A Sharp Trudinger-Moser Type Inequality for
Unbounded Domains in R"

YUXIANG LI ¢ BERNHARD RUF

ABSTRACT. The Trudinger-Moser inequality states that for functions
u e H&‘n(Q) (Q ¢ R" a bounded domain) with J [Vuldx <11,
Q

one has
J (e ™™ _ 1y dx < ¢|Q,
Q

with ¢ independent of u. Recently, the second author has shown that
for n = 2 the bound c¢|Q| may be replaced by a uniform constant d
independent of Q if the Dirichlet norm is replaced by the Sobolev norm,
i.e., requiring

J (IVul™ + Ju™)dx < 1.
Q

We extend here this result to arbitrary dimensions n > 2. Also, we prove
/-
that for Q = R" the supremum ofJ (e®nlul™™ 0 _ 1y dx over all such
n

R
functions is attained. The proof is based on a blow-up procedure.

1. INTRODUCTION

Let Hé’p(Q), Q = R", be the usual Sobolev space, i.e., the completion of C§°(Q)
with the norm

1/p
Nl = (jguvm” N |u|v>dx) .

It is well known that

HYP(Q) c PV ™-p(Q) ifl<p<n,
H)P(Q) c L™(Q) ifn<p.
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The case p = n is the limit case of these embeddings and it is known that
Hy™(Q) C L9(Q) forn <q < +oo.

When Q is a bounded domain, we usually use the Dirichlet norm

1/n
lullp = (JIVuI”dx)

in place of || ||g1n. In this case, we have the famous Trudinger-Moser inequality
(see [16], [18], [15]) for the limit case p = n which states that

< +00  when & < &y,
(1.1) sup | (MM _1)dx = e(Q, o<)<|

lullp<1-€ = +oco  when & > &y,

where «;, = nwil/_(?_”, and w1 is the measure of the unit sphere in R". The
Trudinger-Moser result has been extended to Sobolev spaces of higher order and
Sobolev spaces over compact manifolds (see [2], [9]). Moreover, for any bounded
Q, the constant c(Q, &t,) can be attained. For the attainability, we refer to [5],
(8], [14], [10], [11], [6], [12].

Another interesting extension of (1.1) is to construct Trudinger-Moser type
inequalities on unbounded domains. When n = 2, this has been done by B. Ruf
in [17]. On the other hand, for an unbounded domain in R", S. Adachi and K.
Tanaka ([1]) get a weaker result. Let

|2

n-2 j
o) =e - > .
j=1

N

The following result was proved by S. Adachi and K. Tanaka:
Theorem A. For any « € (0, &) there is a constant C(X) such that

n/(n—1) n
(1.2 LR”‘I’ ("‘ (¢> ) ax < C o) At

”vu”L"(R”) Hvu”zln(ugn)

foru € H"™(R™) \ {0}.

In this paper, we shall discuss the critical case & = &,. More precisely, we
prove the following result.

Theorem 1.1. There exists a constant d > 0, s.t. for any domain Q C R™,

(1.3) sup J ® (ot lu™m 1) dx < d.
Q

ueHM (Q), lullyin g <1

The inequality is sharp: for any & > Gy, the supremum is + .
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We set

S = sup J ® (0t [u|™ 1) dx,
Rn

ueH"(R"), [[ullg1n gn) =1

Further, we will prove the following result.

Theorem 1.2. S is attained. In other words, we can find a function u €
Hl’n([Rn), with ||1/L||H1,n([Rn) =1, st

S = J & (0t |u|™ ™ V) dx.
Rn

The second part of Theorem 1.1 is trivial: Given any fixed & > o, we take
B € (atn, ). By (1.1) we can find a positive sequence {uy} in

{u e Hy"(By) | J |Vu|"dx = 1},
By

such that
. n/(n-1)
lim PLLY = +o00,
k—+o00 JB,

By Lion’s Lemma, we get ux — 0. Then by the compact embedding theorem, we
may assume || ukllrr(p,) — O for any p > 1. Then,

J (Vg™ + g™ dx — 1
[RV!

and

u n/(n-1) B
(X(Hu ”k ) > Bul/ =D
kllmin

when k is sufficiently large. So, we get

) u n/(n-1) ) n/(n-1)
lim P | x (*k ) dx = lim (ePux —1)dx = +oo.
k—+o0 JRn Ml o k—+o0 ) B,

The first part of Theorem 1.1 and Theorem 1.2 will be proved by blow up
analysis. We will use the ideas from [10] and [11] (see also [4] and [3]). However,
in the unbounded case we do not obtain the strong convergence of uy in L™ (R"),
and so we need more techniques.

