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1 Introduction

In this article we survey some recent results on superlinear elliptic equations and
systems. A particular focus will be the borderline situations of so-called critical
growth. In the existence theorems, we will use mostly variational methods,
that is we look for critical points of functionals associated to the equations
and systems. In dealing with variational problems, the choice of the function
spaces in which the functionals are defined is of essential importance. There
are two competing factors which determine this choice: on the one hand, the
space should be ”sufficiently small” so that the functional under consideration
has the desired regularity; and on the other hand, the space should ”not be too
small” since otherwise the required compactness properties may get lost.

When working with scalar equations one is used that the above smallness
and largeness requirements usually lead to a unique choice of (Sobolev) space,
in which the problem is well-posed and hence solvable. Indeed, the borderline
situation (critical growth) may be defined as the limiting situation in which
this space setup works. We will discuss the various phenomena connected with
critical growth.

We then treat recent results on systems of superlinear equations. We will see
that for the functionals associated to systems there is more freedom in the choice
of the space; in fact, one may choose among a whole continuum of products of
Sobolev spaces. Each choice yields different maximal growths for the respective
nonlinearities, but again we find that for a fixed pair of such critical growth
nonlinearities there exists a unique choice of a product Sobolev space. Together
the pairs of critical growth nonlinearities form the so-called ”critical hyperbola”.

We will then concentrate on some limiting cases of elliptic systems. Contrary
to the situation in scalar equations and in (non limiting case) systems, we will
find a wide range of (Sobolev) spaces available in which the corresponding
functionals may be defined, and the question of the ”right” functional setup
becomes quite delicate. Indeed, we will see that in some limiting cases the
various possible choices of Sobolev spaces yield, for the same functional, different
maximal growths. We will then see that the more refined Sobolev-Lorentz spaces
provide an ”optimal” functional setup.

Much space will be devoted to the less widely known situation in dimension
N = 2, where critical growth is of exponential type, given by the so-called
Trudinger-Moser inequality. Working with systems in dimension N = 2, we
will see that also here the Sobolev-Lorentz spaces yield the suitable functional
setup in which the analogue of the critical hyperbola (involving nonlinearities
of different exponential growths) can be found.
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2 Elliptic equations

2.1 Some history

For studying the model elliptic equation

{ −∆u = f(u) in Ω
u = 0 on ∂Ω ,

(2.1)

where Ω ⊂ Rn is an bounded open domain and f : R → R is a continuous
function, one may try to use the well-known Dirichlet principle which consists
in minimizing an associated functional over a suitable set of functions; then,
the corresponding critical points correspond by the Euler-Lagrange principle to
(weak) solutions of problem (2.1). The functional associated to equation (2.1)
takes the form

I(u) =
1

2

∫

Ω

|∇u|2dx−
∫

Ω

F (u)dx

where F (t) =
∫ t

0
f(s)dx is the primitive of f(t).

If we for instance assume that

|f(s)| ≤ M , ∀ s ∈ R ,

and hence
|F (s)| ≤ c + M |s| , ∀ s ∈ R ,

we can estimate

I(u) ≥ 1

2

∫

Ω

|∇u|2dx−M

∫

Ω

|u|dx

≥ 1

2

∫

Ω

|∇u|2dx−M |Ω|1/2(

∫

Ω

|u|2dx)1/2

By the Poincaré inequality

∫

Ω

|∇u|2 ≥ d

∫

Ω

|u|2

we find that I(u) is bounded from below, and hence is makes sense to look for
the global minimum of this functional. It is clear that there exist functionals
which are bounded below but which do not attain their minimum: consider e.g.
j : R → R : j(s) = es; clearly, infs∈R j(s) = 0, and any minimizing sequence
(sn) satisfies sn → −∞. The above functional I(u) seems better behaved since
we see easily that any minimizing sequence (un) ⊂ H1

0 (Ω) is in fact bounded:
Setting m = infu∈H1

0 (Ω) I(un), we have

m + 1 ≥ I(un) ≥ 1

2

∫

Ω

|∇un|2dx−M |Ω|1/2d (

∫

Ω

|∇un|2dx)1/2
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and hence

c ≥
( ∫

Ω

|∇un|2dx
)1/2

= ‖un‖H1
0

In finite dimensions this would lead immediately to a convergent subsequence
and to the conclusion that the minimum is attained. However, in the infinite
dimensional space H1

0 (Ω) the situation is more delicate. Indeed, in Dirichlet’s
time, and also much later, this questions was not rigorously posed, and it was
often tacitly assumed that the minima for functionals of the form I(u) are
attained, without questioning by what kind of function. It took the famous
Weierstrass example, namely

J(u) =

∫ 1

0

x2|u′|2dx , u : [0, 1] → R , u(0) = 0, u(1) = 1

to change things. Minimizing J(u) for instance over the (natural) class E =
{u ∈ C1([0, 1],R) ; u(0) = 0, u(1) = 1}, one sees easily that inf J(u) = 0, but
that 0 cannot be attained by a C1-function. This threw the field of Calculus of
Variations (and in fact all of Analysis) into a crisis; but the crisis was overcome
by the efforts of Weierstrass himself, by Arzelà, Fréchet, Hilbert, Lebesgues and
others, leading to the foundation of modern analysis.

2.2 My space or yours?

In today’s words, the upshot from this crisis regarding the Dirichlet principle is
precisely the question over what class (or space) of functions the minimization
should be taken. Indeed, there is a large variety of spaces available, the spaces
of continuous and differentiable functions, the more refined Hölder spaces, the
more general Lebesgues and Sobolev spaces, and (as we will see later on)
generalizations of these, the Orlicz spaces and Lorentz spaces. So the actual
choice of the space to work in seems somewhat arbitrary - and only restricted
by the expectation that the ”outcome” should be (essentially) the same, and
not really depend on the choice of the space. This apparent ambiguity in the
choice of the space may be hard to understand for people working in other fields
- it has even been said that: ”if the space matters, then it doesn’t matter ...”

There are two competing requirements which intervene in the choice of the
space: the functional must be continuous and differentiable, and the functional
must possess a suitable compactness; for the first requirement, the space should
be ”small”, i.e. the topology must be sufficiently fine. Indeed, if we take the
”small” space of differentiable C1-functions, then the functional of the form

I(u) =
1

2

∫

Ω

|∇u|2dx−
∫

Ω

F (u)dx

is certainly defined and continuous in u; however, due to the incompleteness

of this space with respect to the Dirichlet-norm ‖u‖ =
( ∫

Ω
|∇u|2dx

)1/2

,
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compactness fails to hold, and it is in general impossible to prove directly that
infC1(Ω)I(u) is attained. On the other hand, for the compactness requirement,
the space should be sufficiently ”large”, i.e. the coarser the topology the better.

Indeed, by Sobolev’s work we know that a ”good” space to work with is
the Sobolev space H1

0 (Ω), i.e. the space of functions whose (weak) derivative
belongs to the space L2(Ω). By the very definition of this space, the Dirichlet
integral is well-defined and continuous on this space; in fact, it is the largest
space on which this is the case. Now, we need to check that also the second
part of the functional I(u), i.e.

∫
Ω

F (u) dx, is well-defined on H1
0 (Ω). To obtain

this, one needs to impose a growth condition on f(s), namely

|f(s)| ≤ c + c|s|n+2
n−2 , s ∈ R

This implies that F (s) =
∫ s

0
f(t)dt satisfies the restriction

|F (s)| ≤ c + c|s|2∗ , s ∈ R , 2∗ :=
2N

N − 2
, N ≥ 3 .

And then, by the famous Sobolev embedding theorem H1
0 (Ω) ⊂ L2∗(Ω), one

concludes that indeed the second term of the functional I(u) is well-defined on
H1

0 (Ω), and that the functional is continuous and differentiable.

2.3 Compactness

Let us now return to the question raised above, namely whether it is true that
”bounded minimizing sequences contain a convergent subsequence”. In the
context of more general critical points, this is known today as the Palais-Smale
property, and goes back to a famous work [39] of these two authors where they
study a generalized Morse theory.

Indeed, if we impose the stronger growth condition (so-called subcritical
growth):

|f(s)| ≤ c1 + c2|s|p , for some 1 < p <
N + 2

N − 2
,

then we have by Rellich’s theorem a compact embedding H1
0 (Ω ⊂ Lp+1(Ω),

and consequently the Palais-Smale property is often (that is, under suitable
”technical” conditions) satisfied.

On the other hand, if we consider the model problem1 with ”critical growth”



−∆u = u

N+2
N−2 , in Ω

u(0) = 0 , on ∂Ω
, (2.2)

then interesting phenomena appear: first of all, by the famous Pohozaev identity
[40], one proves that equation (2.2) has no nontrivial solution if Ω is starshaped.
Thus, one might argue that the problem is completely solved:

1to simplify notation, we will write throughout the text: sp := |s|p−1s
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- the (in some sense natural) choice of the space H1
0 (Ω) yields compactness

and hence solvability for subcritical growth (defined precisely by this
choice of the space);

- on the other hand, the Palais-Smale property fails and solvability is lost
at the limiting ”critical growth”.

But due to the continued interest in equations of form (2.2), mainly because of
their importance in geometry, the studies continued, and many surprising and
fascinating phenomena were discovered.

2.4 Critical growth

In this section we discuss some of the main phenomena of critical growth:

Loss of compactness:

The ”loss of compactness” derives from the non compactness of the limiting
case of the Sobolev embedding

H1
0 (Ω) ⊂ L2∗(Ω) , 2∗ =

2N

N − 2
, N ≥ 3 .

To see that this embedding is not compact, it suffices to find a bounded sequence
(un) ⊂ H1

0 (Ω) which does not admit a convergent subsequence in L2∗(Ω). Such
a sequence can be easily constructed: Choose a ball of radius a such that
Ba(x0) ⊂ Ω. Clearly we may assume that x0 = 0. Let

un(x) = un(|x|) = un(r) =





1

n
N−2

2

1

rN−2
− dn , 1

n
≤ r ≤ a

n
N−2

2 − dn , 0 ≤ r ≤ 1
n

where dn = 1

n
N−2

2 aN−2
, and un(x) = 0 for x ∈ Ω \Ba(0).

A direct calculation shows that the Dirichlet norm ‖u‖ =
( ∫

Ω
|∇u|2dx

)1/2

is bounded: indeed
∫

Ω

|∇un|2dx = ωN−1
(N − 2)2

nN−2

∫ a

1/n

r2−2N rN−1dr = CN(1− c(a)

nN−2
) ≤ CN ,

where ωN−1 denotes the surface area of the unit sphere in RN .
Furthermore, we observe that pointwise un(r) → 0, for all 0 < r < a, as

n → ∞. But (un) cannot have a subsequence which converges to 0 in L2∗(Ω),
since

∫

Ω

|un|2∗dx ≥ ωN−1

∫ 1/n

0

(
n

N−2
2 − dn

) 2N
N−2

rN−1dr ≥ c1 > 0 , ∀ n ∈ N . (2.3)
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From the simple sequence above, we may make another very important
observation. Looking at the ”principal term” of un, namely,

ũn(r) :=
1

n
N−2

2

1

rN−2
= n

N−2
2

1

(n r)N−2

we observe that
ũn(r) = n

N−2
2 ũ1(n r) ,

and from the simple calculations above we see that
∫

Ω
|∇ũ1|2dx as well as∫

Ω
|ũ1|2∗dx remain invariant under this ”group action”. This is in fact true

in general, i.e. in the limiting Sobolev embedding we have a

Group invariance:

For u ∈ H1
0 (Ω), define the continuous group action or ”rescaling”

uλ(x) := λ
N−2

2 u(λx) ;

this is defined for all λ > 0 if Ω = RN , and for 0 < λ ≤ 1 if Ω is starshaped
(w.r.t. the origin). One then shows by direct calculation that

∫

Ω

|∇uλ|2dx = c ,

∫

Ω

|uλ|2∗dx = d , ∀ λ > 0 ,

It is in fact the appearance of this invariance under rescaling which is the deeper
reason for the loss of compactness.

Non-existence of solutions in bounded starshaped domains:

With the loss of compactness, one loses the main instrument to prove existence
of a solution to equation (2.2). And in fact, one may show that if Ω is a bounded
starshaped domain, then indeed there does not exist a (non trivial) solution.

This is due to the famous Pohozaev identity, see [40]. This identity is
obtained from the equation (2.2) by multiplication by x · ∇u and integration,
and it says that if u ∈ C2(Ω) ∩ C1(Ω̄) is a solution of (2.2), then the following
relation holds:

N − 2

2

∫

Ω

|∇u|2dx− N

2∗

∫

Ω

|u|2∗dx +
1

2

∫

∂Ω

∣∣∂νu
∣∣2 x · ν dσ = 0 ,

where ν is the exterior normal to ∂Ω. On the other hand, multiplying (2.2) by
u and integration yields

∫

Ω

|∇u|2dx =

∫

Ω

|u|2∗dx .

From these two identities follows that
∫

∂Ω

∣∣∂νu
∣∣2 x · ν dσ = 0 ,
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Since Ω is starshaped, we have x · ν > 0, for all x ∈ ∂Ω, and hence ∂νu = 0 on
∂Ω. But this implies that u ≡ 0 by the principle of unique continuation.

The situation changes if we consider the problem on the whole of RN . In
the case with critical growth we have:

Existence of explicit solutions on Rn: instantons

The explicit solutions of the equation
{ −∆u = u

n+2
n−2 , in RN

u(0) → 0 , for |x| → 0
(2.4)

are

uλ(x) = (N(N − 2))
N−2

4
λ

N−2
2

(λ2 + |x|2)N−2
2

, λ > 0 . (2.5)

They were found independently by G. Talenti [48] and Th. Aubin [7]. Note
that (2.5) represent a family of solutions, parametrized by λ > 0. This reflects
again the group (or scaling) invariance of the equation. In addition, there is
also (an obvious) invariance of the equation by translation. One knows that, up
to the rescaling and translations, the above solutions are the only solutions of
equation (2.4). The solutions are characterized by

SN(RN) = inf
u∈H1(RN )\{0}

∫
RN |∇u|2dx

(
∫
RN |u|2∗dx)2/2∗ (2.6)

This expression characterizes the best Sobolev embedding constant for the
embedding H1(RN) ⊂ L2∗(RN), and thus this constant is attained by the
function (2.5), and it can be explitely calculated. On the other hand, by
the Pohozaev identity we infer that the best Sobolev embedding constant
SN(Ω) cannot be attained if Ω is starshaped: otherwise, we would obtain a
nontrivial solution to equation (2.4) which is impossible. In fact, by the unique
continuation property, one shows that this constant is never attained if Ω 6= RN .

We have alrady seen that there is a loss of compactness for the embedding
H1

0 (Ω) ⊂ L2∗(Ω), for bounded domains Ω ⊂ Rn, by giving an explicit bounded
sequence in H1

0 (Ω) which does not have a convergent subsequence in L2∗(Ω).
Using the instantons (2.5), is is easy to obtain a minimizing sequence for

SN(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
|u|2∗dx)2/2∗

First note that evidently

SN(Ω) ≥ SN(Rn) =: SN ,

since every function in H1
0 (Ω) may be extended by 0 to an H1-function on Rn.

On the other hand, taking

ũλ(x) = η(x) uλ(x) , (2.7)
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where η ∈ C∞
0 (Ω) is a cut-off function, i.e. η ≡ 1 on a neighborhood Bρ(0) ⊂ Ω.

One then estimates that for λ → 0+

∫

Ω

|∇ũλ|2dx =

∫

Ω

|∇uλ|2 + O(λN−2) = S
N/2
N + O(λN−2)

∫

Ω

|ũλ|2∗dx =

∫

Ω

|uλ|2∗dx + O(λN) = S
N/2
N + O(λN)

(2.8)

and thus

SN(Ω) ≤
∫
Ω
|∇ũλ|2dx

( ∫
Ω
|ũλ|2∗dx

) 2
2∗

=
S

N/2
N

S
N/N∗
N

+ O(λN−2) = SN + O(λN−2) .

