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1. General introduction 

Physiological variables, such as maximum work rate or maximal oxygen uptake ( max), 

together with other submaximal metabolic inflection points (e.g. the lactate threshold, LaT 

or the pulmonary ventilation threshold, VET) are regularly quantified by sports scientists 

during incremental exercise testing to exhaustion. These variables have been shown to 

correlate with endurance performance, have been used to prescribe exercise training loads 

and are useful to monitor adaptation to training. It is generally regarded that performance 

velocity (the average speed in an endurance event) will be dictated by the performance 

power (the average work performed during an endurance task) and performance oxygen 

uptake  (% max maintained during an endurance task), which is, in turn influenced by 

the percentage of  at LaT, as well as max (Coyle 1995). These important 

physiological characteristics are usually determined from incremental exercise testing and 

are considered to be necessary for athletes to successfully perform in endurance events 

(Coyle 1995; Hawley et al. 1997). 

Incremental exercise testing is a standard procedure for determining submaximal and 

maximal physiological variables. However, a key variant in most scientific research and 

performance diagnosis is the type of incremental test. An incremental protocol can be 

modified on the basis of the starting work rate, as well as, the duration and the magnitude 

of work rate increments. Currently, there is no consensus on the methods used to measure 

maximal and submaximal physiological parameters from such tests (Bentley et al. 2007).  

2OV!
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1.1 VO2max and the velocity associated with VO2max (vVO2max) 

Maximum rate of oxygen uptake ( max) is one of the most utilized parameters in basic 

and applied physiology, as it reflects the maximum capacity of the cardiorespiratory and 

musculoskeletal systems during exercise in sport, as well as in work and clinical 

environment (Kirkeberg et al. 2011; Levine 2008). max was initially defined by Hill 

and Lupton in 1923 as the oxygen uptake attained during maximal exercise intensity that 

could not be increased despite further increases in exercise workload (Hill and Lupton 

1923). In their pioneering work, Hill and Lupton (1923) stated also that “considering the 

case of running, there is clearly some critical speed for each individual at which there is a 

genuine dynamic equilibrium… above which the maximum oxygen intake is inadequate”, 

thus starting to point out the importance of determining also the velocity associated with 

max (the so-called v max) (Daniels and Scardina 1984) or maximum aerobic speed, 

MAS (Hill and Rowell 1996)). Nowadays, v max is largely utilized to give a practical 

evaluation of aerobic demands during running activities and to plan specific training 

workloads (Denadai et al. 2006; Smith et al. 2003; Buchheit and Laursen 2013). Indeed, it 

provides an integrated measure of both max and the energetic cost of running into a 

single factor, hence, being directly representative of an athletes’ locomotor ability (Billat 

and Koralsztein 1996; Daniels and Scardina 1984). Moreover, v max is able to explain 

individual differences in runners’ aerobic performance that max or running economy 

2OV!

2OV!

2OV! 2OV!

2OV!

2OV!

2OV!

2OV!



	
	

8 

alone are not (Daniels and Scardina 1984). The precise determination of this variable is 

therefore of crucial importance.  

 

1.2 The history of  vVO2max: definitions and description 

Although max has been generally accepted as physiological variable that best described 

the capacities of the cardiovascular and respiratory systems, the v max was assessed only 

50 years later to give a practical assessment of aerobic demands and capability during 

running performance.  

Several definitions, methods and abbreviations were used to define v 2OV! max over the years. 

Volkov et al. (1975) proposed the critical speed as the running speed corresponding to 

2OV! max. This parameter was determined through a ramp exercise from the baseline level to 

all-out running through stepwise increments of 1 m/s every three minutes. Thereafter, the 

maximal aerobic speed (MAS), as the maximal speed sustainable in an incremental track 

test was utilized (Leger and Boucher 1980; Berthoin et al. 1994; Lacour JR 1989). Based 

on the works of di Prampero and colleagues (di Prampero 1986; di Prampero et al. 1986), 

some authors proposed the term Vamax as the lower velocity that elicits a 2OV!  equal to 

2OV! max (Billat and Koralsztein 1996; Billat et al. 1994; Lacour et al. 1990). Daniels et al. 

(1984) were the first to introduce the term velocity at 2OV! max (v 2OV! max). This parameter 

was calculated using a square-wave protocol of four 6 min incremental sub-maximal 

workloads from the regression curve relating running velocity and 2OV!  to 2OV! max, with 

2OV!
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the velocity of running that corresponds to 2OV! max being identified (Daniels J. 1984). After 

that, other authors used similar methods to assess v 2OV! max (Morgan et al. 1989; Daniels J. 

1984; Abe et al. 1998). Subsequently, the term v 2OV! max has been commonly accepted and 

used to define the minimal velocity that elicited 2OV! max in incremental exercise tests 

(Billat and Koralsztein 1996; Billat 2000; Billat et al. 1999; Billat et al. 2000; Billat et al. 

1996; Billat et al. 2003; Buchheit et al. 2012; Buchheit and Laursen 2013). Instead, the 

term maximal aerobic speed (MAS) or peak treadmill velocity (PTV) are used to define the 

higher speed maintained during a maximal track or treadmill test independently of 2OV! max, 

while the term Vmax was proposed by Kuipers et al. when the maximal running speed was 

calculated from a stage couldn’t be completed to the full length (Dupont et al. 2004; 

McLaughlin et al. 2010; Kuipers et al. 2003; Dupont et al. 2002). 

	

1.3 Protocols for VO2max and vVO2max assessment 

Although definitions may not vary greatly between authors, the protocol of determining 

max and the speed chosen to calculate the oxygen cost of running can influence the 

value of v max. The velocities of the stages and increases in velocity used by different 

authors are factors responsible for the different values of v max found in the same 

athlete. 

An inaccurate method for measuring v max on treadmill in laboratory presents a certain 

number of problems in the subsequent use of the results, for example in the elaborating 

2OV!
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training programs. In studies conducted using trained and untrained populations, a shorter 

exercise protocol (<60-seconds stage increments) is typically used to measure max and 

then, on a second day, a submaximal test is used to quantify the submaximal parameters 

(Coyle 1995). However, on cycle ergometer, it is also popular to use a single test 

comprising ≥3-minutes stage durations to assess trained subjects (Bishop et al. 1998b; 

Bentley et al. 1998; Padilla et al. 2000). However, a sport scientist can approach 

incremental exercise testing with a variety of protocols aimed at determining a number of 

different physiological variables; modification of the exercise testing protocol can have 

implication for the variable measured and, hence, the use of these variables in longitudinal 

analysis and performance diagnostics (Bentley and McNaughton 2003). 

In treadmill testing, two main protocols are generally utilized in max and v max 

assessment: continuous ramp and discontinuous square-wave (SW) incremental protocols. 

In continuous ramp incremental protocols, work rate increments are administered without 

any resting period in between. Ramp protocols may differ for slope of running velocity vs 

time relationship (ramp slope) (Smith et al. 2003; Billat et al. 1996) and/or treadmill incline 

(Duncan et al. 1997) (see Figure 1 A and B). While max was found to be independent of 

the protocol adopted (Duncan et al. 1997; McConnell and Clark 1988; Davies et al. 1984; 

Kirkeberg et al. 2011; Kuipers et al. 2003; Billat et al. 1996), ramp slope was often claimed 

to be responsible for different v max assessments during ramp protocols (Billat and 

Koralsztein 1996; Kuipers et al. 2003; Berthon and Fellmann 2002). Instead, in 

discontinuous SW incremental protocol, also known as incremental intermittent Astrand-

2OV!
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type test (Astrand et al. 2003), each work load lasts 3-6 minutes, with resting periods in 

between. This testing modality is still preferred by some investigators to allow the 

cardiorespiratory system to better adjust to the work rate administered (Bernard et al. 1998; 

Duncan et al. 1997). Indeed, during ramp protocols, the increments in running velocity with 

time can be faster than the cardiorespiratory and metabolic adjustments (Gravelle et al. 

2012), thus challenging the anaerobic metabolism to a different extent, at least above a 

certain exercise intensity.  

On cycle ergometer, it should be noted that Adami et al. (2013) compared six different 

continuous incremental ramp tests with a discontinuous incremental SW test. Although no 

differences in max among protocols were observed, the peak power attained during the 

incremental ramp tests was always significantly higher than that attained in the Astrand-

type test. In addition, during the ramp tests the peak power was lower, the longer the step 

duration.  

2OV!
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Figure 1A 

 

 

 

 

 

 

 

Fig. 1A: graphical representation for two continuous incremental ramp protocols with different velocity vs 

time slope (R1, the steepest slope, R2, the protocol with the less steep slope).  
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Figure 1B 

 

 

 

 

 

 

 

Fig. 1B: graphical representation for discontinuous incremental square-wave protocol (SW).  
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1.4 Oxygen uptake kinetics 

Muscular exercise requires transitions to and from metabolic rates often exceeding an order 

of magnitude above resting and places prodigious demands on the oxidative machinery and 

O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of 

the respiratory, cardiovascular, and muscular systems and their integration to resolve the 

essential control mechanisms of muscle energetics and oxidative function: a goal not 

feasible using the steady-state response. Essential features of the -kinetics response are 

highly interesting in athlete’s population. For a given metabolic demand, fast -kinetics 

mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise 

tolerance. By the same token, slow -kinetics incurs a high O2 deficit, present a greater 

challenge to homeostasis and presages poor exercise tolerance. Compelling evidence 

supports that, in healthy individuals walking, running, or cycling upright, -kinetics 

controls resides within the exercising muscle(s) and is therefore not dependent upon, or 

limited by, upstream O2-transport systems. However, the balance of -kinetics control 

may change with different mode (e.g. leg vs. arm) and intensity (moderate and heavy vs. 

severe) of exercise, within different fiber-type populations. 

As early as 1922, Hill, colleagues and other sever authors (Hill 1940; Henry 1951; Poole 

and Jones 2012; Poole et al. 2012) demonstrated that, following the onset of moderate 

intensity exercise, pulmonary  as a function of time, t, increases as an exponential 

process (see Figure 2): where t is the time elapsed from exercise onset and Δ ss is the 

2OV!
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steady-state increase of  above baseline. The rate constant, k, is independent of Δ

ss across a broad range of metabolic demands. This relationship can also be expressed as: 

Δ (t) = Δ ss(1 - e-t/
τ), 

where τ is the time constant (i.e., 1/k denoting the time to reach 63% Δ ss) which may 

span a broad range from ∼10 to >100s (see Figure 3). Importantly, at these exercise 

intensities, the off transient is symmetrical to the on-transient: 

Δ (t) = Δ (0)e-t/
τ. 

Thus, τ  is a fundamental parameter of aerobic performance (Whipp et al. 1970; Whipp 

et al. 1981) and differences in τ  (i.e., the speed of -kinetics) may help explain the 

broad range of physical/athletic capabilities and exercise tolerance across populations 

(Jones and Burnley 2009). Accordingly, trained endurance athletes exhibit extremely fast 

-kinetics whereas untrained slow -kinetics. Indeed, a slow -kinetics is 

associated with a grater depletion of intramuscular high-energy phosphates and 

accumulation of lactate and hydrogen ions. Furthermore, -kinetics was appreciably 

faster in men with a high 2OV! max versus their counterparts with a lower 2OV! max (Poole and 

Jones 2012). 

2OV! 2OV!

2OV! 2OV!
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Figure 3 

 

Fig. 3: Top: breath-by-breath alveolar  response following the onset of moderate intensity cycle 

ergometer exercise. Phase I (cardiodynamic), II (primary), and III (steady-state) are designated and fit by an 

appropriate exponential model. Bottom: schematic demonstrating fundamental properties of the single 

component exponential response. The rate of  increase is quantified by the time constant (τ) of the 

exponential (∼40s for this example) where BL signifies baseline  and Δ the increase or amplitude of  

 above baseline. For each multiple of  τ  increases by 63% of the difference between that value at 

the previous τ and the required steady-state. Poole and Jones (2012).  

2OV!
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1.5 The use of  vVO2max in high-intensity interval training 

High-intensity interval training (HIT), in a variety of form, is today one of the most 

effective means of improving cardiorespiratory and metabolic function and, in turn, 

physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-

intensity exercise interspersed with recovery periods. For team sport players, the inclusion 

of sprints and all-out efforts into HIT programmes has also been shown to be an effective 

practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and 

peripheral adaptations is one where athletes spend at least several minutes per sessions at 

intensities higher than 90% of their max. While use of HIT is not only approach to 

improve physiological parameters and performance, there has been a growth in interest by 

the sport science community for characterizing training protocols that allow athletes to 

maintain long periods of time above 90% of max. Prescription for HIT consists of the 

manipulation of many variables which include the work interval intensity, exercise 

modality, number of repetitions, number of series, a swell as the between-series duration 

and recovery intensity. Furthermore, the sport that the athletes is involved in (i.e. training 

specificity) should first be considered in relation to the desired long-term training 

adaptations. The manipulation of any of these variables can affect the acute physiological 

responses to HIT. The attraction of the v max use  to ‘shape’ the HIT session is that the 

entire locomotor profile can be performed in accordance with the athlete’s maximal 

potential. In team sport, due to the technical/tactical requirements, and following the 

important principle of training specificity, game- (i.e. so called small-sided game, SSG) or 

2OV!
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skill-based conditioning has received an exponential grown in interest. While 

understanding of the  responses to SSG is limited and the overall load cannot be 

precisely standardized, the SSGs have limitation that support the use of less specific (i.e. 

run based) but more controlled HIT formats at certain times of the season or for specific 

player needs. In these cases, the v max method represents an integrated measure of both 

max and the energetic cost of running into a single factor and permit to induce highly 

controlled physiological responses during HIT.  

