
 

Review 

Chemical reaction engineering, process design and scale-up 

issues at the frontier of synthesis: flow chemistry 

Ilenia Rossetti *, Matteo Compagnoni 

Dip. Chimica, Università degli Studi di Milano, INSTM Unit Milano-Università and CNR-ISTM, 

via Golgi 19, 20133 Milano, Italy; e-Mail: ilenia.rossetti@unimi.it 

* Author to whom correspondence should be addressed; e-Mail: ilenia.rossetti@unimi.it;  

Tel.: +39-02-50314059; Fax: +39-02-50314300. 

 

Abstract: Flow chemistry has been proposed in modern organic chemistry as a mean for 

process intensification, to improve the control over reaction performance and to achieve 

higher yield. However, many open issues can be evidenced regarding the true possibility of 

scale-up, as well as currently lacking information for process design and economical 

evaluation. This review proposes some recent examples of flow synthesis deepening in 

particular the scale-up and engineering issues. Required information is evidenced, as well as 

some transport and kinetic data required for the practical implementation of the results. 

Keywords: Flow chemistry; Chemical reaction engineering; Microreactors; Process design; 

Reactor scale-up. 

 

1. Introduction 

Flow chemistry and microreactors technology are emerging and fascinating topics, which put in 

contact Chemical Engineering, Organic Synthesis and Green Chemistry. Therefore, in itself flow 

chemistry is a consistently interdisciplinary topic, needing a fine tuning between fluid-dynamics, heat 

and mass transfer, chemical reactivity and reactors design [1]. 

Batch processes are commonly used in fine, specialty and pharmaceutical chemistry due to their 

versatility, flexible production planning and scheduling. They may also be preferable due to regulatory 

problems, where traceability imposes to easily recall specific batches of products. On the other hand, 

they are often difficult to scale-up because of heat and mass transfer problems. In addition, they require 

significant intermediate storage capacity between process stages, resulting in large inventories of 

feedstock organic chemicals and sensitive intermediates. Continuous systems typically require smaller 

equipment volumes than batch ones and have a lower need for human intervention. Particularly referring 

to pharma industry, the time-to-market of a successful recipe is even more important than for base 

chemicals, due to the volatility of the products life. Pharma product development is regulatory driven 

and result of clinical phases determines market access. Thus, the possibility to access sufficient material 
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for clinical trials with minimum efforts is a key for competitiveness. Therefore, the possibility of 

continuous operations offers many advantages: lower costs, reduced waste, decreased time-to-market 

for new drugs. Continuous flow reactors can deliver significantly higher yields, while solvent and energy 

waste can be decreased up to 90% [2]. 

It is also suggested that a general improvement of safety and sustainability of the fine-chemicals and 

pharma industries may take place. Indeed, typical processes have been developed to cope with regulation 

and safety issues based on the present technology. If intrinsically safer production processes may be 

developed, this may open the way to synthetic routes characterized by lower E-factor (i.e. kg of waste 

per kg of product, typically higher than 25 for such applications) [3]. In general, continuous processes 

seem to have a “greener” footprint than the analogous batch ones [4]. Process intensification is another 

goal, achievable by broadening the process conditions window and by better integrating different process 

steps [5]. 

Furthermore, the complex channels structure in microreactors generates secondary flow structures at 

high flow velocities, which lead to very efficient and fast mixing. Transport limitations are therefore 

reduced with respect to conventional reactors configurations. This leads to important applications in 

process intensification. It is considered that ca. 20% of the organic reactions inventory can effectively 

take advantage of improved mass and heat transfer for productivity, selectivity and/or safety reasons [6]. 

Another interesting feature is represented by the widening window of operating conditions made 

possible by flowing systems. These include unconventionally high temperature, pressure and the use of 

high-boiling solvents [7,8]. Some of the most interesting features of flow chemistry  have been recently 

summarised by different authors [9–14]. The goal of this review is to cope with open issues and non-

intuitive concepts for organic synthetic chemists, who increasingly deal with microreactors. For this 

purpose, the material is here organized by issue (e.g. transport phenomena, scale-up, safety, etc.), rather 

than for type of reaction. 

 

2. Examples and case studies 

A survey on the type of reactions that may be suitable for turning from batch to continuous processes 

has been considered. Basically, some classes of reactions may take advantage of microreactors and flow 

conditions: 1) Extremely fast reactions, usually carried out under mass (and/or heat transfer) regime, 

may be exploited by improving mixing and in general transport phenomena. Also, improved heat transfer 

should effectively prevent hot spots formation. Examples may be organometallic reactions; 2) 

Kinetically controlled, rapid reactions, where a strict control over temperature and residence time may 

improve selectivity (e.g. coupling reactions); 3) Hazardous reactions that may take place in more 

controlled conditions by using flowing systems, which also limit hazards due to decreased volumes [1,3]. 
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Other classifications have been proposed in terms of reaction, phases or kinetics [15]. Of course, the 

final choice on the application of some continuous flow unit operations, or the whole transformation into 

a continuous process should be carefully based on economical evaluation. Interesting examples relative 

to drug development are proposed by Roberge et al. [16]. Results relative to reaction paths unrealizable 

in batch mode are also presented [17]. Finally, flow chemistry has been very effectively described as a 

way to expand the process window [11,12]. 

  

2.1. Fine chemicals and drugs synthesis 

The preparation of drugs and pharmaceutical active ingredients is usually carried out in batch or semi-

continuous mode. This choice is usually based on the number of steps required (6 to 10), the low 

production volume, the need of differentiation and the short lifetime of the products. However, 

advantages of continuous flow synthesis are becoming evident, so that many pharma industries are 

setting up fully or partially continuous syntheses. In this case, there is a rapid need for scale-up at 

different levels, from lab synthesis, to drug testing and approval, to commercialization, and continuous 

flow synthesis offers many advantages from this point of view. Furthermore, increased throughput 

allows a lower footprint and process intensification [18]. Some successful examples are rapidly 

summarised in the following. 

For safe operations in a cyclopropanation using dimethylsulfoxonium methylide at high temperatures, 

continuous operation was found more suitable for safe scale-up by carrying out the reaction at or below 

room temperature [19] (Scheme 1).   

 

 

Scheme 1. Example of cyclopropanation reaction [19]. 

 

In the field of molecular biology many oligonucleotides are synthesized in small amount for gene 

analysis, but kilograms are needed for therapeutic scope and nontherapeutic applications such as 

anticounterfeiting markers [20]. Scale-up or numbering up is proposed for the scope. 



4 

 

Transport limitation issues must be considered in lab operations when a change in product yield with 

mixing speed, or addition method, or the position of a feed stream, scale-up to a vessel with different 

geometry, or holding time before workup. These effects may imply the need of more efficient mixing 

and heat transfer to ensure better performance. Some examples have been reviewed by Anderson [21] 

and large scale production have been also proposed [22,23]. Thales Nanotech’s X-Cube Flash reactor 

[24], operating continuously up to 200 bar and 350 °C, was successfully applied for different reactions. 

Flow chemistry applied to the synthesis of natural products has been extensively reviewed [25]. 

The Fukuyama reaction has been tested in continuous mode, allowing the conversion of thioesters to 

aldehydes with good selectivity. In some cases, however, negligible productivity was observed, possibly 

due to the Pd poisoning by the thiole. Some regeneration trials by washing were also attempted [26]. 

Many other Pd-catalysed reactions are reported by D. Astruc [27], including the Heck, Sonogashira, 

Suzuki, Stille, Negishi, Hiyama, Corriu-Kumada, Tsuji-Trost and Ullmann reactions (Scheme 2). 

