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We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a
non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a
reference Gaussian state. We analyze in detail the properties of the proposed measure and exploit it to evaluate
the non-Gaussianity of some relevant single-mode and multimode quantum states. The evolution of non-
Gaussianity is also analyzed for quantum states undergoing the processes of Gaussification by loss and de-
Gaussification by photon-subtraction. The suggested measure is easily computable for any state of a bosonic
system and allows one to define a corresponding measure for the non-Gaussian character of a quantum
operation.

DOI: 10.1103/PhysRevA.76.042327 PACS number�s�: 03.67.�a, 03.65.Ta, 42.50.Dv

I. INTRODUCTION

Gaussian states play a crucial role in quantum information
processing with continuous variables. This is especially true
for quantum optical implementations since radiation at ther-
mal equilibrium, including the vacuum state, is itself a
Gaussian state and most of the Hamiltonians achievable
within the current technology are at most bilinear in the field
operators—i.e., preserve the Gaussian character �1–3�. As a
matter of fact, using single-mode and entangled Gaussian
states, linear optical circuits, and Gaussian operations, like
homodyne detection, several quantum information protocols
have been implemented, including teleportation, dense cod-
ing, and quantum cloning �4�.

On the other hand, quantum information protocols re-
quired for long-distance communication, such as, for ex-
ample, entanglement distillation and entanglement swapping,
rely on non-Gaussian operations. In addition, it has been
demonstrated that teleportation �5–7� and cloning �8� of
quantum states may be improved by using non-Gaussian
states and non-Gaussian operations. Indeed, de-
Gaussification protocols for single-mode and two-mode
states have been proposed �5–7� and realized �9�. It should be
also noticed that any strongly superadditive function is mini-
mized, at fixed covariance matrix, by Gaussian states. This is
crucial to prove the extremality of Gaussian states and
Gaussian operations �10,11� for what concerns various quan-
tities such as channel capacities �12�, multipartite entangle-
ment measures �13�, and distillable secret keys in quantum
key distribution protocols. Since in most cases these quanti-
ties can be computed only for Gaussian states, a non-
Gaussianity measure may serve as a guideline to quantify
them for the class of non-Gaussian states. Overall, non-
Gaussianity is revealing itself as a resource for continuous
variable quantum information, and thus we urge a measure
able to quantify the non-Gaussian character of a quantum
state.

In this paper we introduce a quantity, the non-Gaussianity
���� of a quantum state, which quantifies how much a state

fails to be Gaussian. Our measure, which is based on the
Hilbert-Schmidt distance between the state itself and a refer-
ence Gaussian state, can be easily computed for any state,
either single-mode or multimode.

The paper is structured as follows. In the next section we
introduce notation and review the basic properties of Gauss-
ian states. Then, in Sec. III we introduce the formal defini-
tion of ���� and study its properties in details. In Sec. IV we
evaluate the non-Gaussianity of relevant quantum states,
whereas in Sec. V we analyze the evolution of non-
Gaussianity for known Gaussification and de-Gaussification
maps. Section VI closes the paper with some concluding
remarks.

II. GAUSSIAN STATES

For concreteness, we will use here the quantum optical
terminology of modes carrying photons, but our theory ap-
plies to general bosonic systems. Let us consider a system of
n modes described by mode operators ak, k=1, . . . ,n, satis-
fying the commutation relations �ak ,aj

†�=�kj. A quantum
state � of n modes is fully described by its characteristic
function �14�

������� = Tr��D���� ,

where D���= �k=1
n Dk��k� is the n-mode displacement op-

erator, with �= ��1 , . . . ,�n�T, �k�C, and where

Dk��k� = exp��kak
† − �k

�ak�

is the single-mode displacement operator. The canonical op-
erators are given by

qk =
1
�2

�ak + ak
†� ,

pk =
1

i�2
�ak − ak

†� ,

with commutation relations given by �qj , pk�= i� jk. Upon in-
troducing the real vector R= �q1 , p1 , . . . ,qn , pn�T, the commu-
tation relations can be rewritten as*matteo.paris@fisica.unimi.it
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�Rk,Rj� = i�kj ,

where �kj are the elements of the symplectic matrix
�= i�k=1

n �2, �2 being the y Pauli matrix. The covariance
matrix ������ and the vector of mean values X�X��� of
a quantum state � are defined as

Xj = 	Rj
 ,

�kj =
1

2
	�Rk,Rj�
 − 	Rj
	Rk
 , �1�

where �A ,B�=AB+BA denotes the anticommutator and
	O
=Tr��O� is the expectation value of the operator O.