Concretely, we will find positive and symmetric functions ux € Hé’n (Br,)

which satisfy
[ vundm + ey ax =1
BRk
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and

JB o (Bruy’ ") dx = sup ®(Brlv ™M) dx,
Ry

fig, (19014101 =1, veH}" (Br,) ~ Pk

Here, B is an increasing sequence tending to &y, and Ry is an increasing sequence
tending to +oo.
Furthermore, uy satisfies the following equation:

1/(n=1) g n/(n-1)
—div | Vug|" 2 Vug + ult ! = Uk " (Bruy )
k A ,

where Ay is a Lagrange multiplier.
Then, there are two possibilities. If cx = max uy is bounded from above,
then it is easy to see that

n-1,n
lim (q)(ﬁkuil/(nl)) _ 'Bkuk) dx

k—+0 JRn (7’1— 1)'

—-1,,n
_ n/(n-1)y _ M
JRH <¢(o<nu ) n_ 1)!> dx,

where u is the weak limit of uy. It then follows that either
J d)(BkuZL/("_l)) dx  converges to J ®(oeu™ My dx
R7 R7

or

If cx is not bounded, the key point of the proof is to show that

_nﬁ lﬁkci/(nfl)(uk(rkx) —Ck) — —nlog(l + Cnrn/(n—l))’

locally for a suitably chosen sequence 7 and with

o <wn1)1/(1’l—1)
n n ]

and that
1/(n-1)
Ck

uy — G,
on any Q cC R™\ {0}, where G is some Green function. This will be done in
Section 3.

Then, we will get in Section 4 the following result.
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Proposition 1.3. If S cannot be attained, then

-1
S < min{%, MeanAﬂﬂ/er...H/(n_l)},
n-1" n

where A = limy_o(G(¥) + (1/xy) logr™).
So, to prove the attainability, we only need to show that

n-1

S > min {ﬁ, %eamﬂﬂ/ﬂ...ﬂ/m—l)} )

In Section 5, we will construct a function sequence u¢ such that
J <1>(0( un/n 1))dx> eanA+1+1/2+ +1/(n-1)
n
when ¢ is sufficiently small. And in the last section we will construct, for each

n > 2, a function sequence U such that for & sufficiently small

n—l

n/(n-1)
J P(xpuyg ) dx > 7( D1

Thus, together with Ruf’s result of attainability in [17] for the case n = 2, we
will get Theorem 1.2.

2. THE MAXIMIZING SEQUENCE

Let {Rx} be an increasing sequence which diverges to infinity, and {Bx} an in-
creasing sequence which converges to ;. By compactness, we can find positive

functions uy € Hé‘n(BR,(), with J (IVug!™ + uy) dx = 1, such that

BRk

J ®(Brul ™y dx = sup J ®(Brlv MMy dx.,
Br

k Jig, (IVVIM+lvI")=1,vEHy " (Bry)
Moreover, we may assume that

J <1>(3u"/"1)dx J (B u”/("l)dx

Is increasing,.
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Lemma 2.1. Let uy as above. Then
(@) Uk is a maximizing sequence for S;
(b) ux may be chosen to be radially symmetric and decreasing.

Proof. (a) Let n be a cut-off function which is 1 on B; and 0 on R™ \ B,.
Then given any @ € H'"(R") with J (IV@|"™ + |@|") dx = 1, we have
Rn

e fonG) o]+ 1 3)e

Hence for a fixed L and Ry > 2L

) n/(n—-1) n(x/L)@
J (B" () dxsjgﬂq) S =y

n
>dx—»1, as L — +oo,

n/(n-1)
) dx

< J @(Bkuf/("fl))dx.
Br,

By the Levi Lemma, we then have

J, @ (o

Then, letting L — + 00, we get

P
T(L)

n/(n-1) H
)dxs lim J ®(Brup’ ™Y dx.

k—+co

B0ty | @M MDYy dx < Jim | @ (B w1y dx.
[Rn

k—+oc0 JRN

Hence, we get

lim J o (Bruy’ " V) dx

k—+o0

= sup J @ (ot v M0 dx.

Jgn (IVV [P +|v|") =1, vEHL (RM)

(b) Let u; be the radial rearrangement of uy; then we have

T,?:=J (IVUug ™ +ug )dx<J (IVur|™ + up)dx = 1.
Bg

k Bry,

It is well known that T = 1 iff uy is radial. Since

J o (Brui™ ™) dx =J o (Brup ") dx,
BRk
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we have

n/(n-1)
Ui n/(n-1)
JBRkQJ(Bk(Tk) ) dx>J S (Bruy, )dx

Hence Tx = 1 and

J (Bru™ ") dx = sup J ®(Brlv ™MDy dx.
g, (IVVI"+IvIM)=1,vEHy" (Bry)
So, we can assume Uy = ur(|x), and ug (v) is decreasing. O

Assume now Uy — u. Then, to prove Theorems 1.1 and 1.2, we only need to
show that

lim | oBul" ") dx —J ® (o u™ " Y) dx.
RN

k—+o0 JRN

3. BLOW UP ANALYSIS

By the definition of ux we have the equation

1/(n—1) 3s n/(n-1)
. _ _ Uy O’ (Bruy )
(3.1) —div|[Vur|" 2 Vug +up ! = A ,

where Ay is the constant satisfying

Ak:J uz/n lq) (Bx un/(n U)dx
R

k

First, we need to prove the following result.

