
PHYSICAL REVIEW C 90, 054317 (2014)

Equation of state of nuclear matter from empirical constraints

N. Alam, B. K. Agrawal, J. N. De, and S. K. Samaddar
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India

G. Colò
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From empirically determined values of some of the characteristic constants associated with homogeneous
nuclear matter at saturation and subsaturation densities, within the framework of a Skyrme-inspired energy
density functional, we construct an equation of state (EoS) of nuclear matter.This EoS is then used to predict
values of density slope parameters of symmetry energy L(ρ), isoscalar incompressibility K(ρ), and a few
related quantities. The close consonance of our predicted values with the currently available ones for the density
dependence of symmetry energy and incompressibility gleaned from diverse approaches offers the possibility
that our method may help in settling their values in tighter bounds. Extrapolation of our EoS at supranormal
densities shows that it is in good harmony with the one extracted from experimental data.
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I. INTRODUCTION

The nuclear equation of state (EoS) entails in a broad sweep
knowledge of the diverse properties of nuclear matter: its
saturation density, energy per nucleon e(ρ) (ρ is the density),
incompressibility K(ρ), the symmetry energy and its density
content, i.e., the symmetry coefficient esym(ρ), the symmetry
slope parameter L(ρ), the symmetry incompressibility Kτ (ρ),
and all the higher symmetry derivatives. Attention has been
naturally drawn in recent times toward having a refined
understanding of this nuclear EoS from both experimental
and theoretical sides. The binding energies of stable atomic
nuclei are the most accurately known experimental entities
in nuclear physics; these supplemented with knowledge of
giant monopole and dipole resonances followed by theoretical
analysis have yielded some of the EoS parameters such as
the saturation density ρ0 of symmetric nuclear matter and
e(ρ0), K(ρ0), and esym(ρ0) in reasonably tight bounds [1–6].
The knowledge of the symmetry derivatives L(ρ0) and Kτ (ρ0)
is still not very certain [1,7–9]. Analyses of the different
nuclear observables do not help much in removing the
uncertainty. Correlation systematics of nuclear isospin with
neutron skin thickness [10,11], isospin diffusion [12,13],
nucleon emission ratios [14], or isoscaling [15] in heavy ion
collisions, all yield values of the symmetry slope parameter
L0 [=L(ρ0)] that are not much in consonance with one
another. An attempt was recently made to constrain L0 in
tighter bounds from nuclear masses aided by microscopic
calculations [16,17] on the neutron skin of heavy nuclei;
it was found to give L0 = 59 ± 13.0 MeV. Other recent
attempts, from analysis of the isovector giant dipole and
quadrupole resonances in the 208Pb nucleus [18,19] give L0 =
43 ± 26 and 37 ± 18 MeV respectively. This underscores the
still unresolved uncertainty in getting to the value of L0

and asks for newer avenues to understand it. The present
state of the art on symmetry energy and related parameters
can be found in the topical issue on nuclear symmetry
energy [20].

The EoS parameters so mentioned pertain to only one
density: the saturation density ρ0. If all of them are known
precisely, it is in principle possible to construct with a suitable
energy density functional (EDF) the nuclear EoS e(ρ,δ) where
δ = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry. Whereas
the high density end of the EoS would be of immediate
value in understanding the dynamical evolution of the core
collapse of a massive star and the associated explosive
nucleosynthesis [21,22], or the radii and lower bound of the
maximum mass of cold neutron stars [23], the low-density end
helps in getting a closer estimate of the neutron skin thickness
or the neutron density distribution [10,11,16,17] in neutron-
rich nuclei. Accurate knowledge about the EoS parameters at
densities other than ρ0 may put the nuclear EoS on firmer
ground; unfortunately, they are very scanty. At density higher
than ρ0, information from experimental data has still large
uncertainty [24]; at subsaturation density, from giant dipole
resonance analysis, a quantitative constraint on esym(ρ) could
be put as 23.3 < esym(ρ = 0.1 fm−3) < 24.9 MeV [7]. Further
information derived from theoretical analyses at around this
density may be of added significance: (i) the energy per
nucleon of neutron matter is ∼10.9 ± 0.5 MeV at ρ = 0.1
fm−3 [25] and (ii) the density derivative of the nuclear
incompressibility Mc = 3ρ dK/dρ|ρ=ρc

� 1100 ± 70 MeV
where ρc is � 0.7ρ0 [26].