A quantum state �G is referred to as a Gaussian state if its
characteristic function has the Gaussian form

���G���� = exp�−
1

2
�T�� + XT��� ,

where � is the real vector �
= �Re �1 , Im �1 , . . . ,Re �n , Im �n�T. Of course, once the co-
variance matrix and the vector of mean values are given, a
Gaussian state is fully determined. For a single-mode system
the most general Gaussian state can be written as

�G = D���S���	�nt�S†���D†��� ,

D��� being the displacement operator, S���
=exp� 1

2��a†�2− 1
2��a2� the squeezing operator, � ,��C, and

	�nt�= �1+nt�−1�nt / �1+nt��a†a a thermal state with an nt

average number of photons.

III. MEASURE OF THE NON-GAUSSIAN CHARACTER
OF A QUANTUM STATE

In order to quantify the non-Gaussian character of a quan-
tum state � we use a quantity based on the distance between
� and a reference Gaussian state 
, which itself depends on
�. Specifically, we define the non-Gaussianity ���� of the
state � as

���� =
DHS

2 ��,
�
����

, �2�

where DHS�� ,
� denotes the Hilbert-Schmidt distance be-
tween � and 
,

DHS
2 ��,
� =

1

2
Tr��� − 
�2� =

���� + ��
� − 2���,
�
2

, �3�

with ����=Tr��2� and ��� ,
�=Tr��
� denoting the purity
of � and the overlap between � and 
, respectively. The
Gaussian reference 
 is the Gaussian state such that

X��� = X�
�, ���� = ��
�;

i.e., 
 is the Gaussian state with the same covariance matrix
� and the same vector X of the state �.

The relevant properties of ����, which confirm that it rep-
resents a good measure of the non-Gaussian character of �,
are summarized by the following lemmas.

Lemma 1. ����=0 if and only if � is a Gaussian state.
Proof. If ����=0, then �=
 and thus it is a Gaussian

state. If � is a Gaussian state, then it is uniquely identified by
its first and second moments and thus the reference
Gaussian state 
 is given by 
=�, which, in turn, leads to
DHS�� ,
�=0 and thus to ����=0.

Lemma 2. If U is a unitary map corresponding to a sym-
plectic transformation in phase space—i.e., if U=exp�−iH�
with Hermitian H that is at most bilinear in the field
operators—then ��U�U†�=����. This property ensures that
displacement and squeezing operations do not change the
Gaussian character of a quantum state.

Proof. Let us consider ��=U�U†. Then the covariance
matrix transforms as �����=
����
T, 
 being the sym-
plectic transformation associated to U. At the same time the
vector of mean values simply translates to X�=X+X0, where
X0 is the displacement generated by U. Since any Gaussian
state is fully characterized by its first and second moments,
the reference state must necessarily transform as

�=U
U†—i.e., with the same unitary transformation U.
Since the Hilbert-Schmidt distance and the purity of a quan-
tum state are invariant under unitary transformations, the
lemma is proved.

Lemma 3. ���� is proportional to the squared L2�Cn� dis-
tance between the characteristic functions of � and of the
reference Gaussian state 
. In the formula,

���� �
 d2n��������� − ��
�����2. �4�

Since the notion of Gaussianity of a quantum state is defined
through the shape of its characteristic function and since the
characteristic function of a quantum state belongs to the
L2�Cn� space �14�, we address L2�C� distance to as a good
indicator of the non Gaussian character of �.

Proof. Since characteristic functions of self-adjoint opera-
tors are even functions of � and by means of the identity

Tr�O1O2� =
 d2n�

�n ��O1������O2��− �� ,

we obtain

DHS
2 ��,
� =

1

2

 d2n�

�n �������� − ��
�����2.