During a single constant-load exercise or intermittent exercise, a work intensity close to v

max is required to elicit maximal  responses. Several studies had used v max 

(% of v max) in an attempt to determine the % of v max that determines the longer 

time at v max (T@ v max). Not surprisingly, time to exhaustion at max, was 

inversely related to running intensity if 90%, 100%, 120% and 140% of their v max was 

used (Byrnes et al. 1985; Midgley et al. 2006; Billat et al. 2000). In another study, middle-

distance runners did not manage to reach max while running at 92% of v max 

(Gollnick et al. 1974). Furthermore, the ability to reach max during a single run 

between LaT and v max is likely fitness dependent with highly trained athletes unlikely 

to reach their max(Altenburg et al. 2007). Lastly, work intensity of  ≥95% v max are 

therefore recommended for maximizing T@ v max during a single isolated run. 

However, in practice, athletes do not exercise to exhaustion, but use intervals or set. 

2OV!
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Slightly lower intensity (≥90% v max) can also be used when considering repeated 

exercise bouts (as during HIT sessions), since interval  is likely to increase with 

repetitions with the development of a  slow component (Iaia and Bangsbo 2010; 

Buchheit and Laursen 2013). Lastly, the correct v max determination and the differences 

in v max calculated using different protocols are very important issue to determine 

workloads on the field both in individual and team sports athletes. 

	

1.6 Long distance runners vs soccer players assessment 

As said before, nowadays, v max is largely utilized to give a practical evaluation of 

aerobic demands during running activities (Denadai et al. 2006; Smith et al. 2003; Buchheit 

and Laursen 2013) because it provides an integrated measure of both max and the 

energetic cost of running into a single factor. Moreover, v max is considered to be 

necessary for athletes to successfully perform in endurance events (Coyle 1995; Hawley et 

al. 1997). However, this type of testing procedure is usually utilized also with other 

athletes, involved in running but in a different way than runners.  

For example, soccer players are often evaluated by different testing protocols for max 

and v max assessment, because these parameter are adopted to induce high intensity 

training on the field (Buchheit and Laursen 2013). 

The game of soccer has many complex characteristics when it comes to performance 

assessment. Different patterns of movements, combined with a large range of physiological 

2OV!
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demand, lead to highly variable individual activity patterns throughout a soccer match. 

Among the most important elements of fitness, when assessing the performance of soccer 

players, are aerobic and anaerobic power, muscle strength, flexibility, speed and agility. 

However, high level of aerobic fitness is key, particularly at elite level (Svensson and Drust 

2005). Soccer incorporates periods of high-intensity exercise interspersed with periods of 

lower-intensity exercise. The physiological demands require players to be competent in 

several aspects of fitness, which include aerobic and anaerobic aspects; these fitness 

components often vary with the individual player, the positional role in the team and the 

team’s style of play (Bangsbo and Lindquist 1992). Despite this, it is important that the 

player and coach obtain objective information about the players’ physical performance to 

clarify the objective of training, plan short- an long-term training programmes, provide 

objective feedback and motivate the player to train harder.  

On one hand, the sport scientist can, though physiological testing of the participants, 

analyse physiological factors and use the information to provide individual profile of their 

respective strengths and weaknesses. These data can form the basis for the development of 

optimal training strategies (Svensson and Drust 2005). On the other hand, the physiological 

assessment may be used to determine training load and the intensity of effort during skill-

conditioning drills measured by time-motion analysis technologies. 

Furthermore, long distance runners and soccer player can be both tested using different 

protocols that could determine different physiological variables at maximal and 

submaximal exercise; additionally, these athletes have a different physiological profile, 

more aerobic (with a higher max) for long distance runners than soccer players, which 2OV!
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could have a slower -kinetic and a different capacity to adjust the oxygen transport 

system at each workload.  

 

1.7 The lactate threshold (LaT) assessment 

As mentioned above, since the early work of Hill and Lupton (Hill and Lupton 1923), the 

success in aerobic performance has been associated with a high peak oxygen uptake (

peak) and v max. However, it has been suggested that also parameters at submaximal 

exercise can provide a useful prediction of endurance performance (Bosquet et al. 2002; 

Farrell et al. 1979; Yoshida et al. 1987). For instance, the lactate threshold (LaT), the work 

rate at which blood lactate concentration ([La-]b) starts to increase above resting levels 

(Brooks 1985), has been shown to be strictly related to endurance performance both in 

trained (Farrell et al. 1979) and untrained individuals (Yoshida et al. 1987). LaT is 

commonly used to assess the effects of a training intervention, evaluate physical fitness, 

and determine the workload intensity during aerobic activities (Bishop et al. 1998b; Allen 

et al. 1985). 

Several different methods have been proposed to determine LaT over the years, among 

which fixed [La-]b levels, such as 4 mM (Sjodin and Jacobs 1981), or the work rate at 

which the first increase in [La-]b of 1 mM (Δ1 mM) above resting levels occurs (Thoden 

1991a). To date, though, no generally accepted fitting procedure has been established 

(Bentley et al. 2007). However, the analysis of the whole [La-]b curve is considered more 

appropriate to assess LaT compared to fixed levels methods (Faude et al. 2009). Cheng et 

2OV!
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al. (Cheng et al. 1992) proposed the DMAX method to determine the point on the regression 

curve that yielded the maximal perpendicular distance to the straight line formed by the two 

end data points. To minimize the influence of the starting point of the incremental protocol, 

Bishop and colleagues (Bishop et al. 1998b) utilized a modified DMAX threshold (DMAX 

MOD) considering the point on the polynomial regression curve that yielded the maximal 

perpendicular distance to the straight line formed by the first increase in [La-]b and the final 

lactate point as LaT. Beaver and coworkers(Beaver et al. 1985) proposed the Log-Log 

model, in which the pattern of [La-]b was studied using a transformation defined by plotting 

log([La-]b) vs log( ). A plot of this function exhibits a phase of very slow increase 

followed by a phase of rapid increase, defining a transition in the underlying relationship 

between [La-]b and . A linear regression analysis was therefore used to locate the LaT 

(Beaver et al. 1985). Taking into account , this approach is independent of the protocol 

adopted when LaT is expressed as  or % peak, as also demonstrated by some 

authors (Yoshida 1984; McLellan 1985). 

Therefore, also LaT can be influence by the method and different testing modality used 

(incremental continuous ramp protocols with different velocity vs time slope). 
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2. Aims 

In training, relative v max submaximal and supra-maximal work rates are largely utilized 

to manipulate the acute physiological responses to exercise and to administer training 

workloads (Buchheit and Laursen 2013). However, several protocols with different velocity 

vs time slope as utilized and a v max misestimate may consequently affect relative 

training workloads calculation, thus correct v max assessment is a crucial issue. 

Despite a relatively large number of studies had focused on the comparison among different 

types of running protocols for max assessment (Kirkeberg et al. 2011; Kuipers et al. 

2003), no studies compared continuous vs discontinuous incremental protocols for v max 

determination on the treadmill; furthermore, a comparisons among protocols between long 

distance runners and soccer players for both max and  v max was performed. 

Moreover, a systematic study investigating which method for LaT assessment on the 

treadmill is less affected by ramp slope is still lacking. 

Therefore, the aim of this study was to compare a discontinuous SW incremental test with 

two continuous incremental ramp tests, differing in ramp slopes, for v max assessment 

on the treadmill in physically active participant and among RUN and SOC. We 

hypothesized that, due to the faster increase in running velocity with time, v max would 

be higher in the continuous incremental ramp tests compared to SW. In addition, v max 

values closer to that obtained in SW should be achieved in the ramp protocol with the less 

2OV!
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steep ramp slope. Moreover, this difference should be higher in soccer players than in 

runners, due to a different capacity to adjust the oxygen transport system at each workload. 

In the third study, the aim was to determine which of the methods that are commonly 

utilized to assess LaT (DMAX, DMAX MOD, 4 mM, Δ1 mM and Log-Log) would be less 

sensitive to differences in ramp slope. 
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1. General Abstract 

Aim: The velocity associated with maximum aerobic power (v max) and lactate 

threshold (LaT) are important physiological parameters, which are utilized to determine 

relative workloads on the field. The testing modality adopted to evaluate it, though, may 

cause differences in v max and LaT assessment and, in turn, in training intensity. Long 

distance runners (RUN) and soccer players (SOC) are both athletes involved with running. 

However, the physiological demands are different: in RUN are continuous while in SOC 

are discontinuous, with an alternation of aerobic and anaerobic tasks. Therefore, the aim of 

the studies was to compare two different testing modalities (continuous incremental ramp 

and discontinuous square wave (SW) protocols) for v max assessment on the treadmill in 

physically active male, RUN and SOC. Hypothesis is that due to the faster increase in 

running velocity with time, v max would be higher in the continuous incremental ramp 

tests compared to SW and this difference should be higher in SOC than in RUN, due to a 

different capacity to adjust the oxygen transport system at each workload. Moreover, we 

studied how the slope of the increase in running velocity with time (ramp slope) during 

continuous incremental ramp protocol, though, may affect LaT assessment measured with 

different methods. 

Methods: Seventeen physically active participants, eight RUN and nine SOC performed 

three maximum incremental tests on a treadmill: two continuous ramp protocols, with 

different ramp slopes (R1, 1 km·h-1 per min; and R2, 1 km·h-1 every 2 min), and one 

discontinuous SW protocol, in random order, for maximum oxygen uptake ( max) and v

2OV!
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max determination. Cardiorespiratory and metabolic parameters were collected breath-

by-breath at rest and during exercise. Blood lactate concentration [La-]b was measured at 

rest, during, and at peak exercise. In both protocols, LaT was calculated by DMAX, DMAX 

MOD, 4 mM, Δ1 mM and Log-Log methods. 

Results: v max was significantly higher in R1 and R2 compared to SW (16.8±0.6, 

20.7±0.5, 18.6±0.4 km·h-1 for SW, R1, R2, respectively; P<0.001). No significant 

differences were found among protocols for max (4018±111, 4039±110, 4003±100 

ml·min-1 for SW, R1, R2, respectively) as well as for expiratory ventilation, carbon dioxide 

production, blood lactate concentration, and heart rate. In the second study, no significant 

differences between groups and protocols were found in max as well as in VE, VCO2, 

[La-]peak and HR at maximum exercise. However, v max was significantly higher in R1 

and R2 compared to SW in SOC, while only R1 was significantly higher than SW in RUN. 

A higher difference between R1 vs SW and in R2 vs SW was found in SOC than RUN for 

both ramps (+29% and 16% vs SW for R1 and R2 in SOC and +16% and 6% vs SW for R1 

and R2 in RUN). Moreover, LaT had higher velocities in R1 for DMAX (16.5±0.4 vs 

15.1±0.4 km⋅h-1, P=0.002, ES: 3.17, CI: 2.16/4.18), DMAX MOD (17.7±0.5 vs 15.6±0.4 km⋅h-

1, P<0.001, ES: -0.90, IC: -1.61/-0.20), 4 mM (17.0±0.6 vs 15.5±0.5 km⋅h-1, P<0.001, ES: -

0.57; IC: -1.18/0.18), Δ1 mM (17.1±0.5 vs 15.1±0.4 km⋅h-1, P<0.001, ES: -0.57, IC: -

1.26/0.12), but not for Log-Log. 
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Conclusion: In spite of similar max values, v max was higher during continuous 

incremental ramp tests compared to SW  due to the longer time for cardiorespiratory and 

metabolic adjustments, suggesting different aerobic and anaerobic metabolism 

involvement. However, the difference was significantly higher in SOC than RUN, possibly 

due to a slower capacity to adjust the oxygen transport system to a given workload in SOC. 

Even though the three protocols can be used to assess max, the v max differences 

between protocols must be acknowledged to prescribe correctly high intensity training, 

especially for soccer players. Lastly, the testing modality influenced also LaT assessment. 

