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Abstract

We prove that a function F of the Selberg class S is a b-th power in S, i.e., F = Hb for
some H ∈ S, if and only if b divides the order of every zero of F and of every p-component
Fp. This implies that the equation F a = Gb with (a, b) = 1 has the unique solution F = Hb

and G = Ha in S. As a consequence, we prove that if F and G are distinct primitive elements
of S, then the transcendence degree of C[F,G] over C is two.
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Statement of the results

The Selberg class S (see the survey [3] for the basic definitions, conjectures and properties) has
a natural structure of semigroup, i.e., FG ∈ S if F,G ∈ S. The additivity of the degree dF , the
existence of a unique element F = 1 with zero-degree and the non-existence of functions with
0 < dF < 1 imply that every F ∈ S has a factorization into primitive elements.

In this paper we consider the following problem: given b ∈ N∗, when an element of S is a
b-th power? In other words, when the equation

xb = F (1)

has a solution in S? It is known that under Selberg’s orthonormality conjecture the factorization
is actually unique, so that (1) has a solution if and only if the multiplicity of every primitive
factor of F is divisible by b; nevertheless, there are no unconditional results about this subject,
thus our problem is interesting and non-trivial.

It is not difficult to show that (1) admits always one solution at most: in fact, if G and
H are both solutions in S, then (G(s)/H(s))b = 1 identically, but G and H are meromorphic
functions (with a pole at s = 1 at most), therefore G(s)/H(s) is entire (from (G(s)/H(s))b = 1)
and hence it is constant (from (G(s)/H(s))b = 1 again). Being elements of S, both G and H
have a representation as Dirichlet series, convergent for σ > 1, so G(σ), H(σ)→ 1 for σ → +∞,
therefore the constant is 1 and G = H.

Our approach to (1) is the following: every function F of S has a unique representation as
Euler product, F (s) =

∏
p Fp(p

−s) for σ > 1, moreover by the Ramanujan conjecture about
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the growth of the coefficients, every p-component Fp(p
−s) is a holomorphic function on σ > 0.

Therefore, let mf (ρ) be the order of ρ as zero of a meromorphic function f (with mf (ρ) < 0
when ρ is a pole of f), then

(1) has a solution =⇒

{
b|mF (ρ) for every ρ ∈ C,
b|mFp(ρ) for every p, for every <ρ > 0.

The following theorem states the principal result of this paper.

Theorem. Let F ∈ S, then

xb = F has a solution x ∈ S ⇐⇒

{
b|mF (ρ) for every ρ ∈ C,
b|mFp(ρ) for every p, for every <ρ > 0.

Remark 1. The gamma factor γF giving the functional equation of F can be described as the
component F∞ corresponding to the archimedean valuation of Q. In S the gamma factor is a
product of exponentials and Γ-functions, therefore it is a meromorphic function without zeros,
moreover, by the functional equation, its poles are located at the trivial zeros of F so that
b|mF∞(ρ) when b|mF (ρ). We expect that conditions of “local type” or of “global type”, alone,
are sufficient for the existence of a solution of (1) when are assumed on the entire complex plain,
i.e., that the following equivalences hold:

xb = F ⇐⇒ b|mFp(ρ) ∀ ρ ∈ C, ∀ p-adic valuation, ∞ included ⇐⇒ b|mF (ρ) ∀ ρ ∈ C.

Our Theorem is weaker in this respect, since its hypotheses are both of local and of global type.
The obstruction to a proof of this conjecture, also when a meromorphic continuation to all C is
assumed for every p-component Fp, is the lack of a relation between mFp(ρ) and mF (ρ) into the
critical strip 0 ≤ <ρ ≤ 1. At last, we remark that it is conjectured that every function of S is
of polynomial type, i.e., that F−1

p (z) is polynomial for every (finite) p: in this case Fp(p
−s) has

no zeros and the condition b|mFp(ρ), for <ρ > 0, becomes trivial.

Our Theorem has interesting consequences about a second problem. When the equation
F a = Gb has solutions in S? In some cases the analysis of this equation is very simple; for
example, when the two functions have the same degrees dF = dG (in this case the additivity of the
degree gives adF = dFa = dGb = bdG so that a = b and the equation becomes (F (s)/G(s))a = 1,
so that F = G is the unique solution) or when there exists a zero for F which is not a zero for G
(then the only possibility is for a = b = 0). The last case is particularly important since many
results support the conjecture that primitive functions always have distinct zeros; if this is true
then not only the equation F a = Gb has the unique solution F = G, a = b, but the unique
factorization would hold. For the moment it is only known that distinct primitive functions have
zeros of different multiplicity (see [1], for example); this is a too weak result to deduce some
consequence about the problem of the unicity of the factorization.