As is evident from the previous discussion, the plethora
of nuclear EoS failed to effectively constrain the density
content of the nuclear symmetry energy and the nuclear
incompressibility from fits to diverse microscopic nuclear
data. The reason lies in the choice of different sets of
microscopic observables to be fitted. The isoscalar and isovec-
tor quantities associated with nuclear matter, however, have
emerged to be very well constrained. The isoscalar entities are
(i) e0 [=e(ρ0) = −16.0 ± 0.1 MeV], (ii) saturation density
ρ0 (=0.155 ± 0.008 fm−3), where the pressure P (ρ0) = 0,
and (iii) the incompressibility coefficient K0 [=K(ρ0) =
9∂2e/∂ρ2|ρ0 = 9dP/dρ|ρ0 = 240 ± 20 MeV] [27]. All these
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quantities refer to symmetric nuclear matter. The isovector
quantities are (iv) esym(ρ0) (=32.1 ± 0.31 MeV) [4] and (v)
esym(ρ = 0.1fm−3) (=24.1 ± 0.8 MeV) [7].

In this article, we have tried to find how the input of
the empirical knowledge of these quantities can be used to
construct an EDF for nuclear matter and to predict the as yet
not so well-constrained density dependence of its symmetry
properties in reasonably tighter bounds. These isoscalar and
isovector nuclear parameters effectively contain condensed
experimental information on the bulk nuclear properties. As
opposed to direct investigation of the microscopic properties of
nuclei as done, e.g., in Ref. [28], which can lead to somewhat
different predictions depending on the observables chosen to
be explored, the alternate edifice for the nuclear EDF built
in this article on the well established nuclear bulk parameters
is so structured, as we see later, that it gives an easy and
transparent look at the correlations of the predicted values of
the density derivatives of the symmetry energy and the nuclear
incompressibility to the input parameters. Furthermore, if the
values of the density derivatives L0, Kτ , M0, etc. could be well
settled by as yet other unexplored means and differ from our
predicted values, the foundation, i.e., the values of the nuclear
bulk parameters or the choice of the Skyrme EDF, then become
subjects of fresher scrutiny. Computationally, our method is
also much less intensive. To our knowledge, a comprehensive
study of this kind has not been done before.

Henceforth, the quantities corresponding to the densities
ρ0 and ρ = 0.1 fm−3 will be denoted with the subscripts
0 and 1, respectively (like esym,0, esym,1, etc.). The value of
ρ0 is an indirectly obtained entity. From acceptable Skyrme
energy density functionals, it is ∼0.16 fm−3 [29] whereas the
relativistic mean-field models give a value of ρ0 in the vicinity
of ∼0.15 fm−3 [30,31]. Our choice for ρ0 covers this range.

The paper is organized as follows. Section II contains a brief
discussion of the theoretical elements. Results and discussions
are presented in Sec. III. Section IV contains the concluding
remarks.

II. THEORETICAL EDIFICE

The Skyrme framework is chosen for the energy density
functional [32]. The energy per nucleon for nuclear matter is
then
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The first term on the right-hand side is the free Fermi gas
energy, a1 = �

2

2m
3
5 (3π2)2/3 = 119.14 MeV fm2, where m is

the nucleon mass. For the chosen values of e0 and ρ0, values
of α ranging only from 1/6 to 1/3 allow for an acceptable set of

(m∗/m, K0) [33] where m∗ is the nucleon effective mass. We
therefore chose α = 0.2 ± 0.1; this allows m∗/m to lie in the
acceptable range m∗/m � 0.8 ± 0.2 [29]. We take the median
value of α = 0.2. We are left with six unknown parameters,
namely, b1, c1, d1, b2, c2, and d2, which would completely
define the EDF. As already mentioned, we have, however, five
equations, three from isoscalar entities and two from isovector
entities.
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The isoscalar equations yield the values of b1, c1, and ( d1
22/3 +

d2
25/3 ). The isovector equations, evaluated at ρ0 and ρ1 (=0.1
fm−3) are given by
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To fix the remaining parameters, we need an extra condition
in conjunction with the two isovector equations. For this,
we take that the energy per particle of isospin asymmetric
nuclear matter is quadratic in the asymmetry parameter δ.
This condition is found to be an excellent approximation from
nearly all energy density functionals [34,35] and also from
microscopic calculations in the Bruckner-Hartree-Fock (BHF)
formalism [36,37] at all densities up to ρ0 and a little beyond.
This implies that the difference between the symmetry energy
coefficients defined by Eq. (5) and the one by the equation