From this we conclude that for any domain Ω ⊂ RN

SN(Ω) = SN , (2.9)

and that (ũλ) is a minimizing sequence for SN in H1
0 (Ω) which is non-compact

in L2∗(Ω).

As already mentioned, the above stated results on the equations with
subcritical and critical growth seem to imply that we have a complete result:
that is

- compactness and existence of nontrivial solutions in the subcritical case in
bounded domains

- loss of compactness due to the appearance of a group invariance, and loss
of solutions (in starshaped domains) in the critical case.

Indeed, as pointed out by H. Brezis, this seemingly complete result blocked
further research for many years - until H. Brezis and L. Nirenberg published
their groundbreaking result, see [10]:

The Brezis-Nirenberg result:

As mentioned above, the equation with ”pure critical growth” (2.2) has no non-
trivial solution if Ω is bounded and starshaped. From the variational point
of view, this is due to the lack of compactness, caused by the concentration
phenomenon. The crucial observation by H. Brezis and L. Nirenberg is that
this concentration is the only way in which compactness can be lost. And if
compactness is lost due to concentration, then this happens at precise energy
levels (the energy of the concentrating instantons). Brezis and Nirenberg
consider in [10] an equation with critical growth and with a lower order
perturbation, and then search for solutions by minimizing a suitable constrained
energy functional. They then calculate the lowest ”level of non-compactness”,
i.e. the limit value of the functional along the concentrating instantons. Finally,
they show that the actual minimum value of the functional is below this ”value
of non-compacntess”, and conclude that hence the minimum is attained.



Superlinear elliptic Systems 11

More precisely, they consider, for 0 < λ < λ1, the equation





−∆u = λu + u
n+2
n−2 , x ∈ Ω

u = 0 x ∈ ∂Ω

u > 0 on Ω ,

(2.10)

and look for solutions by considering the minimzation problem

m := inf
{u∈H1

0 (Ω)\{0}

∫
Ω

(|∇u|2 − λ|u|2)dx
( ∫

Ω
|u|2∗dx

)2/2∗ .

The only non-compactness level for this minimization is again the level SN ,
since along the concentrating instantons

∫
Ω
|ũλ|2 → 0, for λ → 0. We now show

that m < SN . For this we do a more precise estimate: indeed, one can estimate
explicitely that (for N ≥ 5):

∫

Ω

|ũλ|2dx ≥ c λ2 , for some c > 0 , and λ > 0 small .

Thus we get, using the sequence (ũλ) and the estimates (2.8)

m ≤ SN + O(λN−2)− c λ2 < SN , (N ≥ 5) ,

for λ > 0 sufficiently small. Thus we have confirmed that the infimum m lies
below the non-compactness level SN , and hence it is attained! (Similar estimates
hold for N = 4, and with some restricitons for N = 3).

This result is by now classical, and has had an enormous influence on the
research of the last 25 years.

3 The case of dimension N = 2

The case of dimension N = 2 is special, since the corresponding Sobolev space
H1

0 (Ω), Ω ⊂ R2, is a borderline case for Sobolev embeddings: one has

W 1,2
0 (Ω) ⊂ Lp(Ω) , for all p ≥ 1 ,

but

W 1,2
0 (Ω) * L∞(Ω) ;

indeed, the function loglog(x)) belongs to W 1,2(B1(0)), but not to L∞(Ω).

So, one is lead to ask if there is another kind of maximal growth in this
situation. And indeed, this is the result of Pohozaev [41] and Trudinger [49],
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and which is now called the Trudinger inequality : it says that if Ω ⊂ R2 is a
bounded domain, then

u ∈ W 1,2
0 (Ω) =⇒

∫

Ω

e|u|
2

dx ≤ c . (3.1)

We can express this fact alternatively in terms of an embedding. For this we
need to introduce the notion of Orlicz space which generalize the Lp-spaces. Let
ϕ(t) = et2 − 1. This is a so-called N -function (see section 5 below, where Orlicz
spaces will be discussed in more detail). Let KM = {u : Ω → R,

∫
Ω

ϕ(u) <
+∞}. The Orlicz space Lϕ is the linear vector space generated by KM . For
more details we refer to section 5. The result of Pohozaev and Trudinger now
says that one has a continuous embedding

H1
0 (Ω ⊂ Lϕ(Ω) , for Ω ⊂ R2 bounded

and
H1

0 (Ω) ⊂ Lψ(Ω) compact, for any ψ ≺≺ ϕ , (3.2)

where ψ ≺≺ ϕ means that ψ increases essentially more slowly than ϕ, see
section 5.

Inequality (3.1) was improved and made precise by J. Moser [38] who proved
that:

sup
‖∇u‖L2≤1

∫

Ω

eαu2

dx

{ ≤ c , if α ≤ 4π
= +∞ , if α > 4π

(3.3)

One can now ask if the ”critical growth” (3.1) produces similar phenomena
for equation (2.1) as the case N ≥ 3; indeed, one has many similarities, but also
remarkable differences.

Loss of compactness: Similarly as in the case N ≥ 3, we can give an explicit
sequence (un) which is bounded in H1

0 (Ω), and such that (un) has no convergent
subsequence in Lϕ. For simplicity, assume that Ω = B1(0), the unit ball. Let

wn =
1√
2π





(log n)1/2 if 0 ≤ |x| ≤ 1
n

log 1
|x|

(log n)1/2
if 1

n
≤ |x| ≤ 1

One checks easily that
∫

B1
|∇wn|2dx = 1, and hence wn ⇀ w. Furthermore,

one checks that
∫

B1
(ew2

n − 1)dx → π. On the other hand, we have pointwise
wn(x) → 0, for any x 6= 0, and hence w = 0. From this one concludes that there
cannot exist a subsequence with ‖wnk

− w‖Lϕ → 0.

Group invariance: A fundamental difference to the case N ≥ 3 is that no
analogue of the group invariance in N ≥ 3 is known for the case N = 2.
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Connected with this, also no identity of Pohozaev type is known for dimension
N = 2, which could be important for obtaining non-existence results.

Before discussing further the issue of existence and non-existence, let us give
a more precise notion of critical growth: We say that f ∈ C(R) has subcritical
growth if f(t) ≺≺ et2 − 1 (see (3.2) and section 5), i.e. if

lim
|t|→∞

f(t)

eαt2
= 0 , for every α > 0 , (3.4)

and f(t) has critical growth if there exists α0 > 0 such that

lim
|t|→∞

f(t)

eαt2
= 0 if α > α0 , and lim

|t|→∞
f(t)

eαt2
= +∞ if 0 < α < α0 . (3.5)

We first consider

3.1 Subcritical growth

Concerning subcritical growth, one has the following existence result for
equation (2.1):

Theorem 3.1 (see [3], [17])
Assume that f ∈ C(R) satisfies

(H1) there exist constants t0 > 0 and M > 0 such that

0 < F (t) =
∫ t

0
f(s)ds ≤ M |f(t)| , ∀ |t| ≥ t0

(H2) 0 < F (t) ≤ 1
2
f(t)t , ∀ t ∈ R \ {0}

Then equation (2.1), with Ω ⊂ R2 a bounded domain, has a nontrivial solution.
Moreover, if f(t) is an odd function in t, then equation (2.1) has infinitely many
solutions.

Proof. The proof follows (by now) standard lines: the assumptions guarantee
that the functional has a mountain pass structure around the origin, cf. [5, 43].
The subcritical growth yields compactness, cf. (3.2), and hence the critical level
is attained.

3.2 Critical growth

We consider now equation (2.1) with critical growth in the sense specified in
(3.5) above. For the case N = 2 the situation is more complicated than for
dimensions N ≥ 3, and the known results are less complete. The difficulties
start already with the fact that there is no natural ”model problem” for the
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critical case. Thus, let us write the ”critical” equation (with α0 = 4π, see (3.5))
in the form

−∆u = h(u) e4π u2

= e4πu2+log h(u) , Ω ; u = 0 , ∂Ω

where h ∈ C(R) is subcritical, i.e. satisfying condition (3.4). Thus, log h(u) is a
”lower order perturbation” of the principal growth term 4π u2, and in analogy
to the Brezis-Nirenberg case we can ask for conditions on h(t) such that we have
again the situation of non-existence or existence of solutions.

Related to the study of this question is the behavior of the supremum in
(3.3). Indeed, it came as a surprise when L. Carleson - A. Chang [12] proved
in 1986 that the supremum in (3.3) is attained on the unit ball in R2. In fact,
consider for comparison the following maximization problem, for N ≥ 3

sup
‖∇u‖L2≤1

∫

Ω

|u|2∗dx = M . (3.6)

This problem corresponds to the minimzation problem (2.6), and by (2.9) it is
clear that

M =
1

S
N

N−2

N

.

Furthermore, by the remarks made following (2.6), the supremum in (3.6) is
never attained if Ω 6= RN .

Thus, the result of Carleson and Chang (for Ω = B1(0)) is in striking contrast
to the case N ≥ 3. We remark that the result of Carleson and Chang was
extended to arbitrary domains in R2 by M. Flucher [24]).

Carleson and Chang prove their result by the following steps: Let {un} be a
maximizing sequence.

- by radial symmetrization, one see that {un} may be assumed radial, and
thus characterized by an ODE (the radial equation)

- if the supremum is not attained, then the maximizing sequence is a
”normalized concentrating sequence”, i.e. it tends weakly to 0 and
concentrates in the origin

- determine an explicit upper bound for any such normalized concentrating
sequence (un) ∈ H1

0 (B1), namely
∫

B1(0)

e4πu2
n ≤ (1 + e)π

- provide an explicit normalized function w ∈ H1
0 (B1) with

∫

B1

e4πw2

> (1 + e)π
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Clearly, (1 + e)π takes the rôle of the (highest) non-compactness level,
analogous to the situation in R ≥ 3 described above, and since the supremum
lies above this non-compactness level, it is attained.

In a recent paper by De Figueiredo, do Ó and the author [18] the following
explicit normalized concentrating and maximizing sequence for (1 + e)π was
constructed:

For n ∈ N set δn = 2 log n
n

and An = 1
e n2 + O( 1

n4 ) ; then define

yn(|x|) =

{
(1−δn

n
)1/2 log 1

|x| , 1/n ≤ |x| ≤ 1

1
(n(1−δn))1/2 log An+1

An+n|x| + (n(1− δn))1/2 , 0 ≤ |x| ≤ 1/n
(3.7)

The constants An are chosen such that
∫

B1
|∇un|2dx = 1. This sequence allows

to give a new proof of the last step in the argument of Carleson-Chang (and
also a generalization of their result): one shows that this sequence approaches
the value (1 + e)π from above, i.e.

∫

B1

e4πu2
ndx > (1 + e)π , for n large .

This is in complete analogy to the case of Brezis-Nirenberg, whereby the
sequence (3.7) takes the rôle of the sequence ũλ, see (2.7).

Problem: In view of this and the above remarks, it is of interest to consider

sup
u∈H1

0 (Ω),‖u‖=1

∫

Ω

h(u)e4πu2

= S

and give optimal (= sharp) conditions on the subcritical function h(t) such that
the supremum S is attained, respectively not attained.

3.3 Critical growth: existence

For the corresponding equation

{
−∆u = h(u) e4π u2

, in Ω

u = 0 , on ∂Ω
(3.8)

some progress has been made recently concerning the determination of an
optimal subcritical function h(t). We remark that concerning non-existence
results, a fundamental difference to the case N ≥ 3 is that (up to now) no
suitable identity of Pohozaev type is known for the case N = 2.

In [17] the following theorem was proved by de Figueiredo, Miyagaki and
the author (see also Adimurthi [2]):
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Theorem 3.2 Assume that h ∈ C(R) and let f(s) = h(s)e4πs2
. Assume that

H1) f(0) = 0

H2) there exist constants s0 > 0 and M > 0 such that

0 < F (s) =

∫ s

0

f(r)dr ≤ M |f(s)| , ∀ |s| ≥ s0

H3) 0 < F (s) ≤ 1
2
f(s)s , ∀ s ∈ R \ {0}

Furthermore, let d denote the inner radius of Ω, i.e.

d := radius of the largest ball ⊂ Ω

Then equation (3.8) has a nontrivial solution provided that

H4) lim|s|→∞ h(s)s = β > 1
2π d2

The proof of this theorem follows closely the scheme by Brezis-Nirenberg
mentioned above, that is

- determine (explicitly) the level of non compactness

- use an explicit concentrating sequence and the hypothesis on h(t) to show
that the min-max level is below this non-compactness level

- thus, compactness is recovered and the existence of a solution follows

The concentrating sequence used in the proof of this theorem is the so-called
Moser sequence given by

wn =
1√
2π

{
1

(log n)1/2 log 1
|x|

1
n
≤ |x| ≤ 1

(log n)1/2 0 ≤ |x| ≤ 1
n

We remark that this sequence is not an optimal concentrating sequence; in fact,
one easily calculates that

lim
n→∞

∫

B1

e4πw2
n = 2π < (1 + e)π

We remark that the condition H4) in Theorem 3.2 may be slightly improved to

β >
1

e π d2

by using the optimal maximizing sequence (3.7) mentioned above instead of the
Moser sequence.
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3.4 Critical growth: non-existence

Concerning non-existence, only a partial result is known; in the following
theorem, the non-existence of a positive radial solution on Ω = B1(0) is proved
under conditions comparable to those of Theorem 3.2.

Theorem 3.3 (de Figueiredo-Ruf [21])
Let Ω = B1(0). Suppose that h ∈ C2(R), and that there exist constants r1 > 0
and σ > 0 such that for some constants K > 0, c > 0:

1. h(r) = K
r

, for r ≥ r1

2. 0 ≤ h(r) ≤ cKr1+σ , for 0 ≤ r ≤ r1.

Then there exists a constant K0 > 0 such that for K < K0 the equation
{
−∆u = h(u)e4πu2

, in B1(0) ⊂ R2

u = 0 , on ∂B1(0)
(3.9)

has no non-trivial radial solution.

We remark that by Gidas-Ni-Nirenberg [25] any positive solution of equation
(3.9) is radial, and hence Theorem 3.3 says that equation (3.9) has no positive
solution.

Comparing Theorems 3.2 and 3.3 one notes that Theorem 3.3 assures (under
some ”technical” conditions) the existence of a positive solution for Ω = B1(0)
provided that asymptotically

h(s) ∼ β

s
, with β >

1

2π
,

while Theorem 3.3 gives non-existence for

h(s) =
β

s
for s large, and β > 0 sufficiently small.

The proof of Theorem 3.3 uses techniques of the theory of ordinary
differential equations, in particular the shooting method. More precisely,
considering only the radial solutions on Ω = B1(0), one can reduce equation
(3.9) to the radial equation

{
urr + 1

r
ur + h(u)e4πu2

= 0 in (0, 1)

u′(0) = u(1) = 0
(3.10)

Using the transformation t = −2 log r
2

and setting y(t) = u(r) we obtain

{
−y′′ = h(y)e4πy2−t , for t > 2 log 2

y(2 log 2) = 0 , y′(+∞) = 0
(3.11)
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That is, we have transformed equation (3.10), which has a singularity in 0, to
equation (3.11) on (2 log 2, +∞), thus transporting the singularity in 0 to +∞.
The shooting method consists now in considering solutions y(t) of (3.11) with
y′(+∞) = γ, i.e. one shoots horizonally from infinity and tries to land at the
point 2 log 2. The estimates to achieve this are delicate and lengthy, and are a
refinement of the work of Atkinson-Peletier [6].

We summarize: if we assume that the asymptotic condition in the existence
theorem 3.2 is optimal (at least on the unit ball B1), then the major open
problem may be stated as follows:

Find a good model equation (i.e. properties of h(u)) under which one may prove:
existence of a non-trivial solution for limt→∞ h(t)t > 1

e π
, and non-existence of

a solution for limt→∞ h(t)t < 1
e π

.

As already mentioned, what seems to be missing is a kind of Pohozaev
identity to obtain a sharp non-existence result.