Indeed, with the only exception of Log-Log, all the other methods presented significantly 

higher velocities at LaT when the steeper ramp slope (R1) was utilized. 
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2. Materials and methods 

2.1 Participants 

We selected seventeen voluntary physically active, male participants (age: 22.6 ± 1.8 years; 

stature: 1.75 ± 0.04 m; body mass: 68.7 ± 4.0 kg; mean ± standard deviation), eight soccer 

players (age 22.1 ± 1.8 years; stature 1.75 ± 0.05 m; body mass 70.3 ± 3.7 kg; mean ± 

standard deviation) and eight runners (age 23.0 ± 1.8 years; stature 1.76 ± 0.03 m; body 

mass 66.7 ± 4.0 kg; mean ± standard deviation) to participate in the study. Participants were 

all familiar with running activities, clinically healthy, with no recent history of 

musculoskeletal injuries. The ethics committee of the local university approved the study 

(protocol #102/14) which was performed in accordance with the principles of the 1964 

Declaration of Helsinki. All participants gave their written consent after full explanation of 

the purpose of the study and the experimental design. 

 

2.2 Experimental procedures 

All tests were conducted approximately at the same time of the day in a climate-controlled 

laboratory (constant temperature of 22 ± 1 °C and relative humidity of 50 ± 5 %). After the 

familiarization visit, each participant performed one discontinuous SW test and two 

continuous incremental ramp tests (with different ramp slopes, as described below) in 

random order for v max determination. All tests were conducted on a motorized 

treadmill ergometer (RAM s.r.l., mod. 770 S, Padua, Italy) with 1% incline. At rest and 

during exercise, expiratory ventilation ( ), , CO2 production ( ), and other gas 
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exchange parameters were measured by a metabolimeter (Cosmed, mod. Quark b2, Rome, 

Italy) on a breath-by-breath basis. The system was calibrated prior to each test with a 3-L 

syringe (Hans Rudolf, Shawnee, Kansas, USA) and gas mixtures of known concentration 

(O2 16%, CO2 5%, balance N2). Heart rate (fH) was monitored continuously (Polar Electro 

Oy, mod. S810i, Kempele, Finland). Arterial O2 saturation (SaO2) was determined by a 

fingertip infrared oximeter (NONIN Medical, mod. 3011, Minneapolis, MN). The 

lactameter was precisely calibrated before and after each test to guarantee consistent data 

(Baldari et al. 2009). At the end of the test, the rate of perceived exertion (RPE) was 

determined on a Borg scale (6-20) for general, respiratory and muscular fatigue. During 

tests, each participant was verbally encouraged and strongly motivated by operators to 

reach his maximum exercise capacity.   

 

Continuous incremental ramp test 1 (R1). After 5 minutes of baseline measurements, 

participants warmed up at 10 km⋅h-1 for 5 minutes. Then, running velocity was increased 

progressively by 1 km⋅h-1 per minute, until volitional exhaustion. At rest and during 

exercise, the cardiorespiratory and gas exchange variables were collected on a breath-by-

breath modality. [La-]b was determined at rest, at the end of each step and at minute 1, 3 

and 5 over recovery. To determine the achievement of peak, the plateauing of  (< 

2.1ml·kg-1·min-1 decrease) despite an increase in workload was utilized. If the stated 

criterion was not fulfilled, participants were asked to perform a constant load test to the 

limit of tolerance at a work rate above the highest achieved on the incremental ramp test, as 

suggested by Rossiter and coworkers (Rossiter et al. 2006). Secondary criteria to establish 

2OV! 2OV!



	
	

31 

peak were not used to avoid possible significant underestimation of the value (Poole et 

al. 2008). 

 

Continuous incremental ramp test 2 (R2). R2 followed the same experimental procedures as 

R1, but with an increase in treadmill running velocity of 1 km⋅h-1 every two minutes. 

 

Discontinuous SW incremental test protocol. SW involved five workloads of 4 min each, 

with at least 5 min of rest in between. After 5 min of baseline measurements while standing 

still on the treadmill, the first two work rates were set at 8 and 10 km·h-1, respectively, for 

all participants. The other three workloads were administered according to individual 

cardiorespiratory response to the first two workloads and the theoretical maximum fH 

calculated with the equation proposed by Tanaka and colleagues (Tanaka et al. 2001). The 

last workload was administered with a running velocity slightly above that considered 

associated with max according to extrapolations from submaximal fH and running 

velocity relationship. 

 

2.3 Data analysis 

In SW, the  and the other cardiorespiratory and metabolic variables were determined 

as the average value of the last (fourth) minute during each workload. In R1 and R2, the 

cardiorespiratory and metabolic responses to exercise data were averaged during the last 30 

s of each step at submaximal workload and over the last 30 s before exhaustion. 
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In SW, R1 and R2, individualized lactate thresholds (LaT) were determined by the DMAX 

method (Cheng et al. 1992), according to which LaT was identified as the point on the third 

order polynomial curve that yielded the maximal perpendicular distance to the straight line 

formed by the two end data points. Similarly to another study (Bernard et al. 2000), LaT 

calculated from R1 was utilized to limit the range of exercise during which the  vs 

running velocity relationship at submaximal exercise was considered. During SW, v max 

was extrapolated from the regression analysis equation of  as a function of running 

velocity at submaximal workloads below the LaT (Ferretti 2014). During R1 and R2, v

max was determined as the minimal running velocity that elicited max over a period of 30 

s (Billat et al. 1996).  

In the third study, during continuous incremental ramp protocols, the individualized LaTs 

were determined by five different methods. i) In DMAX method LaT was identified as the 

points on the third order polynomial curve that yielded the maximal perpendicular distance 

to the straight line formed by the two end data points (Cheng et al. 1992); ii) DMAX MOD, a 

modified DMAX method, identified as the point on the third order polynomial curve that 

yielded the maximal perpendicular distance to the straight line formed by the point 

preceding an increase of lactate concentration greater than 0.4 mM and the final lactate 

point (Fabre et al. 2010); iii) The 4 mM, is the fixed point at which blood lactate reach a 

concentration of 4 mM (Heck et al. 1985); iv) The Δ1 mM is the velocity at which blood 

lactate increases to 1 mM above resting value (Coyle et al. 1983); and v) the Log-Log 

model, in which the pattern of [La-]b was studied using a transformation defined by plotting 
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log([La-]b) vs log( ). A linear regression analysis was used to identify LaT (Beaver et 

al. 1985). With all methods, we expressed LaT in terms of running velocity,  and %

peak. 

 

2.4 Statistical analysis 

Statistical analysis was performed using a statistical software package (Sigma Plot for 

Windows, v 12.5, Systat Software Inc., San Jose, CA, USA). To check the normal 

distribution of the sampling, a Kolgomorov-Smirnov test was applied. A sample size of 

seventeen participants was selected to ensure a statistical power higher than 0.80. To assess 

significant differences in v max, cardiorespiratory, metabolic and perceptual variables 

among tests, we utilized one-way analysis of variance (ANOVA) for repeated measures. 

Also to assess significant differences in LaT between both protocols and methods a one-

way analysis of variance (ANOVA) for repeated measures was performed. For all pairwise 

multiple comparisons, a post hoc Shapiro-Wilk test was applied. A regression analysis was 

used to assess the relationship between  and running velocity at submaximal exercise. 

A Student’s t-test determined the differences in slope in the comparison between protocols 

for both v max and max (Prism 5, GraphPad Software Inc., La Jolla, CA, USA). 

Among v max, max, and LaT the magnitude of the changes was assessed using effect 

size (ES) statistics with 95% confidence intervals (95% CI) or partial eta square (η2
P), as 

appropriate. ES was classified as trivial for ES values (0-0.19), small between (0.20-0.49), 
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medium (0.50-0.79), large (0.80 and greater). Pearson’s product moment and 95% CI were 

utilized to assess the relationship among protocols for v max and max. The 

correlation coefficients were interpreted as follows: r <0.1 trivial; 0.1≤ r <0.3 small; 0.3≤ r 

<0.5 moderate; 0.5≤ r <0.7 large; 0.7≤ r <0.9 very large; 0.9≤ r <1 nearly perfect. 

Statistical significance was set at an α level of 0.05. Unless otherwise stated, all values are 

presented as mean ± standard error (SE).  
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1. Abstract  

Aim: The velocity associated with maximum aerobic power (v max) is an important 

physiological parameter, which is utilized to determine relative workloads on the field. The 

testing modality adopted to evaluate it, though, may cause differences in v max 

assessment and, in turn, in training intensity. The aim of the study was to compare two 

different testing modalities (continuous incremental ramp and discontinuous square wave 

(SW) protocols) for v max assessment on the treadmill.  

Methods: Seventeen physically active participants performed three maximum incremental 

tests on a treadmill: two continuous ramp protocols, with different ramp slopes (R1, 1 

km·h-1 per min; and R2, 1 km·h-1 every 2 min), and one discontinuous SW protocol, in 

random order, for maximum oxygen uptake ( max) and v max determination. 

Cardiorespiratory and metabolic parameters were collected breath-by-breath at rest and 

during exercise.  

Results: v max was significantly higher in R1 and R2 compared to SW (16.8±0.6, 

20.7±0.5, 18.6±0.4 km·h-1 for SW, R1, R2, respectively; P<0.001). No significant 

differences were found among protocols for max (4018±111, 4039±110, 4003±100 

ml·min-1 for SW, R1, R2, respectively) as well as for expiratory ventilation, carbon dioxide 

production, blood lactate concentration, and heart rate.  

Conclusion: In spite of similar max values, v max was higher during continuous 

incremental ramp tests compared to SW possibly due to the longer time for 
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cardiorespiratory and metabolic adjustments, suggesting different aerobic and anaerobic 

metabolism involvement. The differences among protocols should be considered when v

max is used for training purposes. 2OV!
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2. Aim of the study 

Despite a relatively large number of studies had focused on the comparison among different 

types of running protocols for max assessment (Kirkeberg et al. 2011; Kuipers et al. 

2003), no studies compared continuous vs discontinuous incremental protocols for v max 

determination on the treadmill. Therefore, the aim of this study was to compare a 

discontinuous SW incremental test with two continuous incremental ramp tests, differing in 

ramp slopes, for v max assessment on the treadmill. We hypothesized that, due to the 

faster increase in running velocity with time, v max would be higher in the continuous 

incremental ramp tests compared to SW. In addition, v max values closer to that 

obtained in SW should be achieved in the ramp protocol with the less steep ramp slope. 

 

2OV!

2OV!

2OV!

2OV!

2OV!



	
	

40 

3. Results 

The main cardiorespiratory, metabolic, and perceptual parameters at maximum exercise are 

given in Table 1. As shown in Figure 1, the v max was significantly higher in both ramps 

compared to SW (+24 ± 3% for R1 vs SW, P<0.001, ES: 2.8, CI: 1.8/3.7; +11 ± 2% for R2 

vs SW, P<0.001, ES: 1.7, CI: 0.9/2.5). v max in R1 was significantly higher than in R2 

(+11 ± 1% for R1 vs R2, P<0.001, ES: 2.5, CI: 1.6/3.4). At peak exercise, no significant 

differences among the three protocols were found for , as well as for fH, , and [La-]. 

Only muscular RPE showed significant differences among protocols, with a lower 

perception of muscular effort in R1 compared to SW (P=0.007, ES: 0.91, CI: -1.6/-0.2). 

The relationships between R1 and R2 vs SW for v max and max values are shown in 

Fig. 2 (panel A and B, respectively). The slopes and intercepts of the linear regression 

analysis of v max between R1 and SW, and between R2 and SW were significantly 

different from the identity line (R1 vs SW, P= 0.013, ES: 2.7, CI: 1.8/3.7; R2 vs SW, 

P<0.001, ES: 1.1, CI: 0.4/1.9; see Fig. 2, panel A). The two v max regression lines (R1 

vs SW, R2 vs SW) had different intercepts (P<0.001; see Fig. 2 panel A) but similar slopes. 

This was not the case for max regression analysis, where slopes and intercepts were not 

significantly different from the identity line and from each other (Fig. 2, panel B). 

Significant correlations for v max (Fig. 2, panel A) and max (Fig. 2, panel B) values 

between R1 and SW, and between R2 and SW were found. Correlation was significant also 
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between R1 and R2 (r = 0.87, P<0.001 and r = 0.92, P<0.001 for v max and max 

values, respectively; not shown in figure). 

LaT occurred at 14.2 ± 0.4, 16.5 ± 0.4, and 15.2 ± 0.4 km·h-1 in SW, R1, and R2, 

respectively (Fig. 3). Therefore, LaT in R1 was on average 2.1 km·h-1 (+15%; P<0.001, 

ES: 1.3, CI: 0.6/2.1) and 1.3 km·h-1 (+9%, P<0.001, ES: 0.8, CI: 0.1/1.5) right shifted 

compared to SW and R2, respectively. LaT in R2 was on average 0.7 km·h-1 higher than 

LaT in SW (+5%, P=0.035, ES: 0.6, CI: -0.1/-1.3). 