ẽsym(ρ) = e(ρ,δ = 1) − e(ρ,δ = 0)

= a1

(
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should be minimal.
To achieve this minimality, we take the help of the equation

for the symmetry slope parameter L. From its definition
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FIG. 1. (Color online) Plots for the variation of esym as a function
of density ρ. The values of esym represented by the full and the dashed
lines are obtained using two different definitions as given by Eqs. (5)
and (6). The blue, magenta, and black lines correspond to L0 = 50,
65.4, and 75 MeV at ρ = ρ0. With L0 = 65.4 MeV, one magenta line
falls over the other; they can-not be distinguished from each other.

L(ρ) = 3ρ∂esym/∂ρ, one gets from Eq. (5)

L(ρ) = 3ρ

[
10

27

a1

22/3
ρ−1/3 + b2 + (α + 1)c2ρ

α

+5

3
ρ2/3

(
5

9

d1

22/3
+ 20

9

d2

25/3

)]
, (7)

With a given value of L0 [=L(ρ0)], from known esym,0 and
esym,1, at the two densities ρ0 and ρ1, one can solve for b2,
c2, and [ 5

9
d1

22/3 + 20
9

d2
25/3 ]. Since ( d1

22/3 + d2
25/3 ) is known from the

isoscalar equations, d1 and d2 are now obtained.
Now that for a given L0 all the parameters of the EDF

are known, one can calculate esym(ρ). With the same set of
coefficients ẽsym(ρ) can also be calculated. Normally, for an
arbitrary value of the given L0, esym and ẽsym may not be
equal; only for a specific value of L0 do they tend to be
equal (see Fig. 1). To be more specific, as a function of input
L0, we have calculated the coefficients b1, b2, etc. using the
relevant equation for esym for a set of densities ρi lying in
the range 0.05 < ρ < 0.2 fm−3, calculated ẽsym with the same
set of coefficients, and have chosen that L0 as the requisite
one that gives the minimum of

∑
i[esym(ρi) − ẽsym(ρi)]2. This

settles the EoS. In Fig. 1, esym(ρ) and ẽsym(ρ) are displayed
as a function of input L0. The full lines refer to esym(ρ), the
dashed lines to ẽsym(ρ). The difference between these two is
minimum when L0 = 65.4 MeV. All the parameters a1, b1,
b2, etc. corresponding to the density functional are listed in
Table I.

III. RESULTS AND DISCUSSIONS

Once the parameters of the EDF [Eq. (1)] are known,
the higher order density derivatives of energy and symmetry
energy of nuclear matter may be obtained. They are presented

TABLE I. Parameters of the energy density functional corre-
sponding to the central values of the isoscalar and isovector inputs.

a1 (MeV fm2) 119.14 α 0.2
b1 (MeV fm3) −816.95 b2 (MeV fm3) 744.65
c1 (MeV fm3(α+1)) 724.51 c2 (MeV fm3(α+1)) −1149.66
d1 (MeV fm5) −32.99 d2 (MeV fm5) 891.15

in Sec. III A. This EDF can also be used to estimate certain
properties of microscopic nuclei like neutron skin thickness of
heavy nuclei. This is discussed in Sec. III B. As an aside, the
EDF has also been employed to explore some properties of
neutron stars, discussion of which is contained in Sec. III C.