Different strategies are proposed for the synthesis and stabilization of nanoparticles, in case bimetallic 

Au-Pd with core-shell structure. The combination with ionic liquids is also discussed. 

 

 

Scheme 2. Examples of Pd-catalysed coupling reactions [28]. R = substituting group; Bu = butyl. 

 

Microwave (MW) assisted metathesis reactions and cross-coupling processes were reported in a Pd-

coated capillary placed within the cavity of a single mode MW reactor [29]. The Pd films showed very 

porous, with ca. 6 m thickness and sufficient robustness for the scope. They showed excellent catalyst 

for Suzuki–Miyama and Heck reactions, with satisfactory results in less than one minute residence time. 

Another example reports a thin layer of gold for MW irradiation of a solid-supported catalyst in a Suzuki 

coupling using a continuous flow capillary reactor (Fig. 1) [30]. The strong absorption of a thin layer of 

gold on the outer surface of the capillary enabled effective heating of the catalyst, enhancing the rate of 
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reaction. Yields greater than 70% were achieved, with catalyst/reactant contact times of less than 60 s. 

MW-assisted Suzuki–Miyaura coupling using an encapsulated palladium catalyst has been also proposed 

[31]. The direct focused MW heating was coupled with an external cooling source. This enabled a lower 

bulk temperature with significant improvements in the overall yield and purity of the reaction products, 

together with prolonged lifetime and enhanced reactivity. In general, the sum of the advantages of 

microreactors and the activation of MWs improves significantly the productivity in most cases [32,33]. 

 

 

Figure 1. MW assisted Suzuki coupling reactions in glass capillary covered by gold for local heating 

[30]. 

 

The cyclodehydration of aminodienones and the continuous processing of pyridines was also 

compared in a microreactor fitted with a pressurization module and conductive heating, with respect to 

batch mode, with very good yields in short residence time [34]. For instance, conversion >98% was 

attained in 2-4 min residence time depending on the selected substituents, leading to minimum yield of 

78% in the case of ethyl and p-chlorophenyl substituents and a maximum 97% in the case of ethyl-

phenyl substituents.  As well, improved selectivity is reported for the Fischer indole synthesis of 7-

ethyltryptophol under flow conditions [35]. This led to total yield up to 50% after purification, with 

respect to yields lower by 5-10% at best in batch mode. The reaction times and residence times were of 

similar order of magnitude, although in flow mode different microreactors connected in series were used, 

making hard an exact comparison.   

Different examples of anti-Markovnikov Wacker oxidation of differently functionalized styrenes has 

been compared in batch and flow conditions. The latter sensibly improved selectivity at quantitative 

conversion [36]. Styrenes were also synthesized in flow by the same group from different aryl iodides 

and ethylene [37], as well as unsymmetrical stylbenes [38]. A tube-in-tube reactor configuration was 

proposed, allowing gas permeation from the shell to the inner pipe, where the liquid reactants are 
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flowing. The same reactor configuration was also adopted for the production of thioureas from gaseous 

ammonia [39] and for the Pd-catalysed carbonilation of aryl and ethyl alogenides with different 

nucleophiles. A Teflon semipermeable membrane allowed the controlled addition of CO, thus improving 

selectivity and safety [40]. A tube-in-tube reactor was also used for the idroformylation of styrenes with 

syngas [41]. The dual concept has been proposed by Gutmann et al. [42], suggesting to shift the 

equilibrium of aldehydes decarbonilation by removing selectively CO in a tube-in-tube reactor. The 

liquid flowed in the annular section, whereas a flow of inert gas in the inner tube allowed the selective 

abstraction of CO from the reacting mixture (Fig. 2). 

The synthesis -halo ketones as building blocks for HIV protease inhibitors has been proposed in a 

tube-in-tube system. Diazomethane has been produced in situ in the inner tube and progressively dosed 

in the shell thanks to a semipermeable membrane [43]. 

A multi-channel membrane microreactor was also proposed tested for Knoevenagel condensation of 

benzaldehyde and ethyl cyanoacetate. The catalyst employed was a Cs-exchanged faujasite NaX as an 

example of heterogeneous basic catalyst, improving the system applicability due to catalyst 

immobilisation. Furthermore, the use of a membrane microreactor allowed the continuous removal of 

water with consequent better product purity and final yield above the equilibrium conversion in batch 

mode [44]. 

Spinning tube-in-tube reactors were also used for the selective oxidation of alcohols to aldehydes. A 

good control of the exothermicity was allowed, avoiding the need of careful dosing the reactants [45]. 

 

 

Figure 2. Basic concept of tube-in-tube reactors. In the case of spinning devices, the inner tube rotates 

with a given angular speed. 

 

Functionalised anilines are important intermediates for the synthesis of active principles, dyes and 

pigments. Typically, they are obtained by reduction of nitroarenes, though leading to significant 

selectivity issues and wastes. A suitable alternative can be the selective reduction with noble metal 

catalysts, but their cost raises limitations in their use. Different reducing agents, besides H2 were also 
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proposed, among which hydrazine showed promising due to the formation of N2 as byproduct. Hydrazine 

was combined with in-situ generated Fe3O4 nanocrystals in flow conditions [46]. 

Iron oxide nanoparticles may be used for inductive heating. Examples of magnetic cores surrounded 

by silica shells were used for flow microreactors heating. Surface Pd functionalization was additionally 

proposed [47]. 

Many examples of coupling and cross-coupling reactions have been recently proposed in flow mode 

(see  e.g. [48–56]). Typically, the Pd catalyst is immobilized on a support (e.g. amorphous of mesoporous 

silica) and packed into the reactor. However, this may limit severely catalyst life, as effectively reviewed 

by Cantillo and Kappe [57]. Indeed, the catalytic cycle involves the oxidation of Pd0 to PdII, which can 

be readily solubilized and leached in a chromatographic fashion downstream by reactants flow. At the 

end of the catalytic cycle the metal is regenerated back, so that in batch mode the catalyst is almost 

unaffected because Pd adsorbs again on the support. By contrast, this progressive leaching and migration 

leads to the deactivation of the catalyst. Different configurations including a Pd-based precatalysts have 

been developed [58]. The issue of possible Pd leaching from heterogenised catalysts and its influence 

on various coupling reactions has been considered by Pagliaro et al. [28]. Microfluidic extraction has 

been also coupled to cross-coupling [59]. Silica-supported Pd catalysts have been also reviewed for the 

Heck coupling reactions [60]. 

An extremely fast carboxylation reaction has been also proposed in flow mode [61]. Taking advantage 

of the ease of assembly of different units in microreacting systems, multiple mixers and reacting zones 

allowed optimal product yield. 

An applicative example was proposed for the synthesis of Boscalid, an antifungine principle, at first 

by optimizing the reaction conditions to sufficiently speed  up the reaction for application in continuous 

flow mode [62]. Furthermore, a continuous flow system showed particularly effective and versatile for 

the synthesis of a new series of chemokine receptor ligands from commercial raw materials [63]. Other 

examples of newly developed molecules through continuous flow reactors are reviewed by Rodrigues et 

al. [64]. 