Lemma 3.1. infy A > 0.
Proof. Assume Ax — 0. Then

J updx < CJ " Ve (Bru "y dx < CAx — 0.
R Rn

Since uk (|x|) is decreasing, we have uy (L)|Br| < J uy <1, and then
By

n
WL’

(3.2) ur(L) <
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Set € = n/(wyuL™). Then ux(x) < & for any x ¢ By, and hence we have, using
the form of @, that

J o(Brul " Vydx < C ulldx < CAg — 0.
R™\By R™\BL
And on By, since uy — 0 in L4(By) for any q > 1, we have by Lebesgue
lim J ®(Bru)’ ™) dx

Br

k—+0c0

< lim [ Cui‘/("_l)CI)’(Bkuf/("_”)dx+J
By

k—+o0 {x€eBr|lug(x)=<1}

®(Brup' ™) dx]

< lim CAk+J ®(0)dx = 0.
Br

k—+0co
This is impossible. O
We denote cx = max ug = uk(0). Then we have the following result.

Lemma 3.2. If sup, cx < +0oo, then

(1) Theorem 1.1 holds;
(ii) if'S is not attained, then

ol
(n-1n0

S <

Proof. If sup, ¢k < +o0, then Uy — u in CL.(R™). By (3.2), we are able to
find L such that ux(x) < € for x ¢ Br. Then

J o (Brup’ ") - B Tug dx <C w1l qx
R™\B; k (n-1! = Jrmp, K

< Cs"z/(”*l)*”J ul dx
< Cem/m-D-m,

Letting £ — 0, we get

i win-),  BE'ug
koo Jn (q’(ﬁ"”k " - 1)!) ax

-1n
_ n/(n-1)y _ O(ﬁ u
JW <<I>(cxnu ) 7(11 — 1)!> dx.

Hence
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(3.3)  |lim | @B up! "y = chb((xnu”/(”’”)dx

+ o lim (u —u")dx
M —=1) k-t Jrn k )
When u = 0, we can deduce from (3.3) that

O(" 1
(n—DU

S =<

Now, we assume u # 0. Set

J uy dx
n_ |ijm 2R

T .
ke J u" dx
Rn

By the Levi Lemma, we have T > 1.
Let it = u(x/T). Then, we have

J IVfLI”dx:J [Vu|"dx < hm [Vug|™dx,
Rn Rn

k—+co JRN

u"dx = T”J utdx = lim uy dx.
R” R" k—+oo JR1
Then
(|Vu|"+u”)dx< hm (|Vuk|”+u’,j)dx=1.

k—+o0

Hence, we have by (3.3)
S > J (o, ™™Dy dx

=" P(axu™ ™ Vydx
Rn

1
= H (uu™ ™ Vydx + (T - 1)
Rn

o=
rn (n—1)!

u" dx]

n—1
+ (T -1) JW (@(anu”/(””) (1:(— i ”) dx

- limJ ®(Bruy’ ™) dx

k—+o00 JR

n-1
+(t"-1) J[Rn (@(anu"/(””) (1:(_ DI ") dx =
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—S4 (T 1) j B(cnu 1) - SH )
Rn (n—-1)!

Since ® (o u™ ™= D) — (o*~1/(n — 1))u" > 0, we have T = 1, and then

S=1 ®(xu™"V)dx.
Rn
So, u is an extremal function. O
From now on, we assume cx — +00. We perform a blow-up procedure: We define

n Ak

v = .
k — /(n-1)
T o™

By (3.2) we can find a sufficiently large L such that ux < 1 on R" \ Br. Then
| 1V - wwmax <1
L
and hence, by (1.1), we have
J e On [ (=g (L) 7]V =D C(L).
Br

Clearly, for any p < &y, we can find a constant C(p), such that

pu;;l/(n—l) < ot [ (ug — uk(L))Jr]n/(nfl) +C(p),

and then we get
J eru' "V dx < C = C(L, p).
Bp

Hence,
Age~ Beeg " o= (B2
X [J ug/(n—ﬁqy(ﬁkuz/(ml))dx +J u?”””@’(ﬁkuﬁ”””)dx]
R™\By "
[ f(n-1) _
<C ull dx e~ P/ +J o Bh 2 1) g
R™\Br, B,

Since u converges strongly in L9(By) for any q > 1, we get

n/(n-1)

Ak < CeBr/2)cy
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and hence
n/(n-1)

VIZL < Ce~Br/2¢cy
Now, we set
Uk (x) = ur(rgx),

n _
wi(x) = mﬁkci/m 1)(Uk - Ck),

where vy and wy are defined on Qi = {x € R" | xx € B;}. Using the definition
of 1" and (3.1) we have

1/(n-1)

n-1
T n-2 Uk n 5k(v’:l/(n—1)_cil/(n—1)) n.n
div | Vwi " “Vwy = T/(WU (771 — 13k> e +0(rgey).

By Theorem 7 in [19], we know that oscp, w < C(R) for any R > 0. Then
from the result in [18] (or [7]), it follows that [|[wi|lc1sg,) < C(R). Therefore
wy converges in ClL, and vg — cx — 0 in CL.

Since
_ _ Vg — o\ D
v’?/(n 1 :C]?/(n 1) <1 L Yk k)
Ck
_ n vg-—=c¢ 1
=c,?/(" D4 =2 Zk=%% 1o 11/,
n-1 ck C
we get Bk(v,?/(nfl) - C;:/(nfl)) — w in CI%C, and so we have
) ney, \*!
(3.4) —div|Vw|" ?Vw = (7") e,
n-1
with

w(0) =0 = max w.