Lemma 4. Consider a bipartite state �=�A � �G. If �G is a
Gaussian state, then ����=���A�.

Proof. We have

���� = ���A����G� ,

��
� = ��
A���
G� ,

���,
� = ���A,
A����G,�G� .

Therefore, since ���G ,�G�=���G�, we arrive at
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���� =
���A����G� + ��
A����G� − 2���A,
A����G,�G�

2���A����G�

= ���A� . �5�

The four properties illustrated by the above lemmas are the
natural properties required for a good measure of the non-
Gaussian character of a quantum state. Notice that by using
the trace distance DT�� ,
�= 1

2Tr��−
� instead of the Hilbert-
Schmidt distance, we would lose lemmas 3 and 4 and that
the invariance expressed by lemma 4 holds thanks to the
renormalization of the Hilbert-Schmidt distance through the
purity ����. We stress the fact that our measure of non-
Gaussianity is a computable one: It may be evaluated for any
quantum state of n modes by the calculation of the first two
moments of the state, followed by the evaluation of the over-
lap with the corresponding Gaussian state.

Notice that ���� is not additive �nor multiplicative� with
respect to the tensor product. If we consider a �separable�
multipartite quantum state in the product form �= �k=1

n �k,
the non-Gaussianity is given by

���� =
�k=1

n
���k� + �k=1

n
��
k� − 2�k=1

n
���k,
k�

2�k=1

n
���k�

, �6�

where 
k is the Gaussian state with the same moments of �k.
In fact, since the state � is factorizable, we have that the
corresponding Gaussian 
 is a factorizable state too.

IV. NON-GAUSSIANITY OF RELEVANT QUANTUM
STATES

Let us now exploit the definition �2� to evaluate the non-
Gaussianity of some relevant quantum states. At first we con-
sider Fock number states �p
 of a single mode as well as
multimode factorizable states �p
�n made of n copies of a
number state. The reference Gaussian states are a thermal
state 
p=	�p� with average photon number p and a factoriz-
able thermal state 
N= �	�p���n with average photon number
p in each mode �15�. Non-Gaussianity may be analytically
evaluated, leading to

���p
	p�� =
1

2
�1 +

1

2p + 1
� −

1

p + 1
� p

p + 1
�p

,

����p
	p���n� =
1

2
�1 + � 1

2p + 1
�n� − � 1

p + 1
� p

p + 1
�p�n

.

In the multimode case of �p
�n, we seek the number of cop-
ies that maximizes the non-Gaussianity. In Fig. 1 we show

both �p����p
	p�� and �̄p=maxn ����p
	p���n� as a function
of p. As is apparent from the plot, the non-Gaussianity of the
Fock states �p
 increases monotonically with the number of
photons, p, with the limiting value �p=1/2 obtained for
p→�. Upon considering multimode copies of Fock states

we obtain a larger value of non-Gaussianity: �̄p is a decreas-

ing function of p, approaching �̄=1/2 from above. The value

of �̄p corresponds to n=3 for p�26 and to n=2 for
27� p�250.

Another example is the superposition of coherent states:

��S
 = N−1/2�cos ���
 + sin ��− �
� , �7�

with normalization N=1+sin�2��exp�−2�2�, which for �
= ±� /4 reduces to the so-called Schrödinger cat states and
whose reference Gaussian state is a displaced squeezed ther-
mal state 
S=D�C�S�r�	�N�S†�r�D†�C�, where the real pa-
rameters C, r, and N are analytical functions of � and �.
Finally, we evaluate the non-Gaussianity of the two-mode
Bell-like superpositions of Fock states:

��
 = cos ��0,0
 + sin ��1,1
 ,

��
 = cos ��0,1
 + sin ��1,0
 ,

which for �= ±� /4 reduces to the Bell states ��±
 and ��±
.
The corresponding reference Gaussian states are,
respectively, a two-mode squeezed thermal state 
�

=S2����	�N� � 	�N��S2
†���, where S2���=exp��a1

†a2
†−��ab�

denotes the two-mode squeezing operator and 
�

=R����	�N1� � 	�N2��R†���—namely, the correlated two-
mode state obtained by mixing two thermal states at a beam
splitter of transmissivity cos2 �, i.e., R���=exp�i��a1

