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Non-Markovian dynamics of single- and two-qubit systems interacting
with Gaussian and non-Gaussian fluctuating transverse environments
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We address the interaction of single- and two-qubit systems with an external transverse fluctuating
field and analyze in detail the dynamical decoherence induced by Gaussian noise and random
telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann
equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity
of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics
induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the
existence of (state dependent) regions of the parameter space where the two noises lead to very
similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e.,
the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect
of one kind of noise may be simulated with high fidelity by the other one. © 2016 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4939733]

. INTRODUCTION

The unavoidable interaction of a quantum system with
its environment generally causes decoherence and a loss of
quantumness, thus posing a threat to quantum information
processing. A deep understanding of the decoherence
mechanisms in quantum systems, together with the capability
to engineer the environment, is thus a very important step
toward the development of quantum technologies.

In general, a quantum system interacts with a complex
environment that should be described quantum-mechanically.
This is often challenging or even unfeasible in practice,
unless one recurs to perturbative approximations'? or to
approximations that reduce the description of the environment
to a few degrees of freedom.*® In many situations, the
environment may be conveniently represented as a collection
of fluctuators, such that it can be described as a classical
stochastic field such as, for instance, a Gaussian process or
random telegraph noise (RTN).”"'? A relevant example is that
of charge noise in superconducting qubits or quantum dots,
which may be conveniently modeled by a classical field as far
as the charge fluctuators couple more strongly to their own
environment than to the qubit.''~'3 More generally, addressing
RTN is relevant since solid state or superconducting devices
may often be described by models in which noise is due to
a collection of bistable fluctuators, e.g., resulting in a 1/f
spectrum, f being the frequency.'*

It is a subject of current research'>~'° whether the
interaction with quantum environments may be effectively
described by a classical stochastic field. So far, full equivalence
has been shown in Ref. 18 for single-qubit dephasing, with an
explicit construction of the probability distribution required
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for the classical stochastic process to describe the quantum
environment. General arguments valid for RTN noise have
been also discussed.?? A stochastic process approach may be
also used to decouple the dynamics of the system from that of
its environment, with the two separated systems evolving in
common classical random fields.?'

Among the different classes of open quantum systems,
a large attention has been put to qubit systems subject
to environmental noise inducing a dephasing dynamics,'*??
i.e., noise with typical frequencies that are smaller than the
characteristic frequencies of the quantum system. In these
situations, the energy of the system is not altered by the
interaction and only the coherences are affected. For the
dephasing model, analytic solutions have been found for
Gaussian noise?® and RTN,'>?425 and numerically for colored
noise.”® A number of interesting features have been discovered
and studied, such as entanglement sudden death (ESD)? and
quantum discord freezing.?” Moreover, the non-Markovianity
of the dynamics has been addressed,?® and the use of qubits
as probes for the spectral properties of the environment has
been proposed.?’=3? Recently, the role of entanglement in
improving the estimation of dephasing environments has been
recognized,?? thus making of interest the study of decoherence
in more general environments.**3

The dephasing Hamiltonian for a single qubit under the
effect of an external field is H(¢) = wo, + A B(t) o, where
w is the energy between the energy levels, A is a coupling
constant, and B(f) is a stochastic process that models the
external noise (we set /i = 1). This is usually referred to as
longitudinal noise,>*" the direction of the external driving
being parallel to the qubit axis in the spin space. From a
physical point of view, dephasing processes correspond to
transitions where the environment changes its state, while the
qubit system remains unchanged. Since almost no energy is
exchanged, dephasing is relevant when the low energy part

©2016 AIP Publishing LLC
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of environment spectrum is dominant. In turn, in a dephasing
model, the populations of the system are constant.

