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We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice

relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM)

Eu(hfac)3NITEt and the magnetically frustrated Gd(hfac)3NITEt. The NSLR as a function of external

magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by

a long time persistence of the decay of the two-spin correlation function due to the conservation of

the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also

investigated in Heisenberg AFM molecular rings. In both Cr8 closed ring and in Cr7Cd and Cr8Zn

open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spec-

tral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecu-

lar anisotropic interactions prevents a detailed analysis of the spin diffusion regime. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916022]

I. INTRODUCTION

The problem of the spin dynamics in low-dimensional

magnetic systems is of fundamental interest since, for

instance, one dimensional (1D) ones are good models to

obtain exact solutions and/or numerical results to be com-

pared with the experiments, particularly in the paramagnetic

phase at high temperature. In an Ising chain, there is no

intrinsic spin dynamics for lack of transverse components of

the spin; therefore, the dynamics are introduced ad hoc with

a statistical flipping probability for the spin leading to the

well-known Glauber model.1 On the other hand, for an iso-

tropic Heisenberg chains, the spin dynamics can be calcu-

lated from the model Hamiltonian. Early numerical

calculations on finite spin segments and rings indicated a

persistence at long time of the decay of the two-spin correla-

tion function (CF).2 This result was later confirmed by ana-

lytical solutions of a 1D Heisenberg chain, which showed a

diffusive behavior at long times of the two-spin CF due to

the conservation of the total spin value S.3–5 Since the long-

time diffusive spin motion gives a decrease as t�d/2 of the CF

(d¼ dimensionality), it follows the striking result that in 1D

systems there is a divergence of the spectral densities at zero

frequency of the spin fluctuations. In fact, the long time slow

decay (i.e., (Dt)�1/2) of the two-spin auto-correlation func-

tion corresponds to a low-frequency enhancement of the

spectral density of the spin fluctuations (i.e., (Dx)�1/2),

where D is the spin diffusion constant. The most direct

experimental verification of the theory comes from the NMR

spin-lattice relaxation rate (NSLR). In fact, the nuclei couple

to the magnetic electrons by the hyperfine interaction and are

thus sensitive to the fluctuations of the electron spins and,

since the NSLR is proportional to the spectral density at the

Larmor frequency, by performing NSLR measurements as a

function of applied magnetic field (i.e., resonance frequency,

x), one can directly probe the low-frequency behavior of the

spectral density. Results have been published, e.g., in insulat-

ing antiferromagnetic (AFM) chains both with S¼ 5/2

(Ref. 6) and S¼ 1/2,7 conducting organic spin chains,8 two

legs ladders9 and an S¼ 1 Haldane chain.10 To date, an ex-

perimental investigation of spin dynamics and spin diffusion

in Heisenberg magnetic rings and short segments is still lack-

ing. The aim of the present work is twofold: On one hand,

we want to study the spin diffusion effects in two non-

conventional organic 1D Heisenberg chains: the first, Eu-Et,

made up of radical spins and the second, Gd-Et, a frustrated

helimagnetic chain; on the other hand, we extend the investi-

gation of spin diffusion to AFM closed molecular rings, such

as Cr8 and broken rings, i.e., segments such as Cr7Cd and

Cr8Zn. It is worth noticing that molecular rings are a class of

clusters of transition metal ions covalently bonded via super-

exchange bridges, embedded in a large organic molecule:11

such clusters can be synthesized in crystalline form whereby

each one is magnetically independent since the intramolecu-

lar exchange interaction among the transition metal ions is

dominant over the weak intermolecular, usually dipolar,

magnetic interaction. In the case of rings, the magnetic ions

are arranged in an almost planar circular configuration

affording a perfect model system for periodic spin rings.

a)Author to whom correspondence should be addressed. Electronic mail:
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1H NMR measurements were performed on powder

samples. In order to determine the NSLR, 1/T1, we used a

Hahn Echo pulse sequence following a saturating comb of

10–20 pulses applied at a variable delay time before the

Hahn echo pulses. The length of the p/2 pulse was in the

range of 2.3–3.1 ls. The recovery curve was found to be ex-

ponential, in spite of the fact that there are many non equiva-

lent proton sites and that the systems is in form of powders,

because the spin-lattice relaxation time T1 is much longer

than the spin-spin relaxation time T2, thus allowing the sys-

tem to reach a common spin temperature before it relaxes to

the lattice temperature.