4 Elliptic systems, N ≥ 3

4.1 Strongly indefinite functionals

In this section we begin the discussion of elliptic systems of the following simple
form 




−∆u = g(v)

−∆v = f(u)
in Ω ⊂ RN , N ≥ 3

u = v = 0 on ∂Ω

(4.1)

where f, g : R→ R are continuous and superlinear functions, i.e.

f(s)

s
→ +∞ ,

g(s)

s
→ +∞ , as |s| → ∞

These systems are of so-called Hamiltonian form; indeed, we can define the
Hamiltonian H(u, v) = F (u)+G(v), where F and G are the primitives of f and
g respectively. Then we get the system: −∆u = Hv(u, v) and −∆v = Hu(u, v).

As in the scalar case, our first interest is to find the maximal or ”critical”
growth for the nonlinearities f and g.

We can employ the same procedure as for the scalar equation: Write down
a functional for the system (such that critical points yield weak solutions), and
then find the appropriate function space on which the functional is well defined.
The functional we choose is the following:

I(u, v) =

∫

Ω

∇u∇vdx−
∫

Ω

F (u)dx−
∫

Ω

G(v)dx (4.2)
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As a first attempt, we may define the functional on the space

E := H1
0 (Ω)×H1

0 (Ω)

by estimating

|
∫

Ω

∇u∇vdx| ≤ ‖∇u‖L2‖∇v‖L2 = ‖u‖H1
0
‖v‖H1

0

In order to have the functional well defined and continuous, we then obtain
as in the scalar case the following growth conditions for the primitives F (s) =∫ s

0
g(t)dt and G(s) =

∫ s

0
g(t)dt:

F (s) ≤ c1 + d1|s|2∗ , G(s) ≤ c2 + d2|s|2∗

Suppose now that (ū, v̄) ∈ E is a critical point of I(u, v); then we have

∫

Ω

∇ϕ∇v̄ +

∫

Ω

∇ū∇ψ =

∫

Ω

f(ū)ϕ +

∫

Ω

g(v̄)ψ , ∀ (ϕ, ψ) ∈ E .

Choosing in particular the directions (ϕ, 0) and (0, ψ), we obtain that (ū, v̄) is
a weak solution of system (4.1).

Note that the functional I(u, v) has a more complicated structure than the
functionals considered up to now: the quadratic term

∫
Ω
∇u∇vdx is strongly

indefinite near the origin; indeed, it is positively resp. negatively definite on
infinite dimensional subspaces of E. In recent years much research has been
devoted to the study of such situations, we refer to [35], [33] and [8]. We
will describe below, in a more general situation, a detailed approach for such
problems.

4.2 The critical hyperbola

We have seen above that the ”natural choice” of space E = H1
0 (Ω) × H1

0 (Ω)
leads to the known Sobolev growth restriction for both nonlinaerities F (s) and
G(s).

However, by a different choice of the space E, this result can be considerably
generalized. In independent works by Hulshof - van der Vorst [28] and de
Figueiredo - Felmer [15] it was shown that one may have different maximal
growths for F and G; more precisely, the condition for the two nonlinearities is
given by

F (s) ≤ c1 + d1|s|p+1 , G(s) ≤ c2 + d2|s|q+1

with p + 1 and q + 1 satisfying the condition

1

p + 1
+

1

q + 1
= 1− 2

N
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This is the so-called critical hyperbola. We will show in the next sections in
some detail how the critical hyperbola arises. Indeed, we will see that it can
be obtained in two quite different ways, first in a Hilbert space setting, working
with fractional Sobolev spaces Hs, and then in a Banach space setting, working
with W 1,α–spaces.

It is interesting that this critical hyperbola has many of the features of the
critical exponents, namely there is

• compactness below the critical hyperbola, i.e. for nonlinearities with
exponential growths p and q with

1

p + 1
+

1

q + 1
> 1− 2

N
,

and in consequence, existence of solutions for such equations; see
subsection 5.4 below.

• loss of compactness and concentration phenomena for systems with critical
growth, i.e. when the exponents lie on the critical hyperbola, see
subsection 8.2

• non-existence of solutions for the pure power case and on starshaped
domains, due to a Pohozaev (or Rellich) type inequality; see subsection
8.1

• existence of instantons; however, in contrast to the scalar equation, these
are not explicitly known, but it is possible to derive their asymptotic
behavior, see subsection 8.3

• group invariance

4.3 The Hs-approach

In this section we will use fractional Sobolev spaces Hs on which the functional
I(u, v) will be defined.

4.3.1 Fractional Sobolev spaces and the functional setting

To describe the idea of de Figueiredo - Felmer [15] and Hulshoff - van der Vorst
[28], we begin by defining fractional Sobolev spaces.

Consider the Laplacian as the operator

−∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω) ,

and {ei}∞i=1 a corresponding system of orthogonal and L2-normalized
eigenfunctions, with eigenvalues {λi}. Then, writing

u =
∞∑

n=1

anen , with an =

∫

Ω

uendx ,
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we set

Es = {u ∈ L2(Ω) :
∞∑

n=1

λs
n|an|2 < ∞}

and

Asu =
∞∑

n=1

λs/2
n anen , ∀ u ∈ D(As) := Es .

The spaces Es are fractional Sobolev spaces with the inner product

(u, v)s =

∫

Ω

AsuAsv dx ,

see Lions-Magenes [37].

In the next Lemma we collect a few properties of the operators As and the
spaces Es.

Lemma 4.1 Let s > 0 and t > 0.

1) z ∈ Es iff Asz ∈ L2, and ‖z‖Es = ‖Asz‖L2

2) Let z ∈ Es+t = E2 = H2; then As+tz = AsAtz = AtAsz.

Proof. 1) follows immediately from the definitions.

2) we have

As+tz =
∑

i∈N
αiλ

(s+t)/2
i ei =

∑

i∈N
αiλ

s/2
i λ

t/2
i ei = As

∑

i∈N
αiλ

t/2
i ei = AsAtz

With these definitions, we now define the functional

I : Es × Et → R ,

I(u, v) =

∫

Ω

AsuAtv −
∫

Ω

(
F (u) + G(v)

)
dx

(4.3)

with s and t such that s+ t = 2; loosely speaking, this means that we distribute
the two derivatives given in the first term of the functional I differently on the
variables u and v.

The first term of I(u, v) is well defined on the space Es×Et by the estimate

∣∣∣
∫

Ω

AsuAtv dx
∣∣∣ ≤ ‖Asu‖L2 ‖Atv‖L2 = ‖u‖Es‖v‖Et

By the Sobolev embedding theorem we have continuous embeddings

Es ⊂ Lp+1(Ω) , if
1

p + 1
≥ 1

2
− s

N
,
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and these embeddings are compact if 1
p+1

> 1
2
− s

N
, and similarly for the

embedding

Et ⊂ Lq+1(Ω) , if
1

q + 1
≥ 1

2
− s

N
.

Summing the two conditions above we now obtain the growth restrictions

1

p + 1
+

1

q + 1
≥ 1− s + t

N
= 1− 2

N
,

i.e. we have found the critical hypberbola.

Of course, it is crucial to recuperate from critical points (u, v) of this
functional (weak) solutions of system (4.1). We state this in the following

Proposition 4.2 Suppose that (u, v) ∈ Es × Et is a critical point of the
functional I, i.e. u and v are weak solutions of the system





∫

Ω

AsuAtφ =

∫

Ω

vpφ , ∀ φ ∈ Es

∫

Ω

AsψAtv =

∫

Ω

f(u)ψ , ∀ ψ ∈ Et .

(4.4)

Then v ∈ W 2, p+1
p (Ω) ∩ W

1, p+1
p

0 (Ω) and u ∈ W 2,q(Ω) ∩ W 1,q
0 (Ω),∀ q ≥ 1, and

hence u and v are ”strong” solutions of (4.4), i.e.





∫

Ω

(−∆u)φ =

∫

Ω

g(v)φ , ∀ φ ∈ C∞
0 (Ω)

∫

Ω

(−∆v)ψ =

∫

Ω

f(u)ψ , ∀ ψ ∈ C∞
0 (Ω).

(4.5)

From this proposition follows by standard bootstrap arguments that u and v
are classical solutions of (4.1) if f and Ω are smooth.

For the proof of the proposition, see de Figueiredo - Felmer [15].

4.3.2 Compactness and existence of solutions for systems with
subcritical growth

Subcritical growth is given for nonlinearities whose growth restrictions satisfy

1

p + 1
+

1

q + 1
> 1− 1

N
(4.6)

Remark 4.3 To simplify the exposition, we state the theorems and give the
proof for the so-called ”model problem”, i.e. system (4.1) with polynomial-type
nonlinearities, i.e. f(u) = up and g(v) = vq. For the more general versions, the
reader is referred to the literature.
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Thus, we consider the system





−∆u = vq

−∆v = up in Ω ⊂ RN , N ≥ 3

u = v = 0 on ∂Ω

(4.7)

We then have

Theorem 4.4 For subcritical growth, i.e. if p + 1 and q + 1 satisfy (4.6),
system (4.7) has a nontrivial solution.

Proof. We have defined the functional

I : Es(Ω)× Et(Ω) → R

I(u, v) =

∫

Ω

AsuAtvdx− 1

p + 1

∫

Ω

|u|p+1dx− 1

q + 1

∫

Ω

|v|q+1dx

An inherent difficulty to systems of type (4.1) is that the associated
functional is strongly indefinite, in the sense that near the origin it is positive
resp. negative definite on infinite dimensional subspaces. This precludes a
direct application of the (by now classical) ”linking theorems” of Critical Point
Theory. In recent years, several approaches have been devised to overcome this
problem:

- approximation by finite dimensional problems
- introduction of a new (weak-strong) topology: W. Kryszewski and A.

Szulkin [33], Th. Bartsch and Y. Ding [8]
- infinite linking with compactness: S. Li- M. Willem [35]

We will use the last method to prove the above theorem. In later chapters, we
will also show an application of the first method.

In [35], S. Li and M. Willem prove the following theorem:

Theorem 4.5 Let Φ : E → R be a strongly indefinite C1-functional satisfying

A1) Φ has a local linking at the origin, i.e. for some r > 0:

Φ(z) ≥ 0 for z ∈ E+ , ‖z‖E ≤ r , Φ(z) ≤ 0 , for z ∈ E− , ‖z‖E ≤ r .

A2) Φ maps bounded sets into bounded sets.

A3) Let E+
n be any n-dimensional subspace of E+; then φ(z) → −∞ as

‖z‖ → ∞, z ∈ E+
n ⊕ E−.

A4) Φ satisfies the Palais-Smale condition (PS) (Li-Willem [35] require
a weaker ”(PS∗)-condition”, however, in our case the classical (PS)
condition will be satisfied).



24 Ruf

Then Φ has a nontrivial critical point.

We now verify that our functional I(u, v) satisfies the assumptions of this
theorem. We assume, without restricting generality, that

1 < q ≤ p , and hence s ≥ t ;

Also, we may assume that e.g. the embedding Et ⊂ Lq+1 is compact.

First, it is clear, with the choices of s and t made above, that I(u, v) is a
C1-functional on Es × Et.

A1) Following de Figueiredo-Felmer [15] we can define the spaces

E+ = {(y,As−ty) | y ∈ Es} ⊂ Es×Et , E− = {(y,−As−ty) | y ∈ Es} ⊂ Es×Et ,

which give a natural splitting E+ ⊕ E− = E. It is easy to see that I(u, v) has
a local linking with respect to E+ and E− at the origin.

A2) Let B ⊂ Es × Et be a bounded set, i.e. ‖u‖Es ≤ c, ‖v‖Et ≤ c, for all
(u, v) ∈ B. Then, by the embeddings Es ⊂ Lp+1 and Et ⊂ Lq+1

|I(u, v)| ≤ ‖Asu‖L2‖Atv‖L2 +
1

p + 1

∫

Ω

|u|p+1 +
1

q + 1

∫

Ω

|v|q+1

≤ ‖u‖Es‖v‖Et + c‖u‖p+1
Es + c‖v‖q+1

Et ≤ C

A3) Let zk = z+
k + z−k ∈ E = E+

n ⊕ E− denote a sequence with ‖zk‖ → ∞. By
the above, zk may be written as

zk = (uk, A
s−tuk) + (vk,−As−tvk) , with uk ∈ Es

n, vk ∈ Es ,

where Es
n denotes an n−dimensional subspace of Es. Thus, the functional I(zk)

takes the form

I(zk) =

∫

Ω

AsukA
tAs−tuk −

∫

Ω

AsvkA
tAs−tvk−

− 1

p + 1

∫

Ω

|uk + vk|p+1 − 1

q + 1

∫

Ω

∣∣As−t(uk − vk)
∣∣q+1

=

∫

Ω

|Asuk|2 −
∫

Ω

|Asvk|2 − 1

p + 1

∫

Ω

|uk + vk)|p+1 − 1

q + 1

∫

Ω

∣∣As−t(uk − vk)
∣∣q+1

Note that ‖zk‖ → ∞⇐⇒ ∫ |Asuk|2 +
∫ |Atvk|2 = ‖uk‖2

Es + ‖vk‖2
Es →∞.

Now, if

1) ‖uk‖Es ≤ c, then ‖vk‖Es →∞, and then J(zk) → −∞
2) ‖uk‖Es →∞, then we estimate (c, c1, c2 and d are positive constants)

∫

Ω

|uk + vk)|p+1 ≥ c
( ∫

Ω

|uk + vk)|2
) p+1

2 − c

≥ c1‖uk + vk‖p+1
L2 − c ≥ c2‖uk + vk‖q+1

L2 − c̄
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and, by Poincaré’s inequality, since s ≥ t

∫

Ω

|As−t(uk − vk)|q+1 ≥ c1‖As−t(uk − vk)‖q+1
L2 − c ≥ c2‖uk − vk‖q+1

L2 − c̄

and hence we obtain the estimate

I(zk) ≤ ‖uk‖2
Es − c (‖uk + vk‖q+1

L2 + ‖uk − vk‖q+1
L2 ) + d

Since φ(t) = tq+1 is convex, we have 1
2
(φ(t) + φ(s)) ≥ φ(1

2
(s + t)), and hence

I(zk) ≤ 1

2
‖uk‖2

Es − c
1

2q
(‖uk − vk‖L2 + ‖uk + vk‖L2)q+1 + d

≤ 1

2
‖uk‖2

Es − c
1

2q
‖uk‖q+1

L2 + d

Since on Es
n the norms ‖uk‖Es and ‖uk‖L2 are equivalent, we conclude that also

in this case J(zk) → −∞.

A4) Let {zn} ⊂ E denote a (PS)-sequence, i.e. such that

|I(zn)| → c , and |(I ′(zn), η)| ≤ εn‖η‖E , ∀ η ∈ E, and εn → 0 (4.8)

We first show:

Lemma 4.6 The (PS)-sequence {zn} is bounded in E.

Proof. By (4.8) we have for zn = (un, vn) ∈ E

I(un, vn) =

∫

Ω

AsunA
tvn − 1

p + 1

∫

Ω

|un|p+1 − 1

q + 1

∫

Ω

|vn|q+1 → c (4.9)

I ′(un, vn)(φ, ψ) =

∫

Ω

AsunA
tψ +

∫

Ω

AtvnAsφ−
∫

Ω

up
nψ

−
∫

Ω

vq
nφ = εn‖(φ, ψ)‖E

(4.10)

Choosing (φ, ψ) = (un, vn) ∈ Es × Et we get by (4.10)

2

∫

Ω

AsunAtvn −
∫
|un|p+1 −

∫

Ω

|vn|q+1 = εn(‖un‖Et + ‖vn‖Es) (4.11)

and subtracting this from 2 I(un, vn) we obtain

(1− 2

p + 1
)

∫

Ω

|un|p+1 +(1− 2

q + 1
)

∫

Ω

|vn|q+1 ≤ C +εn(‖un‖Es +‖vn‖Et) (4.12)

and thus ∫

Ω

|un|p+1 ≤ C + εn(‖un‖Es + ‖vn‖Et) (4.13)
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∫

Ω

|vn|q+1 ≤ C + εn(‖un‖Es + ‖vn‖Et) (4.14)

Next, note that As−tun ∈ Et; indeed, un ∈ Es implies that At(As−tun) =
Asun ∈ L2 ⇐⇒ As−tun ∈ Et.

