chromatin had been precleared with blocked protein G-Sepharose and
were incubated by overnight rotation with 1 ug primary antibodies anti-
REST/NRSF N2174 (raised in rabbit to CYFLEEAEEQE) (Belyaev et al.,
2004) and preimmune serum as a negative control for the IP. As a posi-
tive control, 1 ug of anti-histone H3 and a corresponding amount of
rabbit IgG (Millipore) were used to immunoprecipitate the same chro-
matin. Anti-Spl (s.c.-59) and anti-Sp4 (s.c.-645) are from Santa Cruz
Biotechnology (Santa Cruz, CA).

Protein G-Sepharose (GE Healthcare, Little Chalfont, UK) was added
and followed by 1 h of incubation with rotation. Beads were spun at
10,000 X g for 30 s and washed sequentially with increasing concentra-
tions of salts and nonionic detergents: a first wash was done by using a
solution composed of 10 mm Tris-HCI, pH 8, 500 mm NaCl, 1 mm EDTA,
1% Triton X-100, 0.1% sodium deoxycholate and a second wash with 10
mM Tris-HCL, pH 8, 1 mm EDTA, 250 mwm LiCl, 0.5% NP40, 0.5% sodium
deoxycholate. Finally, beads were eluted with 1% SDS in 0.1 M NaHCOj;.
Bound fractions were de-cross-linked by adding 200 mm NaCl and by
incubation at 65°C for 6—8 h. De-cross-linked samples were treated with
RNase and Proteinase K, and DNA was purified by phenol-chloroform,
precipitated with 2 volumes of absolute ethanol, washed two times with
70% ethanol, and pellets were resuspended in 50 ul of HPLC water.

Before PCR amplification, DNA content of input and output DNA
were evaluated by using the PicoGreen system (Invitrogen) as recom-
mended by the manufacturer.

Quantitative real-time PCR (iCycler Thermal Cycler with Multicolor
Real-time PCR Detection System; Bio-Rad, Hercules, CA) using SYBR
Green incorporation was used to quantitatively assess REST/NRSF occu-
pancy. Three independent PCR experiments were performed for each
RE1-containing site.

PCR was performed in a total volume of 20 ul containing equal
amounts of input and immunoprecipitated DNA, 50 mm KCl, 20 mm
Tris-HCI, pH 8.4, 0.2 mm dNTPs, 25 U/ml iTaq DNA polymerase, 3 mm
MgCl,, SYBR Green I, 10 nM fluorescein, stabilizers (iQ SYBR Green
Supermix; Bio-Rad), and 0.2 um of forward and reverse primers. Input
from chromatin that had been cross-linked reversed similar to the ana-
lyzed samples represents a control for PCR effectiveness.
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Primers flanking the NRSE of the following genes were used: mBdnf S,
5'-GGATTTGTCCGAGGTGGTAG-3'; mBdnf AS, 5'-CGGAAAA-
GACGCTTTTTAAGG-3"; hBDNF S, 5-GTAAAGCCAACCCTGT-
GTCG-3'; hBDNF AS, 5'-TCCGCTCCAAAATCTGACTC-3"; mSyn1 S,
5'-GCACACTCAGAGGGGAACAT-3'; mSynl AS, 5'-CTCTTTTCTT-
TGCCCGACAG-3’;  hSYN1 S, 5'-CAACACTACAAACCGAG-
TATCTGC-3’; hSYNI AS, 5'-GCCTCATCCTGGTCCTAAAA-3';
mChrm4 S, 5'-AGGAGACTCGTGCCATCTTC-3’; mChrm4 AS, 5'-
CGAGCATCTACCCTGGCTAA-3'; hCHRM4 S, 5'-GGCCTGTAAC-
CCCAAATTC-3'; hCHRM4 AS, 5'-GGGGAGGGTCTTGAGTTGTT-
3’; mDrd3 S, 5'-GGTCCCTCCCAAATCCTCTA-3'; mDrd3 AS, 5'-
TCATAGCTGCTTTCCCAAGG-3’; mPenkl S, 5'-AATTCCCGC-
TATTTGCCAGT-3"; mPenkl AS, 5'-AGTGGAGGGACAGCTCGTTA-
3’; mChrnb2 S, 5'-AATAAGCCGGCAGACTCTTG-3'; mChrnb2 AS,
5'-CTCCAGCCACCACTTGAGAT-3'; hCHRNB2 S, 5-GTTCTC-
CTACCCCAGCCAAC-3'; hCHRNB2 AS, 5-GCAGACTCCCCCAC-
CTCTA-3"; hDRD2 S, 5'-ATGATGATCTGGAGAGGCAG-3"; hDRD2
AS, 5'-GTTGCCGAAGACGATGACAG-3'.

In parallel, anti-REST/NRSF immunoprecipitated genomic DNA was
also assessed by real-time PCR using primers corresponding to genomic
regions distal to any RE1/NRSE, including the M4 muscarinic cholin-
ergic receptor (Chrm4): mChrm4 S, 5-TCCTCACCTGGACAC-
CCTAC-3"; mChrm4 AS, 5'-ACGTAGCAGAGCCAGTAGCC-3'.
B-actin was also included (which is not regulated by REST/NRSF): m3-
actin S, 5'-AGGTATCCTGACCCTGAAG-3'; mpB-actin AS, 5'-GCT-
CATTGTAGAAGGTGTGG-3'; hp-actin S, 5'-TGCCTAGGTCAC-
CCACTAATG-3'; hB-actin AS, 5'-GTGGCCCGTGATGAAGGCTA-3'".

The following PCR amplification protocol was applied: 95°C for 3
min, followed by 45 cycles of 30 s at 95°C, 30 s at 60°C, and 30 s at 72°C.
Fluorescence was quantified during the 60°C annealing step and product
formation confirmed by melting curve analysis (55-94°C). For the am-
plification of hDRD2 Sp1 responsive site, the annealing step had been
performed at 57°C for 30 s.

Immunoprecipitated DNA for the different analyzed RE1/NRSE loci
was quantified using a standard curve (nanograms of DNA). Binding of
REST/NRSF at the RE1/NRSEs was calculated as nanograms of DNA IP
REST antibody per nanogram of DNA IP preimmune serum. Similarly,
binding of histone H3 at each of the analyzed RE1/NRSE, representing
the positive control of the ChIP assay, was calculated as nanograms of
DNA TP H3 per nanogram of DNA IP IgG.

ChIP Scanning Assay. For the scanning ChIP, we followed the ChIP
protocol described above. Cross-linked REST/NRSF-DNA complexes
were precipitated with anti REST/NRSF antibody N2174. The assay was
performed on the mouse and human BDNF locus.

For the mouse Bdnf locus (GenBank accession number AY057907),
quantitative real-time PCR was performed on the precipitated DNA frag-
ments using five pairs of oligonucleotide primers designed to produce
amplicons covering the RE1/NRSE site in the BDNF gene (see above) and
flanking sequences, located 477 and 3426 bp upstream and 383, 1123,
3353, and 17393 bp downstream of the RE1/NRSE (for details on primers
positions, see supplemental Fig. 1, available at www.jneurosci.org as sup-
plemental material).

A parallel approach was used to analyze REST/NRSF binding at the
human BDNF locus (GenBank accession number AF411339) using
primers for flanking sequences located 758 bp upstream and 431, 1222,
2279,and 19350 bp downstream to the RE1/NRSE (for details on primers
positions, see Fig. 4a).

The PCR was performed in a total volume of 20 ul containing equal
amounts of input and immunoprecipitated DNA, 50 mm KCl, 20 mm
Tris-HCI, pH 8.4, 0.2 mm dNTPs, 25 U/ml iTaq DNA polymerase, 3 mm
MgCl,, SYBR Green I, 10 nM fluorescein, stabilizers (iQ SYBR Green
Supermix; Bio-Rad), and 0.2 uMm of forward and reverse primers.