Since w is radially symmetric and decreasing, it is easy to see that (3.4) has
only one solution. We can check that

w(x) = —nlog(1l + culx|™™ V) and eV dx =1,
Rn

where ¢, = (Wn_1/n)Y "D Then,

'I/L;Z'/(nil) n/(n-1)

(3.5) lim lim PLIL dx = lim e"dx = 1.
L—+00 k—+00 Bry, Ak L—+0c JB;

For A > 1, let u‘,? = min{ug, cx/A}. We have the following result.
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Lemma 3.3. For any A > 1, there holds

1

(3.6) lim sup Rn(qu?V‘ +ug ™) dx < e

k—+0co

Proof. Since [{x | ux = cx/A}| lck /A" < J uy <1, wecan find a
{ur=cr/A}
sequence px — 0 such that

Ck
{x | ug = Z} C B,
Since uy converges in L? (B;) for any p > 1, we have

lim qul’” dx < lim uf dx =0,
k—+oo J {ur>ci/A} k—+oo J {ur>cy/A}

and
lim (u —%)Jrupdx—o
k—+00 JRn k A k h

forany p > 0.
Hence, testing Equation (3.1) with (ux — cx/A)™, we have

n )t
Flur—=) ult') dx
(k A) k )

1/(n-1)

tu n/(n-
:[ (”k‘c_k) ko™ dx 4 0(1)
Rn Ak

1/(n-1)
ca\tu n/(n-1)
zJ (uk——k) kK eP T dx +0(1)
Bir, A Ak

1 -1
:J Vr — Ck/A (Uk — Ck n 1) ftn )ewk+o(1)dx+0(1)_
Br Ck Ck

Hence

.. Ck *
lim inf v ( - —)
Ilchg R™ (‘ Uk A

Letting L — +00, we get

n +
_C_k n-1 A_lj w
+ (uk A) Uy ) dx > A e dx.

Ck+n
lim inf v( ——)
pmine [ (17 (e
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Now observe that

J%nUVufP1+|uﬁW)dx
+ |7 +
JW (‘V(uk—%) + (uk—%k> ug—l) dx

C +
- J (uk——k) ug‘ldx—J u’k“dx+J lug ™ dx
R™ A {ug>ci/A} {ux>cr/A}

1-— (1 —%) +o0(1).

Il
—
I

IA

Hence, we get this lemma. O

Corollary 3.4. We have

lim (IVur™ + up)dx =0,
k—+c0 JR™\Bs

for any 6 > 0, and then u = 0.

Proof. Letting A — +oo, then for any constant ¢, we have
J (IVurl™ +ug) dx — 0.
{ug=c}

So we get this corollary. O

Lemma 3.5. We have

(3.7) klerflm Jugn <1>(Bku2/("71)) dx

< lim lim (eﬁk”:/(nil) —1)dx = limsup

k
L—+00 k—+co JBpy, C]?/(n_l) ,

k— o0
and consequently

A n/(n-1)

c
3.8 — — +o00 and k
(3.8) cr and - sup =

< 400,
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Proof. We have

J @(Bkuﬁ/("_l))dx
Rn

< J @(ﬂkuz/("_l)) dx + J d)’(Bkuz/("_l)) dx
{up=cy/A} {ur>cr/A}
Ak g/ /(n-1)
< ®(Br(uH)™ M=y qx + AW (=D J & (Bruy "V dx.
J[R" B k c;{l/(n—l) R Ak k

Applying (3.2), we can find L such that ux < 1 on R™\B;. Then by Corollary
3.4 and the form of ®, we have

(3.9) lim ®(pBr(u)™ ™ V)dx < lim C(p) upgdx =0
k—+co JR™\By k—eco R™\BL
forany p > 0.

Since by Lemma 3.3 limsup, ., J (IVug ™ +u ™) dx < 1/A < 1 when
[Rn
A > 1, it follows from (1.1) that

sup epﬁk“uf*uﬂlﬂ*VW"”)dx < + o
k JBL

for any p’ < AV _Since for any p < p’
puH™m D < p'((ug —ur (@)WY + C(p,p'),
we have

(3.10) supj B(pBru)™ ™ V) dx < +oo
k JBL

for any p < AV™=D_ Then on By, by the weak compactness of Banach spaces,
we get

k—+co

lim J q>(3k(u;‘)"/<"-”)dx:j ®(0)dx = 0.
Br Br
Hence we have

lim J @(Bku’,f/("fl))dx
R™

k—+0co0
Ak /Y /(n-1)
< lim lim A™(-D J & (Bru'" " ydx + Ce
L—oco k—+o0 C;(/"/(nfl) Br )\k Bk k
A
_ 1 n/(n-1) k
= lim A oyt CE

k—+co Cy
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As A — 1 and € — 0, we obtain (3.7).
If Ak / ck were bounded or sup,, C;:/(nfl) /Ak = +o0, it would follow from (3.7)
that
sup (U™ D) dx = 0,
Jan (IVV|n+|v[n) dx=1,veHln (Rn) ¥ R"

which is impossible. O

Lemma 3.6. We have that ck(u}(/("_l)/Ak)¢’(Bku£/<n_l)) converges to O
weakly, i.e., for any @ € D(R™) we have

1/(n-1)

Jim | @ats o (Bruy! ™) dx = @(0).