Thus, choosing (φ, ψ) = (0, As−tun) ∈ Es × Et in (4.10) we get
∫

Ω

|Asun|2 =

∫

Ω

vq
nAs−tun + εn‖As−tun‖Et

and hence by Hölder

‖un‖2
Es = ‖Atun‖2

L2 ≤ (

∫

Ω

|vn|q+1)
q

q+1 (

∫

Ω

|As−tun|p+1)
1

p+1 + εn‖un‖Es

Noting that

‖As−tun‖q+1 ≤ c‖As−tun‖Es = c‖Asun‖L2 = c‖un‖Es

we obtain, using (4.14)

‖un‖2
Es ≤ [C + εn(‖un‖Es + ‖vn‖Et)]q/(q+1) · c‖un‖Es + εn‖un‖Es

and thus
‖un‖Es ≤ C + εn(‖un‖Es + ‖vn‖Et) (4.15)

Similarly as above we note that At−svn ∈ Es, and thus, choosing (φ, ψ) =
(At−svn, 0) ∈ Es × Et in (4.10) we obtain as above

‖vn‖Et ≤ C + εn(‖vn‖Et + ‖un‖Es) (4.16)

Joining (4.15) and (4.16) we finally get

‖un‖Es + ‖vn‖Et ≤ C + 2εn(‖un‖Es + ‖vn‖Et)

Thus, ‖un‖Es + ‖vn‖Et is bounded.

With this it is now possible to complete the proof of the (PS)-condition:

Since ‖un‖Es is bounded, we find a weakly convergent subsequence un ⇀ u in
Es. Since the mappings As : Es → L2 and A−t : L2 → Et are continuous
isomorphisms, we get As(un − u) ⇀ 0 in L2 and As−t(un − u) ⇀ 0 in Et.
Furthermore, since Et ⊂ Lq+1 compactly, we conclude that As−t(un − u) → 0
strongly in Lq+1.

Similarly, we find a subsequence of {vn} which is weakly convergent in Et

and such that vq
n is strongly convergent in L

q+1
q

Choosing (φ, ψ) = (0, As−t(un − u) ∈ Es × Et in (4.10) we thus conclude
∫

Ω

AsunA
s(un − u) =

∫

Ω

vq
n As−t(un − u) + εn‖As−t(un − u)‖ (4.17)
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By the above considerations, the righthand-side converges to 0, and thus∫

Ω

|Asun|2 →
∫

Ω

|Asu|2

Thus, un → u strongly in Es.
To obtain the strong convergence of {vn} in Et, one proceeds similarly: as

above, one finds a subsequence {vn} converging weakly in Et to v, and then
At−svn ⇀ At−sv weakly in Es and hence also in Lp+1, while by the above

un → u strongly in Es and hence in Lp+1, and then up
n → up

n in L
p+1

p . Choosing
in (4.8) (φ, ψ) = (At−s(vn − v), 0), we get∫

Ω

At(vn − v)Atvn =

∫

Ω

|un|p−1un At−s(vn − v) + εn(‖At−s(vn − v)‖) (4.18)

and thus one concludes again that∫

Ω

|Atvn|2 →
∫

Ω

|Atv|2

and hence also vn → v strongly in Et.

Thus, the conditions of Theorem 4.5 are satisfied; hence, we find a (positive)
critical point (u, v) for the functional I, which yields a weak solution to system
(4.7).

4.4 The W 1,α approach

In this section we use that, alternatively, the functional I(u, v) can be defined
on a product of W 1,α spaces.

4.4.1 The functional framework

We define the functional I(u, v) on a product space of Sobolev spaces. The term∫
Ω
∇u∇v dx can be defined on the product space

W 1,α
0 (Ω)×W 1,β

0 (Ω) , with
1

α
+

1

β
= 1 ,

by using the Hölder inequality∣∣∣∣
∫

Ω

∇u∇vdx

∣∣∣∣ ≤ ‖∇u‖Lα‖∇v‖Lβ = ‖u‖W 1,α
0
‖v‖W 1,β

0

Thus, to have the terms F (s) = 1
p+1
|s|p+1 and G(s) = 1

q+1
|s|q+1 in I(u, v) well

defined, we need to impose, using the Sobolev embedding theorem:

p + 1 ≤ α∗
αN

N − αN
, q + 1 ≤ β∗ =

βN

N − βN

From this we o obtain the condition
1

p + 1
+

1

q + 1
≥ N − α

αN
+

N − β

βN
= 1− 2

N
.

Thus, we have found again the critical hyperbola.
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5 Generalization to Orlicz spaces

The W 1,α approach has the advantage that it can be generalized to more general
settings by using Orlicz spaces. These spaces were already mentioned in section
4 when we discussed the Trudinger inequality. We discuss now some details
about Orlicz spaces.

5.1 Orlicz spaces

We recall here some basic facts about Orlicz spaces, for more details see for
instance [1, 32, 44, 26].

Definition 5.1 A continuous function M : R→ [0, +∞) is called a N-function,
if it is convex, even, M(t) = 0 if and only if t = 0, and

M(t)/t → 0 as t → 0 and M(t)/t → +∞ as t → +∞.

Definition 5.2 Let A and B be N–functions. We say that

1) A dominates B (near infinity) if, for some positive constant k,

B(x) ≤ A(kx) for x ≥ x0 , and write B ≺ A

2) A and B are equivalent if A dominates B and B dominates A; then we write
A ∼ B.

3) B increases essentially more slowly than A if

lim
t→∞

B(kt)

A(t)
= 0 , for all k > 0 ;

in this case we write B ≺≺ A.

Associated to the N-function M we introduce the following class of functions.

Definition 5.3 [Orlicz class] The Orlicz class is the set of functions defined by

KM(Ω) := {u : Ω → R : u measurable and

∫

Ω

M(u(x)) dx < ∞}.

Orlicz classes are convex sets, but in general not linear spaces. One then
defines

Definition 5.4 [Orlicz space] The vector space LM(Ω) generated by KM(Ω) is
called Orlicz space.

Proposition 5.1 The Orlicz class KM(Ω) is a vector space, and hence equal
to LM(Ω) if and only if M satisfies the following ∆2-condition:
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Definition 5.5 (∆2-condition) There exist numbers k > 1 and t0 ≥ 0 such
that

M(2t) ≤ kM(t) , for t ≥ t0

Furthermore, we define

Definition 5.6 [∇2-condition] There exist numbers h > 1 and t1 ≥ 0 such that

M(t) ≤ 1

2h
M(ht) , for t ≥ t1

We call a function satisfying the ∆2– and the ∇2–condition ∆–regular.

We remark that the Orlicz class depends only on the asymptotic growth of
the function M ; therefore, also the ∆2-condition and the ∇2-condition need to
be satisfied only near infinity.

We define the following norm on LM(Ω):

Definition 5.7 [Luxemburg norm]

‖u‖(M) = inf{ λ > 0 :

∫

Ω

M
( |u|

λ

)
≤ 1}

Proposition 5.2 (LM , ‖ · ‖(M)) is a Banach space.

Definition 5.8 [Conjugate function] Let

M̃(x) = sup
y>0
{xy −M(y)}

M̃ is called the conjugate function of M .

It is clear that
˜̃
M = M , and M and M̃ satisfy the Young inequality:

st ≤ M(t) + M̃(s) ∀ s, t ∈ R ,

with equality when s = M ′(t) or t = M̃ ′(s).

Proposition 5.3 In the spaces LM and LM̃ the Hölder inequality holds:

∣∣
∫

Ω

u(x)v(x)dx
∣∣ ≤ 2 ‖u‖(M)‖v‖(M̃)
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Hence, for every ũ ∈ LM̃ we can define a continuous linear functional
lũ v :=

∫
Ω

ũvdx and lũ ∈ (LM)∗. Then we can define

‖ũ‖M̃ := ‖lũ‖ = sup
‖v‖(M)≤1

∫

Ω

ũ(x)v(x)dx

Definition 5.9 ‖ũ‖M̃ is called the Orlicz norm on the space LM̃ , and
analogously one defines the Orlicz norm ‖u‖M on LM .

Thus, we have two different norms on LM , the Luxemburg (or gauge) norm
‖ · ‖(M) and the Orlicz norm ‖ · ‖M ; they are equivalent, and satisfy

‖u‖(M) ≤ ‖u‖M ≤ 2‖u‖(M). (5.1)

In order to be precise about which norm is considered in the spaces, we are
going to use from now on the following notations:

(
LM , ‖ · ‖M

)
:= LM and

(
LM , ‖ · ‖(M)

)
:= L(M),

and similarly for M̃ .

It follows from the definition of Orlicz norm that

Proposition 5.4 If u ∈ LM and w̃ ∈ LM̃ , then one has the following Hölder
inequality

∣∣
∫

Ω

u w̃ dx
∣∣ ≤ ‖u‖M‖w̃‖(M̃). (5.2)

Proposition 5.5 (see J.P. Gossez [26], Rao-Ren [44], p. 111)

LM is reflexive if and only if M and M̃ satisfy the ∆2- condition, and then

(L(M))
∗ = LM̃ and (L(M̃))

∗ = LM

Proposition 5.6 (see Rao-Ren [44], Thm 2, p. 297).

If Φ is ∆-regular, then there exists a Φ1 ∼ Φ such that LΦ = LΦ1 as sets,
and their Luxemburg norms (respectively Orlicz norms) are equivalent, with the
following additional structure:

a) LΦ and LΦ1 are isomorphic, and both are reflexive spaces

b) LΦ1 is uniformly convex and uniformly smooth
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Next, we define the Orlicz-Sobolev spaces: Let A be a N-function. Then set

Definition:

W 1LA =
{

u : Ω → R ; max
|α|∈{0,1}

∫

Ω

A(|Dαu|) < +∞
}

with Luxemburg norm

‖u‖W 1LA
:= max

{‖Dαu‖(A) : |α| ∈ {0, 1}}

On the space W 1
0 L(A), i.e. the space of functions in W 1LA which vanish on the

boundary, an equivalent Luxemburg norm is given by

‖u‖1,(A) = ‖∇u‖(A) = inf
{

λ > 0 :

∫

Ω

A
( |∇u|

λ

) ≤ 1
}

.

The equivalence of these two norms is a consequence of the Poincaré inequality,

‖u‖(M) ≤ C

n∑
i=1

‖Diu‖(M), ∀u ∈ W 1
0 LM(Ω),

(see [26]). In analogy with the above definition of the Orlicz norm in LM we
can define an Orlicz norm in W 1

0 L(A) by

‖u‖1,A := sup
{ ∫

Ω

∇u∇w̃ dx : w̃ ∈ W 1
0 L(Ã), ‖w̃‖1,(Ã) ≤ 1

}

The space W 1
0 L(A) endowed with this new norm is denoted by W 1

0 LA.

Definition 5.10 [Sobolev conjugate] (see Adams [1], p. 248)

Suppose that
∫∞

1
A−1(t)

t1+1/n dt = +∞. Then the Sobolev conjugate function Φ(t) is
given by

Φ−1(t) =

∫ t

0

A−1(τ)

τ 1+1/n
dτ , t ≥ 0. (5.3)

Proposition 5.7 Let Ω be bounded, and satisfying the cone property. Then the
embedding

W 1LA(Ω) ↪→ LΦ(Ω)

is continuous, and compact into LG(Ω) where G is any N-function increasing

essentially more slowly than Φ, i.e. limt→∞
G(kt)
Φ(t)

= 0, for all k > 0.
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Example 5.1 One easily checks that for Φ(s) = sp+1 the above formula (5.3)
yields A(s) = c sα, with α satisfying 1

α
= 1

p+1
+ 1

N
; indeed, Φ−1(t) = t1/(p+1),

and hence
A−1(t)

t1+
1
N

= d
dt

Φ−1(t) = 1
p+1

t
1

p+1
−1

i.e.
A−1(t) = 1

p+1
t

1
p+1

+ 1
N .

It follows that p + 1 = αN
N−α

, and thus we we recover the classical Sobolev
embedding theorem W 1,α(Ω) ↪→ Lp+1(Ω).

Next, we make the following

Definition 5.11 Let g ∈ C(R) be a N-function, and G its primitive. Then we
say that G is θ - regular, if there exists a constant θG > 1 such that

lim
s→∞

s g(s)

G(s)
= θG . (5.4)

Let F (t) = G−1(t), and f(t) = F ′(t). Then the above condition is equivalent to

lim
t→∞

t f(t)

F (t)
=

1

θG

. (5.5)

Indeed, we have G(s) = t ⇔ F (t) = s, and f(t) = d
dt

[G−1(t)] = 1
g(s)

.

We have

Proposition 5.8 (see Rao-Ren [44], p. 26) If G is θ - regular, then G is ∆ -
regular, i.e. G ∈ ∆2 ∩∇2 .

5.2 Orlicz space criticality

In the last section we have seen that Orlicz spaces are a generalization of Lp–
spaces (which correspond to the N-functions |s|p) to more general N–functions.
It is natural to look for an analogue of the critical hyperbola for N–functions.

Definition: [critical Orlicz pair] Let Φ and Ψ be ∆-regular N-functions. Then
(Φ, Ψ) are a critical Orlicz pair if there exist ∆-regular and conjugate N-

functions A and Ã such that LΦ and LΨ are the smallest Orlicz spaces with

W 1LA ↪→ LΦ , W 1LÃ ↪→ LΨ.

We have the following:
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Theorem 5.9 Let Ω ⊂ RN be a bounded, smooth domain. Let Φ ∈ C1 be a
given N-function, and set ϕ(t) = Φ′(t). Assume that

lim
s→∞

ϕ(s) s

Φ(s)
= θΦ >

N

N − 2
. (5.6)

Then there exists an associated N-function Ψ such that (Φ, Ψ) form a critical
Orlicz pair. Furthermore, the limit

lim
s→∞

s Ψ(s)

Ψ(s)
= θΨ

exists, and
1

θΦ

+
1

θΨ

= 1− 2

N
. (5.7)

Consider the following

Example 5.2 In Example 5.1 we saw that to Φ(s) = sp+1 corresponds the
inverse Sobolev conjugate A(s) = csα, with

1

p + 1
+

1

N
=

1

α
.

The conjugate function Ã to A is given by Ã(s) = csβ, with 1
α

+ 1
β

= 1, which

in turn has as Sobolev conjugate Ψ(s) = sq+1, with

1

q + 1
+

1

N
=

1

β
.

Adding the two equations yields

1

p + 1
+

1

q + 1
= 1− 2

N
. (5.8)

This is the critical hyperbola, see de Figueiredo-Felmer [15] and Hulshoff-
VanderVorst [28]. Thus, (|s|p+1, |s|q+1) are a critical Orlicz pair, and so the
above theorem contains the critical hyperbola as a special case. We remark
that the proof given here is also new in the polynomial case; in [15] and [28]
fractional Sobolev spaces Hs were used in order to conserve the Hilbert space
structure.

We now give some examples of critical Orlicz pairs:

Example 5.3 Let

Φ(s) ∼ |s|p+1(log |s|)α and Ψ(s) ∼ |s|q+1(log |s|)−α q+1
p+1 ,

with α > 0 and p, q ∈ (1, +∞) satisfying (5.8). Then Φ and Ψ satisfy (5.6),
with θΦ = p + 1 and θΨ = q + 1, respectively, and (Φ, Ψ) form a critical Orlicz-
pair; for the proof, see [20].

Remark 5.12 The restriction θΦ > N/(N − 2) in Theorme 5.9 is necessary in
order to obtain a Ψ which is θ-regular, in the sense of Definition 5.11. Also
in the polynomial case such a restriction, which here is p + 1 > N/(N − 2), is
necessary in order to obtain q > 1.
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5.3 Critical Orlicz-pairs: proof of Theorem 5.9

1) Hypothesis (5.6) expresses the fact that the function Φ is θ-regular with
θΦ > N/(N − 2). Let A be the inverse Sobolev conjugate of Φ, see Definition
5.10. Note that W 1LA is the largest Orlicz-Sobolev space that embeds into LΦ.