The primers used in the assay were comprised of the following: m477
S, 5'-GAATCGGGTTTACCCACTGCAAG-3'; m477 AS, 5'-GACGGT-
TGTCAGACAAGCATC-3"; m3246 S, 5'-TGGCCAGAAACTGTTGA-
CAAAGTC-3'; m3246 AS, 5'-GGGAGGATGGTCTGTATGCGAA-3';
m383 S, 5-AAAGGACGCGTAGTGGAGAGG-3'; m383 AS, 5'-
CCCAGGTTCTCACCTAGGTC-3";m1123 S, 5 -GGCCGGATGCTTC-
CTTGAGC-3'; ml123 AS, 5'-GAAAGGACCTTCCACTCCGG-3';
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m3353 S, 5'-TCAACCTGTGTAAGCCGCTGC-3'; m3353 AS, 5'-GTT-
TCCCCTAGAGGACAGGC-3'; ml17393 S, 5'-GCAAGGAAAAG-
GCGCGTCGT-3'; m17393 AS, 5'-AGCTCTTCGGTTGAGCTTCGAT-
TGG-3";h758S,5 -CACTTGAGTCTCCAGGACAGCA-3';h758 AS, 5'-
TCTTTGGCGTGTGAAGTGCTAGG-3'; h431 S, 5'-GGTAGAG-
GGAGAGCATGAGAG-3"; h431 AS, 5'-TATCCGCAGGAAGACT-
GAGTTTC-3'; h1222 S, 5'-GGAGTAGAAGGTCCTTTCCGG-3';
h1222 AS, 5'-CAGCTGATTGGTGGCTCTGTC-3"; h2279 S, 5'-GT-
CACGTCATCCTCTACACACAC-3'; h2279 AS, 5'-CATAAACAGT-
GAATATCAGGTGCACC-3'; h19350 S, 5'-GCAGCTGCCTTGATG-
GTTACTTTG-3'; h19350 AS, 5'-CCAGGCAATGACAGACCTCG-3'.

DNA from the same chromatin immunoprecipitation underwent
quantitative real-time PCR for B-actin, a gene not regulated by REST/
NRSF and not proximal to any RE1/NRSEs. Primers close to the 3-actin
promoter have been used and are as follows: mB-actin S, 5'-AGGTATC-
CTGACCCTGAAG-3"; mp-actin AS, 5-GCTCATTGTAGAAGGT-
GTGG-3"; hB-actin S, 5'-TGCCTAGGTCACCCACTAATG-3'; hg-
actin AS, 5'-GTGGCCCGTGATGAAGGCTA-3".

The primers used for the BDNF coding region are as follows: mBDNF
S, 5'-TCGTTCCTTTCGAGTTAGCC-3"; mBDNF AS, 5'-TTGGTA-
AACGGCACAAAAC-3'; hBDNF S, 5'-GTAAAGCCAACCCTGT-
GTCG-3'; hBDNF AS, 5'-TCCGCTCCAAAATCTGACTC-3".

The following PCR amplification protocol was applied: 95°C for 3
min, followed by 45 cycles of 30 s at 95°C, 30 s at 60°C, and 30 s at 72°C.
Fluorescence was quantified during the 60°C annealing step, and product
formation was confirmed by a melting curve analysis (55-94°C). Immu-
noprecipitated DNA for the different analyzed RE1/NRSE loci was quan-
tified using a standard curve (nanograms of DNA). Binding of REST/
NRSF at the RE1/NRSEs was calculated as nanograms of DNA TP REST
antibody per nanogram of DNA IP preimmune serum.

Real-time PCR for gene expression. Three total RNA preparations were
used, and two independent reverse transcription (RT) reactions were set
up for every RNA stock. Real-time PCR analyses were done in triplicate
for each of the analyzed genes to obtain replicates for statistical analyses.

iCycler Thermal Cycler with Multicolor Real-time PCR Detection Sys-
tem (Bio-Rad) was used. All reactions were performed in a total volume
of 25 ul containing 50 ng of cDNA, 50 mm KCl, 20 mm Tris-HCl, pH 8.4,
0.2 mm dNTPs, 25 U/ml iTaq DNA polymerase, 3 mm MgCl2, SYBR
Green I, 10 nm fluorescein, stabilizers (iQ SYBR Green Supermix; Bio-
Rad), and 0.2 um of forward and reverse primers.

Amplification cycles consisted of an initial denaturing cycle at 95°C for
3 min, followed by 45 cycles of 30 s at 95°C, 30 s at 60°C, and 30 s at 72°C
for all of the genes analyzed. Fluorescence was quantified during the 60°C
annealing step, and product formation was confirmed by a melting curve
analysis (55-94°C). Amounts of target gene mRNA were normalized to a
reference gene (B-actin) according to Pfaffl (2001). Primer sequences
used are as follows: mBDNF S, 5'-TCGTTCCTTTCGAGTTAGCC-3';
mBDNF AS, 5'-TTGGTAAACGGCACAAAAC-3'; mSynl S, 5'-GAG-
CAGATTGCCATGTCTGA-3'; mSynl AS, 5'-CACTGCGCAGATGT-
CAAGTC-3"; mChrm4 S, 5'-TCCTCACCTGGACACCCTAC-3';
mChrm4 AS, 5'-ACGTAGCAGAGCCAGTAGCC-3'; mDrd3 S, 5'-
GCTGTGATGTTTTTGTCACCC-3'; mDrd3 AS, 5'-GGCATGAC-
CACTGCTGTGTA-3'; mPenkl S, 5'-AATTCCCGCTATTTGCCAGT-
3’; mPenkl AS, 5'-AGTGGAGGGACAGCTCGTTA-3"; mChrnb2 S, 5'-
AGAGGTGAAGCACTTCCCATTT-3"; mChrnb2 AS, 5'-GCCA-
CATCGCTTTTGAGCAC-3'; mp-actin S, 5-AGTGTGACGTTGA-
CATCCGTA-3'; mB-actin AS, 5'-GCCAGAGCAGTAATCTCCTTCT-
3'; mREST/NRSF S, 5'-CGAACTCACACAGGAGAACG-3'; mREST/
NRSF AS, 5'-GAGGCCACATAATTGCACTG-3; mGAPDH S, 5'-
AATGGTGAAGGTCGGTGTGAAC-3"; mGAPDH AS, 5'-TCGCTC-
CTGGAAGATGGTGATG-3'".

Radioactive RT-PCR. Radioactive PCR was performed in a total vol-
ume of 50 ul containing cDNA made from 0.25 pg of RNA, 20 mm
Tris-HCI, pH 8.4, 50 mm KCl, 1.5 mm MgCl,, 0.2 mm dNTPs, 1.7
uCi[a®*P]dCTP, 0.4 um of each primer, and 2 U Taq polymerase (In-
vitrogen). All BDNF mRNA isoforms were amplified with a multiple
cycle number (25-30 cycles) to determine the appropriate conditions for
obtaining semiquantitative differences in their expression levels. Cycle
steps and primer sequences are described in Zuccato et al. (2001). PCR
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products were separated by nondenaturing 6% PAGE and visualized by
autoradiography. In each PCR experiment, BDNF levels were quantified
and normalized relative to -actin mRNA level.

DN:REST delivery. Sequences encoding the DNA binding domain of
REST/NRSF (amino acid residues 234—437) fused to a myc epitope were
excised from pMTDomNeg12 and inserted into pAdTrack-CMV (Wood
et al,, 2003). Plaque-forming virus particles (109 U/ml) were used to
infect Hdh”'” and Hdh '°®'1%° cells. RNA and proteins were harvested 48 h
later as described in Wood et al. (2003). The same assay was performed
with similar results by transfecting cells with Lipofectamine PLUS (In-
vitrogen) according to manufacturer’s instructions.