†a2

+a2
†a1��. All the parameters involved in these reference

Gaussian states are analytical functions of the superposition
parameter �. Non-Gaussianities are thus evaluated by means
of �2� and are reported in Fig. 1 as a function of the param-
eter �. As is apparent from the plot, the non-Gaussianity of

�
Π
����
2

�
Π
����
4

Π
����
4

Π
����
2

Φ

0.1

0.2

0.3

0.4

0.5

0.6

∆

FIG. 1. �Top� Non-Gaussianity of single mode Fock states �gray
line� �p
 and of multimode Fock states �p
�n �black line� as a func-
tion of p. Non-Gaussianity for multimode states has been maxi-
mized over the number of copies, n. �Bottom� Non-Gaussianity, as
a function of the parameter �, for the two-mode superpositions ��

�dashed gray line�, ��
 �solid gray line�, and for the single-mode
superposition of coherent states, ��S
, for �=0.5 �solid black line�
and �=5 �dashed black line�.
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single-mode states does not surpass the value �=1/2, and
this fact is confirmed by other examples not reported here.

As concerns the Schrödinger-cat-like states, we notice
that for small values of � the non-Gaussianity of the super-
position ��S
 shows a different behavior for positive and
negative values of the parameter �: for ��0 and �=0.5 we
have almost zero �, while higher values are achieved for
��0. For higher values of � ��=5 in Fig. 1�, non-
Gaussianity becomes an even function of �. This different
behavior can be understood by looking at the Wigner func-
tions of even and odd Schrödinger cat states for different
values of �: for small values of � the even cat’s Wigner
function is similar to a Gaussian function, while the odd cat’s
Wigner function shows a non-Gaussian hole in the origin of
phase space; increasing the value of �, the Wigner functions
of the two kind of states become similar and deviate from a
Gaussian function.

We have also done a numerical analysis of the non-
Gaussianity of single-mode quantum states represented by a
finite superposition of Fock states:

�d = �
n,k=0

d

�nk�n
	k� . �8�

To this aim we generate random quantum states in a
finite-dimensional subspace, dim�H��d+1�21, following
the algorithm proposed by Życzkowski et al. �16,17�—i.e.,
by generating a random diagonal state �i.e., a point on the
simplex� and a random unitary matrix according to the Haar
measure. In Fig. 2 we report the distribution of non-
Gaussianity ���d�, as evaluated for 105 random quantum
states, for three different values of the maximum number of
photons, d. As is apparent from the plots, the distribution of
���d� becomes Gaussian-like for increasing d. In the fourth
panel of Fig. 2 we thus report the mean values and variances
of the distributions as a function of the maximum number of
photons, d. The mean value increases with the dimension,
whereas the variance is a monotonically decreasing function
of d.

Also for finite superpositions simulations we did not ob-
serve non-Gaussianity higher than 1/2. Therefore, although
we have no proof, we conjecture that �=1/2 is a limiting
value for the non-Gaussianity of a single-mode state. Higher
values are achievable for two-mode or multimode quantum
states �e.g., �=2/3 for the Bell states ��±
�.

V. GAUSSIFICATION AND DE-GAUSSIFICATION
PROCESSES

We have also studied the evolution of non-Gaussianity of
quantum states undergoing either Gaussification or de-
Gaussification processes. First, we have considered the
Gaussification of Fock states due do the interaction of the
system with a bath of oscillators at zero temperature. This is
perhaps the simplest example of a Gaussification protocol. In
fact, the interaction drives asymptotically any quantum state
to the vacuum state of the harmonic system, which, in turn,
is a Gaussian state. The evolution of the system is governed
by the Lindblad master equation �̇= �

2L�a��, where �̇ de-

notes time derivative, � is the damping factor, and the Lind-
blad superoperator acts as follows: L�a��=2a†�a−a†a�
−�a†a. Upon writing �=e−�t the solution of the master equa-
tion can be written as

���� = �
m

Vm�Vm
† ,

Vm = ��1 − ��m/m!�1/2am�1/2�a†a−m�, �9�

where � is the initial state. In particular, for the system ini-
tially prepared in a Fock state, �p= �p
	p�, we obtain, after
evolution, the mixed state