Claim 1: A is θ - regular, with θA = NθΦ

N+θΦ
> 1.

Indeed, let F (s) = Φ−1(s) and B(t) = A−1(t). Then F (s) =
∫ s

0
B(t)

t1+1/N dt, and
hence

f(s) =
B(s)

s1+1/N
.

Then we have by (5.5)

1

θΦ

= lim
s→∞

f(s)s

F (s)
= lim

s→∞
B(s) s−1/N

F (s)
.

Then, by l’Hôpital’s rule

lim
s→∞

B(s) s−1/N

F (s)
= lim

s→∞
b(s) s−1/N − 1

N
s−

1
N
−1 B(s)

B(s)

s1+1/N

= lim
s→∞

b(s)s

B(s)
− 1

N
.

We conclude that
1

θΦ

= lim
s→∞

b(s)s

B(s)
− 1

N

and thus

lim
s→∞

b(s)s

B(s)
=

1

θΦ

+
1

N
< 1 .

This implies that A is θ - regular, with θA = NθΦ

N+θΦ
> 1.

2) Next, let Ã be the conjugate function of A, given by definition 5.8. Ã is a
N -function, and ∆-regular, see Rao-Ren [44], Cor. 4, p. 26.

In the following, suppose that s = A′(t) (iff t = Ã′(s)); note that t → ∞ iff
s →∞. Then

1

θA

= lim
t→∞

A(t)

tA′(t)
= lim

t→∞
A(t)

t s
= lim

s→∞
s t− Ã(s)

s t
= 1− lim

s→∞
Ã(s)

s Ã′(s)
= 1− 1

θÃ

.

Thus, Ã is θ - regular, with θÃ > 1.

We can now define the corresponding Orlicz-Sobolev space W 1LÃ.

3) Next, use definition 5.10 again to define the function Ψ; by Adams-Fournier
[1], p. 248, Ψ is an N -function.

Claim 2: Ψ is θ - regular, with θΨ =
N θ

Ã

N−θ
Ã
.

This follows similarly as in claim 1, reversing the direction in the arguments.
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Finally, LΨ is the smallest Orlicz space into which W 1LÃ imbeds continuously.

Thus, we have shown that (Φ, Ψ) is a critical Orlicz pair.

Finally, we have

1

θΦ

+
1

θΨ

=
N − θA

NθA

+
N − θÃ

NÃ
=

1

θA

− 1

N
+

1

θÃ

− 1

N
= 1− 2

N
.

5.4 Orlicz space subcritical: an existence theorem

We have the following existence theorem for nonlinearities which have subcritical
growth with respect to a given critical Orlicz pair (Φ, Ψ).

Theorem 5.13 Suppose that (Φ, Ψ) is a critical Orlicz-pair. Suppose that
f and g are continuous functions, and let F and G denote their primitives.
Assume that
(H1) there exists θ > 2 and t0 > 0 such that for all t ≥ t0

0 < θ F (t) ≤ t f(t) and 0 < θ G(t) ≤ t g(t) .

(H2) F and G are uniformly superquadratic near zero, i.e. there exist numbers
σ > 2 and c ≥ 1 such that

F (st) ≤ c sσF (t) , G(st) ≤ c sσG(t) , ∀ t > 0 , ∀ s ∈ [0, 1]

(H3) F and G have an essentially lower growth than Φ and Ψ, respectively (see
Definition 5.2).

(H4) F and G satisfy

lim
t→0

F (t)

Φ(t)
= CF < ∞ and lim

t→0

G(t)

Ψ(t)
= CG < ∞ .

Then system (4.1) has a nontrivial solution.

Example 5.4 Let (Φ, Ψ) denote the critical Orlicz pair given in Example 5.3.
Suppose that F (s) ∼ sp+1(log s)β and G(s) ∼ sq+1(log s)−γ, for s positive and
large with β < α and γ > α q+1

p+1
. Then F and G have essentially slower growth

than Φ and Ψ, respectively.

Proof. (outline; for more details, see [20])
We now define the functional

I(u, ṽ) =

∫

Ω

∇u∇ṽdx−
∫

Ω

F (u)dx−
∫

Ω

G(ṽ)dx
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on the space

I : W 1
0 LA(Ω)×W 1

0 L(Ã)(Ω) → R (5.9)

Here ṽ ∈ W 1
0 L(Ã)(Ω) is an independent variable; we write ṽ to emphasize that

ṽ belongs to the space W 1
0 L(Ã)(Ω).

We recall that the functional (5.9) is strongly indefinite, being positive
definite, resp. negative definite (near the origin) on an infinite dimensional
subspace. We now make this more precise, by showing that there is the geometry
of (local) infinite dimensional linking. For this, we introduce the

Tilde map: for u ∈ W 1
0 LA(Ω) consider

Su := sup
{ ∫

Ω

∇u(x)∇w̃(x)dx : w̃ ∈ W 1
0 L(Ã), ‖w̃‖1,(Ã) = ‖u‖1,A

}
. (5.10)

Then we have

Lemma 5.14 There exists a unique ũ ∈ W 1
0 L(Ã) such that

‖ũ‖1,(Ã) = ‖u‖1,A and Su =

∫

Ω

∇u(x)∇ũ(x) dx = ‖u‖1,A‖ũ‖1,(Ã)

Furthermore, ũ depends continuously (but nonlinearly) on u.

We now define two submanifolds of E := W 1
0 LA(Ω)×W 1

0 L(Ã):

E+ = {(u, ũ) : u ∈ W 1
0 LA} and E− = {(u,−ũ) : u ∈ W 1

0 LA}

We note that E+ and E− are nonlinear submanifolds of E when regarded with
respect to the standard vector space structure of E, but they are linear with
respect to the following notion of

Tilde sum: given (u, ṽ), (y, z̃) ∈ E, set

(u, ṽ) +̃ (y, z̃) := (u + y, ṽ + z) .

One proves easily that with this notion one has

E = E+ ⊕̃ E− .

One then proves the following local linking structure:

Lemma 5.15
1) There exist ρ0, σ0 > 0 such that I(z) ≥ σ0, for all z ∈ ∂Bρ0 ∩ E+.

2) There exist positive constants R0, R1 such that I(z) ≤ 0 for all z ∈ ∂Q,

where Q = {r(e1, ẽ1) +̃ w : w ∈ E−, ‖w‖ ≤ R0 and 0 ≤ r ≤ R1} (e1 denotes
the first eigenfunction of the Laplacian, with ‖(e1, ẽ1)‖ = 1).
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We emphasize that this linking is only formal, since it involves two infinite
dimensional manifolds. We now proceed by a finite dimensional approximation;
this will lead to an actual linking structure. The proof is then completed by a
limiting argument.

Define

E+
n := {(z, z̃); z ∈ En} and E−

n := {(z,−z̃); z ∈ En} ,

where En is the space spanned by the first n eigenfunctions of the Laplacian.

We now restrict the functional I to E+
n ⊕̃ E−

n = En × Ẽn, and consider the
set

Qn = {w +̃ r(e1, ẽ1); w ∈ E1
n, ‖w‖ ≤ R0 , 0 ≤ r ≤ R1} ⊂ E+

n ⊕̃ E−
n .

Furthermore, we define the family of maps

Hn = {h ∈ C(Qn, E+
n Ẽ−

n ) : h(z) = z on ∂Qn} .

One shows, using the topological degree on oriented manifolds, that

Lemma 5.16 The sets Qn and ∂Bρ0 ∩ E+
n link, i.e.

H(Qn) ∩ (∂Bρ0 ∩ E+
n ) 6= 0 , ∀ h ∈ Hn .

Finally, we set
cn = inf

h∈Hn

max
z∈Qn

I(h(z)) .

Using the linking property and Lemma 5.15 one obtains that the values cn

satisfy cn ∈ [σ0, cR
2
1], ∀ n ∈ N. Furthermore, by the ”Linking Theorem” of P.H.

Rabinowitz [43] one obtains a PS-sequence (um, ṽm) ∈ E+
n ⊕̃E−

n , i.e. satisfying
I(um, ṽm) → cn, as m →∞, and |I ′(um, ṽm)[(ξ, η̃)]| ≤ εm ‖(ξ, η̃)‖, with εm → 0
as m →∞.

One now shows

Lemma 5.10 Let (um, ṽm) be a PS-sequence. Then the sequence (um, ṽm) is
bounded in E, i.e. there exists a constant C such that ‖um‖ ≤ C and ‖ṽm‖ ≤ C,
for all m ∈ N.

The proof of this Lemma uses standard methods, which are however rendered
complicated by the fact that Lp estimates must be replaced by more delicate
estimates in Orlicz spaces.

With this, one now obtains that cn is a critical level of I|E+
n ⊕̃E−n , for each

n ∈ N, with a corresponding sequence of critical points zn ∈ E+
n ⊕̃ E−

n , with
‖zn‖ ≤ c, where c does not depend on n.
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To complete the proof, we take the limit n →∞: by the uniform bounds on
cn and on the finite dimensional critical points zn, it is easy to conclude that
zn = (un, ṽn) ⇀ z = (u, ṽ) in E = W 1

0 LA×W 1
0 LÃ, and that z is a weak solution

of system (4.1).

It remains to show that z = (u, ṽ) is nontrivial; assume by contradiction
that u = 0, then by the equations (4.1) also ṽ = 0. Note that we can
find a suitable ∆-regular N-function F1 with F1 ≺≺ Φ and the properties
F (x) ≤ F1(x), f(x) ≤ f1(x),∀ x ∈ R+. Thus, by the compact embedding
W 1

0 LA ↪→ LF1 , we get

‖un‖(F1) → 0 , i.e. inf{λ > 0 ;

∫

Ω

F1(
un

λ
) ≤ 1} =: λn → 0

Since, for λn < 1 holds 1
λn

∫
Ω

F1(un) ≤ ∫
Ω

F1(
un

λn
) ≤ 1, we conclude that

∫

Ω

F (un) ≤
∫

Ω

F1(un) ≤ λn → 0 .

Since F1 is ∆-regular, we have xf1(x) ≤ cF1(x), for some c > 1, and hence

0 ≤
∫

Ω

f(un)un ≤
∫

Ω

f1(un)un ≤ c

∫

Ω

F1(un)dx → 0 . (5.11)

It is easily seen that this implies that also
∫

Ω
∇un∇ṽndx → 0, and thus also

I(un, ṽn) → 0. But this contradicts that I(un, ṽn) ≥ σ0 > 0, for all n ∈ N.

This concludes the proof of Theorem 5.13.

In Theorem 5.13 we have obtained solutions for system (4.1) in the case of
Orlicz-subcriticality; in particular, for the polynomial ”model” system





−∆u = vq

−∆v = up in Ω ⊂ RN , N ≥ 3

u = v = 0 on ∂Ω

(5.12)

this means that we have existence of solutions if the pair of nonlinearities
(|s|p+1, |s|q+1) are Orlicz subcritical which, as we have seen, is in this case
equivalent to say that the pair (p, q) is below the critical hyperbola, i.e.

1

p + 1
+

1

q + 1
> 1− 2

N
.
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Figure 1: The critical hyperbola, N = 3

6 A system with no growth restriction in one

nonlinearity

We now turn our attention to some other aspects of the critical hyperbola. Note
that the asymptotes of the critical hyperbola are given by

( N
N−2

, s) , and (s, N
N−2

) , s ∈ R .

We show next that if one of the nonlinearities in system (4.1), , say f(s), has
a polynomial growth restriction with exponent lying to the left of the asymptote
( N

N−2
, s) of the hyperbola, then no growth restriction on the other nonlinearity

is needed. More precisely, restricting attention to the following model situation:





−∆u = g(v)

−∆v = up in Ω ⊂ RN ,

u = v = 0 on ∂Ω

, (6.1)

we have the following theorem, cf. [22]:

Theorem 6.1 Suppose that
{

0 < p , if N = 2
0 < p < 2

N−2
, if N ≥ 3

and assume that g ∈ C(R), with G(s) =
∫ s

0
g(t)dt its primitive. Then the

functional

I(u, v) =

∫

Ω

∇u∇v dx− 1

p + 1

∫

Ω

|u|p+1dx−
∫

Ω

G(v)dx
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is well-defined and of class C1 on the space

E = Es(Ω)× Et(Ω) , with s satisfying p + 1 =
2N

N − 2s

Proof. We proceed as in subsection 4.3 and define the equivalent functional
(cf. (4.3))

I(u, v) =

∫

Ω

AsuAtv − 1

p + 1

∫

Ω

|u|p+1dx−
∫

Ω

G(v)dx .

The first term of the functional is naturally defined on the space E, and the
second term is well-defined, continuous and differentiable, by the continuous
embeddidng Es ⊂ Lp+1, for p + 1 = 2N

N−2s
.

Next, note that

t = 2− s = 2− N

2
+

N

p + 1
> 2− N

2
+ N − 2 =

N

2

where we used the assumption p + 1 < N
N−2

. Thus, we have the continuous
embedding, cf. [1]

Et(Ω) ⊂ C0, 1
2 (Ω) ,

and hence we have for v ∈ Et that v is continuous, and hence also G(v), and
then

∫
Ω

G(v)dx is well-defined, continuous and differentiable.

Next, we give an existence theorem for system (6.1). Since in this survey
we concentrate on superlinear problems, i.e. with p > 1, we obtain from
2 < p + 1 < N

N−2
the restriction N ≤ 3. For corresponding results on

”superlinear-sublinear” systems, we refer to [22]. Concerning system (6.1), with
N = 2, 3, we have the following existence theorem

Theorem 6.2 Suppose that

{
0 < p , if N = 2
0 < p < 2

N−2
, if N ≥ 3

and assume that g ∈ C(R), with G(s) =
∫ s

0
g(t)dt its primitive, and that there

exist constants θ > 2 and s0 ≥ 0 such that

θG(s) ≤ g(s)s , ∀ |s| ≥ s0 .

Finally, for s near 0 we assume g(s) = o(s)

Then system (6.1) has a nontrivial (strong) solution (u,v).

Proof. The proof follows closely the proof of Theorem 4.4, and we omit it. For
details, we refer to [22].
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7 A borderline case

In this section we will consider the borderline case where one of the nonlinearities
has a growth corresponding to the asymptote ( N

N−2
, s) of the critical hyperbola

(5.8): we assume that

F (s) ∼ |s| N
N−2 ,

and consider the system





−∆u = g(v)

−∆v = u
2

N−2
in Ω ⊂ RN ,

u = v = 0 on ∂Ω

(7.1)

We will see that then the nonlinearity g(s) is governed by a limiting Sobolev
space embedding, i.e. we find a maximal growth defined by a Trudinger-type
embedding. However, there is a surprise !

We may again apply the Hs-approach or the W 1,α-approach; and we will
also consider a ”mixed approach”, defining the functional on W s,α-spaces, i.e.
the space of functions whose fractional derivative of order s lies in Lα. We
have seen that the Hs-approach and the W 1,α-approach give the same critical
hyperbola, and we will show that this is also the case for the ”mixed approach”.
Thus, all these approaches seem equivalent. We will however show the surprising

result that for the borderline case F (s) ∼ |s| N
N−2 , these methods yield different

maximal growth conditions for the nonlinearity G(s). We will then use Lorentz
spaces to obtain a truly maximal growth for G(s).

7.1 The W s,α-approach

This is a ”mixed” approach between the Hs and the W 1,α approach. The space
W s,α

0 consists of the functions whose fractional derivative of order s lie in Lα;
a precise definition may be given by interpolation, see Adams-Fournier [1]. For
these spaces, the usual Sobolev embedding theorems hold, see [1]; in particular,
we have

W s,α
0 ⊂ Lp+1 , with p + 1 =

αN

N − sα
. (7.2)

We define the functional I(u, v) on the space

W s,α
0 (Ω)×W t,β

0 (Ω) , with s + t = 2 ,
1

α
+

1

β
= 1

As in section 4.3.1 we consider the functional

I(u, v) =

∫

Ω

AsuAtv − 1

p + 1

∫

Ω

|u|p+1 − 1

q + 1

∫

Ω

|v|q+1
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The first term of the functional,
∫
Ω

AsuAtvdx, is well defined on W s,α
0 ×W t,β

0

by estimating

∣∣∣
∫

Ω

AsuAtvdx
∣∣∣ ≤ ‖u‖W s,α ‖v‖Wt,β , with s + t = 2 and

1

α
+

1

β
= 1 .