On the other hand, if the typical frequencies of the
environment are close to the characteristic frequency of the
qubit, the interaction induces transitions between the energy
levels and the pure dephasing model is inadequate to describe
the dynamics. The Hamiltonian must include a transverse
interaction describing the damping and hopping (relaxation
and excitation) mechanisms induced by the environment3%-4
and, in general, may be written as

H(t) =wo,+B)h- 0. (D

In this paper, we analyze in detail the case in which the
interaction is purely transverse, i.e., when A, = 0. The topic
is relevant for any system where excitation and relaxation
processes take place, e.g., for energy relaxation,*'*> or
motional averaging® in superconducting qubits, charge noise
in semiconductor qubits,** and spin-% particles immersed in a
generic magnetic field.*>46

We address the dynamics of single- and two-qubit
systems under the effect of RTN, a non-Gaussian kind
of noise, and provide an exact analytic description of the
resulting decoherence process. We also address numerically
the dynamics induced by Gaussian noise. We analyze
the evolution of quantum correlations, evaluate the non-
Markovianity of the dynamical map, and compare the effects
of the two kinds of noise, looking for features that depend
on the sole spectrum of the noise and not on higher-order
correlations.

Our results show that the effects of non-Gaussian noise
cannot be trivially mapped to that of Gaussian noise and vice
versa, i.e., the spectrum alone is not enough to summarize the
noise effects: the different statistics of the two noises under
study affect the dynamics of the system. On the other hand,
the dynamics under the effect of one kind of noise may be
effectively simulated, i.e., with high quantum fidelity, by the
other one with a suitable choice of the noise parameters. This
choice, however, does depend on the initial state of the system
and thus no general relation between the parameters of the
two noises may be established.

Besides, we have identified, for both kinds of noise,
two different working regimes. In the first one, when the
spectral width of the noise y is small, compared to the
coupling energy, quantum correlations oscillate heavily and
there are sudden deaths and rebirths of entanglement. This
is the so-called slow-noise or strong-coupling regime.*® The
frequency of oscillations depends on w and is doubled if
the two qubits are affected by a common environment. In
the second regime (fast-noise or weak-coupling regime) the
correlations decay to zero, with sudden death of entanglement
and with oscillations. The time constant of the decay is
roughly inversely proportional to vy, i.e., the decay is slower
for very fast noise. The different features of the dynamics,
however, cannot be linked to a transition in the structure of the
dynamical map, which is non-Markovian in the full parameter
range, i.e., for either fast or slow noise.

The structure of the paper is as follows: in Section II,
we present the model and introduce the measures of quantum
correlations and non-Markovianity. In Section III, we present
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the solution of the dynamics of the system, whereas in
Section IV, we study the evolution of quantum correlations
and compare the dynamics induced by the two kinds of
noise. In Section V, we discuss the non-Markovianity of the
dynamical maps, whereas Section VI, closes the paper with
some concluding remarks.

Il. THE MODEL

We consider a qubit characterized by the energy splitting
w, and affected by a transverse noise. The Hamiltonian is

H(t) = wo, + AB(t)oy, 2)

where we assume without loss of generality that the noise acts
in the x direction. The evolution operator for the Hamiltonian
in Eq. (2), for a given realization of the stochastic process
B(1), is

U(t) =T exp (—i /I'H(t')dt’) , 3)
0

where 7 is the time-ordering operator, which is required
because the Hamiltonian does not commute with itself at
different times. If the qubit is initially prepared in the state
described by the density matrix pg, the density matrix at the
time ¢ is

p(t) = (U0poU (1)), “

where (-) denotes the average over all possible realizations of
the stochastic process B(t). Equation (4) describes a convex
combination of unitary operators, which itself provides the
Kraus decomposition of the corresponding CPT map.

We are also going to consider a system of two
identical, non-interacting qubits each interacting with a noisy
environment, in order to study the evolution of quantum
correlations between the qubits. The two-qubit Hamiltonian
reads

H(t) = Hi(t) @ + 1) ® Ho2), (5)

where H;(¢) have the form of Eq. (2) and the B;(r) may
be correlated (if the two qubits interact with a common
environment) or completely uncorrelated (in the case in which
the two qubits are affected by independent environments, IE).
For simplicity, we will consider Bj(t) = By(¢) in the common
environment (CE) case.