�p��� = �
m

Vm�pVm
† = �

l=0

p

�l,p����l
	l� , �10�

with �l,p���= � p
l ��1−��p−l�l. The reference Gaussian state

corresponding to �p��� is a thermal state 
p���=	�p�� with
average photon number p�. Non-Gaussianity of �p��� can
be evaluated analytically; we have

�p� � ���p���� =
1

2�1 − ��2m
2F1�− m,− m,1;

�2

�� − 1�2�
���1 − ��2m

2F1�− m,− m,1;
�2

�� − 1�2� + �1 + 2m��−1

−
2�1 + �m − 1���m

�1 + m��m+1 � , �11�

FIG. 2. Distribution of non-Gaussianity ���d� as evaluated for
105 random quantum states, for three different value of the maxi-
mum number of photons, d. Top: d=2 �left�, d=10 �right�. Bottom:
d=20 �left�. �Bottom right� Mean values and variances of the non-
Gaussianities evaluated for 105 random quantum states, as a func-
tion of the maximum number of photons, d.
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2F1�a ,b ,c ;x� being a hypergeometric function. We show the
behavior of �p� in Fig. 3 as a function of 1−� for different
values of p. As is apparent from the plot, �p� is a monotoni-
cally decreasing function of 1−� as well as a monotonically
increasing function of p. That is, at fixed time t, the higher
the initial photon number p is, the larger the resulting non-
Gaussianity.

Let us now consider the de-Gaussification protocol ob-
tained by the process of photon subtraction. Inconclusive
photon subtraction �IPS� has been introduced for single-
mode and two-mode states in �6,7,18� and experimentally
realized in �9�. In the IPS protocol an input state ��in� is
mixed with the vacuum at a beam splitter �BS� with trans-
missivity T and then, on and off photodetection with quan-
tum efficiency � is performed on the reflected beam. The
process can be thus characterized by two parameters: the
transmissivity T and the detector efficiency �. Since the de-
tector can only discriminate the presence from the absence of
light, this measurement is inconclusive; namely it does not
resolve the number of detected photons. When the detector
clicks, an unknown number of photons is subtracted from the
initial state and we obtain the conditional IPS state �IPS. The
conditional map induced by the measurement is non-
Gaussian �7�, and the output state is de-Gaussified. Upon
applying the IPS protocol to the �Gaussian� single-mode
squeezed vacuum S�r��0
 �r�R�, where S�r� is the real
squeezing operation, we obtain �18� the conditional state
�IPS, whose characteristic function ���IPS���� is a sum of
two Gaussian functions and therefore is no longer Gaussian.
The corresponding Gaussian reference state is a squeezed
thermal state 
IPS=S��IPS�	�NIPS�S†��IPS� where the param-
eters �IPS and NIPS are analytic functions of r, T, and �.
Non-Gaussianity �IPS=�IPS�T ,� ,r� has been evaluated, and
in Fig. 3 �bottom� we report �IPS for r=0.5 as a function of
the transmittivity T for different values of the quantum effi-
ciency �. As is apparent from the plot, the IPS protocol in-
deed de-Gaussifies the input state; i.e., nonzero values of the
non-Gaussianity are obtained. We found that �IPS is an in-
creasing function of the transmissivity T which is the rel-
evant parameter, while the quantum efficiency � only slightly
affects the non-Gaussian character of the output state. The
highest value of non-Gaussianity is achieved in the limit of
unit transmissivity and unit quantum efficiency:

lim
T,�→1

�IPS = ���1
	1�� = ��S�r��1
	1�S†�r�� ,

where the last equality is derived from lemma 2. This result
is in agreement with the fact that a squeezed vacuum state
undergoing the IPS protocol is driven toward the target state
S�r��1
 in the limit of T ,�→1 �18�. Finally, we notice that
for T ,��1 and for r→� the non-Gaussianity vanishes. In
turn, this corresponds to the fact that one of the coefficients
of the two Gaussians of ���IPS���� vanishes; i.e., the output
state is again a Gaussian one.