Remark 2. When F and G satisfy functional equations containing different Γ-factors, there exists
a zero of F (a trivial one) which is not a zero for G; this is the only case where we are able to
prove this fact. Our present knowledge of the distribution of the zeros of these functions does not
leave out the possibility that two functions F and G satisfying the same functional equation have
all their zeros located at the same points (but with different multiplicity, of course), nevertheless,
nobody believes this can happen.
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As a consequence of our theorem we obtain a complete description of the solutions of the
equation F a = Gb.

Corollary 1. Let F,G ∈ S; if F a = Gb for some (a, b) = 1, then F = Hb and G = Ha for some
H ∈ S.

Proof. In fact, amF (s) = mFa(s) = mGb(s) = bmG(s) and amFp(s) = mFap (s) = mGb(s) =
bmGp(s) for every prime p, by the Euler product. Since (a, b) = 1, it follows that b|mF and
b|mFp ; by our Theorem there exists H ∈ S such that F = Hb. Therefore, Gb = F a = Hab,
hence (G/Ha)b = 1 and as usual this implies G = Ha.

In [2] it has been proved that distinct elements of S are linearly independent over the ring F of
the p-finite Dirichlet series, i.e., the ring of the Dirichlet series

∑∞
n=1 cnn

−s absolutely converging
somewhere and whose coefficients are supported on a finite set of primes. In the same paper it
has been pointed out that this fact implies the equivalence of the algebraic independence in S to
the unique factorization in S; thus, it is not surprising that every result about the factorization
has a consequence about the algebraic independence. In fact, the mere linear independence
implies

Corollary 2. Let F be a non-trivial function of the Selberg class, then F is a transcendental
element over the ring F .

Proof. Suppose that there exists a non-trivial polynomial P (x)∈F [x] such that P (F (s)) = 0,
identically. By the linear independence over F of different elements of S it follows that F a = F b

for some 0 ≤ a < b, and therefore F b−a = 1: a contradiction.

Corollary 1 strengthens Corollary 2 in the following way.

Corollary 3. Let F,G, both powers of distinct primitive element of S, then the transcendence
degree of the ring F [F,G] over F is two.

Proof. We can restrict the proof to the case of F and G both primitive; moreover, by Corollary 2
it is sufficient to prove that F and G are algebraically independent over F . Assume that a
polynomial equation of type P (F (s), G(s)) = 0 holds identically, for some non-trivial element

P ∈ F [x, y]. By the linear independence already proved in [2] it follows that F ãGb̃ = F c̃Gd̃ for
some ã, b̃, c̃, d̃ in N. By cancelling the common factors we can obtain F aGb = 1 or F a = Gb for
some a, b ∈ N, not both equal to 0. The first identity is obviously impossible; for the second
one, let m be a common factor of a and b, then (F a/m/Gb/m)m = 1 and F a/m = Gb/m follows so
that we can assume (a, b) = 1. By Corollary 1 we get F = Hb and G = Ha for some H ∈ S but
F and G are both primitive by hypothesis, hence a = b = 1 and G = F : a contradiction.

Proof of the theorem

By hypothesis b|mF (ρ) for every ρ ∈ C, hence there exists a unique meromorphic function H
such that F = Hb and verifying the condition limσ→+∞H(σ) = 1. Moreover, H has not zeros
for σ > 1, it is of finite order and there exists an integer m such that (s − 1)mH(s) is entire
since Hb = F has these properties. The proof of the theorem will be completed by proving that
H ∈ S. it will be useful to split the proof in some lemmas.
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Representations and Ramanujan conjecture

Lemma 1. (Dirichlet series and Euler product) Let F and H be as before, then H has a
representation as Dirichlet series H(s) =

∑∞
n=1 hnn

−s and as Euler product H(s) =
∏
p(1 +∑∞

m=1 hpmp
−s), both absolutely converging for σ > 1.

Proof. Let F (s) =
∑

n=1 ann
−s be the Dirichlet representation of F , then the Ramanujan hy-

pothesis an �ε n
ε for every ε > 0 gives

|apm | ≤ c(ε)pmε ∀ε > 0, for some constant c(ε) > 0 independent of p, (2)

therefore Fp(p
−s) is holomorphic when σ > 0; moreover, b|mFp(ρ) for every <ρ > 0 by hypothesis

so that there exists a unique Hp(p
−s), holomorphic for σ > 0, such that Hb

p(p
−s) = Fp(p

−s)
and limσ→+∞Hp(p

−σ) = 1. Let Hp(p
−s) = 1 +

∑∞
m=1 hpmp

−ms its representation as p−s-power
series, holding for σ > 0. By (2), into the disk |z| ≤ p−ε we have

|Fp(z)| ≤
∣∣∣ ∞∑
m=0

apmz
m
∣∣∣ ≤ ∞∑

m=0

c(ε/2)pmε/2p−mε =
c(ε/2)

1− p−ε/2
≤ c1(ε) independent of p,

so that into the same disk

|Hp(z)| ≤ |Fp(z)|1/b ≤ c2(ε) independent of p.