The  vs velocity relationship, which was determined below the LaT calculated in R1, is 

shown in Fig. 4 for each testing modality. The regression analysis highlighted differences 

in slope between SW and R1 (P<0.001, ES: 1.54, CI: 0.7/2.3) and between R1 and R2 

(P<0.001, ES: -1.04, CI: -1.8/-0.3).  
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Table 1.  Cardiorespiratory, metabolic, and perceptual variables at maximum exercise 

 

 SW R1 R2 

v max (km·h-1) 16.8 (0.6) 20.7 (0.5)* 18.6 (0.4)*, # 

 (ml·min-1) 4018 (111) 4039 (110) 4003 (100) 

 (ml·kg·min-1) 56.7 (4.5) 57.3 (4.8) 56.6 (4.8) 

 (ml·min-1) 4494 (115) 4547 (117) 4394 (105) 

RER 1.12 (0.01) 1.13 (0.02) 1.10 (0.01) 

SaO2 (%) 89 (0.9) 91 (0.8) 90 (0.5) 

fH (beats·min-1) 187 (1.0) 188 (2.0) 188 (2.0) 

 (l·min-1) 157 (3.9) 161 (4.8) 160 (4.2) 

[La-]peak (mM) 12.2 (0.7) 12.0 (0.6) 11.2 (0.4) 

    

General RPE (au) 18.5 (0.3) 18.2 (0.3) 18.1 (0.3) 

Respiratory RPE (au) 18.4 (0.3) 18.0 (0.4) 17.9 (0.4) 

Muscular RPE (au) 18.6 (0.4) 17.1 (0.4)* 17.9 (0.4) 

 

v max, velocity associated with maximum oxygen uptake; , oxygen uptake; , carbon 

dioxide production; RER, respiratory exchange ratio; SaO2, arterial O2 saturation; fH, heart rate; , 

expiratory ventilation; [La-]peak, peak blood lactate concentration; and rate of perceived exertion (RPE) at 

general, respiratory, and muscular level. Variables were determined at maximum exercise in the three testing 

conditions (SW, square wave protocol; R1, ramp 1; R2, ramp 2). SE values are given in brackets. *P<0.05 vs 

SW; #P<0.05 vs R1. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The velocity associated with maximum oxygen uptake (v max, panel A) and maximum oxygen 

uptake ( max, panel B) calculated during ramp 1 (R1) and ramp 2 (R2) protocols are presented as a 

percentage of their relative maximal value determined during the discontinuous incremental square-wave 

(SW) protocol (dashed line).  *P<0.05 vs SW; #P<0.05 vs R1. 
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Figure 2 
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Fig. 2 The relationship between v max (panel A) and max (panel B) values determined during 

continuous (R1 and R2) and discontinuous (square wave, SW) incremental protocols are shown. In both 

panels, the bold solid line represents the identity line (y = x), and the thin solid and dashed lines are the 

regression lines for the R1 vs SW and the R2 vs SW relationships, respectively. Regression equations and 

correlation coefficients are also reported.  *P<0.05 vs identity line (slope and intercept); #P<0.001 vs R1 

(intercept). 
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Figure 3 

 

	

	

 

Fig. 3 Blood lactate concentration [La-] as a function of running velocity in a representative participant in all 

tested conditions (square wave, SW, dashed line; ramp 1, R1, solid line; and ramp 2, R2, dotted line).  The 

horizontal dotted line represent the lactate threshold (LaT) measure by 4mM method for the representative 

participant.  
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Figure 4 

 

 

 

Fig. 4 The  as a function of running velocity is presented at submaximal work rates (below the velocity 

at LaT calculated in R1 condition). The solid, dashed and dotted lines represent the regression lines for the 

square wave (SW), ramp 1 (R1) and ramp 2 (R2) protocols, respectively. Regression equations and 

correlation coefficients are also reported. The last three experimental points (dark grey square, triangle and 

circle) represent the mean value at maximal exercise for SW, R1 and R2, respectively.  *P<0.05 vs R1 

(regression slope). 
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4. Discussion 

The main and novel finding of the present study was the quantification of the v max 

differences between continuous and discontinuous protocols. Indeed, v max was higher 

in the two continuous incremental ramp tests compared to SW, despite similar max 

values. Our data may be explained by the increase in workload (running velocity) with time 

faster than the cardiorespiratory and metabolic adaptations during continuous incremental 

exercise, while in SW test a better matching of workload and metabolic power could be 

achieved. Therefore, R1 and R2 may require a larger intervention of the anaerobic pathway 

to attain v max compared to SW. To further support this hypothesis, v max in the 

continuous incremental ramp test with the lower ramp slope (R2) was closer to that 

reported in SW. 

When considering only the findings on max, the present results are in line with previous 

reports, where max was found to be independent from the protocol adopted. In 

particular, Davies et al. (1984) utilized three treadmill continuous ramp incremental 

protocols, with constant speed and an increase in incline of 1.5% every 1, 2  and 3 minutes, 

respectively, and a horizontal treadmill continuous ramp incremental test with an increase 

in speed of 1 km/h every minute. They found no differences in max and concluded that 

all protocols were effective methods to elicit the maximum aerobic power. McConnell and 

Clark (1988) tested four continuous ramp incremental protocols with different constant 

speeds and increasing treadmill incline by 2.5% every 1 or 2 minutes, and  observed similar 
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max values in all tests. Duncan et al. (1997) compared a treadmill discontinuous 

square-wave protocol, with different workloads, to a continuous ramp incremental protocol 

with constant speed and increments in incline. Yet again, similar max values were 

reported between the two protocols, even though a clear  vs workload plateau was not 

evident in the continuous incremental ramp protocol. However, contrary to the present 

investigation, v max was not calculated. When moving from running (treadmill) to 

cycling (cycle ergometer) testing modality, the same phenomenon can be observed. For 

instance, Zhang et al. (1991)  investigated the effects of four different continuous ramp 

incremental protocols on max. The protocols had the same work rate vs time slope but 

different work rate increase patterns (continuous incremental or stepwise incremental, with 

different step durations). They observed that max was the same in all conditions, and 

therefore independent of the pattern of work rate increase. The lack of significant 

differences in max among protocols in our and in the other investigations is suggestive 

that all the considered testing modalities were able to challenge maximally the aerobic 

system. 

Conversely, the present study revealed a significant effect of testing modality on v max, 

with a higher value in continuous (R1 and R2) than in discontinuous (SW) incremental 

protocols.  

Kuipers et al. (2003) retrieved similar findings when utilizing three continuous incremental 

ramp protocols with different ramp slopes (1 km·h-1 increment per minute, 2 km·h-1 
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increment every 3 minutes, and 2 km·h-1 every 6 minutes). v max was different among 

conditions, with the fastest speed for the ramp with the steepest ramp slope. However, 

Kuipers and co-workers defined v max as the maximal running speed calculated from 

the last ramp stage was utilized and not as the minimal velocity that elicits max. 

Moreover, they did not compare the continuous incremental ramp tests to a discontinuous 

protocol. Interestingly, when protocols vary in parameters other that ramp slope, no 

differences in v max are found. Indeed, Billat et al. (1996) utilized two ramp protocols 

with different step increments but same ramp slope, and found no differences in v max. 

This finding may suggest that step increments alone do not affect v max assessment. 

Due to the lack of studies on the treadmill comparing continuous and discontinuous 

incremental tests for v max assessment, some insights on the present findings may be 

obtained from prior works on the cycle ergometer. Some explanations can be inferred from 

some assumptions about the critical power concept (Morton 1994; Monod and Scherrer 

1965; Jones et al. 2010), i.e., the highest power that can be sustained relying exclusively on 

aerobic metabolism (Ferretti 2015). The aerobic supply is rate- but not capacity-limited, 

with the limiting threshold coinciding with the critical power. On the contrary, the 

anaerobic source is not rate- but capacity-limited, with the amount of energy known as the 

anaerobic work capacity (Morton 2011). Above the critical power, both aerobic and 

anaerobic energy sources contribute to exercise as work rate increases. Exercise cessation 

therefore occurs when all the anaerobic work capacity has been utilised. On these bases, 
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Morton (2011) noticed that several studies investigating the cardiorespiratory responses to 

continuous incremental ramp exercise, with different ramp slopes, showed that the 

protocols with the steeper slopes led to higher peak work rates at exhaustion. As an 

explanation, the author proposed algebraic, calculus and geometrical models, all based on 

whole body bioenergetics involving aerobic and aerobic metabolism and allowing the 

prediction of peak power output from ramp slope. Experimental evidence to the validity of 

Morton’s model was provided by Adami et al. (2013) who compared six continuous 

incremental ramp tests and a discontinuous incremental SW test. The peak power attained 

during the incremental ramp tests was confirmed to be inversely related to the ramp slope 

and always significantly higher than that attained in the SW, Astrand-type test. To further 

support this interpretation, we can consider the previously-mentioned work of Billat et al. 

(1996), who utilized two ramp protocols with the same ramp slope, but different step 

increments. In that study, indeed, similar v max (as an index of peak power) were 

reached, suggesting that when the ramp slope does not change, v max cannot differ due 

to the same anaerobic capacity. However, Billat and colleagues did not investigate the 

differences in v max between continuous and discontinuous incremental tests on the 

treadmill. Nevertheless, in line with these observations, v max in the present study was 

significantly higher in the continuous incremental ramp protocol with the steepest ramp 

slope (R1) compared to that in R2. 

At submaximal exercise, lower  values at the same submaximal running speed were 

found compared to SW in both ramp protocols (see Fig. 2), suggesting that ramp slope in 
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R1 and R2 involved an increase in running velocity with time faster than cardiorespiratory 

and metabolic adjustments. Interestingly, R2 had a higher slope in  vs velocity 

relationship than R1, but not different from that in SW, suggesting that when ramp slope is 

not too steep, the difference in  from SW values at the same work rate may become 

negligible, although differences in v max still exist. The fast increments in running 

velocity with time during ramp protocols possibly delayed also blood La- accumulation, 

leading to a higher LaT compared to SW. Remarkably, the ramp with the steeper ramp 

slope (R1) had also the highest LaT value. Similarly to Kuipers et al. (2003), we can 

suggest that a steep ramp slope delays blood La- accumulation during exercise because of 

the scarce time for La- equilibration between muscle and blood. 

It has been postulated that the slow component, which results in a continuous increase in 

 during heavy- and severe-intensity exercise (Poole et al. 1988), especially at high 

work rates above the critical power (Whipp 2005), implies that the  vs work rate 

relationship is non-linear (Zoladz et al. 1998). Therefore, one can argue that the slow 

component phenomenon may have affected the present findings and calculations. However, 

while it should be taken into account that the magnitude of the slow component is 

considerably lower in treadmill running than in cycling of a similar relative intensity 

(Carter et al. 2000), the running velocities utilized in the present study for v max 

extrapolation were below the exercise intensity at which critical power generally occurs 

(80-88% max) (Poole et al. 1988).  
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5. Conclusions 

While we were not able to find differences among protocols for max, v max was 

higher in the two continuous incremental ramp tests with respect to SW. Therefore, while 

different testing modalities can be used for max assessment on the treadmill, care 

should be taken in choosing the correct testing protocol when the v max needs to be 

determined. As v max is commonly utilized to shape the training intensity and to 

manipulate the acute physiological responses during training session, a precise v max 

assessment can allow coaches and trainers to plan training sessions involving running 

activities at the correct exercise intensity. Due to the longer time for cardiorespiratory and 

metabolic adjustments, SW protocol or, at least, a continuous protocol with a mild ramp 

slope seem to be preferential choices for a more precise v max assessment. These 

differences among protocols should be considered when v max is used for training 

purposes. 
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1. Abstract 

 
Aim: In treadmill testing, the running velocity associated with maximum oxygen uptake (v

max) is largely utilized for both laboratory testing and training on the field. Differences 

between two continuous incremental ramps test and a discontinuous square wave tests 

(SW) in v max assessment have been already described. Long distance runners and 

soccer players are both athletes involved with running. However, the physiological 

demands are different: in runners are continuous while in soccer players are discontinuous, 

with an alternation of aerobic and anaerobic tasks. Therefore, the aim of the study was to 

compare the v max difference between ramps and SW in both these athletes. Hypothesis 

is that, this difference should be higher in soccer players than in runners, due to a different 

capacity to adjust the oxygen transport system at each workload. 

Method: Eight runners (RUN) and nine soccer players (SOC) reported to the laboratory 

three times to perform three maximum incremental tests: R1 (1 km/h per min), R2 (1 km/h 

every two minutes) and SW (workloads of 4 min each, with 5 min of rest in between), in 

random order, on a motorised treadmill for max and v max assessment. At rest and 

during exercise, cardiorespiratory and metabolic parameters were collected breath-by-

breath. Blood lactate concentration [La-] was measured at rest and at maximum exercise. 

Results: No significant differences between groups and protocols were found in max 

(SOC: 3892±104 vs 3922±423 ml/min; RUN: 4159±115 vs 4170±116, for SW and R1, 

respectively), as well as in VE, VCO2, [La-]peak and HR at maximum exercise; as expected, 
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only max expressed in millilitres per minute per kilograms (ml/min/kg) was higher in 

RUN than SOC (P<0.05). However, v max was significantly higher in R1 and R2 

compared to SW in SOC, while only R1 was significantly higher than SW in RUN. A 

higher difference between R1 vs SW and in R2 vs SW was found in SOC than RUN for 

both ramps (+29% and 16% vs SW for R1 and R2 in SOC and +16% and 6% vs SW for R1 

and R2 in RUN).  