VI. CONCLUSION AND OUTLOOK

Having at our disposal a good measure of non-
Gaussianity for the quantum state allows us to define a mea-

sure of the non-Gaussian character of a quantum operation.
Let us denote by G the whole set of Gaussian states. A con-
venient definition for the non-Gaussianity of a map E reads
as follows: ��E�=max��G ��E����, where E��� denotes the
quantum state obtained after the evolution imposed by the
map. Indeed, for a Gaussian map Eg, which transforms any
input Gaussian state into a Gaussian state, we have ��Eg�
=0. Work along this line is in progress, and results will be
reported elsewhere.

In conclusion, we have proposed a measure of the non-
Gaussian character of a CV quantum state. We have shown
that our measure satisfies the natural properties expected
from a good measure of non-Gaussianity and have evaluated
the non-Gaussianity of some relevant states, in particular of
states undergoing Gaussification and de-Gaussification pro-
tocols. Using our measure, an analog non-Gaussianity mea-
sure for quantum operations may be introduced.
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APPENDIX: GAUSSIAN REFERENCE
WITH UNCONSTRAINED MEAN VALUE

As we have seen from the above examples, ���� of Eq.
�2� represents a good measure of the non-Gaussian character
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FIG. 3. �Color online� �Top� Non-Gaussianity of Fock states �p

undergoing Gaussification by the loss mechanism due to the inter-
action with a bath of oscillators at zero temperature. We show ��p

as a function of 1−� for different values of p: from bottom to top,
p=1,10,100,1000. �Bottom� Non-Gaussianity of �IPS as a function
of T for r=0.5 and for different values of �=0.2,0.4,0.6,0.8 �from
bottom to top�. �IPS results to be a monotonous increasing function
of T, while � only slightly changes the non-Gaussian character of
the state.
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of a quantum state. A question arises at to whether different
choices for the reference Gaussian state 
 may lead to alter-
native, valid, definitions. For example �for single-mode
states�, we may define

����� = min



DHS
2 ��,
�/���� , �A1�

where 
=D�C�S���	�N�S†���D†�C� is a Gaussian state with
the same covariance matrix of � and unconstrained vector of
mean values X= �Re C , Im C� used to minimize the Hilbert-
Schmidt distance. Here we report a few examples of the
comparison between the results already obtained using �2�
with that coming from �A1�. As we will see, either the two

definitions coincide or �� and � are monotone functions of
each other. Since the definition �2� corresponds to an easily
computable measure, we conclude that it represents the most
convenient choice.

Let us first consider the Fock state �= �p
	p�. According to
�A1�, the reference Gaussian state is given by a displaced
thermal state 
�=D�C�	pD†�C�. The overlap between � and

� is given by

���p
	p�,
�� =
1

1 + p
exp�−

C2

1 + p
�� p

1 + p
�p

Lp�−
C2

p�1 + p�� .

�A2�

The maximum of �A2� is achieved for C=0, which coincides
with the assumptions C=Tr�a�p
	p��.

Let us consider the quantum state �10� obtained as the
solution of the loss master equation for an initial Fock state
�p
	p�. The unconstrained Gaussian reference is again a dis-
placed thermal state 
�=D�C�	p�D†�C�, and the overlap is
given by

���p���,
�� = Tr�
�p����

=
�1 + ��p − 1��p

�1 + p��p+1 Lp� ��C�2

�1 + p�����1 − p� − 1�
�

�e−�C�2/1+p�.

Again, since the overlap is maximum for C=Tr�a�p����=0,
both definitions give the same results for the non-
Gaussianity.

Let us now consider the Schrödinger-cat-like states of �7�.
The reference Gaussian state is a displaced squeezed thermal
state, with squeezing and thermal photons as calculated be-
fore. The optimization over the free parameter C may be
done numerically. In Fig. 4 we show the non-Gaussianitiy,
both as resulting from �A1� and by choosing C=Tr�a�S� as
in �2�, as a function of �. The two curves are almost the
same, with no qualitative differences.
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FIG. 4. Non-Gaussianity of a Schrödinger-cat-like state as a
function of the superposition parameter �, with either C obtained
by numerical minimization �solid line� or with C=Tr�a�� �dotted
line�. �Left� �=0.5. �Right� �=5.
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