II. RESULTS IN 1D HEISENBERG CHAINS

The two organic magnetic chains investigated, M(hfac)3

NITEt, with M¼Eu and Gd, are isomorphous and isostruc-

tural. The coordination number for the magnetic centre is

eight counting the two oxygen atoms of the two nitronyl-

nitroxides and the six oxygen atoms of the three (hfac) moi-

eties. The bridges of the metal ions are composed of NITEt

characterized by two N-O groups which share one electron:

This ensures a strong transmission of the interaction along

the chain. The Eu(III) ion is diamagnetic (at room tempera-

ture and below), and thus, the Eu-Et chain is a chain of iso-

tropic radical s¼ 1/2 spins with AFM super-exchange

interaction. In the Gd-Et chain there is an alternation of

Gd(III) ions with spin s¼ 7/2 and of s¼ 1/2 radical spins.

The nearest neighbour (nn) interaction between a Gd and a

radical spin is FM, while the next nearest neighbour (nnn)

interaction between Gd spins and between radical spins is

AFM, leading to a fully frustrated chain at very low tempera-

ture with a rich phase diagram fulfilling the so-called

“Villain’s conjecture.”12 The exchange interactions J are, in

all cases, of the order of 10 K or less, thus, the measurements

performed at T � 300 K for Eu-Et and at 100 K for Gd-Et

give information about the high temperature spin dynamics.

The details of the synthesis, structure, and magnetic proper-

ties are described elsewhere.13,14 The experimental results

for Eu-Et and Gd-Et are presented in Fig. 1. In the weak-

collision approach, T1
�1 can be expressed as15

T�1
1 / RijaijJ

ij
6ðxeÞ þ RijbijJ

ij
z ðxLÞ; (1)

where i and j are the number of the electronic spins, xe and

xL are the electronic and nuclear Larmor frequencies,

respectively, aij and bij are geometrical factors related to the

nuclear-electron hyperfine interaction, and Jij
6,z are the

transverse and longitudinal spectral densities of the spin fluc-

tuations. For an isotropic Heisenberg system, the transverse

and longitudinal spin fluctuations are assumed to be the

same. In Eq. (1), J6,z
ij(x) can be expressed by the Fourier

transform (FT) of the two spin CF

J
ij
6;zðxÞ ¼

ð
Gijðr; tÞ expðixtÞ dt: (2)

In presence of a diffusive behavior the long time (small fre-

quency) decay of the auto-correlation function (r¼ 0) can be

modelled (at long times the pair-correlation tends to coincide

with the auto-correlation) as6

GijðtÞ ¼ hSiðtÞ Sjð0Þi ¼ ð4pDtÞ�1=2
expð�xctÞ; (3)

where the first term in Eq. (3) represents the long time diffu-

sive behavior, while the exponential decay is a phenomeno-

logical cut-off term which is introduced to simulate the

effect of the anisotropic intrachain interactions in the spin

Hamiltonian which can interrupt the 1D diffusive behavior

by allowing spin-lattice coupling that does not conserve the

total spin value S and/or interchain interactions which turn

the slow 1D spin diffusion into a much faster 3D decay.6

By replacing Eq. (3) into Eqs. (2) and (1) one finally

finds6,10

1=T1 ¼ P f½ðH2
c þ H2Þ1=2 þ Hc�=½H2

c þ H2�g1=2 þ Q: (4)