Conclusion: Despite similar max values, v max was higher in R1 than in SW in both 

groups; in SOC also vVO2max in R2 was higher than in SW. However, the difference was 

significantly higher in SOC than RUN, possibly due to a slower capacity to adjust the 

oxygen transport system to a given workload in SOC. Even though the three protocols can 

be used to assess max, the v max differences between protocols must be 

acknowledged to prescribe correctly high intensity training, especially for soccer players. 
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2. Aim of the study 

In treadmill testing, the running velocity associated with max (v max) is largely 

utilized to provide a practical evaluation of aerobic demands during exercise and to plan 

specific training workloads (Buchheit and Laursen 2013). Two different types of running 

testing modality are mainly used in max and v max assessment in the laboratory: 

continuous and discontinuous incremental protocols (Billat et al. 1996; Daniels J. 1984). In 

continuous protocols, the increment in running velocity with time can be faster than the 

cardiorespiratory and metabolic adjustments. On the contrary, in discontinuous square-

wave incremental tests, the cardiorespiratory system can reach a metabolic steady-state 

condition, thus allowing a more precise matching between mechanical demands during 

exercise and metabolic response, thus minimizing inaccuracy in v max calculation. 

Moreover, in long distance running and soccer, the physiological requirements are 

different, even though both sports involve running. In long distance runners, indeed, the 

physiological demands are continuous and mainly aerobic. On the contrary, soccer players 

run in a discontinuous fashion, with an alternation of aerobic and anaerobic tasks.  

The aim of the study was to compare a discontinuous square-wave incremental test and a 

continuous incremental ramp test for v max assessment in runners and soccer players. 

Hypothesis can be made that, in spite of similar max values, v max would be higher 

in the continuous incremental ramp test compared to the discontinuous square-wave test, 

where cardiorespiratory and metabolic steady-state can be achieved, especially in soccer 

players.  
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3. Results 

The main cardiorespiratory, metabolic, and perceptual parameters at maximum exercise are 

given in Table 1 and Table 2. As shown in Figure 1, the v max was significantly higher 

in both ramps compared to SW in both groups (18.8 ± 0.5, 22.1 ± 0.3, 19.9 ± 0.3. in RUN 

and 15.1 ± 0.2, 19.4 ± 0.4, 17.4 ± 0.3 in SOC for SW, R1, and R2, respectively; P<0.05). In 

Figure 3A the v max for both R1 and R2 for RUN and SOC is shown in respect to 

identity line. A significantly difference in slope and intercept between R1 vs identity line 

was found for both RUN and SOC, while in R2 slope and intercept were significantly 

different only for SOC (see Figure 2A) 

When v max is express as percentage of SW protocol, in RUN, v max in R1 was 

significantly higher than in SW (+16 ± 3% for R1 vs SW; P<0.05), while no significantly 

difference for R2 vs SW (+6 ± 2% for R2 vs SW; ns) was found. In SOC, v max in both 

R1 and R2 was significantly higher than in SW (+29 ± 3% for R1 vs SW, and +16 ± 2% in 

R2 than SW; P<0.05) (see Figure 3).  

At peak exercise, in both group no significant differences among the three protocols were 

found for , as well as for fH, , and [La-]. Only relative max values (ml/min/kg) 

differed significantly between RUN vs SOC (see Table 1, Table 2, and Figure 2B ). 

In RPE no significantly differences among groups and protocols were found; only muscular 

RPE showed significant differences between R1 vs SW in SOC, with a lower perception of 

muscular effort in R1 compared to SW (see Table 2). 
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Table 1 

  SW R1 R2 

 (ml/min) RUN 4159 (115) 4170 (116) 4133 (117) 

 SOC 3892 (103) 3922 (102) 3887 (79) 

 
(ml/min/kg) 

RUN 59.0 (1.2) 59.2 (1.2) 58.7 (1.3) 

 SOC 54.6 (0.6)# 55.0 (0.9) # 54.6 (0.6) # 

(ml/min) RUN 4665 (107) 4582 (124) 4493 (111) 

 SOC 4341 (114) 4515 (117) 4306 (101) 

RER RUN 1.13 (0.01) 1.10 (0.02) 1.09 (0.02) 

 SOC 1.12 (0.02) 1.16 (0.02) 1.11 (0.01) 

SaO2 (%) RUN 90 (0.9) 90 (0.9) 90 (0.6) 

 SOC 90 (1.2) 92 (1.1) 91 (0.9) 

fH (bpm) RUN 186 (2.0) 188 (2.0) 188 (2.0) 

 SOC 187 (1.0) 189 (2.0) 187 (2.0) 

(l/min) RUN 163 (2.6) 167 (4.7) 164 (4.3) 

 SOC 151 (4.3) 155 (4.7) 157 (4.7) 

[La-]peak (mM) RUN 12.5 (0.5) 13.0 (1.0) 11.4 (0.6) 

 SOC 11.8 (0.2) 11.3 (0.3) 10.9 (0.7) 

, oxygen uptake; , carbon dioxide production; RER, respiratory exchange ratio; SaO2, arterial 

O2 saturation; fH, heart rate; , expiratory ventilation; [La-]peak, peak blood lactate concentration. Variables 

were determined at maximum exercise in the three testing conditions (SW, square wave protocol; R1, ramp 1; 

R2, ramp 2) for both long distance runners (RUN) and soccer players (SOC). SE values are given in brackets. 

# P<0.05  SOC vs RUN.   
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 Table 2 

 

   

SW 

 

R1 

 

R2 

General RPE (au) 

  

RUN 18.0 (0.5) 18.2 (0.4) 17.9 (0.4) 

 

 

SOC 19.0 (0.3) 18.2 (0.4) 18.3 (0.4) 

Respiratory RPE (au) 

 

RUN 17.7 (0.5) 18.5 (0.4) 17.9 (0.5) 

 

 

SOC 19.0 (0.3) 17.6 (0.7) 17.9 (0.6) 

Muscular RPE (au) 

 

RUN 18.4 (0.5) 17.4 (0.5) 17.9 (0.6) 

 

 

SOC 18.7 (0.6) 16.9 (0.6)* 17.9 (0.5) 

 

 

 

The rate of perceived exertion (RPE) at general, respiratory, and muscular level. Variables were determined at 

maximum exercise in the three testing conditions (SW, square wave protocol; R1, ramp 1; R2, ramp 2) for 

both long distance runners (RUN) and soccer players (SOC). SE values are given in brackets.  
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Figure 1 

 

 

 

 

Fig. 1 The velocity associated with maximum oxygen uptake (v max) calculated during square-wave 

(SW), ramp 1 (R1) and ramp 2 (R2) protocols are presented for both runners (RUN) and soccer players 

(SOC).  *P<0.05 vs SW; #P<0.05 vs R1; §P<0.05 SOC vs RUN 
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Figure 2A 
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 Figure 2B 

 

 

 

Fig. 2 The relationship between v max (panel A) and max (panel B) values determined during 

continuous (R1 and R2) and discontinuous (square wave, SW) incremental protocols are shown for both RUN 

and SOC. In both panels, the bold solid line represents the identity line (y = x), the thin solid are the 

regression lines for the R1 vs SW and the R2 vs SW for SOC, and the dashed lines are the regression lines for 

the R1 vs SW and the R2 vs SW relationships, for RUN. Regression equations and correlation coefficients are 

also reported.  *P<0.05 vs identity line (slope and intercept); #P<0.001 vs R2 (intercept).  
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Figure 3 

 

 

 

Fig. 3:  The velocity associated with maximum oxygen uptake (v max) calculated during ramp 1 (R1) and 

ramp 2 (R2) protocols are presented as a percentage of their relative maximal value determined during the 

discontinuous incremental square-wave (SW) protocol (dashed line) for both long distance runners (RUN) 

and soccer players (SOC). *P<0.05 vs SW; #P<0.05 vs R1; §P<0.05  SOC vs RUN 
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4. Discussion 

The main and novel finding of the present study was the quantification of the v max 

differences between continuous and discontinuous protocols in athletes both involved in 

running but in different way: long distance runners and soccer players.  

Despite similar max values between protocols in both groups, the v max was 

significantly higher only in R1 compared to SW in RUN, while the v max was 

significantly higher in both ramps compared to SW in SOC. Our data may be explained by 

the increase in workload (running velocity) with time faster than the cardiorespiratory and 

metabolic adaptations during continuous incremental exercise, while in SW test a better 

matching of workload and metabolic power could be achieved. Therefore, R1 and R2 may 

require a larger intervention of the anaerobic pathway to attain v max compared to SW, 

especially in soccer players. To further support this hypothesis, v max in the continuous 

incremental ramp test with the lower ramp slope (R2) was significantly higher but closer to 

that reported in SW in SOC; instead in RUN the v max wasn’t significantly different 

between R2  compared to SW. 

As expected, the present max results are in line with previous reports on the treadmill, 

where max was found to be independent of the protocol adopted (Duncan et al. 1997; 

McConnell and Clark 1988; Davies et al. 1984; Kirkeberg et al. 2011; Kuipers et al. 2003; 

Billat et al. 1996). When moving from running (treadmill) to cycling (cycle ergometer), the 

same findings can be observed (Adami et al. 2013). The lack of significant differences in 
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max among protocols in our and in the other investigations is suggestive that all the 

considered testing modalities were able to challenge maximally the aerobic system. 

Even though, no goal standard for v max assessment is up to now not reported some 

considerations by other research about max can be found in literature about SW as a 

better way to match workload and metabolic power.  Astrand PO (2003) considered the 

discontinuous incremental test with several submaximal, maximal, or supramaximal 5 to 6 

min work loads, with or without resting period between each load as the most preferable 

test to achieve the oxygen uptake increase to a level adequate to the demand. Astrand and 

Saltin since 1961 don’t support the often-quoted statement of a steady state after 1 min of 

exercise for  evaluation. Also Ingham et al. (2013), in rowing, asserted that the 

association between variable such as max and the power associated with max (w

max) derived its physiological parameters from discontinuous incremental test. For 

Bishop et al. (1998a) and Taylor et al. (1955) during  assessment, the submaximal 

work stages should be at least three minutes to allow the athletes to attain  steady-state 

when mapping out aerobic capacity; also other researcher suggested that 3 minutes duration 

of exercise might be satisfactory for these purposes. (Hawley and Noakes 1992; Padilla et 

al. 2000). Ingham et al. (2013), based on the works of Thoden (1991b) and Bentley and 

McNaughton (2003) concluded that one possible rationale for using the longer workloads is 

that a steady-state of exercise is achieved and thus gas exchange measurements are more 

indicative of the exercise stress imposed. Therefore, in reasons to the time to attain the 
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cardiorespiratory and metabolic adaptations during exercise, the two continuous ramp 

protocols could have a increase in workload (running velocity) with time faster than the 

cardiorespiratory and metabolic adaptations during continuous incremental exercise, 

especially in soccer players. 

Astrand and Saltin since 1961, suggested that two minutes of exercise seem might be 

sufficient in well-trained subjects to adjust the oxygen transporting system so the max 

are attained but it should be emphasized by 4-5 min stage.   

The present study revealed a significant effect of testing modality on v max, with a 

higher value in continuous (R1 and R2) than in discontinuous (SW) incremental protocols.  

Kuipers et al. (2003) retrieved similar findings when utilizing three continuous incremental 

ramp protocols with different ramp slopes (1 km·h-1 increment per minute, 2 km·h-1 

increment every 3 minutes, and 2 km·h-1 every 6 minutes). v max was different among 

conditions, with the fastest speed for the ramp with the steepest ramp slope, as in this study 

for both groups. However, Kuipers and co-workers defined v max as the maximal 

running speed calculated from the last ramp stage was utilized and not as the minimal 

velocity that elicits max. Moreover, they did not compare the continuous incremental 

ramp tests to a discontinuous protocol. Interestingly, when protocols vary in parameters 

other that ramp slope, no differences in v max are found. Indeed, Billat et al. (1996) 

utilized two ramp protocols with different step increments but same ramp slope, and found 
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no differences in v max. This finding may suggest that step increments alone do not 

affect v max assessment. 

Athletes involved in different running activities had a different time to adjustment at the 

onset of exercise presenting a faster -kinetics higher the aerobic performance ability 

(Poole and Jones 2012). For a given metabolic demand, fast -kinetics mandates a 

smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance (Dupont 

et al. 2005). The time constant of phase II of -kinetics has been shown to be shorter in 

the trained, compared with the untrained population (Koppo et al. 2004). The adaptations to 

endurance exercise training enabled an individual to adjust to the energy requirement of 

exercise more rapidly, resulting in a smaller O2 deficit (Dupont et al. 2005). In their study, 

Dupont et al. (2005) found that soccer player with a faster -kinetics had a significantly 

less decrease during repeated sprint and concluded that faster -adjustment at the onset 

of exercise might lead to a greater contribution of oxidative phosphorylation and a smaller 

O2 deficit to the total energy expenditure for this kind of exercise.  