A Gaussian process is fully characterized by its second
order statistics, i.e., by its mean u and its autocorrelation
function K, in formula

u(@) = (B(1)), (6)

K(t,t") = (B(t)B(t)) . @)

In this work, we employ the Ornstein-Uhlenbeck (OU)
process?’™ as a paradigmatic stationary stochastic process

with finite-time correlations. We set u(f) = 0 and assume the
following autocorrelation function:

KOU(t _ [/) — e—2)/|t—z/|’ (8)
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which corresponds to a Lorentzian spectrum

4y
4y? + w2’
with spectral width 2y. For y — oo, K(r —1t') ~ 6(¢t — t'),
i.e., the OU process reduces to white noise.

RTN noise is produced by bistable fluctuators, i.e., sys-
tems where a quantity flips between two values with a
certain switching rate, such as a resistance switching between
two discrete values, charges jumping between two different
locations, or electrons that flip their spin. In order to describe
classical environment inducing RTN, the quantity B(¢) in
Eq. (2) should flip randomly between the values +1 with a
given switching rate y. This kind of noise is also characterized
by an exponentially decaying autocorrelation function

S(w) = 9

Kgon(t — 1) = e 2117 (10)

and by a Lorentzian spectrum S(w), Eq. (9), i.e., the OU
and RTN processes have exactly the same autocorrelation
function. The latter, however, being a non-Gaussian process,
cannot be fully described by means of its first and second
moments.

For either kind of noise, the model exhibits a natural
scaling property in terms of the coupling, which may be
exploited in order to work with dimensionless quantities.
Indeed, we rescale all the quantities in terms of the coupling
A by performing the following substitutions:

t—> A, yovy/A, w-o w/ld

The Hamiltonian, Eq. (2), now reads

H(t) = wo, + B(t)oy. (11

A. Quantum correlations

In the following, we will study the dynamics of quantum
correlations by evaluating negativity’® as a measure of
entanglement and using entropy>! to define quantum discord.
Negativity is defined as

=23 a;

i

) (12)

where A; are the negative eigenvalues of the partial transpose
of the density matrix with respect to either of the qubits. We
remark that the negativity of the partial transpose is necessary
and sufficient for two-qubit systems to be entangled.

Quantum discord is defined as the difference between the
total correlations and the classical correlations between the
two subsystems,

D=71-C. (13)

Total correlations are given by the quantum mutual
information 7 = S(pa) + S(pg) — S(p), where S is the von
Neumann entropy, and p4 and ppg are the reduced density
matrices of the two subsystems. Classical correlations,
induced by a measurement on one of the two subsystems, are
given by C = maxg,}[S(pa) — S(pl{ B })], where S(p|{ Bc})
is the conditional entropy of the state of the two-qubit system
with respect to the outcome of the measurement {Bj} on
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system B, and the maximization is carried over all possible
projective measurements.

The evaluation of quantum discord is in general a difficult
task, as it involves an optimization procedure. For two-qubit
systems, an analytic result was found by Luo’? for a subset of
the state space, i.e., for those states that have maximally mixed
marginals. As we are going to show below, if the initial state
of the system belongs to this subset, the dynamics induced by
transverse noise is limited to this subset, so we will employ
Luo’s formula in the following.

B. Non-Markovianity measures

The concept of non-Markovianity for quantum dynamical
maps is related to the concept of divisibility, i.e., if ®(t,,1¢) is
the operator describing the quantum map from time 7 to #,,
the map is divisible if it is completely positive (CP) and

D(ta,10) = D(t2,11)D(t1,10), (14)

for every intermediate time o < f; < t;. We characterize
the non-Markovianity of the quantum map by considering
two measures: the entanglement-based Rivas-Huelga-Plenio
(RHP) measure’ and the Breuer-Laine-Piilo (BLP) measure,>*
based on the time evolution of the trace distance. These two
measures define sufficient conditions for the dynamical map to
be non-Markovian. Here, we briefly review the two measures.