A. Nuclear matter: Density derivatives of symmetry energy
and isoscalar incompressibility

Expressions for higher order symmetry derivatives Ksym,0

and Kτ are given by Ksym,0 = 9ρ2
0

∂2esym

∂ρ2 |ρ0 and Kτ =
9ρ2

δ
∂2esym

∂ρ2 |ρδ
. Here ρδ is the saturation density of asymmetric

nuclear matter corresponding to the asymmetry δ. The sym-
metry derivatives Ksym,0 and Kτ are related: Kτ = Ksym,0 −
6L0 − Q0L0

K0
, where Q0 = 27ρ3

0
∂3e(ρ,0)

∂ρ3 |ρ0 . They all can be
evaluated from the EDF parameters. The density derivative of
the isoscalar incompressibility M(ρ) (=3ρ dK(ρ)

dρ
) of symmetric

nuclear matter is also calculated. At the saturation density
ρ0, M0(=M(ρ0)) equals 12K0 + Q0. In Table II we list the
calculated values of various isoscalar and isovector quantities
together with their total uncertainties. The latter are associated
with the uncertainties in the six input quantities Yi (={e0,
ρ0, K0, esym,0, esym,1, and α}). The extracted value of L0

is 65.4 ± 13.5 MeV. It is in excellent consonance with that
obtained from analysis of pygmy dipole resonance [38] and in
very good agreement with that obtained earlier from nuclear
masses and the neutron skin thickness of heavy nuclei [16,17].
This is also very consistent with the value L0 = 66.5 MeV
obtained from a systematic analysis within the BHF approach
using a realistic nucleon-nucleon potential [39]. Not much can
be said about the reasons behind the good agreement between
our present extracted value of L0 with that obtained from
pigmy dipole resonance [8] except that in this case the value
of esym(ρ0) matches extremely well with our input value. The
agreement with that obtained from the BHF approach [39] is
possibly coincidental; the one aspect that is to be noted here
is that all the symmetry derivatives L0, Ksym,0, and Kτ from
the BHF approach are in extremely good consonance with
our calculated values though the nuclear bulk parameters [ρ0,
e0, K0, and esym(ρ0)] do not have a good common overlap.

TABLE II. Values of the extracted entities from the nuclear EoS.
All quantities are in MeV.

L0 65.4 ± 13.5 Mc 1150 ± 91
Ksym,0 −22.9 ± 73.2 Q0 −344 ± 56
Kτ −321.6 ± 34.4 M0 2535 ± 293
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TABLE III. The observables X are listed in the first column, they
are in units of MeV. The second column represents �X, the total
uncertainty in X from the input uncertainties �Yi in the vector Y
{e0,ρ0,K0,esym,0,esym,1,α}. The element Y2(≡ρ0) is in unit of fm−3,
Y6(≡ α) is dimensionless, all other elements in the vector Y are in
units of MeV. The units in the columns ∂X

∂Yi
(i = 1, .. 6) can then be

obtained accordingly.

X �X ∂X
∂Y1

∂X
∂Y2

∂X
∂Y3

∂X
∂Y4

∂X
∂Y5

∂X
∂Y6

L0 13.5 0.6 −1118 0.081 10.16 −11.09 −27.5
Ksym 73.2 12.2 −3889 1.502 25.84 −40.07 −489
Kτ 34.4 −5.4 1339 0.024 −20.55 10.59 309.2
M0 293 54 −447.5 14.6 0.00 0.00 −195
Mc 91 −2.9 57.5 4.55 0.00 0.00 32.6
Q0 56 54 −447.5 2.6 0.00 0.00 −194.9

Most of the uncertainty in our extracted value of L0 comes
from the uncertainties in the empirically obtained quantities
ρ0 and esym(ρ) at the two densities (see also Table III). If
the central value of ρ0 is pushed down to 0.14 fm−3 keeping
all other input parameters same, then the central value of
L0 shoots up to 86.1 MeV. Attention is also drawn to the
calculated value of Kτ . Analyzing the experimental breathing-
mode energies of Sn isotopes, Li et al. [40] suggested its
value as −550 ± 100 MeV. This is too strongly negative
to be compatible with the behavior of low-density neutron
matter [41,42]. Higher order effects such as surface symmetry,
present in such analysis in disguise, may have contributed to
such a high value. Explicit inclusion of the surface symmetry
term seems to lower the value of Kτ to ∼ − 350 MeV [43,44].
Our present value of Kτ = −321.6 ± 34.4 MeV is in very
good agreement with this; it is also in close consonance with
the value of −370 ± 120 MeV extracted from measurements
of isospin diffusion in heavy ion collisions. The empirical value
of Mc (=1100 ± 70 MeV) obtained from analysis of giant
monopole resonance energies of Sn isotopes and of 90Zr and
144Sm nuclei [26] is very compatible with our calculated value;
similarly, the value of Q0 calculated by us conforms well with
the one (Q0 = −350 ± 30 MeV) obtained from examination
of a host of standard Skyrme interactions [34].