The v max in SOC was significantly higher in both ramps (+29 % and +16 % for R1 

and R2 vs SW, respectively), while in RUN the percentage of the difference among 

protocols showed a higher v max only in R1 vs SW (+16%). The higher difference 

between R1 vs SW for SOC and RUN  (+29% vs +16% for SOC vs RUN, respectively) can 

be explained by the different physical capability (see max expressed as relative values, 
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ml/min/kg, Table 1). Indeed, τ  at the onset of exercise is faster in athletes with higher 

max and more involved in aerobic performance; Poole and Jones (2012) illustrated that 

the τ  is a fundamental parameter of aerobic performance that may help to explain the 

broad range of physical/athletic capabilities and exercise tolerance across populations. 

Therefore, less difference between R2 vs SW in RUN highlights that continuous 

incremental ramp protocol with at least 2 min can be sufficient in well-trained aerobic 

athletes to reach adjustments between workload and metabolic power, while not in SOC. 

 

5. Conclusions 

While we were not able to find differences among protocols for max, v max was 

higher in the two continuous incremental ramp tests with respect to SW in both groups. 

Therefore, while different testing modalities can be used for max assessment on the 

treadmill, care should be taken in choosing the correct testing protocol when the v max 

needs to be determined. Indeed the difference among protocols were higher in SOC than 

RUN, explained by a different τ  that is faster in well trained athlete. As v max is 

commonly utilized to shape the training intensity and to manipulate the acute physiological 

responses during training session, a precise v max assessment can allow coaches and 

trainers to plan training sessions involving running activities at the correct exercise 

intensity. Due to the longer time for cardiorespiratory and metabolic adjustments, SW 

protocol or, at least, a continuous protocol with a mild ramp slope seem to be preferential 
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choices for a more precise v max assessment. These differences among protocols should 

be considered when v max is used for training purposes, especially for SOC. 
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1. Abstract 

Purpose: The lactate threshold (LaT), an important physiological parameter both in the 

laboratory and on the field, is usually determined during continuous incremental ramp tests.  

The slope of the increase in running velocity with time (ramp slope), though, may affect 

LaT assessment. Therefore, the aim of this study was to determine which of the methods 

that are commonly utilized to assess LaT would be less sensitive to differences in ramp 

slope. 

Methods: Sixteen participants performed on a treadmill two maximum incremental 

continuous ramp protocols (1 km⋅h-1 per min, R1, and 2 km⋅h-1 per min, R2) on different 

days, in random order. At rest and during exercise, cardiorespiratory and metabolic 

parameters were collected breath-by-breath. Blood lactate concentration [La-]b was 

measured at rest, during, and at peak exercise. In both protocols, LaT was calculated by 

DMAX, DMAX MOD, 4 mM, Δ1 mM and Log-Log methods. 

Results LaT had higher velocities in R1 for DMAX (16.5±0.4 vs 15.1±0.4 km⋅h-1, P=0.002), 

DMAX MOD (17.7±0.5 vs 15.6±0.4 km⋅h-1, P<0.001), 4 mM (17.0±0.6 vs 15.5±0.5 km⋅h-1, 

P<0.001), Δ1 mM (17.1±0.5 vs 15.1±0.4 km⋅h-1, P<0.001), but not for Log-Log. 

Conclusions: Care must be taken with the protocol choice and the method used for LaT 

determination because testing modality influenced LaT assessment. Indeed, with the only 

exception of Log-Log, all the other methods presented significantly higher velocities at LaT 

when the steeper ramp slope (R1) was utilized. 

Keywords: Incremental ramp test; testing modality; lactate curve, treadmill 
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2. Aim of the study 

Since the early work of Hill and Lupton (1923), the success in aerobic performance has 

been associated with a high peak oxygen uptake ( peak). However, it has been suggested 

that also parameters at submaximal exercise can provide a useful prediction of endurance 

performance (Bosquet et al. 2002; Farrell et al. 1979; Yoshida et al. 1987). For instance, the 

lactate threshold (LaT), the work rate at which blood lactate concentration ([La-]) starts to 

increase above resting levels (Brooks 1985) has been shown to be strictly related to 

endurance performance both in trained (Farrell et al. 1979) and untrained individuals 

(Yoshida et al. 1987). LaT is commonly used to assess the effects of a training intervention, 

evaluate physical fitness, and determine the workload intensity during aerobic activities 

(Bishop et al. 1998b; Allen et al. 1985). 

The variety of testing protocols and criteria to assess LaT may lead to considerable lack of 

clarity (Faude et al. 2009). Indeed, several types of continuous incremental ramp protocols 

are generally used to determine the rise in [La-] with work rate for LaT assessment. 

However, varying the stage duration or work rate increments, thus determining a different 

work rate increments vs time slope (ramp slope), may lead to possible differences in [La-] 

vs work rate plots and, in turn, in LaT calculation.(Foxdal et al. 1994) Physiological 

explanation was given that the time allowed for La- diffusion in the blood until the next 

work rate increment may differ with ramp slope (Bentley et al. 2007). 

Several different methods have been proposed to determine LaT over the years, among 

which fixed [La-] levels, such as 4 mM (Sjodin and Jacobs 1981), or the work rate at which 

the first increase in [La-] of 1 mM (Δ1 mM) above resting levels occurs (Thoden 1991a). 
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To date, though, no generally accepted fitting procedure has been established (Bentley et al. 

2007). However, the analysis of the whole [La-] curve is considered more appropriate to 

assess LaT compared to fixed levels methods (Faude et al. 2009). 

Therefore, a systematic study investigating which method for LaT assessment on the 

treadmill is less affected by ramp slope is still lacking. On these bases, the aim of the study 

was to determine which of the methods that are commonly utilized to assess LaT (DMAX, 

DMAX MOD, 4 mM, Δ1 mM and Log-Log) would be less sensitive to differences in ramp 

slope. 
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3. Results 

As shown in table 1, in cardiorespiratory and metabolic parameters ( , RER, SaO2, fH, 

, [La-]peak) no differences were found between protocols. The average RPE values at the 

end of the tests are shown in Table 1. 

 

Table 1	–	Cardiorespiratory, metabolic and perceptual variables at maximum exercise	
 

 R1 R2 

(ml⋅min-1) 4070 (112) 4023 (104) 

RER 1.13 (0.02) 1.11 (0.02) 

SaO2 (%) 91.3 (0.8) 90.1 (0.5) 

fH (bpm) 188 (2) 188 (2) 

 (l⋅min-1) 161 (5) 160 (4) 

[La-] (mM) 12.3 (0.7) 12.1 (0.5) 

General RPE (au) 18.3 (0.3) 18.1 (0.3) 

Respiratory RPE (au) 18.1 (0.4) 17.8 (0.4) 

Muscular RPE (au) 17.2 (0.4) 17.9 (0.4) 
 

, oxygen uptake; RER, respiratory exchange ratio; SaO2, arterial O2 saturation; fH, heart rate; , 

expiratory ventilation; [La-], blood lactate concentration; and RPE, rate of perceived exertion at general, 

respiratory and muscular level. Variables were determined at maximum exercise in the two testing conditions 

(R1, ramp 1; R2, ramp 2). SE values are given in brackets.		
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In table 2, the comparisons between methods for LaT assessment (DMAX, DMAX MOD, 4 mM, 

Δ1 mM, and Log-Log) measured by both incremental continuous ramp protocols (R1 and 

R2) are shown. Differences among LaT methods were found in R1 (P<0.001, η2
P = 0.798), 

while no differences among LaT methods were found in R2  (P = 0.06, η2
P =0.505).  

Moreover, some differences in LaT assessment were found between R1 and R2 (P<0.001, 

η2
P = 0.709). In particular, LaT measured by Log-Log method in R1 was significantly 

lower than LaT measured by DMAX MOD (P<0.001, ES: -0.90, IC: -1.61/-0.20), 4 mM 

(P<0.001, ES: -0.57; IC: -1.18/0.18) and Δ1 mM (P<0.001, ES: -0.57, IC: -1.26/0.12) 

methods (see table 2). The LaT measured by DMAX MOD method was significantly higher 

also than DMAX (see table 2, P<0.001, ES: 0.65, IC: -0.04/1.34). In R1, when LaT is 

expressed as  (ml⋅min-1), the Log-Log method returned a value significantly lower than 

DMAX MOD (P=0.029, ES: -0.57, IC: -1.26/0.12). However, both in R1 and R2, when LaT is 

expressed as a percentage of peak (% peak), no significantly differences among 

methods and protocols were found. 

When comparing LaT determined by the same method, a significantly higher LaT during 

R1 than R2 was found for DMAX (P=0.002, ES: 3.17, CI: 2.16/4.18), DMAX MOD (P<0.001, 

ES: 1.00, CI: 0.29/1.71), 4 mM (P<0.001, ES: 0.57, CI: -0.11/1.26), and Δ1 mM (P=0.001, 

ES: 1.02, CI: 0.30/1.73) (see table 2 and Fig. 1). Conversely, when LaT was identified as 

(ml⋅min-1) or % peak, no differences between protocols were found. 
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Table 2 – Lactate thresholds 

 

  DMAX DMAX MOD 4 mM Δ1 mM Log-Log 

 
R1 

Velocity (km⋅h-1) 16.5 (0.4) 17.7 (0.5) #,° 17.0 (0.6) # 17.1 (0.5) # 15.9 (0.5) 

 (ml⋅min-1) 3521 (96) 3712 (102) 3642 (112) 3641 (120) 3463 (112) 

(% peak) 86.7 (1.5) 91.3 (1.2) 89.5 (1.3) 89.5 (1.8) 85.2 (2.0) 

 
R2 

Velocity (km⋅h-1) 15.1 (0.4)* 15.7 (0.5)* 15.7 (0.5)* 15.1 (0.4)* 15.5 (0.5) 

 (ml⋅min-1) 
3479 
(107) 

3586 (116) 3560 (125) 3491 (115) 3544 (134) 

(% peak) 86.4 (1.3) 89.0 (1.0) 88.2 (1.2) 86.7 (1.6) 87.9 (1.9) 
 

 

LaT (lactate threshold, km·h-1), calculated with the five methods (DMAX , DMAX MOD, 4 mM, Δ1 mM,  Log-Log), and the corresponding oxygen uptake (

, expressed as ml⋅min-1 and % peak), were determined in the two testing conditions (R1, ramp 1; R2, ramp 2). SE values are given in brackets. 

#P<0.05 vs Log-Log; °P<0.001 vs DMAX; *P<0.001 vs R1. 
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Figure 1 

 
 

 
 
Fig. 1 Blood lactate concentration ([La-]) as a function of running velocity in R1 (ramp 1, open circles with 

solid line) and R2 (ramp 2, closed circles with dashed line) in a representative participant.  as a function 

of running velocity is also given for R1 (ramp 1, open triangles) and R2 (ramp 2, closed triangles) for the 

same subject. The regression lines for the  vs running velocity at submaximal level are also drawn for 

R1 (solid line) and R2 (dashed line). The horizontal dotted line shows LaT determined by the 4 mM method. 
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In Fig. 2, the LaT difference (ΔLaT) measured by the same method between R1 and R2 are 

shown (see fig. 1). The ΔLaT for Log-Log was significantly lower than the ΔLaT for DMAX 

MOD (P= 0.007, ES: -0.92, CI: -1.62/-0.21) and Δ1mM (P= 0.04, ES: -0.81, CI: -1.51/-0.11). 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Difference in LaT (ΔLaT) between R1 and R2 for each threshold detection method (DMAX, DMAX MOD, 4 

mM, Δ1mM, and Log-Log). #P<0.05 vs Log-Log. 
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4. Discussion 

The main finding of the present study was that LaT, expressed as running velocity, shifted 

toward faster velocities in the protocol with the steeper ramp slope (R1) in all methods, 

with the only exception of Log-Log. 

Faster velocities at LaT were observed in R1 for DMAX, DMAX MOD, 4 mM, and Δ1 mM. This 

finding well agrees with previous studies reporting that LaT might be overestimated when 

steeper ramp slopes are used (Kuipers et al. 1985; Foxdal et al. 1996; Yoshida 1984; 

Bentley et al. 2007) since La- is time-dependently produced from skeletal muscle (Davis et 

al. 1982; Whipp et al. 1981; Yoshida 1984). Proven that a valid estimation of [La-] from 

arterialized blood samples for a given workload could be obtained if blood sampling is 

performed under a steady state condition (Forster et al. 1972), a possible explanation for the 

present findings may come from the faster changes in intramuscular La- accumulation rate 

when a steeper ramp slope is adopted. Indeed, the fast increments in running velocity with 

time during R1 may have delayed La- accumulation in the blood and therefore prevented 

the equilibrium between muscle and blood [La-] (Gavin et al. 2014). Interestingly, LaT 

differences among protocols disappeared with R2, suggesting that when the ramp slope 

allows a greater attainment of equilibrium between muscle and blood [La-], all methods 

provided similar LaT values. 