1. RHP measure

We consider the quantum system of interest, S, and an
identical ancillary system A. We prepare the two system in
the maximally entangled state

&
-5 , 15
) VN & [n)sln) 4 (15)

where |n) are the vectors of a basis of the Hilbert space
of the system. We now let the system S interact with the
environment, while the ancilla A is left untouched, and
evaluate the entanglement of the state |¥(¢)). Since any
entanglement measure is a monotone under local CP maps,
any increase of an entanglement measure with time denotes
that the dynamical map fails to be divisible, i.e., that it is
non-Markovian. The RHP is defined quantitatively as

FdE(t
Nrup =/ as()
to

dt
where E(¢) is any entanglement measure (in our case, the
negativity). In fact, Ref. 53 introduces another measure that is
a necessary and sufficient condition for the non-Markovianity
of the quantum map, based on the Choi-Jamiolkowski
isomorphism. However, to compute this measure, one needs
to know the structural form of the dynamical map between
any two time instants, which is not the case for our processes.

, (16)

2. BLP measure

The BLP measure is based on the fact that the trace
distance, D(p1, p2) = %Tr [\/(pl - p2)2], is contractive for CP
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maps, so if the quantum map is divisible, then for any pair
of initial states of the system the trace distance between the
evolved states is a monotonically decreasing function of time.
If in a certain time interval the trace distance increases, we can
say that the CP map under investigation is non-Markovian,
because the map fails to be divisible in that interval of time.
The BLP measure is computed by integrating with respect
to time the positive part of the time derivative of the trace
distance and then optimizing the result over all possible pairs
of states:

14
NagrLp = max/ [—D(I,Pl,,oz)] dr. 17
orp2) Jyy LAt +

Calculating the BLP measure may be challenging in
general, as the optimization over all possible pairs of states
is required. For qubits however, the optimization can be
restricted to the surface of the Bloch sphere,® leaving only
the polar and azimuth angles as parameters to optimize over.

lll. SOLUTION OF THE DYNAMICS

In order to obtain a solution for p(¢) in Eq. (4), one should
at first find an explicit expression for the evolution operator
U(t) in Eq. (3) and then calculate the expected value over all
possible realizations of the stochastic process.

A. Gaussian noise: Numerical simulation

For Gaussian noise an explicit expression for U(z) is only
possible by means of approximations such as the Dyson series
or the Magnus expansion,’® which are valid in a neighborhood
of the initial time. A cumulant expansion has been also
introduced and discussed in the single-qubit case.**>’-> The
lack of an exact analytic solution is due to the fact that the
time-dependent Hamiltonian does not commute with itself
at different times and we cannot find an explicit expression
for the time-ordered exponential. An analytic result can be
obtained in the approximation of a quasi-static external field,
i.e., when the stochastic process is weakly dependent on
time and the two-time commutator for the Hamiltonian is
negligible.*’

The dynamics of the system may be studied numerically
using different approaches.***® We proceed in a straightfor-
ward way by numerical evaluation of the unitary propagator
upon discretizing the time interval [0,7] in n steps of length
At. At should be small enough for H(¢) to be approximately
constant in the time interval. The evolution operator from
t; to t;4 for a specific realization of the process B(t) reads
Ui, 1, = exp[—iH(t;)At]. The density operator of the qubit is
then given by

p(t) = (Up, 1+ UopoUf -2 U Y. (18)

The expected value is obtained from a sufficiently large
number N of randomly generated realizations of the noise.
This method converges as N increases. We have checked that
the standard deviation decreases as 1/VN. Typical values for
N are of the order of 10° to 10°, with the maximum relative
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error on an element of the density matrix of the order of
1073/10~* after 100 evolution steps.

B. Analytic solution for the RTN

Analytic solutions for a qubit interacting with RTN with
an arbitrary direction are known.®%-%2 By following Ref. 60,
we consider the time evolution of the Bloch vector n(r), which
can be written by means of a transfer matrix 7" applied to the
initial Bloch vector n(0) as

n() = Tn(0) = (T,,, -+ Ty, ) n(0), (19)

where Ty, is the 3 x 3 transfer matrix from the time instant ¢;
to time ?,,, when the fluctuator is in the state s; = +1. 7, has
the following expression:

Ty, = exp[-2iAt(wL, + s;L,)], (20)

where L; are the generators of SO(3), (L;)jx = —i€;jk,
satisfying the commutation relations [L;,L;] =i Y €;jxLk.
The transfer matrix for a n-step evolution may be written as

T = (xf|F"|if), (21)

where |xy) = %(H) +|=)), lig) is the initial distribution of
the states of the fluctuator (in our case the two states are
equiprobable, i) = %(H) +|-))) and I is the 6 X 6 matrix

I'=[(1-vyA) + yAto] @ I3
X exp[—2iAt(wL, 1, + Lyo3)], (22)

where X denotes a product between 6 X 6 matrices. The partial
inner product in Eq. (21) is done in the two degrees of freedom
of the fluctuator and the result is a 3 X 3 matrix.