RE1/NRSE microarray. A bioinformatic search for consensus RE1/
NRSE motifs were compiled into a searchable database (RE1db) (Bruce
et al., 2004). There are 537 putative RE1/NRSEs (containing no mis-
matches) in the human genome. Primers were designed to sequences
<250 bp distal from each of these potential RE1s, with amplicon sizes
between 200 and 350 bp. Sense primers were designed with an 8 bp linker
atthe 5" of the sequence TGACCATG, which was required to immobilize
the sequences to the Codelink amine binding slides (GE Healthcare). The
PCRs were performed in two rounds of amplification. These reactions
were set up in 96-well plates (Costar, Cambridge, MA) by adding 5 ul of
100 ng/pl human genomic DNA, 6 ul of 10X buffer (500 mm KCl, 50 mm
Tris, pH 8.5, 25 mm MgCl,), 3 ul of 10 mm dNTP, 1.5 ul of 200 ng/ul
sense primer, 1.5 ul of 200 ng/ul antisense primer, and 0.375 ul of 5 U/ ul
Taq polymerase (Promega, Madison, WI) in a total reaction volume of 60
ul, under the following conditions: 95°C for 10 min, followed by 30 cycles
of 95°C for 60 s, 58°C for 60 s, and 72°C for 1 min and 30 s, with a final
extension step of 10 min at 72°C. These PCR products were diluted 1:10,
and 2 ul was used in the second round of PCR, in a reaction containing 6
wl amino-linking buffer (500 mm KCI, 25 mm MgCl,, 50 mm Tris, pH
8.5),6 ulof 10 mm dNTPs, 3 ul of 200 ng/ul 5" amino-modified universal
primer (GCTGAACAGTATGACCATG, the underlined 8 bp of which
recognizes the linker from the first round of PCR), 3 ul of 200 ng/ul
antisense primer (same as the antisense primer from the first round), and
0.6 ul of 5 U/ul Tag polymerase in a final volume of 60 ul. PCR products
were filtered through Multiscreen-GV 96-well filter plates (Millipore,
Billerica, MA) and added to 15 ul of 4X spotting buffer (1 M sodium
phosphate, pH 8.5, 0.001% Sarkosyl). The products were arrayed in qua-
druplicate at a constant temperature of 25°C and a relative humidity of
45% and incubated in a humidity chamber at 80% relative humidity for
36 h. The slides were washed in 1% ammonium hydroxide, then rinsed in
0.1% SDS, followed by HPLC grade water and were submerged in 95°C
water for 2 min to remove the antisense strands. They were then rinsed
twice in water at room temperature and dried by centrifugation at 800 X
g for 5 min. Control spots on the array included PCR products of 38 (7%
array coverage) sequences that do not contain REST/NRSF binding sites
to avoid nonspecific hybridization with other genomic RE1/NRSE sites,
negative spots included sequences from Arabidopsis genes, and blank
spots contained only spotting buffer. The RE1/NRSEs present on the
microarray and the closest genes to these sequences have been included
in the RE1/NRSE database (http://www.bioinformatics.leeds.ac.uk/
cgi-bin/RE1db/nrse.cgi).

Five hundred nanograms of anti-REST/NRSF ChIP DNA and input
DNA were labeled by direct incorporation of cyanine 3 (Cy3) and CyS5,
respectively. 60 ul of 2.5X random primers (Invitrogen) were added to
70 pul of input or ChIP DNA. The samples were denatured for 10 min in
a 100°C heat block and cooled on ice, then incubated at 37°C overnight
with 1.5 ul of 1 mm Cy5- or Cy3-labeled dCTP (New England Biolabs,
Ipswich, MA), 15 ul of ANTPs (1 mm dCTP and 2 mm dATP, dGTP, and
dTTP), and 3 ul Klenow (120 U) (Invitrogen). Unincorporated nucleo-
tides were removed from the reactions by spinning the samples through
micro-spin Sepharose G50 microcolumns (GE Healthcare). The Cy3-
and Cy5-labeled DNAs were mixed together and precipitated with 135
pgofhuman Cotl DNA. The DNA was pelleted and resuspended ina 2X
saline sodium citrate (SSC) hybridization buffer containing 10 mm Tris-
HCI, pH 7.4, 50% formamide, 5% dextran sulfate, and 0.01% Tween 20.
Samples were denatured in 70°C heat block for 10 min, and 30 ug yeast
tRNA was added. Slides were incubated with the DNA at 37°C for 48 h
with agitation, then washed in PBS/0.05% Tween 20 at 37°C six times,
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followed by 3 X 10 sin 0.2X SSC at 52°C. The slides were washed again
in PBS/0.05% Tween 20 at 23°C six times. Each wash consisted of a 20 s
flow time followed by a 10 s wash time. Slides were rinsed in HPLC-grade
water at room temperature for 30 s, dried, and scanned.

A GMS418 array scanner (Affymetrix; Genetic Microsystems, Santa
Clara, CA) scanned the two wavelengths compatible with excitation for
Cy5 and Cy3, and the images acquired were analyzed with BlueFuse
software to yield background-subtracted intensity values. The channel
intensities were normalized using the LOWESS function. Per array, mean
Cy3/Cy5 (REST/NRSF ChIP DNA/input DNA) ratios for each probe
were derived from their constituent quadruplicate spots and data-points
with SEM values >25% excluded from subsequent analysis. The mean
fold enrichment of the 38 RE1/NRSE-devoid regions (7% array cover-
age) was used to derive a corrective baseline for the data set. Those
corrected RE1/NRSE containing probe ratios that deviated from this
reference mean by a value greater than the mean plus two SDs (non-RE1/
NRSE mean, 1.043; SD, 0.095; mean plus 2 SDs, 1.23), were considered
enriched (corresponding to a 95% confidence interval, p < 0.05). This
provided every sequence on the microarray with a relative REST/NRSF
enrichment. Relative REST/NRSF enrichments were averaged from three
independent HD patient samples and two independent control patient
(non-HD) samples and the SEM calculated. For each putative RE1/NRSE
locus, relative REST/NRSF enrichments for the HD samples were divided
by those of the non-HD samples to show the increase in REST/NRSF
recruitment in HD (Table 1).

REST/NRSF target genes were characterized according to the function
of their protein products using information from the scientific literature
and the UniProt (www.uniprot.org) and Ensembl (www.ensembl.org)
databases. A full list of these genes, proteins, and ontologies can be
viewed in Table 1 and Figure 4c (pie chart).

ELISA assays. Cell lysates were prepared in lysis buffer consisting of
10% glycerol, 25 mm Tris HCL, pH 7.5, 150 mm NaCl, 1% Triton X100, 5
mM EDTA, and 1 mm EGTA supplemented with 1:100 Protease Inhibitor
Mixture (Sigma-Aldrich, St. Louis, MO). Samples were homogenized,
sonicated, and centrifuged (15 min at 4°C max speed Biofuge). The su-
pernatants were collected and stored at —30°C. Samples were assayed for
BDNF by using the ImmunoAssay System (Promega), as described by the
manufacturer.

Statistical analysis. For ChIP-PCR, gene expression, and ELISA stud-
ies, we compared data using one-way ANOVA.

Results

REST/NRSF binding at the endogenous RE1/NRSE in HD
cells and animal models

To test whether HD is characterized by an increase of nuclear
binding activity of REST/NRSF at the RE1/NRSE of endogenous
chromosomal target genes, we used ChIP and assessed occupancy
of a cohort of REST/NRSF target genes including Bdnf, synapsin
1 (Synl), Chrm4, dopamine receptor D3 (Drd3), proenkephalin 1
(Penkl), and cholinergic receptor nicotinic 8 polypeptide2
(Chrnb2) using an N-terminal REST/NRSF antibody in HD sam-
ples. Specificity of REST/NRSF immunoprecipitation in our
ChIP assays was assessed by evaluating REST/NRSF occupancy at
non-REST/NRSF target genes and also by using scanning ChIP
across the BDNF locus (supplemental Figs. 1, 2, available at www.
jneurosci.org as supplemental material).