Many other examples of heterogeneously catalyzed reactions have been recently reviewed by Frost 

and Mutton [65], Munirathinam et al. [66] and by Kirshning et al. [67]. The synthesis in situ of a porous 

polymer for the immobilization of covalently bound catalysts has been proposed [68]. Heterogenised 

Pd-NHC catalysts have been compared under batch and flow conditions, although life tests have not 

been reported [69]. An oxime-based palladacycle has been immobilized on a poly(vinylpyridine)/glass 

composite material and formed as Rashig rings to pack a microreactor. Tests have been carried out for 

cross-coupling reactions [70]. Other supports have been also proposed, such as cross-linked 

imidazolium-based materials, able to load high amount of metal [71]. Additionally, nanoconfinement of 

asymmetric catalysts in multiwalled carbon nanotubes was also accomplished [72,73]. Pd supported over 
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monoliths has been considered for continuous flow reactions [50,68,74–77]. The comparison of 

homogeneous and heterogeneous paths for the ligandless Mizoroki-Heck reactions are also overviewed 

[78]. The role of Pd in coupling reactions has been taken into account by critically assessing the role of 

the “heterogeneous” vs. “homogeneous” species playing a role in the reaction [79]. The life of 

heterogeneous Pd catalysts has been also considered by Reynolds et al. [80] demonstrating negligible 

leaching. The opposite trend was proposed by Richardson et al. [81], who focused on the role of leached 

Pd in the catalysis for coupling reactions. The same concept was also addressed by Shore et al. [29], who 

developed capillaries coated with Pd and heated by MWs for coupling reactions. The role of leached Pd 

ions in this case seems minimal, as well as for the results reported by Stouten et al. [82,83]. Finally, an 

overview of the importance of the leaching problem in flow chemistry has been very recently proposed 

by Hii et al. [84]. 

Very interesting reports on the immobilization of enantioselective catalysts on solid supports, 

typically polymers such as polystyrene, are also presented [85]. 

In case homogeneous catalysts are used, they have to be separated and recycled, especially if Pt-group 

metals are used. Therefore, appropriate methods for their recycle have to be adapted to flow synthesis, 

as reviewed by Vural Gürsel et al. [86].  

 

2.2. Photochemistry and photocatalysis  

Singlet oxygen finds interesting applications for biomedical applications, e.g. as antimicrobial or 

anticancer agent. Its photoinduced dye-sensitized production has been commonly used on lab scale, but 

it is scarcely scaled-up due to the need of considerable amounts of organic substances and safety issues. 

Microreacting systems have been developed which provide oxygen by mass transfer through the reactor 

walls, without separate oxygen feed. Singlet oxygen is then used as a powerful and sustainable oxidizing 

agent for different test reactions, e.g. for the synthesis of ascaridole from -terpinene. A fluoropolymer 

microcapillary reactor has been used, consisting of 10 pipes with 0.1 mm diameter. No mixing problems 

have been observed for a one-channel system, but oxygen distribution and mixing was not trivial in the 

case of multichannel reactors. Oxygen flow was regulated by applying increasing external pressure and 

it represented the kinetically limiting factor [87]. 

Continuous flow reactors for photochemical and photocatalytic applications are widely described by 

Su et al. [88]. Enhancement in selectivity was reported, e.g., for the photochemical rearrangement of 4-

hydroxycyclobutenones to 5H-furanones. The reaction was unselective in batch mode due to the 

consistent photodegradation of the product. As well, the scale-up of the continuous photobromination of 

5-methylpyrimidine, a precursor of Rosuvastatin was successful, whereas it was substantially unscalable 

in batch due to overbromination and prolonged reaction time (16−64 h already on millimolar scale). 

[89].  
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It seems that due to short life time of radical species, photochemistry is well suited to application with 

microreactors, although basic differences between reaction time and residence time are often confused 

(see paragraph 3.6)  [88]. Examples of batch cyclisation reactions were proposed with much higher yield 

in continuous mode with respect to batch [90]. In other cases, some synthetic routes have been appealed 

as too slow in batch mode, therefore abandoned, whereas in continuous mode the applicative possibilities 

change dramatically. Often, this increased productivity may be ascribed to improved irradiation in 

microreactors than batch mode when scaled up. 

The synthesis of artemisinin, one of the most powerful antimalarial drugs, involves a key 

photochemical step that typically prevented large-scale production. Lévesque and Seeberger proposed a 

continuous-flow alternative with 65–70% overall yield [91]. Another interesting application is the 

synthesis of intermediate active species such as the Vilsmeier–Haack reagents for the production of 

anhydrides under mild conditions [92]. 

A serpentine plate reactor has been developed for the abatement of  endocrine disruptive agents from 

water through UV irradiation [93]. A model for the reactor was proposed, including radiation, kinetics 

and fluid dynamics. 

 

2.3. Nanoparticles synthesis  

Although solid materials are far from the typical examples of application of microreactors and flow 

chemistry, some interesting examples can be considered in this field. 

Silver nanoparticles (ca. 4 nm in size) have been prepared through a MW assisted device coupled 

with a flow microreactor [94]. In order to obtain dimensionally homogeneous nanoparticles very 

efficient mixing of the precursors solutions is needed and was achieved through collisional mixing in a 

microchannel device. This was coupled with MW heating, which avoids the deposition of a silver 

coating, obtained in the case of traditional external heating. The mixing and heating zones are separated 

and designed in spiral form. Spinning disk devices are also used for the surface preparation of silicon 

wafers [95]. 

Mixed oxides are often used as ceramic materials for various applications, as semiconductors and as 

catalysts. Especially in the latter case, considerable improvement of reactivity is achieved thanks to 

nanostructuring. This is hardly achievable through traditional synthesis routes, which involve high 

temperature treatments to impart the desired phase purity and crystallinity. Furthermore, this is a batch 

multistep process and it is quite impossible to limit the residence time at high temperature to achieve 

satisfactory nanostructuring coupled with sufficient thermal resistance. The same holds when the 

quenching of solid phases is needed to achieve non thermodynamically favoured crystal phases. A 

continuous flow synthesis has been developed in the last decades, namely flame pyrolysis, which allows 

the one-pot synthesis of single or mixed oxides nanoparticles. An organic solution of the precursors is 
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fed to a burner together with a flow of oxygen. By calibrating the residence time into the flame and the 

combustion enthalpy of the solvent, the particle size and, more in general, catalyst properties such as 

thermal resistance, can be finely tuned [96–101]. 

Mesoporous silica was synthesized in flow by means of a microreactor. Very short time was needed 

for the synthesis, satisfactory yield (ca. 60%) and material properties were obtained with respect to batch 

mode. The prepared material, added with iron oxide nanoparticles and functionalized with amines was 

used as catalyst for the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate, ethyl 

acetoacetate and diethyl malonate. The recyclability was ensured by the magnetic character imparted by 

iron oxides, whereas reactivity was tuned by steric hindrance of the amine [102]. The versatility and 

control of micromixers also allowed to tune particle size over one order of magnitude and shape (dense 

or hollow spheres) during the synthesis of mesoporous silica [103]. Also in this case residence time was 

very short (5-9 min) and materials properties have been modified by varying the hydrolysis conditions 

of the silica precursor and the flow regime across the microreactor. 

 

3. Reaction and reactor engineering  

 

3.1. Transport phenomena 

 

One of the most claimed advantages of micro- and continuous flow reactors is the enhanced heat and 

mass transfer. Typically, such transport properties are quantified by the liminar coefficient (h) and by 

the mass transfer coefficient (kc). These parameters are in turn determined on the basis of empirical 

correlations between adimensional numbers. Therefore, it is essential to get reliable experimental data 

to correctly represent the fluid dynamics of the system. Furthermore, depending on fluid flow and reactor 

geometry, more or less significant pressure drop may arise, to be quantified through proper models.  