In the continuous limit A — 0, Eq. (21) becomes

T = (xg|exp(=tP)liy), (23)
where
P=(’)/—’YO'])®H3—2Z'U)]IQ®LZ—2i0’3®Lx. (24)

The problem is now cast into the diagonalization of the 6 X 6
matrix P. The eigenvalues y;, n;, i = 1,2,3, of P satisfy the
two equations

142y + 401 + wHu + 8wy =0, (25)
r]3 + 47772 +4(1 + 72 + wz)n +8y =0. (26)

We notice that we can linearly transform one equation into
the other by substituting v = —u — 2y. The inverse of the real
parts of these eigenvalues gives the decay rate of the Bloch
vector components, while the inverse of the imaginary parts
gives the periods of oscillations. The matrix elements of T are
reported in Appendix for reference.

In the limiting cases of y much greater or smaller than
the other two parameters, we are able to obtain analytic
expressions for the eigenvalues. When y > w, i.e., we are in
the fast-noise regime, we find that the greatest decay time is

T =y, 27

while the oscillation frequency is w, independently of y. In
the opposite limiting case, v < w, we find that the longest
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decay time is

Y11 + w?) ifw>1/V2
T=11 R (28)
Ey-‘(1+1/w2) ifw<1/V2

while the oscillation frequency is instead V1 + w2 In the
intermediate region, by studying the discriminant of Eq. (25),
we find that for w < 1/(2V2) there is a region of values of
v for which the eigenvalues are all real, i.e., there are no
oscillations. This region, shown in Fig. 1, is bounded from
below and above, respectively, by the two positive solutions
v1,2 of

40%* + (8w* — 200% — 1)y? + 4(w? + 1) = 0. (29)

For w - 0, y1 = 2 and y, — oo, so we recover the
transition between fast and slow RTN that is visible in the
dephasing case.” In fact, by letting w — 0 we are implying
that the energy gap between the levels of the qubit is far away
from the typical frequencies of the noise. A sharp transition
between the two regimes is not visible by looking at the time
evolution of the Bloch components because the imaginary
components tend to zero as the parameters get close to the
region, and thus the period of oscillation becomes much larger
than the characteristic decay time.

In Fig. 2 we show the dynamical trajectories in the Bloch
sphere for two different initial preparations. The asymptotic
state is the maximally mixed state, with Bloch vector (0,0,0).

C. Transfer matrix for the two-qubit case

The transfer matrix method can be generalized to the two-
qubit dynamics for both the relevant, and opposed, scenarios
of independent environments and of a common environment.
The generalization of the Bloch vector to the two-qubit case
is a 15-component vector defined as follows:

nm, = (a,b,ci1,c12,¢13, 21, €22, €23, €31, €32, €33),  (30)

where a = (a1,as,a3), b = (b1, b2, b3), and ¢;; are the elements
of a 3 x 3 matrix C. The two-qubit density matrix may be

|
|
|
|
|
|
|
|
|
|
T
|
|
|
|

0 1 1 1 1 ) w
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 1. Shaded region: values of the parameters w and y for which the
eigenvalues of the operator P, i.e., the solutions of Egs. (25) and (26) are all
real, that is, there are no oscillating terms in the transfer matrix. The region
is bounded by the solutions of Eq. (29), which meet at the threshold value
 =(2V2)"!, highlighted by the vertical dashed line. For w — 0, we recover
the dephasing case, with a transition between the two regimes at y = 2.
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FIG. 2. Dynamical trajectories in the Bloch sphere for a single qubit affected
by RTN with ¥ =1/2 and w =1 and for different initial preparations. The
initial state is represented by the Bloch vector %(—1, 1,1) for the blue
trajectory and by %(1,0, —1) for the orange trajectory. The asymptotic state
is the maximally mixed state, with Bloch vector (0, 0,0).