ChIP analyses were initially performed on chromatin ex-
tracted from neural cell lines derived from homozygous mutant
huntingtin knock-in mice in which an expanded CAG has been
inserted into the endogenous mouse Hdh gene (Hdh'*') and
their wild-type counterparts (Hdh””) (Trettel et al., 2000). Figure
la (left) shows that no REST/NRSF could be detected at RE1/
NRSE-containing regions of any of the target genes in Hdh™”
cells, whereas, in contrast, the equivalent loci were all occupied by
REST/NRSF in Hdh 1%71% cells. Under these conditions, levels of
total REST/NRSF protein and mRNA were identical in both
Hdh'%1% cells and Hdh”” cells (Zuccato et al., 2003) (see Fig.
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Table 1. ChIP-on-chip analyses on the human HD cortex

Zuccato et al. @ REST/NRSF Target Genes and Huntington’s Disease

Gene name Protein name Ontology HD/NORM
SNN Stannin Signaling 3.1
OAT Ornithine aminotransferase mitochondrial precursor Metabolism 25
NPC2 Epididymal secretory protein ET precursor Unknown 23
PCSK1 Neuroendocrine convertase 1 precursor Signaling 2.2
SLC13A1 Solute carrier family 13, member 1 Transport 2.1
CNTNAP Contactin-associated protein-like 2 precursor Structure 2.0
CACNATH Voltage-dependent T-type calcium channel subunit alpha-1H Signaling 2.0
CREB3L3 CREB/ATF family transcription factor Transcription 1.9
GRIK3 Glutamate receptor, ionotropic kainate 3 precursor Signaling 19
FAM105A Unknown Unknown 1.9
CMKLR1 Chemokine receptor-like 1 Immune response, development, signaling 19
FUT9 a-(1,3)-Fucosyltransferase Metabolism 18
0SBP2 Oxysterol-binding protein 2 Metabolism 1.7
LRRTM4 Leucine rich repeat transmembrane neuronal 4 Protein binding 17
ARRDG3 Arrestin domain-containing protein 3 Unknown 1.7
EPHATO0 Ephrin type-A receptor 10 precursor Signaling 1.7
VIP Vasoactive intestinal peptide Signaling 17
ENSG00000110427 G2 protein Unknown 1.6
TRPC7 Short transient receptor potential channel 7 Signaling 1.6
PHKB Phosphorylase b kinase regulatory subunit beta Metabolism, signaling 1.6
HNRPUL1 Heterogeneous nuclear ribonucleoprotein U-like protein 1 Transcription, RNA processing 1.6
NELL1 Protein kinase C-binding protein NELL1 precursor Structure, neurogenesis, metabolism 15
(BLN1 Cerebellin-like glycoprotein 1 precursor Structure 15
B3GAT1 Galactosylgalactosylxylosyl protein 3-beta-glucuronosyltransferase 1 Metabolism 15
DDX25 ATP-dependent RNA helicase DDX25 Spermatogenesis, RNA helicase 15
SYT4 Synaptotagmin-4 Synaptic activity 15
LHX5 LIM/homeobox protein Lhx5 Transcription, neuronal development 15
NCAM2 Neural cell adhesion molecule 2 precursor Neuronal development, adhesion 1.4
XKR4 XK-related protein 4 Unknown 1.4
TCBA1 T-cell lymphoma breakpoint associated target protein 1 Unknown 14
USP31 Ubiquitin-specific proteinase 31, putative Metabolism 1.4
FGF14 Fibroblast growth factor 14 Neuronal development, signaling 13
KCNJ6 G-protein-activated inward rectifier potassium channel 2 Signaling 13
SLC7A14 Solute carrier family 7 (cationic amino acid transporter, y + system), member 14 Amino acid transport 13
KCNAB2 Voltage-gated potassium channel subunit beta-2 Transport, signaling 13
FGF12 Fibroblast growth factor 12 Neuronal development, signaling 13
BDNF Brain-derived neurotrophic factor (BDNF) Growth factor, neurodevelopment 13
TSPAN14 Tetraspanin-14 Unknown 13
GENSCAN00000062697 Presynaptic cytomatrix protein Piccolo homolog Synaptic transmission 13
POU4F1 POU domain, class 4, transcription factor 1 Neuronal development, transcription 13
EFNA5S Ephrin-A5 precursor Neuronal development, signaling 13
SYN1 Synapsin | Synaptic transmission 1.2
HPGD1 15-Hydroxyprostaglandin dehydrogenase [NAD+ ] Metabolism 1.2

Relative REST/NRSF enrichments were averaged from three independent HD patient samples (3932, 2866, 5570) and two independent control patient (non-HD) samples (5919, 6002). Values indicated as HD/NORM mean relative enrichment
seen in HD tissue when normalized to control tissue. Forty-three RET/NRSE containing genes are enriched in the HD cortex versus control (corresponding to a 95% confidence interval, p < 0.05). RE1/NRSE location and gene ontology information were
extracted from Ensembl (http://www.ensembl.org), UniProt (http://www.expasy.uniprot.org), and the RET/NRSE database (Bruce et al., 2004). CREB, cAMP response element-binding protein; ATF, activating transcription factor.

3a). Next, we performed real-time PCR to see whether this in-
creased occupancy in Hdh'?'% cells was accompanied by a cor-
responding decrease in gene expression. Consistent with previ-
ous semiquantitative analyses (Zuccato et al., 2003), these
experiments showed a significant decrease in the expression lev-
els of RE1/NRSE genes in Hdh %% cells compared with Hdh”'”
cells (Fig. 1a, right). These data demonstrate a direct correlation
between increased REST/NRSF occupancy and REST/NRSEF-
mediated transcriptional repression in the presence of endoge-
nous mutant huntingtin.

Next, we proceeded to see whether this correlation could be
observed in the cerebral cortices of 12-week-old symptomatic
R6/2 transgenic mice expressing the human huntingtin exon 1
fragment bearing a 150 glutamine expansion (Mangiarini et al.,
1996). Increased REST/NRSF binding was seen in symptomatic
mice at the REI/NRSE of the Bdnf, Chrm4, and Penkl genes,
whereas no differences were observed at the Synl, Drd3, and

Chrnb2 RE1/NRSE loci (Fig. 1b, left). Real-time PCR analyses of
the corresponding mRNA levels demonstrated that increased
REST/NRSF binding in R6/2 mice is accompanied by a significant
decrease in expression of the same RE1/NRSE-controlled neuro-
nal genes (Fig. 1b, right). These data demonstrate that at some,
but not all, REI/NRSE neuronal genes mutant huntingtin causes
a selective increase in REST/NRSF occupancy and a concomitant
decrease in transcription.

We extended these studies by analyzing cortical samples from
homozygous Hdh'*'% mutant huntingtin knock-in mice be-
cause they represent a more accurate genetic model of HD with
expression of the full-length endogenous mutant huntingtin al-
lele driven from the endogenous Hdh promoter. Compared with
R6/2 mice, which exhibit a rapid and severe neurological pheno-
type, Hdh'%"% mice display a slower progressive phenotype re-
capitulating earlier stages of human HD (Wheleer et al., 1999).
ChIP experiments performed on cortical lysates from 5-month-old
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Figure 1.

0
Bdnf Syn1 Chrm4 Drd3 Penk1 Chmb2

Bdnf Syn1 Chrm4 Drd3 Penk1 Chrb2

Endogenous REST/NRSF binding at RET/NRSEs is increased in HD leading to repression of RE1/NRSE gene transcrip-
tion. a, Left, ChIP analysis on six RE1/NRSE selected loci in neural cells established from homozygous (Hdh ™”"%) knock-in mice
and wild-type littermates (Hdh 7). Data represent the average of three different experiments. Right, mRNA levels of the same
RET/NRSE-controlled genes in Hdh”” and Hdh "% cells by real-time PCR. Data are the average of three different experiments.
*p < 0.05; **p < 0.01 versus Hdh””; ANOVA test. b, Left, ChIP on cortical lysates from R6/2 transgenic mice at 12 weeks of age
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knock-in mice, possibly indicating that
this molecular phenotype of increased
RE1/NRSE occupancy and repressed gene
transcription may be a general feature of
disease progression. Furthermore, it can
be seen that discrete changes in REST/
NRSF occupancy signature are evident in
different animal and cellular HD models
ok effecting that disruption of target gene ex-
pression may be a composite of common
and individual changes.