Proof. Suppose supp @ C B,. We split the integral

1/(n-1)

Ckxu _
J P (B! V) dx
B, Ak

< J - J - J .
{ur=ci/AN\Bry, Br {ur<ci/A}

Tk

= Il + 12 + 13.
We have
n/(n-1)
h<Alple | M ) dx
\Brr, Ak
~Allgle(1- | emreiax),
By
and
n _ 1/(n-1)
L= J (p(TkX)Ck(Ck (alj(nfl’;)) ewkto() qx
B C
L k

=@(0) . eYdx +o(1) =@(0) +o(1).

By (3.9) and (3.10) we have

j S(pBrluf V1) dx < C
Rﬂ
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forany p < AY"=D_ Weset 1/q + 1/p = 1. Then we get by (3.8)

ul/(nfl)
I; = J pcr—K @ (Bru ") dx
{ugp=cr/A} Ak

1/(n-1

Ck An/(n-1)
< 2@l 1 g 1B gy — 0
Letting L — 400, we deduce now that
1/(n-1)
) Cru _
lim ke o' (Brul ™) dx = @(0). o
k—+co JRN Ak

Proposition 3.7. On any Q € R™ \ {0}, we have that c,lc/ ("_1)uk converges to

G in CH(Q), where G € CyS (R™ \ {0}) satisfies the following equation:
(3.11) —div|VG|" VG + G = §,.

Proof We set U = ¢;'"™ Vuy, which satisfy by (3.1) the equations:

Ckull(/ (n-1)

, /(n-1)
e ' (Bruy ).

(3.12) —div|VU|"?VU + U ! =
For our purpose, we need to prove that
| wirax < cap,

Br

where C(q,R) does not depend on k. We use the idea in [20] to prove this
statement.
Set QO = {0 < Uy < t}, U,E = min{Uy, t}. Then we have

J (IVULI™ + |UL™) dx < [ (~ULA U + ULURY)
Q¢ R
Ckullc/(nfl)

, /(n-1)
" ' (Bruy'" ) dx < 2t.

= Ut
gn K

Let n be a radially symmetric cut-off function which is 1 on Bg and 0 on BSj.
Then,

J VUL dx < Ci(R) + G2 (R)¢t.
Bar
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Then, when t is bigger than C; (R)/C2(R), we have
J VU™ dx < 2C5(R)t.
Bar
Set p such that Ux(p) = t. Then we have

inf“ [Vv|"dx | v € Hy" (Bog) and v | = t} < 2G5 (R)t.
Bar

467

On the other hand, the infis achieved by —t log|x|/(2R)/log(2R/p). By a direct

computation, we have

Wn_1 tn—l
(log(2R/pn-1) = 2R

and hence for any t > C;(R)/C2(R)
[{x € Bog | Uy = t}| = |B,| < C3(R)e AR

where A(R) is a constant only depending on R. Then, for any 6 < A,

J elkdx < > u({msUksm+l})e5(m+1)
Br

m=0

o0
m=0

Then, testing Equation (3.12) with the function

| 14 2(Ux — Ug(R) ™
BT (U - Uk(R)*

we get

J | VU™ dx
B (1 + Uk — Ur(R))(1 + 2Uk — 2Uk(R))

1 -1
<log2J U g a0 g
B Br Ak k

1+2(Ux — Uk(R))

_ n—1
JBR Vo 10, — ter)) S

C.
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Given q < n, by Young’s Inequality, we have

J |VU|Tdx

Br
VU™ T

= ‘[BR |:(1 + Ux — Ur(R))(1 + 2Uy — 2Uk(R)) + (1 + U (1 +2U)) :|dX
VU .

= JBR [(1 + Uk — Uk (R)) (1 4+ 2Ux — 2Uk(R)) +Ce k] dx.

Hence, we are able to assume that Uy converges to a function G weakly in H'¥ (Bg)
for any R and p < n. Applying Lemma 3.6, we get (3.11).
Hence Uy is bounded in L(Q) for any g > 0. By Corollary 3.4 and Theorem

A, eBi’™" is also bounded in L9(Q) for any q > 0. Then, applying Theorem
2.8 in [19], and the main result in [18] (or [7]), we get |[Ukllcreq) < C. So, Uk
converges to G in Cl(Q). O

For the Green function G we have the following results:

Lemma 3.8. G € Cllo’éx([R" \ {0}) and near O we can write
(3.13) G = —o%logT"-I—A—f—O(T"log"?’);
n
here, A is a constant. Moreover, for any 6 > 0, we have

lim (Ve " g™ + (e " D)™ dx = J (IVGI™ +|GI™) dx
R™\Bs

k—+o00 JR"\Bs
= G(6)(1 - J G"! dx).
Bs

Proof. Testing Equation (3.12) with 1, we get

|n—Za_G

el n-1 n-1 _
Wnot (~G' )"y LBVIVG %

=1- J G" ldx.
By
Noticing that | G" !dx = O(r?) holds for any p < n, we get
By

G =-" toar.