From the embeddings (7.2) we then get the following maximal growth conditions
for F (u) = 1

p+1
|u|p+1 and G(v) = 1

q+1
|v|q+1:

p + 1 =
αN

N − sα
, q + 1 =

βN

N − sβ

with the conditions:

1

p + 1
+

1

q + 1
=

N − sα

αN
+

N − tβ

βN
=

1

α
+

1

β
− s + t

N
= 1− 2

N
;

that is, we have found again the critical hyperbola!

7.1.1 Different results using the Hs-method and the W s,α-method

We now consider the border line case mentioned above: we assume that one of
the nonlinearities has an exponent on the asymptote of the critical hyperbola,
i.e.

F (u) = 1
p+1

|u|p+1 = N−2
N
|u| N

N−2 .

We will see that the maximal growth for the other nonlinearity, g(v), is given by
a Trudinger-type inequality, i.e. it is of exponential growth. We will consider
both, the Hs-approach and the W s,α approach, and surprisingly, we will get
different maximal growths !

As seen in section 4.4, the corresponding functional

I(u, v) =

∫

Ω

∇u∇v − N − 2

N

∫

Ω

|u| N
N−2 −

∫
G(v)

can be defined on the space

W 1,α
0 (Ω)×W 1,β

0 (Ω) , with
1

α
+

1

β
= 1 . (7.3)

The requirement

W 1,α(Ω) ⊂ L
N

N−2 (Ω)

yields the condition

N

N − 2
= α∗ =

Nα

N − α
⇐⇒ N

N − 1
= α .
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By (7.3) this gives β = N , i.e. we are in the limiting Sobolev case W 1,β(Ω) =
W 1,N(Ω). We look now for the largest possible growth φ(s) such that

∫
Ω

φ(u)dx
is finite. Indeed, by Trudinger [49] and Pohozaev [41] we have

W 1,N(Ω) ⊂ Lφ(Ω)

where Lφ is the Orlicz space with the corresponding N -function

φ(s) = e|s|
N

N−1 − 1 .

Thus, with the W 1,α-method we obtain as ”critical growth” for the primitive
G(s):

G(s) ∼ e|s|
N

N−1
, (7.4)

i.e. we have the maximal growths

F (s) = |s|p+1 = |s| N
N−2 , G(s) ∼ e|s|

N
N−1

We now use the fractional Sobolev space approach: we work directly with
the mixed approach, , i.e. the W s,α-method. Given s ∈ (0, 2), the optimal

fractional Sobolev space W s,α
0 for having a continuous embedding W s,α

0 ⊂ L
N

N−2

is given by the condition:

N

N − 2
= p + 1 =

αN

N − sα

which implies

α =
N

N − (2− s)
,

and hence by 1
α

+ 1
β

= 1 we get for β the condition:

β =
N

2− s
=

N

t
.

The space W t,β
0 (Ω) = W

t, N
t

0 (Ω) is again a limiting Sobolev case, and by R.S.
Strichartz [46] we have the optimal embedding

W t,β
0 (Ω) = W

t, N
t

0 (Ω) ⊂ Lφ(Ω)

with

φ(r) = e|r|
N

N−t − 1 , 0 < t < 2 .

Thus, the maximal growths by the W s,α-method are

F (s) = |s| N
N−2 , and G(s) ∼ e|s|

N
N−t

, 0 < t < 2 ,

i.e. we have found a variable ”critical growth” which depends on the choice of
the value of t !

We emphasize once more that we have found for system (7.1), by using the
same functional I(u, v), in changing function space settings, different maximal
growths for the nonlinearity G(s). This is of course somewhat disturbing !
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7.2 Lorentz spaces

We now change from Sobolev space settings to Lorentz spaces.

We recall the definition of a Lorentz space: For φ : Ω → R a measurable
function, we denote by

µφ(t) = |{x ∈ Ω : φ(x) > t}| , t ≥ 0

its distribution function. The decreasing rearrangement φ∗(s) of φ is defined by

φ∗(s) = sup{t > 0 ; µφ(t) > s} , 0 ≤ s ≤ |Ω| .

The Lorentz space L(p, q) is defined as follows:

φ ∈ L(p, q), 1 < p < ∞, 1 ≤ q < ∞ ,

if

‖φ‖p,q =

(∫ ∞

0

[φ∗(t)t1/p]q
dt

t

)1/q

< +∞

Lorentz spaces have the following main properties (see Adams-Fournier [1]):

1. L(p, p) = Lp , 1 < p < +∞
2. The following inclusions hold for 1 < q < p < r < ∞:

Lr ⊂ L(p, 1) ⊂ L(p, q) ⊂ L(p, p) = Lp ⊂ L(p, r) ⊂ Lq

3. Hölder inequality:

|
∫

Ω

f g dx| ≤ ‖f‖p,q ‖g‖p′,q′ , where p′ =
p

p− 1
, q′ =

q

q − 1

Furthermore, the following embedding theorems hold:

Theorem A: Suppose that 1 ≤ p < N , and that ∇u ∈ L(p, q); then
u ∈ L(p∗, q), where p∗ = Np

N−p
and 1 ≤ q < ∞.

Note that this Theorem improves slightly Sobolev’s embedding theorem, which
gives u ∈ Lp∗ = L(p∗, p∗), which is a larger space than L(p∗, p).

For the next theorem, see H. Brezis [9]:

Theorem B: Suppose that u ∈ W j,p, with p < N
j
; then u ∈ L(p∗, p) with

1
p∗ = 1

p
− j

N
.

The following theorem deals with the limiting Sobolev case, and is a
generalization of Trudinger’s result (see H. Brezis and S. Wainger [11], H. Brezis
[9]). It is of particular importance for our considerations:
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Theorem C: Assume ∇u ∈ L(N, q) for some 1 < q < ∞. Then e|u|
q

q−1 ∈ L1.

This generalizes the Trudinger embedding, which gives for ∇u ∈ L(N, N) that

e|u|
N

N−1 ∈ L1, i.e. the maximal growth e|u|
N

N−1
; we point out that in the Brezis-

Wainger embedding the maximal growth depends only on the second Lorentz
exponent q, but not on N .

We make the following

Definition Let Ω ⊂ RN be a bounded domain. Assume that 1 < p < ∞,
1 < q < ∞, and set

W 1
0 L(p, q)(Ω) = c l{u ∈ C∞

0 (Ω) : ‖∇u‖p,q < ∞}
On W 1

0 L(p, q) we have the following norm

‖u‖1; p,q := ‖∇u‖p,q

with which W 1
0 L(p, q) becomes a reflexive Banach space.

One now has the following sharpening of Theorem C, in analogy to Moser’s
sharpening of the Trudinger inequality.

Theorem D: There exists α0 = α0(N, p, Ω) > 0 such that

sup
‖∇u‖L(N,q)=1

∫

Ω

eα|u|
q

q−1
< +∞ , for α ≤ α0

7.3 Lorentz spaces and the asymptotic borderline case

We consider again the functional

I(u, v) =

∫

Ω

∇u∇vdx−
∫

Ω

G(v)− N−2
N

∫

Ω

|u| N
N−2 dx . (7.5)

We want to consider the term
∫
Ω
∇u∇vdx on a product of Lorentz spaces, i.e.

we want to estimate

|
∫

Ω

∇u∇vdx| ≤ ‖∇u‖L(p,q)‖∇v‖L(p′,q′) ,

where we determine p, q and p′, q′ such that the last term in I(u, v) is well-
defined, i.e.

u ∈ L
N

N−2 (Ω) = L( N
N−2

, N
N−2

)(Ω).

Thus, q = N
N−2

, and by Theorem A we obtain the following condition for p

N

N − 2
= p∗ =

Np

N − p
,
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and hence

p =
N

N − 1
.

Thus, we have to impose
∇u ∈ L( N

N−1
, N

N−2
) .

Next, we calculate

p′ =
p

p− 1
= N and q′ =

q

q − 1
=

N

2
,

and hence we get the condition

∇v ∈ L(p′, q′) = L(N, N
2
) .

By Theorem C above we now find for ∇v ∈ L(N, N
2
) that e|v|

N
N−2 ∈ L1(Ω).

Thus we have

Theorem 7.1 The functional

I(u, v) =

∫

Ω

∇u∇vdx−
∫

Ω

G(v)− N−2
N

∫

Ω

|u| N
N−2 dx

is well defined on the space

W 1
0 L( N

N−1
, N

N−2
)(Ω)×W 1

0 L(N, N
2
)(Ω) ,

and the maximal growth for G(s) is given by

G(s) ∼ e|v|
N

N−2
. (7.6)

We remark that the growth (7.6) is considerably larger than the growth

G(s) ∼ e|s|
N

N−1
found by the Hs-method in (7.4), and it corresponds to the

limiting case t → 2 in the W s,α-method (which however cannot be reached in
that framework).

7.4 Subcritical with respect to the asymptotic borderline
case: existence of solution

In this section we prove the existence of solutions for systems (7.1) in the
”subcritical case”. Again, since we are interested in the superlinear case, we
restrict to dimension N = 3, that is, we consider the system





−∆u = g(v)

−∆v = u2 in Ω ⊂ R3 ,

u = v = 0 on ∂Ω

(7.7)
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As mentioned, the corresponding functional is

I(u, v) =

∫

Ω

∇u∇v −
∫

Ω

1
3
|u|3 − ∫

Ω
G(v) (7.8)

on the space
E := W 1

0 L(3
2
, 3)×W 1

0 L(3, 3
2
)

and we assume that g(s) has a subcritical growth, i.e. an essentially lower
growth than e|s|

3
. More precisely, we assume that

lim
s→+∞

g(s)

eα |s|3 = 0 , ∀ α > 0 . (7.9)

Furthermore, we make the following assumptions on g (our aim is to give
simple assumptions, at the expense of greater generality):

A1) g is a continuous function, with g(s) = o(s) near the origin

A2) There exist constants ν > 2 and s0 > 0 such that

0 < ν G(s) ≤ s g(s) , ∀ |s| > 0 .

A3) There exist constants s1 > 0 and M > 0 such that

0 < G(s) ≤ M g(s) for all |s| ≥ s1 .

Example

G(s) = e|s|
β − 1− |s|β, with 0 < β < 3.

Theorem 7.1 , see [45]. Under assumptions A1) – A3) and (7.9), system
(7.1) has a nontrivial positive (weak) solution (u, v) ∈ E.

Proof. The proof follows ideas from section 5.3. We remark that the proof is
similar to one in section 9.2 below, and therefore we limit here to give an outline
of the main idea.

First, note that the functional I given in (7.8) is strongly indefinite. In order
to overcome this difficulty, we introduce, as in section 5.4, a suitable ”tilde map”:

a) The tilde map
Consider the bilinear map

∫
Ω
∇u∇vdx on the space W 1

0 L(3
2
, 3)×W 1

0 L(3, 3
2
). For

u ∈ W 1
0 L(3

2
, 3) denote with ũ ∈ W 1

0 L(3, 3
2
) the unique element such that

sup
{v∈W 1

0 L(3, 3
2
): ‖∇v‖

3, 32
=‖∇u‖ 3

2 ,3
}

∫

Ω

∇u∇vdx =

∫

Ω

∇u∇ũdx = ‖∇u‖ 3
2
,3‖∇ũ‖3, 3

2

and hence ∫

Ω

∇u∇ũdx = ‖∇u‖2
3
2
,3

= ‖∇ũ‖2
3, 3

2
(7.10)
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The existence and uniqueness of ũ follows from the reflexivity and convexity of
W 1

0 L(3
2
, 3), see [20].

We can thus define the ”tilde-map”: W 1
0 L(3

2
, 3) → W 1

0 L(3, 3
2
) , u 7→ ũ ,

which is continuous and positively homogeneous

On the product space E = W 1
0 L(3

2
, 3)×W 1

0 (3, 3
2
) we now define two continuous

submanifolds

E+ = {(u, ũ) : u ∈ W 1
0 L(3

2
), 3} , E− = {(u,−ũ) : u ∈ W 1

0 L(3
2
, 3)}

As remarked in [20], the nonlinear manifolds E+ and E− have a linear structure
with respect to the following notion of tilde-sum:

(u, ṽ) +̃ (y, z̃) := (u + y, ṽ + z) ,

and one has

E = E+ ⊕̃ E− , with norm ‖w‖2
E = ‖(u, ṽ)‖2

E = ‖∇u‖2
3, 3

2
+ ‖∇ṽ‖2

3
2
,3

b) Linking structure
Next, one verifies that the functional I has a ”linking structure” in the origin.
This is proved similarly as in the corresponding proof in subsection 9.2 below,
and we thus omit it here. For details, we refer to [45].

c) Palais-Smale sequences are bounded
Let (un, ṽn) ∈ E be a Palais-Smale sequence for the functional I, i.e. such that

with |I(un, ṽn)| ≤ d, and |I ′(un, ṽn)[(φ, ψ̃)] | ≤ εn‖(φ, ψ̃)‖E , εn → 0 , ∀ (φ, ψ̃) ∈
E. Then ‖(un, ṽn)‖E ≤ c.

Again, the proof is similar to subsection 9.2 below.

d) Finite-dimensional approximation
Since the functional I is strongly indefinite on the space E (i.e. positive
and negative definite on infinite dimensional manifolds), the standard linking
theorems cannot be applied. We therefore proceed by finite dimensional
approximations (Galerkin procedure):

Denote by (ei)i∈N an orthonormal set of eigenfunctions corresponding to the
eigenvalues (λi), i ∈ N, of the Laplacian, with Dirichlet boundary conditions.
Set

E+
n = span{(ei, ẽi) | i = 1, . . . , n} , E−

n = span{(ei,−ẽi) | i = 1, . . . , n}
and

En = E−
n ⊕̃ E−

n

Exploiting the local linking structure given in b), it is now standard to
conclude that for each n ∈ N the functional In := I|En has a critical point
zn = (un, ṽn) ∈ En at level cn, with

I(zn) = cn ∈ [σ0, σ1] , σi 0 , i = 1, 2 , (7.11)
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and I ′(zn)[(φ, ψ̃)] = 0, for all (φ, ψ̃) ∈ En. Hence we have




∫

Ω

∇un∇ψ̃ =

∫

Ω

g(ṽn)ψ̃

∫

Ω

∇ṽn∇φ =

∫

Ω

u2
nφ

, ∀ (φ, ψ̃) ∈ En (7.12)

e) Limit n →∞:
It remains to pass to the limit n → ∞. By c) we have that ‖(un, ṽn)‖E ≤ c,
and hence (un, ṽn) ⇀ (u, ṽ) in E. Furthermore, we may assume that

ṽn → ṽ in Lα , for all α ≥ 1 ; (7.13)

indeed, by the properties 1) and 2) of Lorentz spaces, see subsection 7.2, we
have the following continuous embeddings

W 1
0 L(3, 3

2
) ⊂ W 1

0 L(3− δ, 3− δ) = W 1,3−δ
0 ⊂ L

(3−δ)N
N−(3−δ) = L

(3−δ)3
δ , for δ > 0 ,

and hence we have compact embedding into Lα, for all 1 ≤ α < (3−δ)3
δ

.
Proceeding as in subsection 9.2 below, one concludes that by taking the limit

n →∞ 



∫

Ω

∇u∇ψ̃ =

∫

Ω

g(ṽ)ψ̃

∫

Ω

∇ṽ∇φ =

∫

Ω

u2φ

, ∀ (φ, ψ̃) ∈ ∪En = E , (7.14)

i.e. (u, ṽ) ∈ E is a (weak) solution of (7.14).