Efficient heat transfer is one of the key drivers for the development of innovative fluent systems. In 

particular, heat exchangers/reactors are promising systems due to improved safety and selectivity 

control. Fluid flow has been studied as function of channels geometry [104]. By tuning channels 

configuration one may achieve the formation of vortices, called Dean vortices, due to flow instability 

even at relatively low values of the Reynolds number (Re). This occurs above a critical value of the Dean 

number (De), defined as  

 

𝐷𝑒 = 𝑅𝑒 √
𝑑ℎ

𝑅𝑐
           (E1) 

 

𝑅𝑒 =  
𝜌𝑢𝑑ℎ

𝜇
            (E2) 
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Where  is the density and  the viscosity of the fluid, u the velocity, dh channel diameter and Rc the 

curvature radius. This turbulence induced by channel’s curvature is beneficial from the point of view of 

mixing and, thus, of transport properties. Re represents the ratio between inertia and viscous forces and 

typically ranges below 2000 for strictly laminar conditions and above 3000 for completely turbulent 

flow. Widely different values occur in flow chemistry reports, sometimes well below 10, with 

consequences on transport properties.  

A summary of the adimensional numbers and the relative correlations applied to microreactors has 

been effectively proposed by Kockmann et al. [105,106]. In the same papers the reader can find the 

typical ranges of adimensional groups found for these applications, of course depending on geometry 

and design. 

Very interesting correlations for plate-type corrugated channel reactors are proposed [104]. The 

Darcy coefficient is reported versus Re and predicts (as expected) higher pressure drop for more 

corrugated geometries. The pressure drop in corrugated channels is due to the distributed energy loss in 

the straight portion of the channel, plus the localized loss due to the bending of the channel and an 

additional contribution due to the propagation of the vortices downstream each bend. Hence, pressure 

drop is correlated to the length of the straight lines. When increasing the length, the number of bends 

lowered and this reduced the pressure drop. However, if the length is lower than the vortex propagation 

length, the elongation of the straight line favours vortex propagation and, so, the pressure drop increases. 

In addition, the overall heat transfer coefficient (U) and h are calculated proposing a correlation between 

the Nusselt number (Nu) and Re, with 

  

𝑁𝑢 =
ℎ 𝑑ℎ

𝑘
            (E3) 

 

1

𝑈𝐴
=

1

ℎ𝑒𝐴𝑒
+

𝑦

𝑘
+

1

ℎ𝑖𝐴𝑖
          (E4) 

 

where k is the thermal conductivity of the fluid [104] and the subscripts e and i define the two sides 

across the wall where heat transfer takes place. U normally ranges between 500 and 5000W/m2 K 

depending on material, employed fluids, temperature and channel geometry [105]. Mixing time is also 

compared for different geometries, calculating the radial mixing and plug flow approximation as number 

of equivalent CSTR (Continuous Stirred Tank Reactor) reactors. 

The development of robust models to compute the transport properties for these novel reactors 

configurations is an incoming challenge. An example is reported by Masters et al. [107], reporting the 

case of a microchannel plasma reactor. Significant deviations from conventional models for straight 
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channels have been observed. Complex geometries are often proposed, therefore novel empirical 

correlations have to be drawn and this is an incoming engineering challenge. 

Models are also required to effectively describe mixing in these devices, which is one of the most 

straightforward features, but also one of the hardest to scale-up. Most microreacting systems are operated 

at relatively low Re values, i.e. under laminar regime. The absence of turbulence determines radial 

mixing by diffusion, only. The comparison between the rates of reaction and mass transport is 

conveniently expressed by the Damköhler number: 

 

𝐷𝑎 =  
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
         (E5) 

 

Of course its expression depends on the type and order of the reaction, thus its quantification depends 

on the reaction kinetics. The Fourier number (Fo) is also useful, representing the ratio between the 

residence time and the transverse diffusion time: 

 

𝐹𝑜 =  
4 𝐷 𝜏

𝑑ℎ
2             (E6) 

 

where D is the diffusion coefficient and  is the residence time. Nagy et al. [108] also used a parameter 

, dependent on kinetics and feed ratio, that leads to the following definition of Da: 

 

𝐷𝑎 =  
𝜒

𝐹𝑜
            (E7) 

 

After building the graph reported in Fig. 4, the authors indicate the zones above the curves as warrant of 

mixing aids. Indeed, if Da is higher than one the reactivity of the system is faster than diffusion rate. In 

this condition concentration gradients may negatively affect the reaction rate. Therefore, mixing aids, or 

cold premixing before entering the reaction zone are suggested. 
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Figure 4. Curves corresponding to Da = 1 for different values of χ (reported in the legend). Combinations 

of tube diameters and residence times falling above Da = 1 represent reactor size and flow conditions 

requiring the use of mixing units [108]. 

 

 

Different models are also presented to describe the flow regime [108], together with the guidelines 

for their choice, as reported in Table 1.    

 

Table 1. Critical values of Fo and  to evaluate the impact on the flow profile along the reactor [108]. 

 

Fo, tubes Fo, square section Notes 

< 0.16 Laminar flow reactor model 

<2.1 <3.3 Large deviations from plug flow 

< 21 < 33 Small deviations from plug flow 

> 21 > 33 Plug flow behavior 

 < Fo No need of premixing 

 > Fo Premixing needed 
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Liquid-liquid mixing has been experimentally tested by Plouffe et al. [109] to determine a suitable 

correlation for the mass transfer coefficient. Different solvent couples, microreactors and micromixers 

have been tested. The preferred condition to favour mass transfer would be an intimate contact between 

the two immiscible phases as a sort of emulsion. However, this can be achieved at very high flowrate, 

which is not compatible with the residence time window of these devices. More conventional situations 

are parallel flow, where mass transfer is only based on lateral diffusion, and slug flow, where the 

recirculatory motion reduces the thickness of the boundary layer at the interface improving mass transfer. 

Different micromixers designs are presented, with their flow patterns and their effectiveness for a fast, 

diffusion-limited reaction. The most effective mixers allow to completely break the flow. When slug 

flow is active, an increase of flowrate decreased conversion due to lower residence time, which prevailed 

over the increased interface area or recirculation. The same was observed also after the transition to 

parallel flow. Dispersed flow was achieved with complex geometry, only. On the other hand, the use of 

simple T mixers can be hard to scale-up, working typically in slug or parallel flow regime. Some design 

strategies have been proposed (see e.g. Wang et al. [110]) to overcome this issue, as better discussed in 

paragraph 3.3. 

Heat and mass transport are usually neglected in studies about photochemical and photocatalytic 

topics. This is usually due to the chemistry-based explorative nature of most of these reports. To 

overcome mass transport limitations in photochemical transformations, several novel types of reactors, 

such as spinning-disc reactors, monolithic reactors, thin-film reactors, and microreactors have been 

developed [88]. 

Micromixers are conventionally coupled to microreactors when very efficient mass transfer should 

be reached. An example is reported, where the highest reported Re has been achieved (ca. 4400). This 

was successfully applied to the emulsification of silicone oil in water under turbulent conditions [111].  

Different examples of mixing are visually reported  by Hartman et al. [112], whereas Holvey et al. 

[113] proposed different mixers geometries and analysed their influence on pressure drop, almost fully 

localized in the mixing zone, and reactivity. 

Phase mixing is even more important in the case of tri-phase systems, such as heterogeneously 

catalyzed hydrogenation reactions. A review on the topic has been proposed by Irfan et al. [114], 

showing the advantage of flow chemistry in this field. 