The total uncertainties in the various quantities considered
in Table II are evaluated as [45]

�X =
√∑

i

(�Xi)2, (8)

where �Xi = ∂X
∂Yi

�Yi ; �X is the total uncertainty on a given
quantity X induced by the associated uncertainties �Yi (=
0.1 MeV, 0.008 fm−3, 20 MeV, 0.31 MeV, 0.8 MeV, 0.1)
in the input quantities Yi . The quantities ∂X

∂Yi
are calculated

numerically; their signs reflect the direction of change in
X with increase in Yi . Table III displays, for the relevant
observables X, the values of ∂X

∂Yi
along with the associated

total uncertainty �X. The derivatives ∂X
∂Yi

help in estimating
the partial contributions �Xi to the total uncertainty �X.
Once ∂X

∂Yi
are known, it is easy to estimate the change in �X

with change in �Yi . This table can be an instructive guide in
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FIG. 2. (Color online) The normalized squared errors, ( ∂X
∂Yi

�Yi

�X
)2

(=x2
i ), are color coded. The quantities X and Yi are given along the

ordinate and abscissa respectively.

improving existing energy density functionals as it enables one
to understand how the various quantities X can be adjusted by
changing Yi’s or vice versa. One may note that the symmetry
observables L0, Ksym,0, and Kτ correlate with esym,0 and esym,1

always in the reverse (see columns 6 and 7 in Table III). This
correlated structure of L0 on esym,0 and esym,1 was noticed
earlier [46]. Similar correlation of the symmetry observables
Ksym,0 and Kτ on esym,0 and esym,1 is noticed in our calculation.

The fractional contributions x2
i = (�Xi

�X
)2 = ( ∂X

∂Yi

�Yi

�X
)2 to the

uncertainties in the observables X from the uncertainties in
the input quantities Yi are shown in Fig. 2 in color code.
As one sees,

∑
i x

2
i = 1. They depict the relative importance

of the precision of the input parameters in measuring up the
uncertainties in an observable X. From the first column in
the figure, on can easily see that the uncertainty in energy
per particle e0 has a negligible role in the uncertainties in the
observables X we calculate. One also sees that nearly all the
uncertainties in M0 and Mc emanate from the uncertainty in
K0 and that the uncertainty in α has a very strong role in the
evaluated uncertainty of Kτ .

B. Finite nuclei: Neutron skin

The EoS of infinite homogeneous nuclear matter calculated
from the EDF can be beneficially used to estimate some quan-
tities relevant to microscopic nuclear systems. For example,
with the calculated values of L0 and Ksym,0, one can evaluate
ρA, the equivalent density of nuclei, from the equation

es
sym � A1/3

[
L0εA − 1

2Ksym,0ε
2
A

]
, (9)

where, es
sym is the surface symmetry energy coefficient. The

equivalent density ρA of a nucleus of mass A is defined as
the density at which the symmetry coefficient esym(ρA) of
nuclear matter equals esym(A), the symmetry coefficient of
the nucleus. The “experimental” value of es

sym is taken as
58.91 ± 1.08 MeV [4]; εA = (ρ0 − ρA)/3ρ0. Figure 3 displays
our calculated values of ρA (shown as a shaded region) as a
function of the atomic mass number A. The blue triangles in
the figure refer to the value of ρA from Table I of Ref. [10],
calculated with different effective interactions for three nuclei,
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FIG. 3. (Color online) Our results for the equivalent density
shown as a shaded region as a function of mass number. The blue
triangles are from Ref. [10], the magenta line is from Ref. [6].