An enigma of HD is that whereas both
REST/NRSF and huntingtin are also

[ Hdh™ cells
W Hdh™ooo cells

ke *

[] Wild-type mice

M2 sion widely expressed outside the brain, HD
pathology is largely restricted to the ner-
vous system. We have previously shown
that many REST/NRSF targets that are si-

’ lent in non-neural cells are inaccessible to

REST/NRSF (Wood et al., 2003; Belyaev et
al., 2004). Accordingly, we postulated that
such targets would be refractory to in-
creases in nuclear REST/NRSF conse-
quent to expression of mutant huntingtin,
thus conferring brain specificity to the
dysfunction of the REST/NRSF-NRSE
signaling pathway. To test this notion, we
examined the interaction of REST/NRSF
with neural and hepatic target genes in the
liver. We chose three silent neural target
genes, Bdnf, Penkl, and Chrm4 and one
active hepatic REST/NRSF target gene, he-
patic nuclear factor (Hnf-1a) (Bruce et al.,
2004). Our data showed that in liver chro-
matin from wild-type mice, no REST/
NRSF could be detected at any of these
targets, but that in R6/2 mice, REST/NRSF
could be detected at the active Hnf-1a lo-
cus but not at the silent Bdnf, Penkl, and
Chrm4 loci (Fig. 1d). These data confirm
our proposal that expression of mutant
huntingtin leads to an increase in nuclear
REST/NRSF, which in turn leads to an in-
crease in occupancy, and potentially dys-
function of actively transcribed genes,
therefore affecting neural tissues and also
selective genes in non-neural tissues.

[ Hdh™ mice
B Hdh091% mice

and corresponding littermates. Right, mRNA levels by real-time PCR of the same RE1/NRSE genes in R6/2 transgenics and controls

at the same age. ChIP and mRNA data represent the average of five R6/2 transgenics and five controls. *p << 0.05; ** p < 0.01
versus littermates, ANOVA test. c, Left, ChIP for REST/NRSF on cortical lysates from Hdh’®”"*® at 5 months. Data represent the
average of three Hdh”"%? and three Hdh”” mice. *p << 0.05 versus Hdh”” mice; ANOVA test. Right, REST/NRSF binding at the
NRSE """ in Hdh'"% at 1 and 5 months. Data are the average of three Hdh'®"% and three Hdh”” mice at 1-5 months. *p <
0.05 versus Hh”” mice; ANOVA test. d, ChIP for REST/NRSF on liver lysates from three R6/2 mice and three controls at 12 weeks of

age. *p < 0.05 versus wild-type mice; ANOVA test.

mice showed increased occupancy by REST/NRSF at its target RE1/
NRSE loci, compared with controls (Fig. ¢, left). Importantly, this
phenotype is progressive because REST/NRSF binding at the Bdnf
locus is greater at 5 months compared with 1-month-old mice (Fig.
Lc, right).

This evidence indicates for the first time a direct engagement
of REST/NRSEF at selected RE1/NRSE genomic loci in HD mouse
models and that, at least for the Bdnf locus, a correlate exists
between REST/NRSF enrichment and disease evolution in

REST/NRSF interactions in systems

depleted by endogenous huntingtin

Although HD is predominantly seen as a
“gain-of-function” disorder, there is in-
creasing evidence for a “loss-of-function”
component (Cattaneo et al., 2001, 2005).
Based on the demonstration of increased
activity of an RE1/NRSE®¥™ reporter in response to overexpres-
sion of wild-type huntingtin (Zuccato et al., 2003), and together
with the present data, we propose that the abnormal RE1/NRSE
phenotype observed in HD is strictly dependent on the level/
activity of the wild-type protein, implying that a loss-of-function
mechanism is in operation at the level of the RE1/NRSEs in neu-
rons that express limited but detectable levels of REST/NRSF. To
test this notion, we examined the interaction of REST/NRSF with
its target genes in embryonic stem (ES) cells in which one or two
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alleles of the Hdh gene have been inacti-
vated via removal of exon 4 and 5 of the
endogenous mouse huntingtin gene
(Duyao et al., 1995), indicated as Hdh™/
Hdhexon4/5 (ES+/_) and Hdhexon4/5/
Hdh™""? (ES—/—), respectively (a West-
ern blot showing huntingtin protein levels
in these cells is reported in supplemental
Fig. 3, available at www.jneurosci.org as
supplemental material). REST/NRSF
binding at the Bdnf locus was incremen-
tally increased in ES+/— cellsand ES—/—
cells compared with control ES+/+ cells
(Fig. 2a, left). This increase in occupancy
is not resulting from increased total levels
of REST/NRSF, because levels of REST/
NRSF mRNA were the same in ES+/+,
ES+/— cells, and ES—/— cells (Fig. 2a,
right). In concordance with the increased
levels of REST/NRSF occupancy, total
Bdnf expression was reciprocally reduced
in ES+/— cells and ES—/— cells com-
pared with ES+/+ cells (Fig. 2b, left).
Also, this reduction in Bdnf mRNA is at-
tributable to a specific loss of Bdnf mRNA
II (Fig. 2b, right), whose transcription is
directly regulated by a RE1/NRSE in exon
I1. Consistent with these data, transcrip-
tion of Bdnf III and IV, which are not
REST/NRSEF regulated, are not affected by
dramatic huntingtin deficiency (Fig. 2b,
right).

Next, we extended these experiments
to examine REST/NRSF interactions in
the brains of Hdh+/+, Hdh+/—, and
Hdh—/— mice. Conditional ablation of
Hdh in the adult mouse forebrain is ac-
companied by apoptosis, progressive neu-
rodegeneration, and behavioral abnor-
malities resembling the HD phenotype
(Dragatsis et al., 2000). Similar to what is
seen in mice carrying the mutant protein,
ChIP analyses in the cortex from Hdh+/—

Zuccato et al. @ REST/NRSF Target Genes and Huntington’s Disease

a b
[JHdh ES+/+ [JHdh ES+/+
907 4 [l Hdh ES+/- [ Hdh ES+/-
801 [ Hdh ES-/- B Hdh ES--
] 1,0
1.0 10,0
6,0{ * <
5,0 x 80 s T# e -
B0 E &6 . = -actin 10075 #
= 8 2 - ; k-
® 3,0 g 40 § BRI Bdnf mRNAI @, O
o = @ =]
g 20 B o & [ Bdnf mRNAIIl & 0
< 1,01 n 2 2 4100
2, x 2 o [—— —I|BdnfmRNAIV § g
c d
CJHdh +/+ mice [CJHdh +/+ mice
" [CJHdh +/- mice [CIHdh +/- mice
* I Hdh -I- mice 0,121 BHdh -I- mice
0,10—l e+
, 12123123
0,08