Xnv

Then, we get G = —(1/ ) logr™ + O(1), and then JB Gl = 0(rmlog" ),

hence

G = ——"— 100" og" " 7).
¥
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Then, we get (3.13).
We have

(3.14) J WD (B! "y dx < € up dx — 0.
[R”\Bﬁ R™\Bs

Recall that Uy € Hy™ (Bg,). By Equation (3.12) we get

n/(n-1)

J (VU™ + U) dx = J uz/(n—l)q),(ﬁkuz/(n_l))dx
R™\Bs R\ B

Ak

—J aUka |"=27, dS.
oBs 0N

By (3.14) and (3.8) we then get

lim (VU™ + UM dx = — lim J @NU " 2Ui dS
k—+co JR1\Bs k—+co JOBs on
= —G((S)J —IVGI”’ZdS

G(6)<1 - JB G’de). o

We are now in the position to complete the proof of Theorem 1.1: We have

seen in (3.9) that

¢(Bku£‘/("_l))dx <C.
R™\Br

So, we only need to prove on Bg,
n/(n-1)
J PLILR dx < C.
Br

The classical Trudinger-Moser inequality implies that

J ePrlu—uc RN gy o = C(R).
Br

By Proposition 3.7, ug(R) = O(l/c,i/(nfl)), and hence we have
w7 < ((up = ur (R + ur(R))™ =
< ((ug —ur(R) M= 4 Cy.

Then, we get
Jn-1)
J ePru™ T < 7, O
Br
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4. THE PROOF OF PROPOSITION 1.3
We will use a result of Carleson and Chang (see [5]):
Lemma 4.1. Let B be the unit ball in R". Assume that Uy is a sequence in
Hy™ (B) with qukmdx = 1. Ifuy — 0, then

limsup (eanlukln/‘"’” ~1dx < |B|e1+1/2+---+1/(n—1)_
k—+o0 JB
Proof of Proposition 1.3. Setu),(x) = (ur(x)—ur(8))*/IVukllin(ss) which
is in Hé'n(Bg). Then by the result of Carleson and Chang, we have

(n—

lim sup e ! < |Bs|(1 + el t1/2+:+1/(n=1)y

k—+o0o JBs

By Lemma 3.8, we have

J (Ve ™ D™ + (/" V)™ dx — G(6)<1 -] 6! dx),
R™\Bs

Bs

and therefore we get

(4.1) J IVukI”dle—J (IVuk|”+uﬁ)dx—J uy dx
Bs R™\Bs Bs

G() + ()

n/(n-1) 7’
Ck

=1

where limg_o limg— 40 €k (&) = 0.
By (3.9) in Lemma 3.5 we have

lim lim e 4y = |Bpl,
L—+00 k—+00 Bp\BLy,

for any p < 6. Furthermore, on B, we have by (4.1)

n/(n-1)
Uy

1/(n-1)
(1 —(G(5) + ek(é)))

n/(n-1)
Ck

_ . m/(n-1) 1 G(6) + &k (d) 1 -
= Uy (1+n_1 C]?;l/(nfl) +0 7C2n/(n71) =

(u;()n/(nfl) <
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— u n/(n-1) — —
=y G(6)< ") +0(c™M™ )
n Ck

=u

n/(n-1) log o™
k n-1Doty’

Then we have

rn/(n-1)

lim lim ePri dx
L—+0 k—+0o Bp\Ber
<0(5™) lim lim P dx — |B,JO(5™™).
L—+00 k—+o00 BP\BLVk
. ’ . rn/(n-
Since uj, — 0 on Bs \ By, we get lim (ePrttr B 1)dx = 0, then
k—+o00 Bs\B,
0< lim lim (B _ 1) dx < |BylO(87M).
L—+00 k—+0c0 Bs\BLy,
Letting p — 0, we get lim lim (eﬁk”;»n/(n —1)dx = 0. So, we have

L—+oo k=+c0 JBs\Byy,

hm hm (eﬁku’ n/(n-1)

~1)dx < el+1/2+---+1/(n—1)|36|_
L—+00 k—+0c0 Bry,

Now, we fix an L. Then for any x € By, , we have

n/(n-1) 1/(n-1)
u
B un/(n 1) Bk <|7k) (JB IVukI”dx)
5

[Vurllzn(zs)

n/(n-1) 1/(n-1)
_Bk< ukiw) (J |Wk|ndx)
Bs

IVurllznzs)

(using that ug (8) = O(1/¢/ "™V and || Vurllnsy = 1+ 0(1/¢;/"™D))

n/(n-1)
, 5 1 n 1/(n-1)
= PBr | up +ur(d) +0 NCYSIICY) . [Vug|™dx
Ck )

(6) ! n/(n-1) G(6) (5) 1/(n-1)
’ Uk + &k
=BV 1+ 0| 5 1 - o

uj, Cin/( 1) C]‘?/(n 1)