Different types of micromixers have been reviewed by Nguyen et al. [115] and the relative modeling 

of flow patterns has been proposed by various authors [115–117], together with the summary of the 

relevant adimensional numbers and simulation techniques. Examples of micromixing schemes are 

sketched in Figure 5. 
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Figure 5. Examples of micromixers leading to various flow patterns. Readapted from [115] 

 

An example of proteolysis mediated by pepsine well represents the importance of mass transfer and 

efficient mixing [118]. It appears that only the enzymes near the interface between the two reacting fluids 

can react with hemoglobin molecules due to the mass-transfer resistance of pepsin and hemoglobin. The 

other enzyme molecules located in the “enzyme compartment” react only with some produced peptides 

coming from the interface, but they are unable to react with the initial hemoglobin substrate. Thus, 

substrate molecules located close to the interface are rapidly and completely digested by pepsin whereas 

substrate molecules away from the interface are not hydrolised. As a result, using a microfluidic reactor 

peptides with an intermediate length are much less than in batch mode, small peptides prevailing and 

leading to overall higher hemoglobin conversion.  

Copper flow reactors were applied to many different reactions thanks to the valuable heat exchange 

properties [119]. Examples are 1,3-dipolar cycloadditions, macrocyclizations, Sonogashira coupling, 

Ullmann-type reactions and decarboxylations. 

The most important engineering aspects associated with flow chemistry have been very recently 

reviewed [120], including mass-, heat- and photon-transport, intrinsic kinetics, automation of chemical 

processes and solids handling.  

 

 

3.2. Reactor design 

 

A toolbox for the selection of the most appropriate reactor configuration has been proposed by Plouffe 

et al. [121]. Reactions are divided in different types depending on kinetics (A, B, C), contacting phases 
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(homogeneous, liquid−liquid, gas−liquid and liquid−solid) and the reaction network (parallel and 

consecutive reactions). Different continuous reactor configurations are proposed and compared based 

on some case histories, namely plate, coil and CSTR. Multi-injection systems also allowed to limit the 

heat generation for strongly exothermal reactions.   

A prototype of microreactor has been developed for the small-scale evaluation of synthetic enzyme 

pathways. The model reaction is based on -galactosidase, glucose oxidase and horseradish peroxidase, 

a three step enzyme pathway that does not occur in nature [122]. Two different reactor configurations 

have been compared: a packed bed composed of microbeads coated with the three different enzimes and 

a coated channel configuration. With respect to the multi enzyme bead packed bed, the coating was 3-

fold more productive, but compared on an enzyme mass basis, it overperformed by more than one order 

of magnitude. A simple deterministic model based on the Michelis-Menten kinetic model has been also 

developed. 

Micro- and milliliter-scale reactors are commercialized with different modular solutions. However, 

in order to fully exploit the advantages of the technology for a given reaction, some specific tools have 

to be optimized/adapted, e.g. the mixing or heat exchange zone. This may imply unconventional design, 

which is hard to reproduce or scale-up. In this view, it is possible to exploit the potential of 3D printing 

or additive manufacturing (AM), to achieve on demand configuration of the microreactor with minimum 

efforts, almost nil waste and relatively inexpensive materials. The idea is intriguing because it allows 

the construction of tailored reactors, but the main issues are based on the available materials for 

manufacturing and on the spatial resolution achievable. Glass has good inertness and transparency, it 

would be suitable on lab scale, but its AM application is in explorative stage, only. Five common AM 

techniques have been considered for millilitre-scale reactor fabrication: stereolithography, multi-jet 

modelling, selective laser melting, selective laser sintering and fused deposition modelling [123].  

Extrusion-based techniques are relatively inexpensive and make use of a viscous molten 

thermoplastic polymer in a layer-by-layer process. A number of inert materials are available for the 

scope: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polycarbonate-acrylonitrile butadiene 

styrene (PC-ABS) and polyetherimides (ULTEM). This technique has been used to compose a split and 

recombine static mixer. Problems may arise due to the spatial resolution, which may induce leaks if the 

produced tube wall is not fully dense.  

Stereolithography is based on the layer-by-layer photopolymerisation of a liquid resin. The materials 

available are limited to UV-curable polymers, i.e. acrylates, epoxides and urethanes. It offers good 

resolution and sub-millimiter pipe design, enabling the production of complex or narrow geometries, but 

some mechanical properties of the resins may not be optimal. Some swelling may also occur with 

particular solvents. Another keypoint is the thermal resistance up to 150°C only, with some softening 

already at 50°C. A system of this type was used for the continuous flow oxidation of different aldehydes 
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to methylesters, which was already showed as conveniently carried out in flow-mode with respect to 

batch [124]. Some additional advantages of the AM configured reactor with respect to a simple coil have 

been shown in most cases [123], even if the reaction conditions for testing are not fully specified to allow 

a rigorous comparison. 

A different approach is used during laser sintering, which starts from powder materials and is able to 

achieve satisfactory or not spatial resolution depending on laser spot and powder size. In most cases, 

unacceptable porosity of the manufactured reactor causes leakage under pressure. An interesting 

alternative is the selective laser melting, which enables the production of metallic reactors. In this case 

melting usually ensure the formation of dense parts. The most applied material is AISI316 stainless steel 

[125], but examples are found also with aluminum [126] or titanium. The advantages and disadvantages 

of the different AM techniques have been effectively compared by Capel et al. [123] as synthesized in 

Table 2. 

 

Table 2. Critical comparison of the AM techniques available for the manufacturing of tailored reactors  

[123]. 

AM technique Materials Chemical 

stability 

Thermal 

stability 

Engineering 

& design 

limitations 

Resolution 

Fused Deposition 

Modelling 

Thermoplastics Variable; 

chemical 

degradation 

for 

polyesthers 

Variable Removal of 

internal parts 

may be 

difficult for 

complex 

geometries; 

external is 

simple. 

Max ± 0.3 

mm  

Laser Sintering Polymers (e.g. 

Nylon, PP) and 

ceramics in 

experimental 

stage 

Amides may 

be attacked 

by 

nucleophiles 

and strong 

bases 

Variable Complex 

removal of 

unsintered 

parts 

Max ± 0.2 

mm  

 

Stereolithography UV curable 

polymers 

Poor Generally 

poor 

Easy clean up 

of uncured 

resin 

Excellent,  

± 0.1 mm  
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Selective Laser 

Melting 

Metals High Very high Removal of 

support 

structures 

may be 

difficult; 

polish 

sometimes 

needed to 

improve 

surface 

smoothness 

Excellent,  

± 0.1 mm  

Multi-jet 

Modelling 

UV curable 

polymers 

Poor Generally 

poor 

Easy clean up 

of uncured 

resin 

Excellent,  

< ±0.1 mm  

 

MW-assisted reactors are reviewed with microreactors as process intensification tools [127]. The 

FlowSynth system [128] allows temperatures of up to 230°C and pressures of up to 30 bar with flow 

rates between 10 and 200 mL/min. It can produce many kg of product per day. It showed interesting 

applications for the Heck reaction in a continuous flow system as a mean to improve productivity through 

MW, scarcely scalable in batch due to the poor penetration capacity of MW (5 cm in most solvents). 

MW and ultrasound (US) assisted synthesis in continuous flow have been also proposed in the 

biorefinery field up to the pilot and industrial scale [127,129]. 