Finally, we prove that (u, ṽ) ∈ E is nontrivial. If we assume to the contrary
that u = 0, then by (7.14) also ṽ = 0. Since g is subcritical, we obtain by (7.9)
that for all δ > 0

|g(t)| ≤ cδ eδ|t|3 , ∀ t ∈ R
Now we choose ψ̃ = ṽn in the first equation of (7.14), and estimate by Hölder

|
∫

Ω

g(ṽn)ṽn | ≤ cδ‖eδ|ṽn|3‖Lβ ‖ṽn‖Lα ≤ dδ‖ṽn‖Lα , (7.15)

where we have used that ‖∇ṽn‖3, 3
2
≤ c, and hence by Theorem C above, for

β > 1 sufficiently small:

‖eδ|ṽn|3‖Lβ =

∫

Ω

eδβ|ṽn|3 ≤ c .

Since by (7.13) ‖ṽn‖Lα → 0, and hence by (7.15)
∫

Ω
g(ṽn)ṽn| → 0, we conclude

by the first equation in (7.12), by multiplication by ṽn and inegration, that
∫

Ω

∇un∇ṽn =

∫

Ω

g(ṽn)ṽn → 0 . (7.16)
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This in turn implies, by choosing φ = un in the second equation in (7.12), that
also

∫
Ω
|un|3 → 0, and by assumption A2) follows that also

∫
Ω

G(ṽn) → 0. This
implies finally that I(un, ṽn) =

∫
Ω
∇un∇ṽn −

∫
Ω

(
1
3
|un|3 + G(ṽn)

) → 0; but this
contradicts (7.11), and thus (u, ṽ) 6= (0, 0).

This completes the proof.

8 Critical phenomena for the system

As pointed out for the scalar equation, critical growth is connected with several
interesting phenomena. We now discuss these properties for the system





−∆u = vq+1

−∆v = up+1
, in Ω

u = v = 0 , on ∂Ω

(8.1)

8.1 Critical growth: non-existence of (positive) solutions

First we present a result of E. Mitidieri [34] (see also van der Vorst [50]) which
gives non-existence of positive solutions for system (4.1) if the nonlinearities
have critical growth.

Theorem 8.1 Let Ω ⊂ RN be a starshaped domain. Assume that

1

p + 1
+

1

q + 1
≤ 1− 2

N
(8.2)

Then system (8.1) has no positive solution.

Proof. The proof relies on a Pohozaev type identity which is a modification of
an identity by Pucci-Serrin [42].

Lemma 8.2 (see collorally 2.1 and (2.5) in [34])

Let (u, v) (with u, v ∈ C2(Ω̄)) be a solution of system (8.1). Then

∫

Ω

(
∆u(x,∇v) + ∆v(x,∇u)

)
dx

=

∫

∂Ω

(∂u

∂n
(x,∇v) +

∂v

∂n
(x,∇u)− (∇u,∇v)(x, n)

)
ds

+ (N − 2)

∫

Ω

(∇u,∇v)dx

(8.3)
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Applying this identity to system (8.1) we obtain

N

∫

Ω

(
1

p + 1
|u|p+1 +

1

q + 1
|v|q+1

)
dx

= (N − 2)

∫

Ω

(∇u,∇v)dx +

∫

∂Ω

∂u

∂n

∂v

∂n
(x, n)ds

(8.4)

On the other hand, multiplying the first equation of (8.1) by v and the second
by u and integrating, we obtain, for any a ∈ (0, 1)

∫

Ω

∇u∇v = a

∫

Ω

|v|q+1dx + (1− a)

∫

Ω

|u|p+1dx (8.5)

Now choose

a =
N

(N − 2)(p + 1)

and hence by (8.2)

1− a ≥ N

(N − 2)(q + 1)

which yields

(N − 2)

∫

Ω

(∇u,∇v)dx ≥ N

∫

Ω

(
1

p + 1
|u|p+1 +

1

q + 1
|v|q+1

)
dx

Hence, by (8.4), we get

0 ≥
∫

∂Ω

∂u

∂n

∂v

∂n
(x, n) ds

Since u and v are positive solutions, we have by the maximum principle that

∂u

∂n
< 0 and

∂v

∂n
< 0 on ∂Ω ,

and since (x, n) > 0 by the assumption that Ω is starshaped, we obtain a
contradiction.

8.2 Critical growth: non-compactness and concentration

We discuss further ”phenomena of critical growth” for the model system (8.1).
We first remark that by ”solving” the first equation for v (assuming that v > 0)
we get v = (−∆u)1/q, and then we obtain by the second equation

{ −∆((−∆u)1/q) = up , in Ω

u = ∆u = 0 , on ∂Ω
(8.6)

which is equivalent to system (8.1).
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The variational formulation for equation (8.6) leads to the minimization
problem

inf
u∈Sp+1

∫

Ω

|∆u| q+1
q dx (8.7)

where

Sp+1 = {u ∈ W 2, q+1
q (Ω)

∣∣u = ∆u = 0 on ∂Ω, ‖u‖Lp+1 = 1}

The Sobolev embedding theorem gives in this case

W 2, q+1
q (Ω) ⊂ Lp+1(Ω) , for p + 1 ≤

q+1
q

N

N − 2 q+1
q

which is equivalent to
1

p + 1
+

1

q + 1
≥ 1− 2

N

i.e. the critical hyperbola!
We note that by Theorem 8.1 the infimum in (8.7) cannot be attained in

starshaped domains, since otherwise there would exist a solution to system (8.1).
To understand the concentration behavior of minimizing sequences, it is

important to study the situation in RN , as described in the case of the Laplacian
in section 2.4. One has the following result by P.L. Lions [36], which is proved
by the methods of concentration-compactness:

Theorem 8.3 Let

m = inf
{ ∫

RN

|∆u| q+1
q dx

∣∣∣ u ∈ D2, q+1
q ,

∫

RN

|u|p+1 = 1
}

, (8.8)

where D2, q+1
q is the completion of C∞

0 (RN) in the norm ‖∆ · ‖ q+1
q

. Then

every minimizing sequence (un) of (8.8) is relatively compact in D2, q+1
q up to

translation and dilation, i.e. there exist (yn) ∈ RN , (σn) ∈ (0,∞) such that the
new minimizing sequence

ũn = σ−N/(p+1)
n un(· − yn/σn)

is relatively compact in D2, q+1
q . In particular, there exists a minimum of (8.8).

8.3 Critical growth: instantons

The fact that the infimum m in (8.8) is attained, and that there is a dilation
invariance, says that we have again a family of instantons, given by the
minimizers of (8.8). However, in contrast to the case of the Laplacian described
in section 2.4, these instantons are not explicitly known. In [28] Hulshof and van
der Vorst show that the minimizer (ground state) of (8.8) is (up to translation
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dilation) unique; furthermore, they show that the ground state is positive,
radially symmetric and decreasing in r. Thus, all ground states of (8.8) are
given by

uε,x0 = ε−
N

p+1 u
(x− x0

ε

)
,

where u is the unique ”normalized” ground state with u(0) = 1. Furthermore,
Hulshof and van der Vorst derive the precise asymptotic behavior of the
normalized ground state.

8.4 Brezis-Nirenberg type results for systems

In subsection 2.4 we have discussed the famous result of Brezis-Nirenberg [10], in
which it is shown that the existence of solutions for elliptic equation with critical
growth terms can be recovered by adding a suitable lower order perturbation.
In the proof it is crucial to have the explicit form of the instantons in order to
prove by explicit estimates that due to the perturbation the non-compactness
level of the functional is avoided.

Hulshof, Mitidieri and van der Vorst [30] consider the corresponding problem
for the following perturbed critical system





−∆u = µv + vq+1

−∆v = λu + up+1
, in Ω

u = v = 0 , on ∂Ω

, (8.9)

with
1

p + 1
+

1

q + 1
= 1− 2

N
(8.10)

They give (rather complicated) conditions on µ and λ such that system (8.9)
has nontrivial solutions. The proof is based on the dual variational method,
cf. Ekeland-Temam [13]. To show that the non compactness levels of the
corresponding functional are avoided, they use the asymptotic behavior of the
normalized ground state mentioned above.

9 Systems in two dimensions

We have seen in section 3 that critical growth for the scalar equation in
dimension N = 2 is governed by the Trudinger embedding and is of exponential
type. For systems in two dimensions, one would like to obtain in analogy to the
critical hyperbola in N ≥ 3 a ”critical curve” describing the maximal growth for
the combined nonlinearities. This can be obtained using again Lorentz spaces.
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9.1 Exponential Critical hyperbola

In this section we assume that Ω ⊂ R2 is a bounded domain, and consider again
the system

(S2)





−∆u = g(v) , in Ω

−∆v = f(u) , in Ω

u = 0 and v = 0 , on ∂Ω

For the scalar equation −∆u = f(u) in Ω, u = 0 on ∂Ω, critical growth is given
by the Trudinger-Moser inequlity, i.e. F (u) ∼ e|u|

2
. For the system, we look for

an analogue of the critical hyperbola for N ≥ 3. By considering the functional

J(u, v) =

∫

Ω

∇u∇vdx−
∫

Ω

F (u)dx−
∫

Ω

G(v)dx

on the space H1
0 × H1

0 one sees (as in the scalar case) that the nonlinearities
G(v) ∼ e|v|

2
and F (u) ∼ e|u|

2
lie on this ”critical curve”. We assume now that

F (t) and G(t) have ”exponential polynomial growth”, i.e.

F (t) ∼ e|t|
p

, and G(t) ∼ e|t|
q

, for some 1 < p , q < +∞ .

We look for a relation between p and q such that the pair (F, G) becomes critical.
We prove:

Theorem 9.1 Let Ω ⊂ R2 be a bounded domain. Then we have an ”exponential
critical curve” given by

(F (s), G(s)) = (e|s|
p

, e|s|
q

) , with
1

p
+

1

q
= 1 .

Remark 9.2 One might try, as in the case N ≥ 3, to work with spaces like
W 1,α ×W 1,β, with 1

α
+ 1

β
= 1 and e.g. 0 < α < 2. However, note that then

W 1,α(Ω) ⊂ Lr(Ω) , with r =
αN

N − α
,

and furthermore, since β = α
α−1

> 2, we get

W 1,β
0 (Ω) ⊂ L∞(Ω)

i.e. we find a maximal growth of polynomial type for F ,

|F (s)| ≤ |s| Nα
N−α ,

and no growth restriction on the nonlinearity G(s). So, this choice of spaces
brings us for any (α, β) 6= (2, 2) immediately outside the range of exponential
nonlinearities.

Thus, to treat the problem, we need to work with spaces which lie ”very
close” to the space W 1,2, that is, we look for an ”interpolation space” which lies
between W 1,2 and W 1,2+δ, for every δ > 0. We have introduced such a class of
spaces in subsection 7.2, namely the Lorentz spaces.
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Proof. We consider the functional

J(u, v) =

∫

Ω

∇u∇vdx−
∫

Ω

F (u)−
∫

Ω

G(v) (9.1)

We want to consider the term
∫

Ω
∇u∇v dx on a product of Lorentz spaces, i.e.

we want to estimate, using the Hölder inequality on Lorentz spaces:

|
∫

Ω

∇u∇vdx| ≤ ‖∇u‖L(2,q)‖∇v‖L(2,q′) ,
1

q
+

1

q′
= 1 .

By Theorem C, section 7.2, we have that

u ∈ W 1L(2, q) ⇒ e|u|
q

q−1 ∈ L1 , and v ∈ W 1L(2, q′) ⇒ e|v|
q′

q′−1 ∈ L1 .

Thus the maximal growth allowed for F (s) =
∫ s

0
f(t)dt and G(s) =

∫ s

0
g(t)dt is

given by

F (u) ∼ e|u|
p

, p = q′ =
q

q − 1
, and G(v) ∼ e|v|

q

.

9.2 Existence for the subcritical problem in dimension
N = 2

In this section we show that for subcritical growth with respect to the exponential
critical hyperbola defined in Theorem 9.1 we have compactness, and hence
existence of solutions. We make the following assumptions on f and g (our
aim is to give simple assumptions, at the expense of greater generality):

A1) f and g are continuous functions, with f(s) = o(s) and g(s) = o(s) near
the origin

A2) There exist constants µ > 2, ν > 2 and s0 > 0 such that

0 < µF (s) ≤ s f(s) , and 0 < ν G(s) ≤ s g(s) , ∀ |s| > 0 .

A3) There exist constants s1 > 0 and M > 0 such that

0 < G(s) ≤ M g(s) for all |s| ≥ s1

0 < F (s) ≤ M f(s) for all |s| ≥ s1 ,

We remark that assumption A3) implies that f and g have at least exponential
growth.

A4) f has at most critical growth, i.e. there exist constants a1, a2 and d such
that

f(s) ≤ a1 + a2e
d|s|p
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A5) g is subcritical, i.e. for all δ > 0 holds:

lim
|s|→∞

g(s)

eδ|s|q = 0 , q =
p

p− 1

Example:

F (s) = e|s|
p − 1− |s|p , G(s) = e|s|

β − 1− |s|β , with 1 < β < q .

We consider the space E = W 1
0 L(2, q)×W 1

0 L(2, p).

Theorem 9.3 Under assumptions A1) – A5), system (S2) has a nontrivial
positive (weak) solution (u, v) ∈ E.

Proof. The proof follows the lines of subsection 5.4 (see also [19] and [20]).
We note that the functional J given in (9.1) is strongly indefinite in the
origin, being positive and negative definite on infinite dimensional subspaces. If
working on a Hilbert space H, one can find suitable subspaces H+ ⊕H− = H
such that I|H+ is positive definite and J |H− is negative definite near the origin.
Since we are working on the Banach space E, the subspaces H+, H− have to
be replaced by infinite dimensional manifolds. As in (5.10) we define

a) The tilde map
Consider the bilinear map

∫
Ω
∇u∇vdx on the space W 1

0 L(2, q) × W 1
0 L(2, p),

where p = q
q−1

.

For u ∈ W 1
0 L(2, q) denote with ũ ∈ W 1

0 L(2, p) the unique element such that

sup
{v∈W 1

0 L(2,p): ‖∇v‖2,p=‖∇u‖2,q}

∫

Ω

∇u∇vdx =

∫

Ω

∇u∇ũdx = ‖∇u‖2,q‖∇ũ‖2,p

and hence ∫

Ω

∇u∇ũdx = ‖∇u‖2
2,q = ‖∇ũ‖2

2,p (9.2)

The existence and uniqueness of ũ follows from the reflexivity and convexity of
W 1

0 L(2, q), see [20].
We can thus define the ”tilde-map”: W 1

0 L(2, q) → W 1
0 L(2, p) , u 7→ ũ . This

map is clearly continuous; it is nonlinear, but positively homogeneous: ρ̃u = ρũ,
for all ρ ≥ 0.

On the product space E = W 1
0 L(2, q) × W 1

0 (2, p) we can now define two
continuous submanifolds

E+ = {(u, ũ) : u ∈ W 1
0 L(2, q)} , E− = {(u,−ũ) : u ∈ W 1

0 L(2, q)}
As remarked in Lemma 5.14, the nonlinear manifolds E+ and E− have a linear
structure with respect to the following notion of tilde-sum:

(u, ṽ) +̃ (y, z̃) := (u + y, ṽ + z) ,
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and one has

E = E+ ⊕̃ E− , with norm ‖w‖2
E = ‖(u, ṽ)‖2

E = ‖∇u‖2
2,q + ‖∇ṽ‖2

2,p

b) Linking structure
Next, we verify that the functional J(u, v) has a linking structure in (0, 0):

i) Using A1) and A4) one estimates, for given ε > 0

F (s) ≤ εs2 + c|s|3ed|s|p , G(s) ≤ εs2 + c|s|3ed|s|q ,

Claim 1: There exist ρ > 0 and σ > 0 such that J(u, ũ) ≥ σ for ‖(u, ũ)‖E = ρ ;

indeed, using (7.10) and

J(u, ũ) =

∫

Ω

∇u∇ũ−
∫

Ω

F (u)−
∫

Ω

G(ũ)

≥ 1

2
‖∇u‖2

2,q − ε

∫

Ω

|u|2 − c‖u‖3
6

( ∫

Ω

e2d|u|p)1/2
+

+
1

2
‖∇ũ‖2

2,p − ε

∫

Ω

|ũ|2 − c‖ũ‖3
6

( ∫

Ω

e2d|ũ|q)1/2
.