By this upper-bound and the Cauchy’s estimate about the coefficients of a power series of an
holomorphic function we get

|hpm | ≤ sup
|z|=p−ε

|Hp(z)|pmε ≤ c2(ε)pmε, for every ε > 0, p and m. (3)

From (3) it follows that
∏
p(1 +

∑∞
m=1|hpm |p−mσ) converges for σ > 1, so that if hn is the

multiplicative sequence defined on the p-th powers as hpm , then both
∑∞

n=1 hnn
−s and

∏
p(1 +∑∞

m=1 hpmp
−ms) are absolutely convergent for σ > 1 and represent the same function K(s).

Besides, limσ→+∞K(σ) = 1 since K(s) is an Euler product and

Kb(s) =
∏
p

(1 +
∞∑
m=1

hpmp
−ms)b =

∏
p

Hb
p(p
−s) =

∏
p

Fp(p
−s) = F (s),

again from the absolute convergence for σ > 1, therefore H = K and the claim is proved.

Lemma 2. (Ramanujan conjecture) Let F and H be as before, then lnH(s) =
∑∞

n=1 h̃nn
−s

with |h̃pm | ≤ pθm for some 0 < θ < 1/2; moreover, H(s) =
∑∞

n=1 hnn
−s with hn �ε n

ε, for
every ε > 0.

Proof. The first claim is trivial since the same statement holds for lnF (s) and lnH(s) =
1
b lnF (s). For the second one, let ν(n) =

∑
p|n 1, from (3) we get

|hn| ≤ cν(n)
2 (ε)nε,

and from the density of primes ν(n) � lnn/ ln lnn, hence c
ν(n)
2 (ε) �ε n

ε and hn �ε n
2ε

follows.
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Functional equation

The functional equation of the elements in the Selberg class is ruled by a product of functions
of the type QsΓ(αs+ β), said γ-factors in this context. Clearly, there is a relation between the
values of H(s) and H̄(1−s) = H(1− s̄) coming from the functional equation of F = Hb; we will
be able to show that this relation is actually given by a functional equation of standard type as
consequence of the following lemma about γ-factors.

Lemma 3. (Roots of γ-factors) Let T be the semigroup generated by the functions aQsΓ(αs+β),
where a ∈ C∗, Q,α > 0 and <β ≥ 0, with the usual product. Then, the equation

xb = z with b ∈ N∗, z ∈ T , (4)

has a solution in T if and only if b divides the order of every pole of z.

Proof. The necessity of the required condition is evident. Let

z(s) = aQs
∏
j

Γ(αjs+ βj) (5)

and assume that b divides the order of every pole of z. As in [4], we say that a Γ-factor Γ(αs+β)
is Q-equivalent to Γ(α̃s+ β̃) when α/α̃ ∈ Q. We split the Γ-factors appearing in (5) into families
l = 1, . . . , h belonging to different Q-classes

z(s) = aQs
h∏
l=1

∏
j

Γ(αl,js+ βl,j);

by the definition of Q-equivalence, there exist h real numbers α̃l such that αl,j = nl,jα̃l with
nl,j ∈ N∗, therefore

z(s) = aQs
h∏
l=1

∏
j

Γ
(
nl,j(α̃ls+

βl,j
nl,j

)
)
, (6)

and applying the Legendre-Gauss formula

Γ(s) = ms− 1
2 (2π)

1−m
2

m−1∏
k=0

Γ
(s+ k

m

)
m = 2, 3, . . . ,

to every Γ-factor of (6) we obtain

z(s) = ǎQ̌s
h∏
l=1

∏
j

Γ(α̃ls+ β̃l,j) (7)

for some ǎ ∈ C∗, Q̌ > 0 and suitable β̃l,j with <(β̃l,j) ≥ 0. Now we introduce a second relation
between the Γ-factors belonging to the same Q-class: we say that β̃l,j1 is Z-equivalent to β̃l,j2
when β̃l,j1 − β̃l,j2 ∈ Z. Let β̌l,j be the smallest element in every Z-class appearing in (7). Every
Γ-factor belonging to the Z-class of β̌l,j can be written as