The constant Q represents the contribution due to the

spectral density of the fast decaying CF at short times. This

contribution becomes frequency independent at frequencies

smaller than the exchange frequency defined by Eq. (6)

below, which determines the initial fast decay of the CF (the

nuclear/electron Larmor frequency is indeed smaller than the

exchange frequency). The first term in Eq. (4) arises from

the spectral density of the CF defined by Eq. (3), and it con-

tains the desired information about spin diffusion and cut-off

effects. The cut-off field has been introduced in place of the

cut-off frequency for convenience in the presentation of the

FIG. 1. Proton NSLR plotted as a function of the inverse square root of the

applied magnetic field for the two 1D chains (a) Eu-Et and (b) Gd-Et. The

straight lines are theoretical curves discussed in the text.
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data whereby xc¼ ceHc with ce¼ 1.75� 107 rad Hz/G, the

electron gyromagnetic ratio. The constant P contains the in-

formation about spin diffusion constant D (in rad Hz), i.e.,

P¼C/2p(2D ce)
1=2, where C is the average square of the

hyperfine interaction between nuclei and electrons in units of

(rad Hz)2. If the cut-off effects are negligible in the field (fre-

quency) range investigated one can set Hc¼ 0 in Eq. (4) to

obtain the expression which defines clearly the long time 1D

spin diffusion effect

1=T1 ¼ P H�1=2 þ Q: (5)

The experimental results in Fig. 1 are fitted well by

Eq. (5) with P¼ 0.1(T1/2 m s�1) and Q¼ 0.076 (m s�1) for

Eu-Et and P¼ 1.2 (T1/2 m s�1) and Q¼ 2 (m s�1) for Gd-Et.

This indicates that the spin dynamics in both magnetic chains

are dominated, in the field range investigated, by 1D spin dif-

fusion. The cut-off field must be less than Hc� 0.1 T

(xc¼ 1.75� 1010 rad Hz) indicating a very small intrachain

anisotropy and negligible interchain interaction. Since the

two chains are isomorphous, the value of the interaction con-

stant C defined above must be the same and thus from the

measured values of the constant P one derives that the ratio

of the diffusion constant for the two chains is DEu/DGd

¼ (PGd/PEu)2¼ 144. The implications of this result are dis-

cussed in the conclusions.

III. RESULTS IN CLOSED AND BROKEN MOLECULAR
RINGS

The problem of the high temperature (T � J/kB) spin

dynamics in 1D periodic structures like closed rings made up

of Heisenberg coupled spins was investigated theoretically

previously. Early numerical calculations indicated an anoma-

lous enhancement of the spectral density of the CF at low

frequency.2 This clearly follows from a slow decay of the

CF due to the conservation of the total spin S value in

a Heisenberg system. While in a 1D chain, the CF is pre-

dicted to decay diffusively at long times, as discussed in the

in section II, in a periodic structure, the theoretical result is

different. Several theories all lead to the conclusion that

in closed rings composed of N spins the auto-CF decays

rapidly at short times due to the exchange interaction J

until it reaches a constant value of 1/N at long times, i.e.,

for t� xe
�1� J�1.16–18 A simple model, which incorporates

the above theoretical predictions, is obtained by assuming

for the long time decay of the two spin CF in Eq. (3) the

product of a constant term times an exponential cut-off func-

tion which, just like for 1D spin diffusion, represents the

decay of the CF due to anisotropic intramolecular interac-

tions and intermolecular interactions. The short time decay

of the CF can be modelled with an exponential decay driven

by the Moriya15 exchange frequency

xe ¼ ð2pJ=hÞ½8=3 z SðSþ 1Þ�1=2; (6)

where z is the number of neighbors exchange coupled to a

given spin and J is the corresponding exchange coupling

constant. By combining the CF’s in Eqs. (2) and (3), finally

one can write as follows:19

1=T1 ¼ A =ð1þ ðH=HcÞ2Þ þ C ðms�1Þ; (7)

where the magnetic field H is expressed in Tesla with the

cut-off field Hc¼xc/ce and the constant C depends on

the spectral density of the short time fast decaying CF due to

the exchange frequency xe just like the constant Q in Eq. (4).

Equation (7) was used to fit successfully the field de-

pendence of the proton NSLR in a number of closed molecu-

lar rings.19,20 The aim of the present investigation is to

establish if the long time diffusive behavior of the CF

observed in 1D Heisenberg chains can also be observed in

open rings, which should correspond to 1D finite spin seg-

ments. For this purpose, we compare the previous results in

closed ring Cr8 with the results in broken ring Cr7Cd, where

a magnetic Cr ion is replaced by a diamagnetic Cd ion and in

a new kind of ring, Cr8Zn, where the eight Cr moments are

interrupted by a Zn diamagnetic ion, thus forming a finite

spin segment.21 The experimental results obtained at room

temperature for the three rings are plotted in Fig. 2. The plot

as a function of H�1/2 allows one to see if there is a field

range in which one can detect the 1D spin diffusion behav-

iour. The dashed straight lines correspond to the spin diffu-

sion result given by Eq. (5). For Cr8 and Cr7Cd, the straight

lines have negative intercepts (negative Q constant in Eq.