However, there was no protocol effect in none of the LaT methods investigated when LaT 

was expressed as . Previous studies found that  at LaT is independent of the 

protocol adopted (Davies et al. 1984; Kirkeberg et al. 2011; Kuipers et al. 2003; Billat et al. 

1996) even though the relative workloads are higher for the ramp with the steeper ramp 
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slope (Bentley et al. 2007). These results suggest that the protocol with shorter steps 

involve an increase in workload with time faster than cardiorespiratory and metabolic 

adjustments, thus inducing higher workloads but similar  at LaT. In previous studies, 

several authors suggested that LaT was independent of the protocol adopted when 

expressed as  or % peak (Weston et al. 2002; Yoshida 1984; McLellan 1985). 

This is probably why the Log-Log was the only method not affected by ramp slope. In the 

Log-Log model, indeed, the pattern of [La-]b changes is obtained using a transformation 

defined by plotting log([La-]b) vs log( ). LaT is therefore determined using a linear 

regression analysis and defined by the transition phase in the underlying relationship 

between [La-]b and . 

Noticeably, ΔLaT between R1 vs R2 was significantly different from that calculated for 

Log-Log only for DMAX MOD and Δ1 mM (see Figure 2). This finding suggests that DMAX 

and 4 mM, although affected by ramp slope, nevertheless provide LaT values in terms of 

running velocity not very far from Log-Log. 

 

5. Practical Applications 

Differences in ramp slope protocols and methods for LaT determination should be taken 

into account when testing. Indeed, misestimating LaT may lead to an inappropriate 

planning of workloads when using LaT as a reference to determine training intensity. 

Differences between protocols are not a matter of problem when  is measured and 
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Log-Log- method can be therefore used. However, when  assessment is not available, 

DMAX and 4 mM methods should be preferably chosen.  

 

6. Conclusions 

In conclusion, care must be taken with the protocol choice and the method used for LaT 

determination because testing modality influenced significantly LaT assessment. Indeed, 

with the only exception of Log-Log method, all the other methods presented significantly 

higher velocities at LaT when the steeper slope (R1) of the velocity vs time relationship 

was utilized. Furthermore, differences among LaT methods were retrieved in R1 but not in 

R2, suggesting that a ramp protocol with a less steep ramp slope could be a better choice 

for LaT determination due to a reasonable greater attainment of equilibrium between 

muscle and blood [La-]. 
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General conclusions 

The max and v max at maximum exercise, and LaT at submaximal exercise are 

parameters largely utilized to determine individual physiological profile and work rate on 

the field both in individual and team sports.  However the protocol used in laboratory 

introduces significantly differences in both v max and LaT, while all testing modality 

can be utilized for max determination. Comparing continuous incremental ramp 

protocols and discontinuous incremental square-wave (SW) protocol, a significantly higher 

v max was found in ramps than SW. Moreover, also comparing ramps each other, 

steeper the running velocity versus time slope, higher the v max. Similar results in LaT 

determination were found, due to a not reach equilibrium between muscle and blood lactate 

accumulation; a higher LaT in the protocol with the steeper velocity vs time slope was 

found. 

When long distance runners (RUN) and soccer players (SOC) are compare, a higher 

max per kilogram and per minute was found in RUN than SOC, while no other differences in 

cardiorespiratory and metabolic parameters at maximum exercise were measured. Using the 

three different testing modality, in both groups the protocol with the steeper velocity vs 

time slope determine a higher v max;	a significantly higher different between R1 vs SW 

and R2 vs SW in SOC than RUN were found. In SOC each protocols differ each other in v

max determination. Instead, in RUN no significantly difference between R2 vs SW was 
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found possibly due to a faster capacity to adjust the cardiorespiratory and metabolic system 

at each workload than SOC.  

Our data may be explained by the increase in workload (running velocity) with time faster 

than the cardiorespiratory and metabolic adaptations during continuous incremental 

exercise, while in SW test a better matching of workload and metabolic power could be 

achieved. Therefore, R1 and R2 may require a larger intervention of the anaerobic pathway 

to attain v max compared to SW. To further support this hypothesis, v max in the 

continuous incremental ramp test with the lower ramp slope (R2) was closer to that 

reported in SW, and not different than SW when RUN was considered. Indeed, more 

aerobic athletes, probably have a faster - kinetics connected with a faster capacity to 

adjust cardiorespiratory and metabolic at each submaximal workload.   

Lastly, even though the three protocols can be used to assess max in both RUN and 

SOC, the v max differences between protocols must be acknowledged to prescribe 

correctly high intensity training in each athlete, but especially for soccer players.  

 

  

2OV! 2OV!

2OV!

2OV!

2OV!



	
	

87 

Acknowledgments 

 

I thank my Tutor, Professor Fabio Esposito, for the high quality of his supervision to the 

current research projects. 

	

I thank Professor Giampietro Alberti and all the research group for their support to the 

current research projects (in alphabetic order): Emiliano Cè, Eloisa Limonta, Susanna 

Rampichini, Massimo Venturelli. 

 



	
	

88 

References 

	

Abe D, Yanagawa K, Yamanobe K, Tamura K (1998) Assessment of middle-distance 

running performance in sub-elite young runners using energy cost of running. 

European journal of applied physiology and occupational physiology 77 (4):320-

325. doi:10.1007/s004210050340 

Adami A, Sivieri A, Moia C, Perini R, Ferretti G (2013) Effects of step duration in 

incremental ramp protocols on peak power and maximal oxygen consumption. 

European journal of applied physiology 113 (10):2647-2653. doi:10.1007/s00421-

013-2705-9 

Allen WK, Seals DR, Hurley BF, Ehsani AA, Hagberg JM (1985) Lactate threshold and 

distance-running performance in young and older endurance athletes. Journal of 

applied physiology 58 (4):1281-1284 

Altenburg TM, Degens H, van Mechelen W, Sargeant AJ, de Haan A (2007) Recruitment 

of single muscle fibers during submaximal cycling exercise. Journal of applied 

physiology 103 (5):1752-1756. doi:10.1152/japplphysiol.00496.2007 

Astrand PO RK, Dahl HA, Stromme SB (2003) Textbook of work physiology. 

Physiological bases, fourth ed.  

Astrand PO, Rodahl K, Dahl HA, Stromme SB (2003) Textbook of work physiology. 

Physiological bases of Exercise (fourth ed.). Human Kinetics, Champain (IL, USA) 



	
	

89 

Baldari C, Bonavolonta V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) 

Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus 

analyzer. European journal of applied physiology 107 (1):105-111. 

doi:10.1007/s00421-009-1107-5 

Bangsbo J, Lindquist F (1992) Comparison of various exercise tests with endurance 

performance during soccer in professional players. International journal of sports 

medicine 13 (2):125-132. doi:10.1055/s-2007-1021243 

Beaver WL, Wasserman K, Whipp BJ (1985) Improved detection of lactate threshold 

during exercise using a log-log transformation. Journal of applied physiology 59 

(6):1936-1940 

Bentley DJ, McNaughton LR (2003) Comparison of W(peak), VO2(peak) and the 

ventilation threshold from two different incremental exercise tests: relationship to 

endurance performance. Journal of science and medicine in sport / Sports Medicine 

Australia 6 (4):422-435 

Bentley DJ, Newell J, Bishop D (2007) Incremental exercise test design and analysis: 

implications for performance diagnostics in endurance athletes. Sports medicine 37 

(7):575-586 

Bentley DJ, Wilson GJ, Davie AJ, Zhou S (1998) Correlations between peak power output, 

muscular strength and cycle time trial performance in triathletes. The Journal of 

sports medicine and physical fitness 38 (3):201-207 



	
	

90 

Bernard O, Maddio F, Ouattara S, Jimenez C, Charpenet A, Melin B, Bittel J (1998) 

Influence of the oxygen uptake slow component on the aerobic energy cost of high-

intensity submaximal treadmill running in humans. European journal of applied 

physiology and occupational physiology 78 (6):578-585. 

doi:10.1007/s004210050464 

Bernard O, Ouattara S, Maddio F, Jimenez C, Charpenet A, Melin B, Bittel J (2000) 

Determination of the velocity associated with VO2max. Medicine and science in 

sports and exercise 32 (2):464-470 

Berthoin S, Gerbeaux M, Turpin E, Guerrin F, Lensel-Corbeil G, Vandendorpe F (1994) 

Comparison of two field tests to estimate maximum aerobic speed. Journal of sports 

sciences 12 (4):355-362. doi:10.1080/02640419408732181 

Berthon P, Fellmann N (2002) General review of maximal aerobic velocity measurement at 

laboratory. Proposition of a new simplified protocol for maximal aerobic velocity 

assessment. The Journal of sports medicine and physical fitness 42 (3):257-266 

Billat LV, Koralsztein JP (1996) Significance of the velocity at VO2max and time to 

exhaustion at this velocity. Sports medicine 22 (2):90-108 

Billat V, Renoux JC, Pinoteau J, Petit B, Koralsztein JP (1994) Reproducibility of running 

time to exhaustion at VO2max in subelite runners. Medicine and science in sports 

and exercise 26 (2):254-257 



	
	

91 

Billat VL (2000) VO2 slow component and performance in endurance sports. British 

journal of sports medicine 34 (2):83-85 

Billat VL, Blondel N, Berthoin S (1999) Determination of the velocity associated with the 

longest time to exhaustion at maximal oxygen uptake. European journal of applied 

physiology and occupational physiology 80 (2):159-161. 

doi:10.1007/s004210050573 

Billat VL, Bocquet V, Slawinski J, Laffite L, Demarle A, Chassaing P, Koralsztein JP 

(2000) Effect of a prior intermittent run at vVO2max on oxygen kinetics during an 

all-out severe run in humans. The Journal of sports medicine and physical fitness 40 

(3):185-194 

Billat VL, Hill DW, Pinoteau J, Petit B, Koralsztein JP (1996) Effect of protocol on 

determination of velocity at VO2 max and on its time to exhaustion. Archives of 

physiology and biochemistry 104 (3):313-321. doi:10.1076/apab.104.3.313.12908 

Billat VL, Lepretre PM, Heubert RP, Koralsztein JP, Gazeau FP (2003) Influence of acute 

moderate hypoxia on time to exhaustion at vVO2max in unacclimatized runners. 

International journal of sports medicine 24 (1):9-14. doi:10.1055/s-2003-37251 

Bishop D, Jenkins DG, Mackinnon LT (1998a) The effect of stage duration on the 

calculation of peak VO2 during cycle ergometry. Journal of science and medicine in 

sport / Sports Medicine Australia 1 (3):171-178 



	
	

92 

Bishop D, Jenkins DG, Mackinnon LT (1998b) The relationship between plasma lactate 

parameters, Wpeak and 1-h cycling performance in women. Medicine and science 

in sports and exercise 30 (8):1270-1275 

Bosquet L, Leger L, Legros P (2002) Methods to determine aerobic endurance. Sports 

medicine 32 (11):675-700 

Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future 

research. Medicine and science in sports and exercise 17 (1):22-34 

Buchheit M, Hader K, Mendez-Villanueva A (2012) Tolerance to high-intensity 

intermittent running exercise: do oxygen uptake kinetics really matter? Frontiers in 

physiology 3:406. doi:10.3389/fphys.2012.00406 

Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the 

programming puzzle: Part I: cardiopulmonary emphasis. Sports medicine 43 

(5):313-338. doi:10.1007/s40279-013-0029-x 

Byrnes WC, Clarkson PM, White JS, Hsieh SS, Frykman PN, Maughan RJ (1985) Delayed 

onset muscle soreness following repeated bouts of downhill running. Journal of 

applied physiology 59 (3):710-715 

Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH (2000) Oxygen 

uptake kinetics in treadmill running and cycle ergometry: a comparison. Journal of 

applied physiology 89 (3):899-907 



	
	

93 

Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new 

approach for the determination of ventilatory and lactate thresholds. International 

journal of sports medicine 13 (7):518-522. doi:10.1055/s-2007-1021309 

Coyle EF (1995) Integration of the physiological factors determining endurance 

performance ability. Exercise and sport sciences reviews 23:25-63 

Coyle EF, Martin WH, Ehsani AA, Hagberg JM, Bloomfield SA, Sinacore DR, Holloszy 

JO (1983) Blood lactate threshold in some well-trained ischemic heart disease 

patients. Journal of applied physiology: respiratory, environmental and exercise 

physiology 54 (1):18-23 

Daniels J. SN Elite and subelite female middle- and long-distance runners. In: Landers DM 

e (ed) 1984 Olympic Scientific Congress, Oregon. Champaign (IL) Human 

Kinetics, Jul 19-23 1984. pp 57-72 

Daniels JT, Scardina N Elite and subelite female middle- and long-distance runners. In: 

Landers DM e (ed) 1984 Olympic Scientific Congress, Oregon. Champaign (IL) 

Human Kinetics, Jul 19-23 1984. pp 57-72 

Davies B, Daggett A, Jakeman P, Mulhall J (1984) Maximum oxygen uptake utilising 

different treadmill protocols. British journal of sports medicine 18 (2):74-79 



	
	

94 

Davis JA, Whipp BJ, Lamarra N, Huntsman DJ, Frank MH, Wasserman K (1982) Effect of 

ramp slope on determination of aerobic parameters from the ramp exercise test. 