A = 40, 116, and 208. The magenta line corresponds to
the values calculated in Ref. [6]. Our calculations with the
indicated errors are seen to have a good overlap with these
results. With known L0, an estimate of rskin, the neutron-skin
thickness of heavy nuclei, can also be made. For that we
make use of the L0 − rskin correlation method as elucidated
in Refs. [10,17] for Skyrme interactions. As an example, with
our value of L0 we obtain rskin � 0.21 ± 0.02 fm for 208Pb.
Some deliberations at this stage on the neutron skin rskin of
208Pb may be meaningful. A recent PREX experiment [47]
reports a large central value of 0.33 fm for rskin of 208Pb
with very large error bars. This contradicts nearly all the
calculated results of rskin, which are comparatively much
smaller. Fattoyev and Piekarewicz [48] devised a relativistic
EoS that can accommodate such a large neutron skin, but then
esym(ρ0) and L0 become uncomfortably high. The larger the
value of rskin, the larger becomes the value of L0. It is known
that the larger is then the value of the neutron star radius [49].
A large neutron star radius seems to be incompatible with
astrophysical data [50,51]; a very large value for the neutron
skin of 208Pb is thus doubtful. Calculations by Brown [25]
tend to disfavor a large neutron skin of 208Pb. Nuclear ground
state data for closed shell nuclei were fitted with a set of
Skyrme interactions with constraints of fixed rskin. The average
deviation for binding energies was found to be similar for
rskin = 0.16 and 0.20 fm, but increased by 0.1 to 0.3 MeV for
rskin = 0.24 fm. A very recent experimental determination of
the neutron skin thickness from coherent pion production [52]
adds a new dimension to this issue: the extracted value of rskin

for 208Pb is rskin = 0.15 ± 0.03 fm.

C. Supranormal densities: Neutron stars

Having come this far, we try to assess our EoS with refer-
ence to that extracted from experimental data at supranormal
densities. This is done in Fig. 4. The upper panel displays
the EoS (pressure density relation) of symmetric nuclear
matter (SNM). The shaded red and yellow regions show the

FIG. 4. (Color online) The EoS for symmetric nuclear matter
(upper panel) and for pure neutron matter (lower panel). The red,
yellow, and green shaded regions represent the experimental data
taken from Refs. [53–56]. The blue shaded regions are the EoS
obtained in this work. See text for details.

“experimental” EoS for SNM synthesized from collective
flow data [53] and from data for kaon production [54,55],
respectively; the blue shaded region shows ours. The EoS
of pure neutron matter (PNM) has an additional repulsive
component coming from the density dependence of symmetry
energy. This part of the EoS is laced with uncertainty; it is
model dependent. The lower panel shows the EoS of PNM.
The shaded green region is the EoS of PNM where the density
dependence of symmetry energy is modeled as soft; the red
shaded region is the one where the said density dependence
is modeled as stiff [56]. The blue shaded region displays the
results obtained in the present work; it has an excellent overlap
with the “experimental” EoS. Possible phase transitions to
exotic phases such as hyperons, kaons, etc. at high densities
soften the EoS somewhat; this is not taken into account in the
present description.

For completeness, to gauge the applicability of the EoS
to higher densities, we calculated the lower limit of the
maximum mass of the neutron star (MNS

max) with this EoS,
solving the general relativistic Tolman-Oppenheimer-Volkoff
equation [57]. The EoS for the crust was taken from the Baym,
Pethick, and Sutherland model [58]. The EoS for the core
region was calculated under the assumption of a charge-neutral
uniform plasma of neutrons, protons, electrons, and muons in β
equilibrium. The EoS is causal for 0 � ρ � 8.3ρ0; the central
density of the neutron star in our calculation never reaches
beyond ρ ∼ 6ρ0. Our value of MNS

max (=2.19M�) is consistent
with the currently observed value of 1.97 ± 0.04 M� for
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the pulsar PSR J1614-2230 [59] and also the value of
2.01 ± 0.04 M� for the pulsar PSR J0348 + 0432 [60]. The
presence of exotic degrees of freedom like hyperons in the
core of the neutron star is known to pull down the value of
MNS

max substantially [61]; however, in the relativistic mean-field
(RMF) model, it is also seen that by increasing the strength
of coupling of the hyperon to the vector mesons, the effect
of hyperons on MNS