written as

3
p=-14+ Z(ai0'1®ﬂz+bil[2®0'i)

i=1

Bl
SN

3
1
+—Zcij0'i®0'j, (3D
4 £
i,j=1
where a and b are the Bloch vectors of the marginals, i.e., of
p1 = Try(p) and p, = Tri(p), respectively. The action of a
unitary transformation on p corresponds to the action of a real
orthogonal transfer matrix 7, on n,. Let us now derive the
transfer matrix for common and independent environments.

1. Common environment

In the case of a common environment, one can easily see
that, when the common fluctuator is in the state s; = +1, the
two-qubit transfer matrix has the following block-diagonal
form:

T, 0 0
0 T, 0 , (32)
0 0 T;®T

Ty(s;) =

where T, was defined in Eq. (20). If we extend the derivation
done in Subsection III B for a single qubit, we obtain the
following 30 x 30 matrix:

PSE = (YL —yo) © Iis = 2i(wlh ® O, + 03 ® 0,), (33)

where the Q;s, with i = x,y,z, are 15 x 15 block-diagonal
matrices

Li 0 0

0 L; 0 . (34)
0 0 Lioh+L:®L;

Q=

The ensemble-averaged transfer matrix for n; is then

T3 = (x7| exp(—tPy)li), (35)
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where |if) = |x7) = \/%(|+) + |—)) and the partial inner product
is again done on the two degrees of freedom of the fluctuator.
An analytic expression for T2CE cannot be obtained explicitly
because we first need to calculate the exponential of P,
i.e., diagonalize it. However, the exponentiation can be done
easily with arbitrary precision once we substitute numerical
values.

2. Independent environments

In the case of independent environments, the transfer
matrix is simply

T O 0
m=lo 7 o | (36)
0 0 T®T

where T is defined in Eq. (23). The analytic solution for
the one- and two-qubit dynamics under RTN noise has been
compared to the numerical simulations, showing excellent
agreement.

D. Properties of the dynamical map
1. Maximally mixed marginals

Equation (36) shows that the two-qubit transfer matrix in
the case of independent environments is block diagonal. The
same can be seen for the matrix TZCE. This means that if the
initial block vector has a = b = 0, i.e., the state has maximally
mixed marginals, then they will be left untouched by the
dynamics. This allows us to apply Luo analytic formula® for
quantum discord to the evolved state. Although we do not
have an analytic expression for the dynamics in case of other
kinds of noise, such as Gaussian noise, we can see that the
transfer matrix for an infinitesimal time step is block diagonal
as well. Thus, in general, we can restrict to the set of states
with maximally mixed marginals and use Luo formula for the
evaluation of quantum discord.

Upon restricting our choice of the initial state to Bell-
state mixtures, we are also able to picture the trajectory of the
system. In view of the spectral decomposition theorem, the
matrix C of Eq. (30), if symmetrical, can be diagonalized by
means of an orthogonal matrix, to which correspond two local
unitary operations on the two qubits.” It is straightforward
to check that Bell-state mixtures have a symmetric C matrix.
One can also see analytically that the transfer matrix for
the RTN noise with independent environments, Eq. (36),
preserves the symmetric nature of the matrix. The same can
be seen numerically for T2CE and also for Gaussian noise.
Since all measures of quantum correlations are invariant
under local unitary operations, we can always cast C into its
diagonal form and represent the two-qubit states with mixed
marginals in a tridimensional space where the coordinates
are the eigenvalues of C. In this space, the four Bell states
occupy the vertexes of a tetrahedron, as shown in Figs. 3
and 4. In the figures, the octahedron of separable Bell-state
mixtures is highlighted. The zero-discord states lie on the
axes.