Now, we use that by Theorem D, subsection 7.2

‖u‖6 ≤ d3‖∇u‖2,q , and

∫

Ω

e2|u|p ≤ c , if ‖∇u‖2,q ≤ θ1

‖ũ‖6 ≤ d4‖∇ũ‖2,p , and

∫

Ω

e2|ũ|q ≤ c , if ‖∇ũ‖2,p ≤ θ2

With these estimates the claim follows easily.

Next, fix e1 ∈ W 1
0 L(2, q) and ẽ1 ∈ W 1

0 L(2, p) with ‖∇e1‖2,q = ‖∇ẽ1‖2,p = 1,
and let

Q = {r(e1, ẽ1) +̃ w ; w ∈ E− , ‖w‖E ≤ R0 , 0 ≤ r ≤ R1}

Claim 2: There exist R0, R1 > 0 such that J(z) ≤ 0 , ∀ z ∈ ∂Q, where ∂Q
denotes the boundary of Q in R(e1, ẽ1) +̃ E−.

i) for (u, ṽ) ∈ ∂Q ∩ E− we have (u, ṽ) = (u,−ũ) and hence

J(u,−ũ) = −
∫

Ω

∇u∇ũ−
∫

F (u)−
∫

G(−ũ) ≤ −‖∇u‖2
2,q ≤ 0

ii) Let (u, ṽ) = r(e1, ẽ1) +̃ (w,−w̃) = (re1 + w, ˜re1 − w) ∈ ∂Q, with
‖(w,−w̃)‖E = R0, 0 ≤ r ≤ R1.
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First set R1 = 1. Then

J(u, ṽ) ≤
∫

Ω

∇(re1 + w)∇( ˜re1 − w)

=

∫

Ω

∇(w − re1)∇(w̃ − re1)−
∫

Ω

∇(2re1)∇(w̃ − re1)

≤ −‖∇(w − re1)‖2
2,q + 2‖∇re1‖2,q‖∇(w̃ − re1)‖2,p

≤ −‖∇w‖2
2,q − ‖∇re1‖2

2,q + 2‖∇w‖2,q‖∇re1‖2,q + 2‖∇re1‖2,q(‖∇w‖2,q + ‖∇re1‖2,q)

≤ −‖∇w‖2
2,q + 4r‖∇w‖2,q + r2 ≤ 0 ,

for 2‖∇w‖2
2,q = ‖∇w‖2

2,q + ‖∇w̃‖2
2,p = ‖(w,−w̃)‖2

E = R
2

0 sufficiently large.

Note that this estimate now holds for all ρ ≥ 1, with 0 ≤ r ≤ ρ and
‖(w,−w̃)‖2

E = ρ R0.

iii) Let z = ρ(e1, ẽ1) +̃ ρ(w,−w̃) ∈ ∂Q, with ‖(w,−w̃)‖E ≤ R0. Then by A2),
for θ = min{µ, ν} > 2

J(u, ṽ) =

∫

Ω

∇(ρe1 + ρw)∇( ˜ρe1 − ρw)−
∫

Ω

F (ρe1 + ρw) + G( ˜ρe1 − ρw)

≤ ρ2‖∇(e1 + w)‖2,q‖∇(e1 − w)‖2,q − c

∫

Ω

|ρe1 + ρw|θ + c1 − c

∫

Ω

| ˜ρe1 − ρw|θ + c1

≤ ρ2(‖∇e1‖2,q + ‖∇w‖2,q)
2 − cρθ

{∫

Ω

|e1 + w|θ +

∫

Ω

|ẽ1 − w|θ
}

+ 2c1

It follows that
J(u, ṽ) ≤ ρ2(1 + R0)

2 − cρθδ0 + 2c1 ≤ 0 (9.3)

for ρ ≥ R1 sufficiently large, where

δ0 = inf
‖(w,−w̃)‖E≤R0

{∫

Ω

|e1 + w|θ +

∫

Ω

|ẽ1 − w|θ
}

> 0 ;

indeed, if δ0 = 0 we would find a sequence wn with ‖(wn,−w̃n)‖ ≤ R̄0 and∫
Ω
|e1+wn|θ + | ˜e1 − wn|θ → 0. By the compact embeddings W 1L(2, q) ⊂ Lθ and

W 1L(2, p) ⊂ Lθ we get strongly convergent subsequences e1 + wn → e1 + w = 0

and ˜e1 − wn → ẽ1 − w = 0 , i.e. w = e1 and w = −e1: contradiction.

Finally, defining R0 = R1R0, the claim holds.

c) Palais-Smale sequences are bounded
Let (un, ṽn) ∈ E with |J(un, ṽn)| ≤ d, and

|J ′(un, ṽn)[(φ, ψ̃)] | ≤ εn‖(φ, ψ̃)‖E , εn → 0 , ∀ (φ, ψ̃) ∈ E (9.4)

Then ‖(un, ṽn)‖E ≤ c.
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Indeed, choosing (φ, ψ̃) = (un, ṽn) = zn in (9.4) we get, using A2)

∫

Ω

f(un)un +

∫

Ω

g(ṽn)ṽn ≤ 2

∣∣∣∣
∫

Ω

∇un∇ṽn

∣∣∣∣ + εn‖(un, ṽn)‖E

≤ 2d + 2

∫

Ω

F (un) + 2

∫

Ω

G(ṽn) + εn‖(un, ṽn)‖E

≤ 2d +
2

µ

∫

Ω

f(un)un +
2

ν

∫

Ω

g(ṽn)ṽn + εn‖(un, ṽn)‖E

from which we get

∫

Ω

f(un)un ≤ c + εn‖(un, ṽn)‖E ,

∫

Ω

g(ṽn)ṽn ≤ c + εn‖(un, ṽn)‖E (9.5)

and then also ∫

Ω

F (un) ≤ c ,

∫

Ω

G(ṽn) ≤ c . (9.6)

Next, taking (φ, ψ̃) = (vn, 0) and (φ, ψ̃) = (0, ũn) in (9.4) we have

‖∇vn‖2
2,q ≤

∫

Ω

f(un)vn + εn‖(vn, 0)‖E , (9.7)

and

‖∇ũn‖2
2,p ≤

∫

Ω

g(ṽn)ũn + εn‖(0, ũn)‖E . (9.8)

Setting Vn =
vn

‖∇vn‖2,q

and Ũn =
ũn

‖∇ũn‖2,p

we obtain

‖∇vn‖2,q ≤
∫

Ω

f(un)Vn + εn and ‖∇ũn‖2,p ≤
∫

Ω

g(ṽn)Ũn + εn . (9.9)

We now use the following inequality: for any α > 1 (and setting α′ = α
α−1

)
holds:

st ≤




(etα − 1) + s(log+ s)1/α , for all t ≥ 0 and s ≥ e( 1
α

)α′

(etα − 1) + α−1
αα′ s

α′ , for all t ≥ 0 and 0 ≤ s ≤ e( 1
α

)α′
(9.10)

Proof
For fixed s > 0, consider supt≥0{st− (etα − 1)}, and let ts denote the (unique)
point where the supremum is attained; then s = αtα−1

s etαs .

i) ts ≥ ( 1
α
)

1
α−1 : then s = αtα−1

s etαs ≥ etαs and hence (log s)
1
α ≥ ts, and then

sup
t≥0
{st− (etα − 1)} = sts − (etαs − 1) ≤ sts ≤ s(log s)1/α
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ii) 0 ≤ ts ≤ ( 1
α
)

1
α−1 and s ≥ e( 1

α
)
α′

: then sts ≤ s( 1
α
)

1
α−1 ≤ s(log+ s)

1
α , by the

assumption on s.

iii) 0 ≤ ts ≤ ( 1
α
)

1
1−α and s ≤ e( 1

α
)
α′

: in fact, the second inequality in II) holds

always, since by I) st ≤ tα + α−1
αα′ s

α′ ≤ (etα − 1) + α−1
αα′ s

α′ , for all s, t ≥ 0.

We apply the above inequality to the estimates in (9.9).

Applying inequality (9.10) with α = p and t = |Vn(x)|, s = |f(un(x))|, to the
first estimate in (9.9):

‖∇vn‖2,q ≤
∫

Ω

f(un)Vn + εn

≤
∫

Ω

(e|Vn|p − 1) +

∫

Ω

|f(un)| [log+ |f(un)|]1/p + εn

≤ c +

∫

Ω

f(un)un + εn

≤ c + εn + εn‖(un, ṽn)‖E

Applying inequality (9.10) with α = q and t = |Ũn|, s = |g(vn)|, to the second
estimate in (9.9), and using A5) and (9.5) yields

‖∇ũn‖2,p ≤
∫

Ω

g(ṽn)ŨN + εn

≤
∫

Ω

(eŨq
n − 1) +

∫

Ω

|g(ṽn)| [log+ |g(ṽn)|]1/q + εn

≤ c +

∫

Ω

g(ṽn)ṽn + εn

≤ c + εn‖(un, ṽn)‖E + εn

(9.11)

Joining the two inequalities yields the boundedness of ‖(un, ṽn)‖E.

d) Finite-dimensional approximation
Note that the functional J is strongly indefinite on the space E (i.e. positive
and negative definite on infinite dimensional manifolds), and hence the standard
linking theorems cannot be applied. We therefore consider an approximate
problem on finite-dimensional spaces (Galerkin approximation):

Denote by (ei)i∈N an orthonormal set of eigenfunctions corresponding to the
eigenvalues (λi), i ∈ N, of (−∆, H1

0 (Ω)), and set

E+
n = span{(ei, ẽi) | i = 1, . . . , n}

E−
n = span{(ei,−ẽi) | i = 1, . . . , n}

En = E−
n ⊕̃ E−

n
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Set now Qn = Q ∩ En, Q as in b) above, and define the family of mappings

Γn = {γ ∈ C(Qn, E
−
n ⊕̃ [(e1, ẽ1)]) | γ(z) = z on ∂Qn}

and set
cn = inf

γ∈Γn

max
z∈Qn

J(γ(z)) .

It is now quite standard (see [43], [20]) to conclude that:

Proposition 9.4 For each n ∈ N the functional Jn = J |En has a critical point
zn = (un, ṽn) ∈ En at level cn, with

J(zn) = cn ∈ [σ,R1] (9.12)

and
J ′(zn)[(φ, ψ̃)] = 0 , for all (φ, ψ̃) ∈ En , (9.13)

and hence 



∫

Ω

∇un∇ψ̃ =

∫

Ω

g(ṽn)ψ̃

∫

Ω

∇ṽn∇φ =

∫

Ω

f(un)φ

, ∀ (φ, ψ̃) ∈ En (9.14)

e) Limit n →∞:
By d) we find a sequence (un, ṽn) ∈ En with

J(un, ṽn) → c ∈ [σ,R1] and J ′n(un, ṽn) = 0 , in En ,

and by c) we have ‖(un, ṽn)‖E ≤ c . Then (un, ṽn) ⇀ (u, ṽ) in E. Furthermore,
we may assume that

ṽn → ṽ in Lα , for all α ≥ 1 ; (9.15)

Indeed, we have for any δ > 0

W 1
0 L(2, q) ⊂ W 1

0 L(2− δ, 2− δ) = W 1,2−δ
0 ⊂ L

(2−δ)2
δ ,

and hence a compact embedding into Lα, for all 1 ≤ α < (2−δ)2
δ

.

Using (9.5), (9.6) and assumption A3) one concludes now as in [17], Lemma
2.1, that ∫

Ω

f(un) →
∫

Ω

f(u) ,

∫

Ω

g(ṽn) →
∫

Ω

g(ṽ)

Thus, in (9.14) we can take the limit n →∞ to obtain




∫

Ω

∇u∇ψ̃ =

∫

Ω

g(ṽ)ψ̃

∫

Ω

∇ṽ∇φ =

∫

Ω

f(u)φ

, ∀ (φ, ψ̃) ∈ ∪En = E . (9.16)



62 Ruf

Hence (u, ṽ) ∈ E is a (weak) solution of (9.16).

Finally, we prove that (u, ṽ) ∈ E is nontrivial. Assume by contradiction
that u = 0, which implies that also v = 0. Since g is subcritical, we obtain by
A5), for all δ > 0

|g(t)| ≤ cδ eδ|t|q , ∀ t ∈ R .

Now we choose ψ̃ = ṽn in the first equation of (9.16), and estimate by Hölder

|
∫

Ω

g(ṽn)ṽn | ≤ cδ‖eδ|ṽn|q‖Lβ‖ṽn‖Lα ≤ dδ‖ṽn‖Lα , (9.17)

where we have used that ‖∇ṽn‖2, p ≤ c, and hence by Theorem D, subsection
7.2 above, for β > 1 sufficiently small:

‖eδ|ṽn|q‖Lβ =

∫

Ω

eδβ|ṽn|q ≤ c .

Since ‖ṽn‖Lα → 0 by (9.15), we conclude that
∫

g(ṽn)ṽn → 0 by (9.17), and
hence by the first equation in (9.14) that

∫

Ω

∇un∇ṽn → 0 . (9.18)

This in turn implies, by choosing φ = un in the second equation in (9.14), that
also

∫
Ω

f(un)un → 0. By assumption A2) we now conclude that

∫

Ω

F (un) → 0 , and

∫

Ω

G(un) → 0 . (9.19)

Finally, by (9.18) and (9.19) we now obtain that J(un, ṽn) =
∫
Ω
∇un∇ṽn −∫

Ω
F (un) + G(ṽn) → 0; but this contradicts (9.12), and thus (u, ṽ) 6= (0, 0).

This completes the proof.

9.3 Critical systems in dimension N = 2

For the ”critical” system (S2) not much is known. Indeed, we can state the
following

Open problems

- loss of compactness and concentration phenomena for systems with critical
growth, i.e. when the exponents lie on the ”exponential critical hyperbola”

- non-existence of (radial, positive?) solutions for certain model equations
with critical growth

- existence of instantons, or optimal concentrating sequences
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- group invariance and Pohozaev type identities

Concerning existence results for systems in N = 2 with critical growth, only the
following result is known, see [19].

Let d denote the inner radius of the set Ω, that is d is equal to the radius of
the largest open ball contained in Ω. Recall that we say that a function h has
critical growth at +∞ if there exists γ0 > 0, such that

lim
t→+∞

h(t)

eγt2
= 0, ∀ γ > γ0 , and lim

t→+∞
h(t)

eγt2
= +∞, ∀ γ < γ0 ; (9.20)

in this case we say that γ0 is the critical exponent of h.

Theorem 9.5 Assume that f and g satisfy assumptions A1) - A3) in subsection
9.2, and that f and g have critical growth with critical exponents α0, resp. β0.
Furthermore suppose that

(A4) lim
t→+∞

t f(t)

eα0t2
>

4

d2
√

α0β0

and lim
t→+∞

t g(t)

eβ0t2
>

4

d2
√

α0β0

.

Then system (S2) possesses a nontrivial weak solution (u, v) ∈ E.

Proof. The proof is a combination of the proof of Theorem 3.2 for the scalar
equation and the proof of Theorem 9.3 for the subcritical system. We refer the
interested reader to [19].

Note that this theorem gives an existence result for two dimensional systems
in which both nonlinearities have the same critical growth. This corresponds to
the case lying on the diagonal of the exponential critical hyperbola. Existence
of solutions for critical cases which are not on the diagonal remains an open
problem.
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Seminar, Vol. II, H. Brezis, J.L.Lions ed., Pitman (1982)

[10] H. Brezis, L. Nirenberg Positive solutions of nonlinear elliptic equations
involving critical Sobolev exponents, Comm. PUre Appl. Math. 36 (1983),
437-477.

[11] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and
convolution inequalities, Comm. P.D.E. 5 (1980), 773-789.

[12] L. Carleson, A. Chang, On the existence of an extremal function for an
inequality of J. Moser, Bull. Sc. Math. 110 (1986), 113-127.

[13] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels , Paris
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