max can be much reduced [62]. Recently
analyzing different models, Lattimer et. al [50,63] constrained
the value of the radius R1.4 for a neutron star of mass 1.4M�
to 12.1 ± 1.1 km with 90% confidence level; our value of R1.4

is 11.95 ± 0.75 km. Determination of neutron star radius is,
however, not free from uncertainty. Assuming that the neutron
star core is best described by a “normal matter” EoS, Guillot
et al. [51] find, again in a 90% confidence level, that for
astrophysically relevant masses (MNS � 0.5M�), the neutron
star radius is quasiconstant, RNS = 9.1+1.3

−1.5 km.

IV. CONCLUSIONS

To sum up, from consensus “empirical” inputs for values
of some of the key nuclear parameters at saturation and
subsaturation densities, we have constructed a Skyrme-type
energy density functional for homogeneous nuclear matter.
This is then employed to understand the density dependence
of the nuclear symmetry energy and incompressibility and to

predict values for the important nuclear parameters such as the
symmetry slope parameter L0, the symmetry incompressibility
parameter Kτ , and the incompressibility slope parameter
M(ρ). Separate estimates of these quantities have been given
from different perspectives; sizable uncertainties remain there.
The structural edifice for the energy density functional built
on a few known input bulk parameters gives coherence to
the evaluated values of the observables; their uncertainties
can be constrained better provided the input bulk entities are
known with better precision. The general agreement of our
EoS with the “experimental” one at supranormal densities is
interestingly striking. The near concordance of our calculated
lower bound of the maximum mass of a neutron star with the
experimental observation of a neutron star of mass MNS

max ∼
2M� is also very noticeable. Inclusion of exotic degrees of
freedom in the interior of the star, however, softens the EoS and
lowers the value of MNS

max, and this needs further investigation.
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[7] L. Trippa, G. Colò, and E. Vigezzi, Phys. Rev. C 77, 061304(R)

(2008).
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[38] G. Colò, U.Garg, and H. Sagawa, Euro. Phys. J A 50, 26 (2014).
[39] I. Vidaña, C. Providência, A. Polls, and A. Rios, Phys. Rev. C

80, 045806 (2009).
[40] T. Li et al., Phys. Rev. Lett. 99, 162503 (2007).
[41] J. Piekarewicz and M. Centelles, Phys. Rev. C 79, 054311

(2009).
[42] J. Piekarewicz, J. Phys. G 37, 064038 (2010).
[43] J. M. Pearson, N. Chamel, and S. Goriely, Phys. Rev. C 82,

037301 (2010).
[44] M. M. Majumdar, S. K. Samaddar, N. Rudra, and J. N. De, Phys.

Rev. C 49, 541 (1994).
[45] G. Arfken and H. Weber, Mathematical Methods for Physicists

(Academic Press, Waltham, MA, 2005).
[46] C. Ducoin, J. Margueron, C. Providência, and I. Vidaña, Phys.

Rev. C 83, 045810 (2011).
[47] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).
[48] F. J. Fattoyev and J. Piekarewicz, Phys. Rev. Lett. 111, 162501

(2013).

[49] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 64, 062802(R)
(2001).

[50] J. M. Lattimer and A. W. Steiner, Euro. Phys. J 50, 40
(2014).

[51] S. Guillot, M. Servillat, N. Webb, and R. Rutledge, Astrophys.
J 772, 7 (2013).

[52] C. M. Tarbert, D. P. Watts, D. I. Glazier, P. Aguar et al., Phys.
Rev. Lett. 112, 242502 (2014).

[53] P. Danielewicz, W. G. Lynch, and R. Lacey, Science 298, 1592
(2002).

[54] C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006).
[55] A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, EPJ

Web Conf. 66, 07005 (2014).
[56] M. Prakash, T. L. Ainsworth, and J. M. Lattimer, Phys. Rev.

Lett. 61, 2518 (1988).
[57] S. Weinberg, Gravitation and Cosmology (Wiley, New York,

1972).
[58] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299

(1971).
[59] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010).
[60] J. Antoniadis et al., Science 340, 448 (2013).
[61] H. J. Schulze and T. Rijken, Phys. Rev. C 84, 035801

(2011).
[62] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Phys.