(α̃ls+ β̌l,j)(α̃ls+ β̌l,j + 1) · · · (α̃ls+ β̌l,j + rl,j)Γ(α̃ls+ β̌l,j)
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by repeated applications of the factorial identity Γ(s + 1) = sΓ(s), therefore we can introduce
the polynomials

pl(s) =
∏
j

(α̃ls+ β̌l,j)(α̃ls+ β̌l,j + 1) · · · (α̃ls+ β̌l,j + rl,j) (8)

and the partial γ-factors

γl(s) =
∏
j

Γkl,j (α̃ls+ β̌l,j), kl,j ∈ N

in such a way that β̌l,j be distinct and

φl(s) = pl(s)γl(s), z(s) = ǎQ̌s
h∏
l=1

φl(s).

We remark that two Γ-factors Γ(α̃1s + β̌1,j) and Γ(α̃2s + β̌2,k) belonging to different Q-classes
can have a common pole at most, hence there is an infinite set S1 of poles of γ1(s) that are
neither poles of any φl(s) with l 6= 1 or zeros of p1(s). Moreover, two elements Γ(α̃1s+ β̌1,j) and
Γ(α̃1s+ β̌1,k) in the same Q-class but different Z-class cannot have any common pole, so that we
conclude that there exists at least a pole ρ ∈ S1 such that k1,1 = m

Γk1,1 (α̃1s+β̌1,1)
(ρ) = mz(ρ).

By hypothesis b divides mz(ρ), therefore b|k1,1; in a similar way we prove that b|kl,j for every
l, j. Let kl,j,−1 = kl,j/b, then

z(s) = ǎQ̌s
( h∏
l=1

pl(s)
)( h∏

l=1

∏
j

Γkl,j,−1(α̃ls+ β̌l,j)
)b
. (9)

Again, by hypothesis b divides the order of every pole of z(s) and b divides obviously the order
of every pole of the γ-factor to the right-side of (9), therefore b divides the order of every zero
of the polynomial

∏h
l=1 pl(s), too. By the form (8) of every pl(s), every zero of

∏h
l=1 pl(s) is

−(β̌l,j +n)/α̃l for some index l, j and some non-negative integer n; by (8) again in this case the
product

(α̃ls+ β̌l,j)(α̃ls+ β̌l,j + 1) · · · (α̃ls+ β̌l,j + n)

divides
∏h
l=1 pl(s), therefore we get that

h∏
l=1

pl(s) =
h∏
l=1

[∏
j

(α̃ls+ β̌l,j)
kl,j,0(α̃ls+ β̌l,j + 1)kl,j,1 · · · (α̃ls+ β̌l,j + rl,j)

kl,j,rl,j
]b

for some positive integers

kl,j,−1 ≥ kl,j,0 ≥ kl,j,1 ≥ · · · ≥ kl,j,rl,j , (10)

so that

z(s) = ǎQ̌s

h∏
l=1

[∏
j

(α̃ls+ β̌l,j)
kl,j,0(α̃ls+ β̌l,j + 1)kl,j,1 · · · (α̃ls+ β̌l,j + rl,j)

kl,j,rl,j Γkl,j,−1(α̃ls+ β̌l,j)
]b
. (11)

The inequalities (10) show that the polynomial terms appearing in (11) can be completely
absorbed into the Γ-factors by the factorial identity; taking a b-th root of ǎ and the positive b-th
root of Q̌ we obtain the claim.
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Lemma 4. (Functional equation) Let F and H be as before, then H satisfies a functional
equation of the type required in the Selberg class.

Proof. Let

ΓF (s) =
l∏

j=1

Γ(αjs+ βj),

φ(s) = QsΓF (s)F (s),

φ(s) = ωφ̄(1− s),

with Q,αj > 0, <βj ≥ 0, and |ω| = 1, be the functional equation satisfied by F .
We have already remarked that the poles of ΓF are located at the trivial zeros of F , therefore

b divides the order of every pole of z(s) = φ(s)/F (s) = QsΓF (s) ∈ T : by Lemma 3 there exists
an element z̃ ∈ T such that z = z̃b. Let ψ(s) = z̃(s)H(s); then φ = ψb and from the functional
equation of F we get ( ψ(s)

ψ̄(1− s)

)b
=

φ(s)

φ̄(1− s)
= ω;

but ψ(s) is a meromorphic function of C, hence there exists a b-th root ω̃ of ω, such that

ψ(s) = ω̃ψ̄(1− s) ∀s ∈ C.

Theorem follows by Lemma 1, 2 and 4.
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