8 | Bdnf mRNAII

Figure2. Lossof wild-type huntingtin increases REST/NRSF binding at the RE1/NRSE. , Left, ChIP for REST/NRSF binding at the
RET/NRSE®" on chromatin lysates from Hdh—+/+, Hdh+/—and Hdh—/— ES cells. Right, REST/NRSF mRNA levels in
Hdh+/+, Hdh~+/— and Hdh—/— ES cells. Data are the average from three independent experiments. *p << 0.05 versus
Hdh+/+, *p < 0.05 versus Hdh+/—; ANOVA test. b, Left, Real-time PCR for total Bdnf mRNA levels in Hdh+/-+, Hdh +/—,
and Hdh—/— embryonic stem cells. Data are the average from three independent experiments. *p << 0.05 versus Hdh+/+;
#p < 0.05 versus Hdh—+/—; ANOVA test. Right, Semiquantitative radioactive RT-PCR for Bdnf exon II, lll, and IV mRNA levels.
B-actin was used as control. Graphs show densitometric analyses of the expression levels of Bdnf mRNA Il, Ill, and IV compared
with levels of B-actin. Values represent the percentage of arbitary units (a.u.) relative to Hdh+/+ cells to which 100% was
assigned. Data are the average from eight independent PCR experiments. *p << 0.05 versus Hdh-+/+; *p << 0.05 versus
Hdh+/—; ANOVA test. ¢, ChIP for REST/NRSF on cortical samples from three null Hdh conditional knock-out mice cre Hdh flox/—
(indicated as Hdh—/—) and three Hdh flox/— (indicated as Hdh+/—) and wild-type mice. REST/NRSF binding was analyzed at
the RE1/NRSE of Bdnf, Syn1, Chrm4, Drd3, Penk1, and Chrnb2.*p << 0.05 versus Hdh+/+ mice; p << 0.05 versus Hdh+/— mice;
ANOVA test. d, Bdnflevelsin cortical samples from null Hdh conditional knock-out mice. Left, Total Bdnf mRNA levels by real-time
PCR. Data are the average from three independent experiments. *p << 0.05; **p << 0.01 versus Hdh+/-+ mice; p << 0.05 versus
Hdh+/— ANOVA test. Right, Semiquantitative radioactive RT-PCR for Bdnf exon II, IIl, and IV mRNA levels. 3-actin was used as
control. A quantitative evaluation of Bdnf mRNA II, I1I, and IV is shown in supplemental Figure 7 (available at www.jneurosci.org
as supplemental material).
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and Hdh—/— mice showed a proportional increase in REST/
NRSF occupancy at the RE1/NRSE of the Bdnf gene, compared
with their wild-type Hdh+/+ counterparts (Fig. 2¢). Under these
conditions, levels of total REST/NRSF mRNA were identical in
Hdh+/+, Hdh+/—, and Hdh—/— mice (supplemental Fig. 4,
available at www.jneurosci.org as supplemental material). Fur-
thermore, the increase in REST/NRSF occupancy at the Bdnf
locus was accompanied by a reciprocal decrease in Bdnf expres-
sion (Fig. 2d, left), clearly indicating that expression of Bdnf in
vivo is affected by reduced endogenous wild-type huntingtin.
Consistent with our results obtained with ES cells, the reduction
in Bdnf transcript levels could be largely attributed to a specific
loss of Bdnf mRNAII transcripts in Hdh+/— and Hdh—/— mice
(Fig. 2d, right). In addition, we found that REST/NRSF occu-
pancy at Synl, Drd3, and Chrnb2 genes was increased in Hdh—/—
relative to Hdh+/— or Hdh+/+ mice. REST/NRSF occupancy
was undetectable in Hdh+/— and Hdh—/— mice, but real-time
PCR indicated a proportional decrease in Synl and Drd3 mRNA
levels in Hdh+/— and Hdh+/+ mice with respect to wild-type

mice (supplemental Fig. 5, available at www.jneurosci.org as sup-
plemental material).

We conclude that loss of wild-type huntingtin causes a selec-
tive increase in REST/NRSF binding at the RE1/NRSEs, leading
to generalized transcriptional repression of RE1/NRSE bearing
neuronal genes. Because this molecular phenotype is seen in the
presence of mutant huntingtin, we would also suggest that the
expanded polyQ tract in HD might abrogate huntingtin normal
activity in REST/NRSF-mediated gene repression. Thus, reduced
activity of wild-type huntingtin in HD may contribute to disease
pathogenesis.

Expression of dominant-negative REST/NRSF derepresses
neuronal gene transcription in HD

We reasoned that if a role of normal huntingtin was to facilitate
expression of RE1/NRSE-bearing genes and that mutant hun-
tingtin attenuated this function, then it may also follow that at-
tenuation of REST/NRSF function should derepress those genes
repressed in the presence of the mutant protein. Accordingly, we
used a dominant-negative REST/NRSF construct (DN:REST)
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changed after DN:REST expression, indi-
cating that DN:REST acts specifically on
RE1/NRSE targets (Fig. 3a).

In addition, the change in Bdnf RNA
levels could be attributed specifically to
changes in Bdnf mRNA II transcripts (Fig.
3b). This rescue of Bdnf mRNA was mir-
rored by an increase in Bdnf protein levels
as judged by ELISA assays (Fig. 3¢). Our
results therefore indicate that it is possible
to restore Bdnf protein levels in HD cells
by attenuation of REST/NRSF binding at
the Bdnflocus.

A global analysis of endogenous REST/
NRSF binding in HD human brain
The repertoire of potential REST/NRSF-
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Figure 3.

comprising the DNA binding domain (Wood et al., 2003; Belyaev
et al., 2004; Bruce et al., 2004) to attenuate REST/NRSF binding
to its cognate RE1/NRSE sites in Hdh'*”'? mutant huntingtin
knock-in cells. These experiments showed that 48 h after delivery
of DN:REST into Hdh'”'? cells, Bdnf mRNA was increased to
similar levels to that seen in untreated wild-type Hdh”” cells (Fig.
3a). Cells treated with empty virus or untreated cells showed no
variation in total Bdnf mRNA level. In addition, because DN:
REST acts at many RE1/NRSEs (Bruce et al., 2004), then it follows
that it is likely that transcription of other neuronal genes whose
expression is decreased in the disease state could be similarly
restored. Figure 3a shows indeed that synapsinl and M4 musca-
rinic cholinergic receptor mRNA levels are also rescued by DN:
REST in Hdh!'%”'% cells. Furthermore, mRNA levels of genes,
whose transcription is not controlled by REST/NRSF, are un-

GAPDH

%Bdnf vs Hdh™ _,

Expression of DN:REST derepressed RE1/NRSE-regulated transcription in HD. a, Bdnf, synapsin-1, and M4 muscarinic
cholinergic receptor mRNA levels were measured in native Hah ”” and Hh "7 cells after delivery of DN:REST or empty vector.
Bdnf, synapsin-1, and M4 muscarinic cholinergic receptor mRNA levels were restored in Hdh °”"% cells infected with DN:REST
compared with untransfected cells and cells transfected with empty vector (— and E, respectively). mRNA levels of REST/NRSF and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), genes whose transcription is not requlated by the RE1/NRSE silencer, are
not affected by DN:REST expression. Data are expressed as percentage of controls (100% was assigned to Hdh””” cells) and
represent the average of four independent experiments. *p << 0.05 versus Hdh”” untreated cells (—); *p << 0.05 versus
Hdh % untreated cells and cell with empty vector (— and E, respectively). b, Left, Bdnfexon I, IIl, and IV mRNA levelsin Hdh 7
and Hdh "%"% cells by semiquantitative radioactive RT-PCR. Right, Quantitative analyses of the BDNF mRNA levels. The peak
densitometric areas relative to Bdnf I, Ill, and IV were normalized over the peak densitometric area of the B-actin band. Data are
expressed as percentage of controls (100% was assigned to Hdh”” untreated cells) and represent the average of three indepen-
dent experiments. *p << 0.05 versus Hah " cells; *p < 0.05 versus Hdh °”7%° untreated cells and cells with empty vector (— and
E, respectively). ¢, Bdnf protein levels determined by ELISA on lysates from Hdh”” and Hdh %" cells and cells infected with
DN:REST and empty vector. Data are the average of three independent experiments. *p << 0.05 versus Hdh /7 untreated cells (—).
#p < 0.05 versus Hdh "°7% untreated cells and cells with empty vector (— and E, respectively).