Rev. C 85, 065802 (2012).
[63] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).

054317-7

http://dx.doi.org/10.1142/S021830130400193X
http://dx.doi.org/10.1142/S021830130400193X
http://dx.doi.org/10.1142/S021830130400193X
http://dx.doi.org/10.1142/S021830130400193X
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.89.065802
http://dx.doi.org/10.1103/PhysRevC.89.065802
http://dx.doi.org/10.1103/PhysRevC.89.065802
http://dx.doi.org/10.1103/PhysRevC.89.065802
http://dx.doi.org/10.1103/PhysRevC.57.3488
http://dx.doi.org/10.1103/PhysRevC.57.3488
http://dx.doi.org/10.1103/PhysRevC.57.3488
http://dx.doi.org/10.1103/PhysRevC.57.3488
http://dx.doi.org/10.1103/PhysRevC.66.045801
http://dx.doi.org/10.1103/PhysRevC.66.045801
http://dx.doi.org/10.1103/PhysRevC.66.045801
http://dx.doi.org/10.1103/PhysRevC.66.045801
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1103/PhysRevC.80.045806
http://dx.doi.org/10.1103/PhysRevC.80.045806
http://dx.doi.org/10.1103/PhysRevC.80.045806
http://dx.doi.org/10.1103/PhysRevC.80.045806
http://dx.doi.org/10.1103/PhysRevLett.99.162503
http://dx.doi.org/10.1103/PhysRevLett.99.162503
http://dx.doi.org/10.1103/PhysRevLett.99.162503
http://dx.doi.org/10.1103/PhysRevLett.99.162503
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1103/PhysRevC.79.054311
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1103/PhysRevC.82.037301
http://dx.doi.org/10.1103/PhysRevC.82.037301
http://dx.doi.org/10.1103/PhysRevC.82.037301
http://dx.doi.org/10.1103/PhysRevC.82.037301
http://dx.doi.org/10.1103/PhysRevC.49.541
http://dx.doi.org/10.1103/PhysRevC.49.541
http://dx.doi.org/10.1103/PhysRevC.49.541
http://dx.doi.org/10.1103/PhysRevC.49.541
http://dx.doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.111.162501
http://dx.doi.org/10.1103/PhysRevLett.111.162501
http://dx.doi.org/10.1103/PhysRevLett.111.162501
http://dx.doi.org/10.1103/PhysRevLett.111.162501
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1140/epja/i2014-14040-y
http://dx.doi.org/10.1140/epja/i2014-14040-y
http://dx.doi.org/10.1140/epja/i2014-14040-y
http://dx.doi.org/10.1140/epja/i2014-14040-y
http://dx.doi.org/10.1088/0004-637X/772/1/7
http://dx.doi.org/10.1088/0004-637X/772/1/7
http://dx.doi.org/10.1088/0004-637X/772/1/7
http://dx.doi.org/10.1088/0004-637X/772/1/7
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1016/j.ppnp.2005.07.004
http://dx.doi.org/10.1051/epjconf/20146607005
http://dx.doi.org/10.1051/epjconf/20146607005
http://dx.doi.org/10.1051/epjconf/20146607005
http://dx.doi.org/10.1051/epjconf/20146607005
http://dx.doi.org/10.1103/PhysRevLett.61.2518
http://dx.doi.org/10.1103/PhysRevLett.61.2518
http://dx.doi.org/10.1103/PhysRevLett.61.2518
http://dx.doi.org/10.1103/PhysRevLett.61.2518
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1103/PhysRevC.84.035801
http://dx.doi.org/10.1103/PhysRevC.84.035801
http://dx.doi.org/10.1103/PhysRevC.84.035801
http://dx.doi.org/10.1103/PhysRevC.84.035801
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1103/PhysRevC.85.065802
http://dx.doi.org/10.1088/0004-637X/771/1/51
http://dx.doi.org/10.1088/0004-637X/771/1/51
http://dx.doi.org/10.1088/0004-637X/771/1/51
http://dx.doi.org/10.1088/0004-637X/771/1/51