Proper reactor design and its modeling are challenging tasks for the design and development of 

photoreactors. In addition to the momentum, mass and energy balances, one should also consider the 

selection of suitable light sources, the emission, transport and absorption of photons and the geometry 

and position sources and targets. Additional complexity is encountered when the concentration fields of 

radiation-absorbing species are not uniform in photoreactors [88,130]. Compatibility aspects of the 

reactor with the light sources and solvents should be taken into consideration when designing an efficient 

photochemical process. The use of transparent materials is crucial to fabricate suitable photoreactors, 

which is not a trivial task, especially when working under unconventional conditions (e.g. under high 

pressure) [131,132]. The reactor material should allow for efficient photon transport from the light 

source to the reaction medium. In addition, the geometries of photoreactors and reflectors need to be 

optimized. Often, a cooling system has to be integrated to control the reaction temperature and avoid 

superheating of the light source. Further, the solvent should be compatible with the chosen light source 

and the reactor material [88].  
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Typically, the light source is constituted by a medium pressure Hg lamp outside the reactor. However 

the recent availability of LED sources allowed the direct integration into continuous flow microreactors 

with optimized emission wavelength tuned with the absorption maximum of the photocatalyst or 

sensitizer. LED are also characterized by low power input, high-energy efficiency, small size and low 

cost. Different materials may be used for the reactor, depending on the transparency needs, such as quartz 

(> 170 nm), Pyrex (> 275 nm), Corex (> 260 nm) and Vycor (> 220 nm). A variety of polymer materials 

were also tested, such as polymethyl-methacrylate (PMMA), polydimethylsiloxane (PDMS), perfluor- 

oalkoxyalkane (PFA) and fluorinated ethylene propylene (FEP), offering the advantage of high light 

transmission, easy fabrication, and low cost. Caution should be put on swelling in some organic solvents. 

Conversion is dependent on the efficiency of photon transport. Indeed, irradiation inhomogeneity and 

the corresponding variations in reaction conditions can reduce yield and selectivity [88]. Usually, 

microreactors are characterized by higher quantum yield due to shortened optical path and better 

homogeneity of the radiation.  

A new synthetic route for doxercalciferol (1a-hydroxyvitamin D2) was proposed by carrying out a 

photoisomerisation with 9-acetylanthracene as photocatalyst. A capillary (1.59 mm ID, 15.24 m length) 

was coiled around a cooled immersion well with a pyrex sleeve. A 450 W mercury vapor lamp was used. 

A design of experiments methodology (DoE) was used to optimize the operating parameters [88,133].  

Spinning disk reactors were tested, where the contact time was inversely proportional to the angular 

velocity, for the selective isomerization of -pinene [134]. This technology was considered able of a 8 

ton/year productivity  of epoxynitrile [135]. A spinning tube-in-tube reactor was also proposed [45] with 

improved mixing and controlled residence time, leading to minimization of byproducts. Many examples 

are reported by Anderson [21] indicating improved yield by using continuous vs. batch systems, also in 

case of MW, ultrasound or photoassisted processes, where the distance from the emitting source is 

detrimental for reactivity. 

A Computational Fluid Dynamic (CFD) model for oligonucleotide synthesis in packed bed columns 

was used. The kinetic model was developed from  small stirred vessels [20]. The effect of pressure drop, 

reactor geometry and inhomogeneity caused by swelling effects in the packed bed were taken into 

account. 

Selectivity can be effectively tuned by operating a rigorous temperature control. A specially designed 

reactor has been developed by Corning SAS on demand of Lonza Ltd. to carry out an organometallic 

mediated reaction in continuous flow with productivity of the order of 2 ton/month [22]. Feed splitting 

has been optimized for this application. A microstructured manifold has been developed and associated 

to a serpentine reacting zone and a coupled heat exchange layer. The pressure drop was also optimized. 

A few mL volume was obtained with the continuous flow system, to be compared with 1 m3 of the rival 

batch system. A considerable heat exchange intensification was achieved, by a factor 1.65 MW m3 / K. 
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The mixing efficiency was also determined both experimentally and through CFD simulation. The 

pressure drop was limited to 3 bar during testing with water under experimentally relevant conditions.  

Finally, a MW assisted microreactor for organic synthesis is described by Somerville et al. [136] and 

some examples of commercial integrated microreacting systems have been recently reviewed [137]. 

 

 

3.3. Scale-up issues 

 

Scalability is not a trivial issue because the typical similitude laws which hold for more conventional 

systems should be carefully checked and revised. This is one of the most challenging topics in this field. 

Scale-up has been effectively considered by Roberge et al. [3]. Efforts have been undertaken to scale-

up microreacting systems for commercial purposes. The first attempts consisted in coupling a number 

of units, better defined as numbering up. Subsequently, a plate geometry was proposed, allowing the 

incorporation of different functions in a single plate reactor, including heat exchange and mixing. 

Examples of compact reactors are proposed, as developed by Lonza and Corning. Different ideas have 

been proposed, such as modular prototypes, multi-injection systems to cope with exothermal systems, 

or a precise design of the reactor’s inlet channel. This allows a thin tube for the initial stages of reaction, 

to better control the heat release, followed by pipe enlargement when heat release control is less 

demanding, to limit the pressure drop. Furthermore, the different reactor plates, made of stainless steel, 

are thermally coupled with aluminum plates holding the heating/cooling fluid, in order to enhance heat 

transport [1]. 

 

Table 3. Type of reactor and orders of magnitude of reactants flow and productivity [3]. A6-A4 refer 

to increasing size (as for paper). 

Type of reactor Reactant’s flow (ml/min) Productivity per campaign 

(kg) 

Lab plate 1 - 10 Grams 

A6 50 - 150 0.1 - 300 

A5 100 - 300 300 - 900 

A4 200 - 600 900 - 2500 

 

Scale-up issues are different for the different reaction classes. When a plate system is adopted area 

and volume increase by a factor of some units. However, the internal of the system should be kept 

microstructured for class 1) reactions, to continue ensuring mixing and thermal exchange. This is not the 

case for class 2) reactions, for which it is better to keep constant the volume/area ratio. For viscous 
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systems pressure drop in the mixing zone dominates the scale-up procedure. Thus, flow rate is 

proportionally increased with the channels size in order to keep wasted energy rather constant. 

Examples of scale-up philosophy for different pre-clinical trials for the development of drugs have 

been summarized [3]. 

Another example of scale-up of a continuous flow microreactor has been reported for a two-step Li-

H exchange and coupling reaction [1]. The first step is a reaction of class 1) with a considerable adiabatic 

temperature rise, while the second is class 2) without particular needs for heating and mixing. A single 

channel design, with rectangular shape, with no flow partialisation has been selected as most appropriate 

for simpler scale-up. The key adimensional numbers and appropriate correlations are reported by 

Kochmann et al. [1], to compute pressure drop (mainly accounted for in the mixing zone), heat and mass 

transfer coefficients. The comparison between the reaction carried out in different tools and with reactors 

of different size is reported in Table 4. It is clear that static mixers and glass microreactors are not useful 

for this purpose due to inefficient heat transport. With the Lonza A5 microreactor it is possible to achieve 

optimal temperature control, with reasonable pressure drop, maximizing the product yield. This is 

important when coupled with the high flow rates, which ensure very high productivity. This system was 

used for a pilot campaign, leading to 700 kg of isolated product, and subsequently a 2 ton campaign. 

 

Table 4. Comparison of different reactors for a lithiation reaction [1]. The Lonza reactors adopt the 

conventional size descriptors as paper sheets. 

 

Type of reactor Mass flowrate 

(g/m) 

Tout (°C) P (bar) Isolated product 

yield (%) 

Static mixer 3/8’’ 33 9 0.3 88 

148 41 1.6 84 

Glass microreactor 0.5 mm 33 -14 0.4 86 

148 15 3.2 88 

Lonza microreactor A6 size, 

0.5 mm 

33 -22 0.9 89 

140 -16 8.8 90 

Lonza microreactor A5 size, 

0.7 mm 

150 -20 3.4 90 
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Lonza microreactor A5 size, 

1 mm 

150 -21 2.0 88 

237 -16 4.5 88 

 

Scale-up is often hard for photochemical reactions in batch mode, because in addition to the common 

heat and mass transport issues, the distribution of photons into large batch reactors is attenuated due to 

increased optical path. The use of continuous flow microreactors may overcome these limitations [88]. 