regulated genes is extensive and includes
those encoding growth factors and hor-

Cc mones, neuronal transcription factors, ion

channels, proteins involved in axonal
guidance, neurotransmitters, proteins in-
volved in vesicle trafficking, and fusion
and synaptic transmission (Bruce et al.,
# 2004). To test whether REST/NRSF shows
increased binding at genomic RE1/NRSE
loci in the human HD brain, we per-
formed ChIP assays on chromatin lysates
from cortical specimens obtained from
five individuals with HD (grade III-IV)
- and five age-matched controls. First, spec-
=« BEH ificity of the ChIP assay was validated us-
ing a scanning ChIP of the BDNF locus,
and two controls and two HD subjects
were analyzed (Fig. 4a). In the ChIP-
scanning assay, the anti-REST/NRSF im-
munoprecipitated genomic DNA was as-
sessed by real-time PCR using five pairs of
oligonucleotide primers designed to pro-
duce amplicons covering the RE1/NRSE
site in the BDNF gene and flanking se-
quences located upstream and down-
stream of the RE1/NRSE up to maximum
distance of ~20,000 bp. In addition, prim-
ers corresponding to the BDNF coding re-
gion, which lies in excess of 50,000 bp dis-
tant from the RE1/NRSE, were used. The
scanning ChIP assays show a peak of
REST/NRSF occupancy centered at the RE1/NRSE site of the
BDNF gene (Fig. 4a). In addition, REST/NRSF occupancy is sig-
nificantly greater in HD samples than in control tissue. No en-
richment is observed at distal regions located >1000 bp from the
RE1/NRSE site. We also show that REST/NRSF is not detected at
the coding region of the (B-actin gene that is not regulated by
REST/NRSEF, also indicating that REST/NRSF immunoprecipita-
tion specifically enriches for REST/NRSF-associated genes.
Then, conventional ChIP was performed on chromatin lysates
from cortical specimens obtained from five individuals with HD
(grade III-1V) and five age-matched controls. These data show
that REST/NRSF binding at five selected RE1/NRSE loci repre-
sented by BDNF, SYNI, CHRM4, CHRNB?2, and synaptosomal-
associated protein 25 kDa (SNAP25), is increased in four of the
HD samples compared with controls (Fig. 4b). Variation in bind-
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Figure4.  REST/NRSF binding at the RET/NRSE is increased in HD patients. a, ChIP scanning

at the human BDNF locus. ChiP analysis of cortical tissue from human HD (3723 and 2866) and
control (3899 and 3688) samples. Anti-REST/NRSF-immunoprecipitated genomic DNA was as-
sessed by real-time PCR using six pairs of oligonucleotide primers designed to produce ampli-
cons covering the RET/NRSE site in the BONF gene and flanking sequences located 758 bp
upstream the RE1/NRSE and 431, 1222, 2279, and a distal 19350 bp downstream of the RE1/
NRSE. Relative positions of these primer pairs are indicated in the schematic diagram (green
arrows). White columns represent the average of REST/NRSF enrichment in controls. Gray col-
umns indicate the average of REST/NRSF enrichment in HD subjects. The scanning ChIP assay
shows a peak of REST/NRSF occupancy centered at the RET/NRSE site of the BONF gene. No
enrichment is seen at distal regions, and no enrichment is seen at the coding region of BONFand
B-actin gene, which is not regulated by REST/NRSF. b, REST/NRSF was immunoprecipitated
from chromatin extracted from the cerebral cortices of five HD patients (from left to right: 3484,
3723, 3176, 2866, 6062) and five age-matched controls (from left to right: 3899, 3688, 3932,
3888, 3746). REST/NRSF enrichment over a sham antibody (preimmune serum) was calculated
by quantitative PCR at the RE1/NRSEs of five REST/NRSF target genes, BDNF, SYN1, CHRM4,
(HRNB2 and SNAP25. ¢, Conventional ChIP and ChIP on chip indicated that REST/NRSF target
genes showing increased occupancy in HD subjects can be assigned to nine functional groups.

ing was seen at equivalent loci among different individuals and
among different loci from the same individual, but the overall
trend of increased occupancy at multiple loci was nevertheless
clear. Interestingly, tissue from HD1 showed no changes in
REST/NRSF occupancy of the selected target genes, despite the
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fact that this patient had a similar CAG expansion and grade of
HD progression to the other patients. Changes in REST/NRSF
were specific and were not accompanied by parallel changes in
occupancy by other transcription factors as can be seen by the
unchanged enrichments seen with anti-Sp1l and anti-Sp4 anti-
bodies (supplemental Fig. 6, available at www.jneurosci.org as
supplemental material). Although we cannot know the reason for
this variance, it is important to realize that changes in gene occu-
pancy and gene expression do show individual variance in a sim-
ilar way that we have shown for different animal and cell models
of HD.

Subsequently, to provide a more global view of REST/NRSF
dysfunction in HD, we used a ChIP-on-chip approach. Genomic
microarrays containing the flanking sequence from 537 consen-
sus RE1 sites were hybridized with the ChIP output of anti-REST/
NRSE-precipitated chromatin obtained from postmortem corti-
cal tissues from three individuals with HD (grade III-IV) and
age-matched controls. These assays have been performed on a
different set of postmortem tissues from those used for the con-
ventional ChIP-PCR because of the limiting amount of available
tissue. An amount of 500700 mg wet weight of tissue is required
for an extraction that gives a suitable yield of chromatin for ChIP-
on-chip assays, so it was not possible to prepare replicates of the
same material used in both ChIP-PCR and ChIP-on-chip analy-
ses. To establish REST/NRSF occupancy of target genes across
different samples, we used anti-REST/NRSF ChIP DNA isolated
from the HD and non-HD cortex tissue and hybridized it to our
genomic RE1/NRSE microarrays. Control regions on the array
were represented by genomic sequences that lay distal to any
RE1/NRSE (as defined by a position-specific scoring matrix cut-
off score of >0.91) (Johnson et al., 2006). Examination of these
control regions showed an average REST/NRSF ChIP DNA/input
DNA ratio of 1.04 * 0.02 SEM for the HD samples and 1.05 =
0.03 SEM for the non-HD samples. Because these sequences are
not proximal to any REST/NRSF binding sites, their REST/NRSF
ChIP DNA/input DNA ratio represents background enrichment.
Accordingly, those targets that show REST/NRSF ChIP DNA/
input DNA ratios in excess of two SDs plus the control mean were
considered significantly enriched (confidence interval 95%; p <
0.05). Relative REST/NRSF enrichments were averaged from
three independent HD patient samples and two independent
control patient (non-HD) samples and the SEM calculated. This
allows identification of those RE1/NRSEs that show greater en-
richment in HD versus non-HD samples, supporting the notion
of a general dysfunction in REST/NRSF-regulated genes in the
HD postmortem cortex. The list of genes in which an increased
occupancy by REST/NRSF is seen in HD compared with control
tissue is presented in Table 1.

Discussion
Transcriptional dysregulation is a central pathogenic mechanism
in HD and several transcription factors have been implicated in
this pathology (Sugars and Rubinsztein, 2003). More recently, in
vitro studies have demonstrated that wild-type huntingtin asso-
ciates with REST/NRSF in the cytoplasm, thereby restricting its
access to the nucleus, and consequently permits transcription of
the BDNF gene. In the presence of mutant huntingtin, this asso-
ciation is disrupted and REST/NRSF translocates to the nucleus
where it represses transcription of this neurotrophin (Zuccato et
al., 2003).

There are >1300 RE1/NRSE sites in the human and murine
genomes, and the majority encodes for proteins that are funda-
mental for neuronal development and differentiation (Bruce et
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al., 2004; Johnson et al., 2006). In the present study, using chro-
matin immunoprecipitation assays, we analyzed REST/NRSF nu-
clear occupancy on a selection of RE1/NRSE genes, in addition to
brain-derived neurotrophic factor that includes synapsin 1, M4
muscarinic cholinergic receptor, dopamine receptor D3, proen-
kephalin 1, and cholinergic receptor nicotinic 3 polypeptide2.
We show here that in HD there is an increase in REST/NRSF
occupancy of the cognate RE1/NRSEs resulting in repression of
gene transcription. No increase in cellular levels of REST/NRSF
was found in the presence of mutant huntingtin. In particular, we
found that REST/NRSF occupancy of RE1/NRSE sites is in-
creased in mutant huntingtin knock-in cells, in the cortex from
asymptomatic knock-in mice and from symptomatic R6/2 trans-
genic mice. Moreover, increased REST/NRSF occupancy occurs
early in knock-in mice before the development of a neuropatho-
logical phenotype, suggesting that the increased binding of REST/
NRSF at the RE1/NRSE could be an early molecular event and
that preventing REST/NRSF binding from early stages might be
beneficial in HD.