(5)). This is an unphysical result, which indicates that in Cr8

and in Cr7Cd no spin diffusion can be detected. On the other

hand, in Cr8Zn it appears that there is a limited range at high

fields where spin diffusion could be present. The deviation

from the straight line at lower fields is due to cut-off effects.

The data in Fig. 2 can actually be fitted over the whole field

range either by Eq. (4) or by Eq. (7). The data in Cr8Zn can

be fitted best with Eq. (4), with the fitting parameters: P¼ 3

(T1/2 m s�1), Q¼ 0.7 m s�1, and Hc¼ 3.5 T.

The data in Cr8 and Cr7Cd can be fitted best with Eq. (7)

with parameters: A¼ 2.9 m s�1, Hc¼ 9 T, C¼ 0.5 m s�1 for

Cr8; and A¼ 4.25 m s�1, Hc¼ 7 T, C¼ 0.3 m s�1 for Cr7Cd.

The corresponding fitting curves are shown in Fig. 2. In all

three cases, the cut-off field is more than an order of magni-

tude larger than the one estimated for the Heisenberg chains

in Fig. 1.

FIG. 2. Proton NSLR plotted as a function of the inverse square root of the

applied magnetic field for three molecular rings. The full curves are fits

according to Eq. (4) or Eq. (7). The dashed straight lines are the limiting

behavior of Eq. (4) for Hc¼ 0, i.e., Eq. (5).
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IV. SUMMARY AND CONCLUSIONS

We investigated the high-temperature behavior of low-

dimensional magnetic systems. In both the two 1D

Heisenberg chains studied, we found very clear evidence for

a slow diffusive decay of the CF due to spin diffusion. Both

systems have very small anisotropy, and this allows the slow

decay of the CF to persist up to long times. The time range

over which the spin diffusion is observed can be estimated to

be between the exchange time t1¼ 2p/xe� 10�12 s and the

cut-off time t2¼ 2p/xc� 10�10 s, where we have estimated

xe from Eq. (6) with J¼ 10 K and we have estimated xc as

an upper limit for the cut-off frequency from the data in

Fig. 1. By comparing the results for the two chains, we found

that the diffusion constant D for the Eu-Et chain is two

orders of magnitude bigger than for the Gd-Et chain. This is

a remarkable result since the exchange constant J is of the

same order of magnitude in the two chains and thus cannot

explain the difference. It seems that the spin diffusion in the

chain with competing exchange interactions is slowed down.

A theoretical investigation of high temperature spin dynam-

ics in similar 1D Heisenberg chains with different magnetic

ions would be of great interest.

Regarding the molecular rings, we found that the spin

dynamics are dominated by cut-off effects indicating that the

systems chosen are not very suitable to investigate spin dy-

namics, because the intra-molecular anisotropy is too large.

In fact, the cut-off time estimated from the experimental

results in Fig. 2 is t2¼ 2p/xc� 10�12 s, which is of the same

order of magnitude as the exchange time t1¼ 2p/xe. In this

case, the data can be fitted almost as well by Eq. (4) or Eq.

(7) since the behavior for the two models is similar for large

cut-off fields Hc. Nevertheless, the plot of the NSLR in

Cr8Zn shown in Fig. 2 seems to indicate that there may be a

narrow field (frequency) range, in which spin diffusion can

be detected. Thus, in order to investigate spin diffusion one

should: (i) perform experiments in closed rings and in finite

spin segments, as here, but with magnetic ions having a

smaller anisotropic interaction energy, like, e.g., Mn2þ; and

(ii) be sure that the exchange constant J/kB is of the order of

10 K or more so that the exchange frequency is sufficiently

large to observe spin diffusion after a few magnetic lattice

steps.
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