B yn/(n-1) n_ ug(o) 1 G(6) + &(9) 1
= By [l+n—1 u, n-1 e/ +O( )>]
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It is easy to check that

u, (rx
%al and  (up (1x) Y D (8) — G(S).
k
So, we get
lim lim (P _ 1y ax
L—+00 k— 400 Ber
= lim lim eanG(é)J (eBku;("/‘"*” ~Ddx
L—+00 k—+00 Bir,

< p%nG(8) gn Wn-1 pl+1/2+4-+1/(n-1)
n

— pOn(~(1/atn) log§"+A+0(5" log" 8)) gn Ln=1 ,141/2+4---+1/(n-1)
n

Letting 6 — 0, then the inequality above together with Lemma 3.2 imply Propo-
sition 1.3. O

5. THE TEST FUNCTION 1

In this section, we will construct a function sequence {us} C H'™(R") with
litellgin = 1 which satisfies

Wy—
J <I>(o<n|ug|"/("‘”)dx> %eanA+1+1/2+...+/l(n_l)'
RTL

for € > 0 sufficiently small.

Let
(n— 1)10g<1 +cn|x/g|n/(n71)> A,
€~ CUmn-1) , x| < Lg,
Ue = XKn
G(lx1)
Ccl/in-1)" Ix| > Le,

where A¢, C and L are functions of € (which will be defined later, by (5.1), (5.2),
(5.5)) which satisfy

(1) L— +o0, C— +oo,and Le - 0,as € — 0;

i C-((n- l)log(l + LV M=DY L AL o, YD = G(Le)/CY/ (-1
(iii) logL/C"/(”’l) —-0,as £—-0.
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We use the normalization of U, to obtain information on A¢, C and L. We
have

1
n n _ n n
JW\BLS(IVuEI +ul)dx = ) (JBEE VG| dx + JBEE G dx)

_ 1 n—zaG
= mjagk G(LE)|VG| %dS
G(Le) —G(Le) | G"'dx
_ Bre
- cnl/(n-1)
and
n/(n-1) -1
7 gx = LJ“‘L ut
Lm Vel dx X, /(=1 ], (I+un du
. n-1 JCHL”“”‘” (L+w -t
oy C/(n=D) (1+u)n
. on-1 "f ck (-1n-1-k
@, Cn/(n-1) & n-—k-1
n-1 1
- - /(n—1)
o, ChI(n-1) log(1 + cxL™ ") + 0 <Ln/(n—1>cn/(n—1>>
__om-1 (1] 1
B Y L G T S
n-1 n/(n-1) 1
O Cn/(n 1) log(l T Cn L )+ o (Ln/(n—l)cm/(n—l))’
where we used the fact
ek (—1yn-1-k 1 1
Z n-k-1 _1+2+”'+n—1'

It is easy to check that

J [ugl™dx = O((Le)"C™logL),
BLE
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and thus we get

J (IVue|™ +u)dx
R‘I’L

L {—(n—l)(1+l+---+

= &, Cn/n-D 3 n_ 1) + 0nA

+ (n—1)log(1 + Cp LV =1y log(Le)™ + (p},

where @ = O ((LE)"C" logL + (L&e)" log" Le + L‘”/("‘l)).

Setting J (IVue|™ + ul) dx = 1, we obtain
Rn

(5.1) o, CMM-D =

1 (1+c, LM (n-D)n-1

— l — n

= —(n—l)(1+2+ + _1>+0(nA+log In loge™ + @
— p— p— l T n71 —_— n

= —(n 1)(1+2+ + _1>+O(nA+log loge™ + @.

By (ii) we have

o CM Y — (= 1 log(1 + cuL™ ™) + Ag = aG(Le)

and hence
1 1 "
—(n—1)<1+§+---+n_1)+can—log(Le) + @+ A = xG(Le);
this implies that
(5.2) A——(n—1)<1+l+---+ ! )+
' €= 2 n-1)"%

J(n-1)
Next, we computeJ enlue™Y 4y

BLE
Clearly, (t) = |1 - t =D 4 (m/(n - 1))t is increasing when 0 < t < 1
and decreasing when t < 0; then

[1—t|™n=D > - when |t]| < 1.

n
—t,
n-1



A Sharp Trudinger-Moser Type Inequality 475

Thus we have by (i), for any x € B,

(5.3) ouulb =

(n—1)log(1 + culx/e[™M=1) + A, n/(n-1)

o, C1/(n=1)

o, CM (=D ]

%

o, C(n=1) (1 __n (n—1)log(1 + cplx /e (n=1))y +A£>
" n-1 o(nCn/(nfl) .

Then we have

J eo(n\ug\”/‘”‘” dx > J eanC”/‘”“’—nlog(1+cn|x/s|”/‘”‘”)—n/(n—l)Ag
Bre

Bre
_ eanc"“"-”—(n/(n—l))AgJ & dx
B (1 + cplx|n/(n=1))n
c n/(n-1) n-2
_ eancn/(n—l)f(n/(n—l))Ag (n- l)gnj " u’i du
0 (I+u)n

du

nLn/(n—l) _
= o CM M —(n/(n=1)Ae (7 _ 1) gn JC (w+1)-1)n>2
0 (1+u)r

= eD(nCn/(n_l)*(7”'/(7’1*1))/\587”'(1 +O(L M (n=1)y)y

= EnloanArial2e /D) 4 0 ((Le)CM logL + L™/ "1 4 (Le)" log” Le).
n

Here, we used the fact

Then

®(ouu MDY dx > Wn-1 pOnA+1+1/2+---+1/(n-1)
Bpe ¢ n

+0((Le)"C™logL + L™ + (Le)" log" Le).