Our results in HD mice also indicate that an increased occu-
pancy of REST/NRSF occurs at the RE1/NRSE of active genes
encoding for non-neuronal proteins in non-neural tissues in HD.
This can be seen at the hepatic transcription factor HNF-1alocus
in liver in which REST/NRSF occupancy is increased at the RE1/
NRSE in symptomatic R6/2 transgenic mice compared with con-
trols. This result opens up the possibility to exploit the REST/
NRSF genomic occupancy profile in peripheral cells in the search
for biomarkers to monitor disease progression in HD patients.
Such markers may provide clues to the state of HD and may be of
predictive value in clinical trials.

Importantly, we also report for the first time a novel applica-
tion of ChIP-on-Chip technology to generate a genome-wide
perspective on those REST/NRSF targets that are affected in the
HD postmortem brain. Genes showing significant changes in
REST/NRSF occupancy in HD cortical specimens (parietal cor-
tex, Brodmann’s area 7) include those that encode ion channels,
adhesion molecules, proteins involved in synaptic activity, signal
transduction, metabolism, and neurotrophins such as BDNF. Be-
cause increased occupancy by REST/NRSF might be expected to
result in lower expression of the corresponding target genes in
HD tissue, we examined the results of earlier studies that had
performed expression array analyses of HD versus control cortex
(Hodges et al., 2006). Such comparisons are confounded by sev-
eral factors, principally use of different tissues, differential repre-
sentations on arrays, and correlation of occupancy and expres-
sion. Nevertheless, we found that of 958 genes listed as
downregulated in the motor cortex (Brodmann’s area 4) from 19
HD subjects (Vonsattel grade 2) versus 17 age-matched controls,
(Hodges et al., 2006), 27 contained an RE1/NRSE (supplemental
Table 2, available at www.jneurosci.org as supplemental mate-
rial). Furthermore, we found that genes, such as SNAP25 and
FGF12, stannin (SNN), PCSKI (neuroendocrine convertase 1
precursor), KCNAB2 (voltage-gated potassium channel b sub-
unit 2), BDNF, and SYNI, all of which show increased REST/
NRST occupancy in the present study, were also downregulated
in the HD cortex (Zuccato et al., 2003; Hodges et al., 2006). Thus,
despite the potential confounds of such comparisons, these anal-
yses indicate that HD brain dysregulation of REST/NRSF func-
tion can lead to parallel changes in both occupancy and expres-
sion of REST/NRSE target genes. Moreover, because samples
analyzed by Hodges et al. (2006) were obtained from grade 0-II
HD subjects, whereas our data were derived from grade Il and IV
subjects, it is possible that dysregulation of the REST/NRSF regu-
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lon is an early event in human HD disease progression. Newly
identified targets include SNN, a highly conserved protein impli-
cated in mediating organotin toxicity (Davidson et al., 2004) and
B3GAT1 (B-1,3 glucuronyltransferase-1), implicated as a candi-
date for schizophrenia-like psychosis (Jeffries et al., 2003) and in
control of spatial memory and learning (Yamamoto et al., 2002).
In addition, the ornithine aminotransferase (OAT) mitochon-
drial precursor gene was identified in our assay, and the activity of
this protein is reduced in the HD brain (Wong et al., 1982).
Because this protein is involved in the synthesis of glutamate, a
reduction of OAT mRNA level is in agreement with the evidence
of a deterioration of the corticostriatal glutamatergic pathway in
HD (Zeron et al., 2002, 2004). In addition, an increase in REST/
NRSF binding has been found in the promoter region of the
OSBP2 (oxysterol binding protein 2) gene, a member of a family
of sterol binding proteins implicated in vesicle transport, lipid
metabolism, and signal transduction (Wang et al., 2005) and
which may possibly contribute to the observed defects in lipid
metabolism in HD (Sipione et al., 2002; Valenza et al., 2005).
Although often overlooked, HD also results in peripheral abnor-
malities (Luthi-Carter et al., 2002; Borovecki et al., 2005; Papalexi
et al., 2005; Strand et al., 2005; Valenza et al., 2005). One such
example is the testicular atrophy and reduced fertility observed in
transgenic mouse models for HD (Papalexi et al., 2005; Van
Raamsdonk et al., 2005) together with defects in spermatogenesis
seen in mice depleted of wild-type huntingtin (Dragatsis et al.,
2000). Interestingly, we detected increased REST/NRSF occu-
pancy of the RE1/NRSE associated with the gonadotropin-
regulated testicular RNA helicase (GRTH/Ddx25) gene, a protein
essential for spermatid development and completion of spermat-
ogenesis (Tsai-Morris et al., 2004). Together, these data clearly
indicate a widespread neuronal dysfunction in HD caused by
specific disruption of the REST/NRSF regulon.

Finally, to test whether wild-type huntingtin is an essential
protein to maintain RE1/NRSE gene transcription and if loss of
wild-type huntingtin function might contribute to pathogenesis
of HD, we investigated the effect of reduced huntingtin expres-
sion on REST/NRSF occupancy. Here, we provide direct func-
tional evidence that both mutant huntingtin and reduced levels
of wild-type huntingtin both result in the same effects on RE1/
NRSE occupancy and REST/NRSF target gene expression, clearly
indicating that some aspects of HD may be attributed to a loss of
function of wild-type huntingtin, in addition to gain of function
of the mutant allele. We also found that changes in REST/NRSF
occupancy and BDNF gene transcription were significantly exac-
erbated in homozygous Hdh—/— compared with heterozygous
Hdh+/— cells, suggesting a dose-dependent effect of wild-type
huntingtin allele. In addition, because the REST/NRSF regulon is
disrupted when wild-type huntingtin is reduced to <50% of its
normal level, we also suggest that the polyQ tract acts as a dom-
inant negative mutation in the adult brain, ultimately resulting in
the release of REST/NRSF from control by wild-type huntingtin.
Indeed, it is well documented that wild-type huntingtin is seques-
tered into mutant huntingtin aggregates (Dyer and McMurray,
2001; Busch et al., 2003) and possibly cleaved by proteolytic
events triggered by the mutant protein (Zhang et al., 2003). The
fact that a reduction of wild-type huntingtin exacerbates the
pathological behavior of HD mice in the absence of a clear striatal
pathology also suggests that a simple increase in the wild-type
huntingtin allelic dose may not be sufficient to ameliorate disease
symptoms (Van Raamsdonk et al., 2005).

Novel therapeutic strategies should therefore be aimed at re-
storing the activity of the downstream targets of wild-type hun-
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tingtin. We have indeed shown that inhibition of REST/NRSF
function by using a dominant negative form of REST/NRSF re-
stores Bdnf mRNA and protein levels in mutant huntingtin cells.
In particular, the BDNF increase is mainly resulting from the
increased activity of BDNF promoter exon II that is directly reg-
ulated by the RE1/NRSE. Moreover, synapsin-1 and M4 musca-
rinic cholinergic receptor gene transcription, which are driven by
the RE1/NRSE silencer, are increased in HD after treatment with
a dominant negative form of REST/NRSF, suggesting that tran-
scription of several neuronal genes, repressed in the disease state,
can be reactivated by means of this approach. This opens up the
possibility that genetic or chemical inactivation of the aberrant
silencing activity of REST/NRSF may ultimately restore global
neuronal gene transcription in HD.
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