Medicine and science in sports and exercise 14 (5):339-343 

Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95% and 100% 

of the velocity at VO2 max: effects on aerobic physiological indexes and running 

performance. Applied physiology, nutrition, and metabolism = Physiologie 

appliquee, nutrition et metabolisme 31 (6):737-743. doi:10.1139/h06-080 

di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J 

Sports Med 7:55-72 

di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance 

running. European journal of applied physiology and occupational physiology 55 

(3):259-266 

Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: 

discontinuous versus continuous protocols. Medicine and science in sports and 

exercise 29 (2):273-278 

Dupont G, Blondel N, Lensel G, Berthoin S (2002) Critical velocity and time spent at a 

high level of VO2 for short intermittent runs at supramaximal velocities. Canadian 

journal of applied physiology = Revue canadienne de physiologie appliquee 27 

(2):103-115 



	
	

95 

Dupont G, Millet GP, Guinhouya C, Berthoin S (2005) Relationship between oxygen 

uptake kinetics and performance in repeated running sprints. European journal of 

applied physiology 95 (1):27-34. doi:10.1007/s00421-005-1382-8 

Dupont G, Moalla W, Guinhouya C, Ahmaidi S, Berthoin S (2004) Passive versus active 

recovery during high-intensity intermittent exercises. Medicine and science in sports 

and exercise 36 (2):302-308. doi:10.1249/01.MSS.0000113477.11431.59 

Fabre N, Balestreri F, Pellegrini B, Schena F (2010) The modified Dmax method is reliable 

to predict the second ventilatory threshold in elite cross-country skiers. Journal of 

strength and conditioning research / National Strength & Conditioning Association 

24 (6):1546-1552. doi:10.1519/JSC.0b013e3181dc450a 

Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate 

accumulation and distance running performance. Medicine and science in sports 11 

(4):338-344 

Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? 

Sports medicine 39 (6):469-490. doi:10.2165/00007256-200939060-00003 

Ferretti G (2014) Maximal oxygen consumption in healthy humans: theories and facts. 

European journal of applied physiology 114 (10):2007-2036. doi:10.1007/s00421-

014-2911-0 

Ferretti G (2015) Energetics of muscular exercise. Springer, Heidelberg (Germany) 



	
	

96 

Forster HV, Dempsey JA, Thomson J, Vidruk E, DoPico GA (1972) Estimation of arterial 

PO2, PCO2, pH, and lactate from arterialized venous blood. J Appl Physiol 32 

(1):134-137 

Foxdal P, Sjodin A, Sjodin B (1996) Comparison of blood lactate concentrations obtained 

during incremental and constant intensity exercise. International journal of sports 

medicine 17 (5):360-365. doi:10.1055/s-2007-972861 

Foxdal P, Sjodin B, Sjodin A, Ostman B (1994) The validity and accuracy of blood lactate 

measurements for prediction of maximal endurance running capacity. Dependency 

of analyzed blood media in combination with different designs of the exercise test. 

International journal of sports medicine 15 (2):89-95. doi:10.1055/s-2007-1021026 

Gavin JP, Willems ME, Myers SD (2014) Reproducibility of lactate markers during 4 and 8 

min stage incremental running: a pilot study. Journal of science and medicine in 

sport / Sports Medicine Australia 17 (6):635-639. doi:10.1016/j.jsams.2013.08.006 

Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human 

muscle fibres after exercise of varying intensity and at varying pedalling rates. The 

Journal of physiology 241 (1):45-57 

Gravelle BM, Murias JM, Spencer MD, Paterson DH, Kowalchuk JM (2012) Adjustments 

of pulmonary O2 uptake and muscle deoxygenation during ramp incremental 

exercise and constant-load moderate-intensity exercise in young and older adults. 



	
	

97 

Journal of applied physiology 113 (9):1466-1475. 

doi:10.1152/japplphysiol.00884.2011 

Hawley JA, Myburgh KH, Noakes TD, Dennis SC (1997) Training techniques to improve 

fatigue resistance and enhance endurance performance. Journal of sports sciences 

15 (3):325-333. doi:10.1080/026404197367335 

Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and 

performance time in trained cyclists. European journal of applied physiology and 

occupational physiology 65 (1):79-83 

Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W (1985) Justification of the 4-

mmol/l lactate threshold. International journal of sports medicine 6 (3):117-130. 

doi:10.1055/s-2008-1025824 

Henry FM (1951) Aerobic oxygen consumption and alactic debt in muscular work. J Appl 

Physiol 3 (7):427-438 

Hill AV, Lupton H (1923) Muscular exercise, lactic acid and the supply and utilisation of 

oxygen. Q J Med 16:135-171 

Hill DK (1940) The time course of the oxygen consumption of stimulated frog's muscle. 

The Journal of physiology 98 (2):207-227 

Hill DW, Rowell AL (1996) Running velocity at VO2max. Medicine and science in sports 

and exercise 28 (1):114-119 



	
	

98 

Iaia FM, Bangsbo J (2010) Speed endurance training is a powerful stimulus for 

physiological adaptations and performance improvements of athletes. Scandinavian 

journal of medicine & science in sports 20 Suppl 2:11-23. doi:10.1111/j.1600-

0838.2010.01193.x 

Ingham SA, Pringle JS, Hardman SL, Fudge BW, Richmond VL (2013) Comparison of 

step-wise and ramp-wise incremental rowing exercise tests and 2000-m rowing 

ergometer performance. International journal of sports physiology and performance 

8 (2):123-129 

Jones AM, Burnley M (2009) Oxygen uptake kinetics: an underappreciated determinant of 

exercise performance. International journal of sports physiology and performance 4 

(4):524-532 

Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: 

implications for determination of V O2max and exercise tolerance. Medicine and 

science in sports and exercise 42 (10):1876-1890. 

doi:10.1249/MSS.0b013e3181d9cf7f 

Kirkeberg JM, Dalleck LC, Kamphoff CS, Pettitt RW (2011) Validity of 3 protocols for 

verifying VO2 max. International journal of sports medicine 32 (4):266-270. 

doi:10.1055/s-0030-1269914 



	
	

99 

Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G (2003) Effects of stage 

duration in incremental running tests on physiological variables. International 

journal of sports medicine 24 (7):486-491. doi:10.1055/s-2003-42020 

Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of 

aerobic performance in the laboratory and its physiologic correlates. International 

journal of sports medicine 6 (4):197-201. doi:10.1055/s-2008-1025839 

Lacour JR MA, Dormios D, et al. (1989) Validation of the UMTT test in a group of elite 

middle-distance runners. Sci Mot 7:3-8 

Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, Dormois D (1990) The energetics of 

middle-distance running. European journal of applied physiology and occupational 

physiology 60 (1):38-43 

Leger L, Boucher R (1980) An indirect continuous running multistage field test: the 

Universite de Montreal track test. Canadian journal of applied sport sciences Journal 

canadien des sciences appliquees au sport 5 (2):77-84 

Levine BD (2008) VO2max: what do we know, and what do we still need to know? The 

Journal of physiology 586 (1):25-34. doi:10.1113/jphysiol.2007.147629 

McConnell TR, Clark BA (1988) Treadmill protocols for determination of maximum 

oxygen uptake in runners. British journal of sports medicine 22 (1):3-5 



	
	

100 

McLaughlin JE, Howley ET, Bassett DR, Jr., Thompson DL, Fitzhugh EC (2010) Test of 

the classic model for predicting endurance running performance. Medicine and 

science in sports and exercise 42 (5):991-997. 

doi:10.1249/MSS.0b013e3181c0669d 

McLellan TM (1985) Ventilatory and plasma lactate response with different exercise 

protocols: a comparison of methods. International journal of sports medicine 6 

(1):30-35. doi:10.1055/s-2008-1025809 

Midgley AW, McNaughton LR, Wilkinson M (2006) Is there an optimal training intensity 

for enhancing the maximal oxygen uptake of distance runners?: empirical research 

findings, current opinions, physiological rationale and practical recommendations. 

Sports medicine 36 (2):117-132 

Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 

8 (3):329-338. doi:10.1080/00140136508930810 

Morgan DW, Baldini FD, Martin PE, Kohrt WM (1989) Ten kilometer performance and 

predicted velocity at VO2max among well-trained male runners. Medicine and 

science in sports and exercise 21 (1):78-83 

Morton HR (1994) Critical power test for ramp exercise. European journal of applied 

physiology 69:435-438 



	
	

101 

Morton RH (2011) Why peak power is higher at the end of steeper ramps: an explanation 

based on the "critical power" concept. Journal of sports sciences 29 (3):307-309. 

doi:10.1080/02640414.2010.534809 

Padilla S, Mujika I, Orbananos J, Angulo F (2000) Exercise intensity during competition 

time trials in professional road cycling. Medicine and science in sports and exercise 

32 (4):850-856 

Poole DC, Hirai DM, Copp SW, Musch TI (2012) Muscle oxygen transport and utilization 

in heart failure: implications for exercise (in)tolerance. American journal of 

physiology Heart and circulatory physiology 302 (5):H1050-1063. 

doi:10.1152/ajpheart.00943.2011 

Poole DC, Jones AM (2012) Oxygen uptake kinetics. Comprehensive Physiology 2 

(2):933-996. doi:10.1002/cphy.c100072 

Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of 

the upper limit for prolonged exercise in man. Ergonomics 31 (9):1265-1279. 

doi:10.1080/00140138808966766 

Poole DC, Wilkerson DP, Jones AM (2008) Validity of criteria for establishing maximal 

O2 uptake during ramp exercise tests. European journal of applied physiology 102 

(4):403-410. doi:10.1007/s00421-007-0596-3 



	
	

102 

Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake 

despite no plateau in the O2 uptake response to ramp incremental exercise. Journal 

of applied physiology 100 (3):764-770. doi:10.1152/japplphysiol.00932.2005 

Sjodin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running 

performance. International journal of sports medicine 2 (1):23-26. doi:10.1055/s-

2008-1034579 

Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training 

using the running speed at maximal O(2) uptake and the time for which this can be 

maintained. European journal of applied physiology 89 (3-4):337-343. 

doi:10.1007/s00421-003-0806-6 

Svensson M, Drust B (2005) Testing soccer players. Journal of sports sciences 23 (6):601-

618. doi:10.1080/02640410400021294 

Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. 

Journal of the American College of Cardiology 37 (1):153-156 

Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure 

of cardio-respiratory performance. J Appl Physiol 8 (1):73-80 

Thoden J (1991a) Physiological testing of the high-performance athlete, vol Champaign 

(IL): Human Kinetics.  



	
	

103 

Thoden JS (1991b) Testing aerobic power. In: Physiological testing of the high-

performance athlete.  

Volkov NI, Shirkovets EA, Borilkevich VE (1975) Assessment of aerobic and anaerobic 

capacity of athletes in treadmill running tests. European journal of applied 

physiology and occupational physiology 34 (2):121-130 

Weston SB, Gray AB, Schneider DA, Gass GC (2002) Effect of ramp slope on ventilation 

thresholds and VO2peak in male cyclists. International journal of sports medicine 

23 (1):22-27. doi:10.1055/s-2002-19267 

Whipp BJ (2005) The kinetics of oxygen uptake. In: Jones AM, Poole DC (eds) Oxygen 

Uptake Kinetics. Routledge, New York, pp 62-94 

Whipp BJ, Davis JA, Torres F, Wasserman K (1981) A test to determine parameters of 

aerobic function during exercise. Journal of applied physiology: respiratory, 

environmental and exercise physiology 50 (1):217-221 

Whipp BJ, Seard C, Wasserman K (1970) Oxygen deficit-oxygen debt relationships and 

efficiency of anaerobic work. J Appl Physiol 28 (4):452-456 

Yoshida T (1984) Effect of exercise duration during incremental exercise on the 

determination of anaerobic threshold and the onset of blood lactate accumulation. 

European journal of applied physiology and occupational physiology 53 (3):196-

199 



	
	

104 

Yoshida T, Chida M, Ichioka M, Suda Y (1987) Blood lactate parameters related to aerobic 

capacity and endurance performance. European journal of applied physiology and 

occupational physiology 56 (1):7-11 

Zhang YY, Johnson MC, 2nd, Chow N, Wasserman K (1991) Effect of exercise testing 

protocol on parameters of aerobic function. Medicine and science in sports and 

exercise 23 (5):625-630 

Zoladz JA, Duda K, Majerczak J (1998) Oxygen uptake does not increase linearly at high 

power outputs during incremental exercise test in humans. European journal of 

applied physiology and occupational physiology 77 (5):445-451 

 