Moreover, on R™ \ By we have the estimate

O(n—l n
J ®(ouu™ ™y dx > ”7J
R™\By, (n— D! Jrm\By,

G(x) dx,

Cl/(n=1)
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and thus we get

G4 | elur™ N ax >

n

Gx) dx

n—-1
Wn-1 CnA+1+1/24 41/ (n=1) | &n
Cl/(n-1)

> e
n (n—=1) Jrn\B,

+0((Le)"CMlogL + L™ + (Le)" log" Le)

— On-l A +141/2+- 41/ (n-1)
n
ol

+ (n - 1)ICn/(n=1)

[ LR"\BR |G (x)|"™dx

n/(n-1)
/(n—-1) /(n—1) n
+O((LE)"C"+" "YlogL + LR +CM I (Le)" log LE)].
We now set
(5.5) L = —loge;

then Le — 0 as € — 0. We then need to prove that there exists a C = C(¢) which
solves Equation (5.1). We set

1 1
- _ n/(n-1) _ _ [T
f(t) ot (n 1)(1+2+ +n—1)

Wy -1
n

+ opA + log —loge™ + @,

Since

2 n/(n-1)
f((—alog6"> ) =loge" +0(1) +@ <0

n

for € small, and

Dogen) ") = “Liogen 4 o1 0
f(<_20(n 0g£> )——2 oge" +o(l) + @ >

for & small, f has a zero in

1 I . (n-1)/n 2 1 \ (n-1)/n
((-E ng ) ,(-o(—n ng ) )
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Thus, we defined C, and it satisfies o, C" "1 = —loge™ + O(1). Therefore, as
& — 0, we have

logL

cnrnn — O

and then
(Le)ynC /=D Jog ] 4 c/n=Dp—n/(n=1) 4 cn/(=1) ([ £)" [og" Le — 0.

Therefore, (i), (ii), (iii) hold, and we can conclude from (5.4) that for € > 0
sufficiently small

Wn-—
d(x u?/(nfl)) dx > =" 1e(an+1+1/2+---+1/(n71)'

6. THE TEST FUNCTION 2

In this section we construct, for n > 2, functions u¢ such that

Ue n/(n—l)) o(n—l
P | x <7) dx > n___
Ju&n (" el i (n—-1)!

for € > 0 sufficiently small.
_xyen!n-
Let €™ = e~ %€ and

-

c |x| < Le,

—nlog(x/L)

B — < <
Ue =1 et/ 1D Le < |x| <,

0 L < |x]|,

L

where L is a function of € which will be defined later.
We have

j Vel = 1,
Rn

and

wn_lnnLn Jl

Wy—
n _ n-1 n n
JW urdx = E— c"(Le)™ + ot eniD)

r"og" rdr.
&
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Then
u n/(n—-1)
J ) <(xn <75) dx
R™ luellpin
_ n w M= gy
ot 1 J{Rn Uy dx N afﬁ JW\BLE £
T (n-1)! n! n/(n-1)
( Moy J[Rn ug dx (1 + JRH ult dx)
oog! ol 1
T m-1! m-D!, w, Wy n"L" (!
o o L+ et + cxf?cjl/(n—n L v Hlog"rdr

2
n\" /(n—=1) (1 2 B
n wn,an/an/m_l)z (_) J -1 logn /(n 1)1,
Cn Xn €

Nl 1
n (1 + Ol on ey 4 W17 L”
n

n/(n-1)°
n-1 n
(lelcn/(n—l) . r log Td?’)

We now ask that L satisfies

ch/(n-1)
(61) T -0, ase—-0.

Then, for sufficiently small €, we have

ol 1
B — | W WL (!
(n=Dt —Len(Ley™ + ;17J r"og"rdr
n o/ =1
2 —
Wna L\ e
n! © npn (1 n/(n—-1)
n-1 n n, Wn1N n-1 n
(1 M (Le)™ + P L " log" rdr
ch/(n-1)

> BlL‘l’Lf‘l’Lz/(‘VLfl) _ B2
> in

Cn/(nfl) L2n7n2/(n—1)
= B; — - B
n cn/(n-1)

cnl(n-1) L(n/(n=1))(n-2)
= Bl — - B2 y
n cn/(n-1)
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where By, B, are positive constants.
When n > 2, we may choose L = bcl/(=2): then, for b sufficiently large, we

have
L(n/(n-1))(n-2)

B - B = Blb(n/(nil))(niz) - B, >0,

cn/n=1)

and (6.1) holds. Thus, we have proved that for € > 0 sufficiently small

u n/(n—-1) o1
o | x o dx > "7_
JR" ( " (IIusllem) ) (n—1)!
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