J. Chem. Phys. 144, 024113 (2016)

FIG. 3. Trajectories of a two-qubit system in the Bell-state tetrahedron,
starting from different initial states, under the influence of RTN (above) and
OU noise (below) with y =0.1 (left) and y =1 (right), w = 1. The dark-blue
octahedron is the set of separable states. We can see that the trajectories
converge to the state in the origin, i.e., the maximally mixed state I/4. The
trajectories, however, get more convoluted for smaller values of y, and, for
the RTN noise, one can see that they get in and out of the set of separable
states, and this corresponds to the sudden death and rebirth of entanglement.

2. Stable states of the dynamics

For the single-qubit RTN map, the only fixed point is the
maximally mixed state (with the Bloch vector 6). This can be
seen from the fact that none of the eigenvalues of P is zero
and thus the transfer matrix does not have one as eigenvalue.
Figure 2 shows two trajectories, both converging to the center
of the Bloch sphere. The same generalizes immediately to
the two-qubit case with independent environments. The stable
state is the maximally mixed state p = I/4. In the CE case,
the P, matrix has the eigenvalue zero. The corresponding
eigenvector is the generalized Bloch vector with a=b =0

FIG. 4. Trajectories of the system in the Bell-state tetrahedron when the
qubits interact with a RTN, common environment, w =1 for y =1/2 (left)
and y =5 (right). The solid green line denotes the set of Werner states, which
are the only stable states. The trajectories lie on planes that are orthogonal to
the green line. Similar plots are obtained for Gaussian noise.
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and (c;;) = I3. This means that all Werner states of the form
py =plO WO [+ (1-pI/4,  pel0,1], (37

where |®7) = 1/v2(]01) — |10)) is the Bell singlet state, are
stationary states of the dynamics. This can also be seen because
they satisfy the relation plv,v =UoU )p;,V(U T® UT) for every
local unitary U and the CPT map induced by a common
reservoir is a convex combination of unitary maps of the form
U ® U. Being the zero eigenvalue of P, non-degenerate, these
are the only stable states of the map. The same results are
seen numerically for the Gaussian noise, although in this case
we do not have an analytic expression for the transfer matrix.

IV. COMPARISON OF THE DYNAMICS
IN THE PRESENCE OF GAUSSIAN
AND NON-GAUSSIAN NOISE

In this section, we compare the dynamics induced by
Gaussian and non-Gaussian RTN noise and discuss their
effects on the decoherence of quantum correlations of a
two-qubit system. We start by noticing that the spectrum of
the noise (or equivalently, its autocorrelation function) is in
general not enough to describe the effect of the noise on the
qubit, i.e., the dynamics of the qubit under the influence of
OU noise and RTN with the same spectral width and with the
same coupling may be, in general, rather different.

In Fig. 5 we show how the negativity and quantum discord
evolve in time for the two models of noise for different values
of the spectral width . The initial state is a pure Bell state.
For both noises, we can identify two working regimes. In
the first one, for small y (slow noise), quantum correlations
oscillate heavily and there are sudden deaths and rebirths of
entanglement. This can be seen in the top left diagram of Fig. 3:
the trajectory of the system repeatedly goes in and out the
octahedron of separable states. The frequency of oscillations
depends on w and is doubled if the two qubits are affected by a

1.0, 1.0}
0.8 0.8
06} T o06f
& [
04! 041f)
02| 02}
| | ||
0
1.0
\.
0.8 '\
06] | N
D |
04f || -

(a) RTN
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common environment. In the second regime (large v, i.e., fast
noise), the correlations decay to zero, with sudden death of
entanglement and with oscillations. The time constant of the
decay is roughly inversely proportional to v, i.e., the decay is
slower for very fast noise. In the common-environment case,
we notice that the discord does not vanish in time. The reason
is that the stable state of the dynamics does not lie in the set
of states with zero discord (cf. Fig. 4).

In order to compare quantitatively the dynamics of the
system in the presence of the two kind of noise, we introduce
the fidelity complement

F (1) = 1 = F (pou(t), pren(®)), (38)

where
F (pou(?), prin(?)) = Tr [\/ vV pou(®) pren(®)v pou(t) | (39)

is the quantum fidelity®* between the state of a single qubit
affected by RTN and the state of a qubit affected by OU,
assuming that the two kinds of noise have the same coupling
and spectral width. When this quantity is zero, the two states
are identical. In the left panel of Fig. 6, we show the fidelity
complement as a function of time. We can see that F (1) is not
vanishing when the two noises have the same autocorrelation
time. However, upon changing y, we can reduce its value of
three orders of magnitude.