Heterogeneous photocatalysis has been also proposed in continuous flow, but with significant scale-

up issues [88]. Typically, scale-up is accomplished by adding microreactors in parallel. However this is 

not easily sustainable from the economic point of view due to increase of auxiliary equipment. One 

significant application allowed the production of 2 kg/day of 10- hydroxycamptothecine. However, flow 

distribution was needed to ensure equal distribution in the channels. This was not trivial since different 

pressure drop across the reactors may significantly change the flow. Another strategy is the increase of 

flowrate and reactor length, though this imposes the irradiation over longer length and higher pressure 

drop. A partial solution has been proposed through numbering-up, since the enlargement of the 

photoreactor depresses light absorption due to the increase of optical path across the solution. Paraller 

reactor design has been proposed by Su et al bu connecting up to 8 capillary reactors for the oxidation 

of thiols to disulphides [138]. However, up to now there is no process design and optimization study 

applied to photochemical processes. 

Scale-up was successful for a capillary microreactor coiled around a quartz cooling jacket in which a 

150W medium-pressure Hg lamp was placed for photochemical applications. The reaction was tested 

over a variety of 19 substrates, which could be converted within 13–50 min residence time affording the 

production ca. 600g/day. The purity of the compound was also very high compared to batch [139].  

Some basic issues of process design and scale-up, or better numbering up, have been taken into 

account by Hessel et al. [6]. 

The scale-up of MW-assisted systems has been also considered and compared with batch mode for 

Bohlmann-Rahtz cyclodehydration reactions [34]. Furthermore, a monolithic flow reactor was scaled up 

for the Pd-catalysed Suzuki-Miyaura reaction under MW heating [74].  

The conversion of phenol to 2-allylphenol in a two-step microflow apparatus has been proposed for 

process intensification in Claisen rearrangement with minutes time regimes. After the optimization of 

each reaction step separately, the integration proposed selectivity problems. Therefore, different 

solutions for separation were tested and proposed for scale-up. The authors proposed as main cause of 

selectivity loss the presence of a base and the reactant (allyl bromide) during the Claisen rearrangement. 
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Acid/base extraction, ion exchange resin,  heterogeneous base and dilution as kinetic approach, were 

compared as ways to improve the overall yield [140].  

Scale-up issues have been taken into account to increase the productivity by 700 times with respect 

to a spiral shaped microreactor for the oxidation of different substrates [141]. Two types of plate reactors 

supplied by Corning were used (Low Flow Reactor and Advanced Flow Reactor), characterized by 

higher throughput and improved mass transport with respect to the spiral-type microreactor. Re-

optimisation of the reaction conditions was compulsory to avoid solids precipitation in some cases.  

Finally, the advantages of efficient mixing for purposes of process intensification have been kept 

together by summing scale-up and numbering up approaches [110]. The flow dispersion unit to mix 

oleum with cyclohexanecarboxylic acid was enlarged by 16 times and ten parallel units were connected. 

Microsieve pores were kept with the same diameter but multiplied in number. This procedure for “sizing-

up” the reactor to a 160-times higher capacity maintained the same product yield (decreased by 1-2% 

with respect to the lab-scale microreactor).  

3.4. Process modelling 

 

Process modelling can be efficiently used to assess the feasibility and viability of candidate 

continuous processes. Minimal investment is required and numerous process options and configurations 

can be rapidly evaluated and compared. The continuous synthesis and purification of Ibuprofen, as 

example of Active Pharmaceutical Ingredient (API) has been proposed [2], chosen among a list of APIs 

for which a continuous flow synthesis has been proposed/validated. The flowsheet is based on three Plug 

Flow Reactors (PFR) in series and various mixers. Due to partial availability of kinetic data, a predictive 

tool for the estimation of chemical reactivity was used. Missing thermodynamic data were computed 

using the group contribution method, including solubilities. The different process sections have been 

considered, including separation and heat exchange. 

The system was designed for the production of ca. 60 kg of Ibuprofen per year (46 weeks operation), 

corresponding to almost 10 g/h. This was achieved with very small PFR reactors and equipment. Reactor 

volumes were ca. 6, 2 and 29 ml, respectively. Very small internal diameter (5 mm) allowed efficient 

heat transfer, ending in very small heat duty [2]. 

Microreactors, micro heat exchangers and micromixers are becoming useful tools for process 

intensification. Modelling of these devices and their implication in energy and materials intensification 

of the process is effectively described in comprehensive books (see e.g. [142,143]). 

As described previously, scale-up and modelling of photo-microreacting systems is still in pioneering 

stage. Only recently, microreactors have been proposed for kinetic modelling of selected reactions. For 

instance the 1,3,3-trimethylindolino-6’-nitrobenzopyrylospiran has different colour in the open- and 

close-ring forms (scheme 3), which interchange can be activated by light absorption with proper 
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wavelength. The reaction has been investigated with variable residence time and a kinetic model for this 

sample reaction has been drawn [144]. 

 

 

Scheme 3: 1,3,3-trimethylindolino-6’-nitrobenzopyrylospiran: ring opening upon UV light 

absorption and reverse reaction under visible light or heating. 

 

Furthermore, a photomicroreactor has been specifically designed for kinetic investigations by Su et 

al. [145]. They considered as model reaction a gas-liquid one, i.e. the aerobic oxidation of thiol to 

disulphide, including a detailed assessment of mass transfer limitations and the relevant conditions for 

collecting kinetic data in chemical regime. Accordingly, the propose a kinetic model for the selected 

reaction. 

 

Process simulation is a particularly hard task for this kind of applications. On one hand, 

unconventional substances are used, with scarce thermodynamic data available. The latter are required 

to carry out rigorous mass and heat balances. Furthermore, reactor modelling requires robust kinetic 

models and parameters, which are available in few cases only. Researchers are therefore strongly 

encouraged to collect kinetic data and to provide basic knowledge in order to assess the feasibility and 

launch process development. 

 

 

3.5. Safety issues 

 

Improved safety for continuous flow with respect to batch reactors has been reviewed recently [18].  

The typical size and enhanced heat and mass transfer achieved in flow conditions allow to explore 

unconventional process conditions. For instance, the  synthesis of benzimidazole was accomplished at 

270°C, 30-50 bar with extremely short residence time and accordingly scaled [129]. However, the use 

of high temperatures may lead to safety issues if instable intermediates are involved, such as the case of 

azides, which rapidly decompose forming nitrogen. In spite of this, the synthesis of triazoles was 

accomplished at 210°C with excellent yield and improved productivity with respect to batch due to 
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controlled conditions and residence time under flow [18]. Many different examples of Grignard reactions 

are summarised by Gutmann et al. [18] as example of very fast and exothermal reactions, which take 

advantage of the improved heat transfer. As well, many different oxidation processes are reviewed. 

Reaction runaway has been considered in case of stopped flow [1]. Heat transfer is tightly connected 

to the risk of runaway. In the case of exothermal reactions, the heat generated during the reaction should 

be removed effectively. However, heat transport is much more effective through convective flow, i.e. 

with moving fluid, than through static conduction. Thus problems may arise in case of stopped flow [1]. 

The synthesis of trans-2-methylcyclopropanecarboxylic acid was set up through stereoselective 

cyclopropanation of ethyl crotonate with Corey’s Ylide [19]. After the screening and optimisation of 

reaction conditions, reaction calorimetry and dynamic differential scanning calorimetry (DSC) allowed 

to assess the safety issues of the reaction, especially aiming at scale-up in flow reactors. Significant 

safety improvements were achieved due to the absence of hazardous accumulation of the thermally 

unstable dimethylsulphoxonium methylide. 

Hazardous reactants such as phosgene, HCN and HN3 can be more safely managed in flow regime 

than in batch, also developing their in-situ synthesis [6]. Examples of organic synthesis under harsh 

conditions in the pharmaceutical industry, such as nitrations and organometallic reactions, are critically 

reviewed by Kockmann and Roberge [146]. 

The exothermicity of some reactions, e.g. the Li- halogen exchange can be kept under control by the 

use of microreactors. Continuous monitoring of temperature allowed to exclude runaway [147]. Similar 

concepts were applied by the same authors to a full platform of organic reactions carried out under 

cryogenic conditions [148]. Finally, an example of Grignard reaction in microreactors confirm that it is 

possible to effectively control the hot spot [149]. 

The safety issues connected with liquid phase oxidation reactions have been reviewed recently 

[150,151]. Oxidising reactants typically used are oxygen, ozone or peroxides, which are usually mixed 

with organic solvents. Possible ignition of explosive reaction mixtures lead to unsustainable increase in 

temperature and pressure inside the reactor, possibly leading to rupture of the reactor and explosion. To 

operate safely oxygen partial pressure is decreased by dilution in the pharmaceutical industry, but the 

recirculation of inert gas increases the process complexity in conventional reactors. The use of 

microreactors improves the safety of operation because of much more limited mass contained in the 

reactor, since the power of an explosion is proportional to the cubic root of the explosive mass. 

Quenching is also provided immediately after microreactors for these applications to avoid any possible 

flame propagation to the storage tanks.  

The efficient removal of metal traces is becoming increasingly important to meet the level of purity 

requirement for pharmaceuticals. A scavenger-based extraction in flow is described by Vural Gürsel et 

al. [152] to remove metal catalysts. Liquid–liquid extraction was investigated with slug flow and phase 
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separation with a porous fluoropolymer membrane with different scavenger types. Extraction 

performance as high as 99% was achieved at pH 9.4 with scavenger/copper of 10 mol/mol. Process 

integration was also discussed by coupling this unit downstream to a flow reaction using homogeneous 

metal-based catalysis, i.e. presenting a continuous uninterrupted metal scavenging unit. The copper-

catalyzed azide-alkyne cycloaddition click reaction was studied in one-pot eliminating the need to isolate 

and handle potentially explosive azide. The triazole product is attained in flow with high yield of up to 

92% with 30 min residence time. 

 

 

3.6. Misleading concepts 

 

From the reported examples, flow chemistry demonstrated an emerging, interesting field in organic 

synthesis, but many reports, though proposing very good insights in the chemistry of the systems 

proposed, bring about some confusing concepts and incorrect comparisons.  

Very often papers report reaction time as descriptor for continuous microreactors, likely for a direct 

transposition from a “batch-mode” background. It would be more appropriate to report residence time, 

that should be calculated for instance as: 

 

𝜏 =  
𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
         (E8) 

 

or alternatively as function of catalyst mass in case of catalytic reactions. Under steady state conditions, 

conversion, selectivity and yield are not expected to increase with reaction time. In order to increase 

conversion (under identical operating conditions), higher reactor volume should be used, or lower 

reactants flow. Kinetic equations should be derived accordingly, not as differential equations with 

respect to reaction time, but with respect to reactor volume (or length, or residence time). Some examples 

are presented the following. 

The synthesis of amines from alcohols, catalyzed by Au has been proposed in flow mode [153]. It 

seems more appropriately a recirculating/mixing system, rather than a continuous flow reactor. Indeed, 

the reactor was operated by continuous recirculation of the catalyst, but it cannot be fully addressed as 

“flow” condition. A time of reaction is indeed introduced, instead of a more appropriate residence time, 

reactor volume or catalyst mass. Analogously, the kinetic data there reported are defined as concentration 

vs. time.  

Another conventional misleading assumption is that higher reactivity/selectivity is achieved as such 

in microreactors with respect to batch ones. This may be indeed the observed result, but the conclusion 

is only partially true if the residence time in flow mode is not compared with the reaction time in batch. 
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For instance, Ahmed-Omer et al. [154] compared many different reactions carried out in continuous 

flow with batch analogues, but the respective operating conditions and the comparison of relevant times 

are not fully specified. Furthermore, the same authors state that “the combination of continuous flow 

systems along with heterogeneous catalysis is a relatively new idea…”, which may be truely the case 

for fine organic synthesis, but it is not at all right for most of the typical (and industrially relevant) 

examples of heterogeneous catalysis, as almost all the refinery processes. Additionally, Hessel et al. [6] 

compared yield and enantiomeric excess between batch and flow reactors at different times. 

The Suzuki cross-coupling reaction has been interestingly reviewed [155], including some emerging 

applications with microreactors. A continuous flow microreactor was obtained from a monolithic glass-

polymer composite [77]. An oxime-based palladacycle was immobilised onto polyvinylpyridine resin 

and it was loaded in a microreactor containing a monolithic composite material. The apparatus was used 

in a continuous-flow Suzuki reaction of 4-bromoacetophenone and phenylboronic acid, leading to the 

coupling product in 84% yield after 24 h. This concept can be misinterpreted since under continuous 

flow and in steady state conditions, the same yield is obtained at any time. Furthermore, reutilization is 

often cited, but it would be more correct to report a steady state diagram for prolonged reaction time, 

showing that no loss of activity occurred. Comparison of reactivity at widely different residence 

time/reaction time are also proposed. 

The continuous production of active ingredients for artemisin-based antimalarial drugs was compared 

with batch systems [156]. Multiple N2H2 feeds improved selectivity and allowed milder reduction 

conditions with respect to batch processes using H2. Productivity was much higher, although some 

overlap is present between residence time and reaction time concepts. 

Another aspect which is often neglected is that from an industrial point of view it is mostly important 

to improve selectivity and lifetime rather than conversion (provided it is at least good), because recycle 

can improve the overall yield, but if high selectivity is reached, low separation costs are ensured. 

 

4. Conclusions  

 

Flow chemistry represents an emerging topic, with relevant applications, also in industrial scale, in 

the pharmaceutical field. Explorative examples are also being developed in photochemistry, 

photocatalysis, MW-assisted reactions and organic synthesis.  

The most important features achievable using microreacting systems are the improved heat and mass 

transfer. This turns into improved safety and in most cases into higher selectivity and productivity. Much 

broader operating conditions window may be explored, thus opening the way to reactions unrealizable 

otherwise. 
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Despite these considerable advantages, knowledge is needed from the engineering and scale-up points 

of view, which should stimulate considerable research in the near future. In general, efforts are needed 

to use appropriate variables and parameters to describe the reactor performance. Furthermore, 

correlations are needed to describe heat and mass transfer coefficients and pressure drop depending on 

the particular geometries and fluid dynamic conditions. As well, detailed kinetic modelling is needed for 

appropriate reactor design. 

In particular, the following actions are needed to cope with the issues which are still open and need 

to be solved to spread this emerging technology: 

1) Borrow the existing and wide knowledge on continuous processes from different sectors of 

industrial chemistry, of course adapting to the selected scales; 

2) Develop appropriate correlations to quantify the relevant transport parameters; 

3) Supply relevant thermodynamic and kinetic data, as well as robust estimation tools for 

unconventional molecular systems; 

4) Develop suitable tools for process simulation and cost analysis.   
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