Notice that there is an initial regime in which the fidelity
complement increases and a second regime in which it
vanishes, as the system tends to its asymptotic maximally
mixed state, and hence there is a global maximum of the
fidelity complement, max[# ()], which depends on Y.
This maximum can be used as a figure of merit of how good
the simulation of Gaussian noise is. In the right panel, we
show that max[7 (r)] can be driven very close to zero by
a suitable choice of the parameter y. It should be noticed,
however, that the optimal value of the parameter does depend

1.0 [’\ . 1.0 k..
08 "~ 080 Noo

| ’\~ 1] ’\_\
0.6 S 0.6 1} ‘s

| .\~ ¥ \.\-
04t \.\_\ 0.4 ».‘[\ -
0.2} 02tV /\

L AV

0 2 4 6 8 10 0 2 4 6 8 10
1.0 1.0
0.8} "o 0.8 =
0.6 - o6l

T 1 AN

0.4 [ teeal 0.4} Nes

0.2 \4 N

(b) OU

FIG. 5. Negativity & (above) and quantum discord D (below) as functions of time for a two-qubit system initially prepared in the Bell state
[¥*) = 1/v2(]00) +]11)) subject to (a) RTN and (b) OU noise, with independent (left) and common (right) environment (w = 1). The blue solid line is for
v = 1072, the yellow dashed one is for y = 107!, the dotted green is for y = 1 and the orange dot-dashed line for y = 100. For both noises, for smaller values of ,
quantum correlations oscillate heavily, with sudden deaths and rebirths of entanglement. The effect is more evident for the RTN. The frequency of oscillations
doubles in the common-environment case. For higher values of y, the correlations decay, possibly with small oscillations, and entanglement dies suddenly.
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FIG. 6. Left panel: Logarithm of the fidelity complement ¥ () between the state of a qubit (w = 1) affected by OU noise (with spectral width yoy = 1) and RTN
as a function of (rescaled) time, for different values of yrrn: yrTN =1 (s0lid blue), yrrn = 1.5 (dashed orange), yrTn =2 (dotted green). The qubit is initially
prepared in the state n=(1,0,0). We notice that for yrrn = 1, i.e., when the two noises have the same spectrum, the dynamics is different. By tuning ygrrn, the
fidelity between the evolved states in the two scenarios may be increased by two orders of magnitude. Right panel: the maximum of the fidelity complement
7-:(t) as a function of yryN for you = 1, initial state set to n=(1,0,0) (solid blue), n = (0, 1,0) (dashed yellow), n= (0,0, 1) (dotted green), and n= (1,0, 1)/\/5
(dot-dashed orange). We can see that the quality of the simulation depends heavily on the initial state but that by a suitable choice of yrTn We can obtain a

fidelity which is above 0.999 throughout the evolution of the qubit.

on the frequency of the qubit, on the parameters of the OU
noise and also on the initial state of the qubit, as it is apparent
upon looking at the right panel of Fig. 6. We thus conclude
that the effects of non-Gaussian noise on qubits cannot be
trivially mapped to that of Gaussian noise and vice versa, as
that would require that the optimal value of the parameter be
independent of the initial state of the qubit(s). This means that
the spectrum alone is not enough to characterize the effect of
the noise on the qubit systems. On the other hand, the effect of
the two noises is qualitatively similar and the dynamics under
the effect of one kind of noise may be quantitatively simulated
with high (quantum) fidelity with the other kind of noise by
suitably tuning the parameters.

V. COMPARISON OF NON-MARKOVIANITY
MEASURES

In this section, we evaluate the trace-distance-based BLP
measure and the entanglement-based RHP measure for the
single-qubit map with RTN noise. As a comparison, we

0.50 1 5 10

1074 ! L L
0.01 0.05 0.10

recall that the dephasing map with RTN noise?® is Markovian
in the regime of fast noise, i.e., when y > 2, while it is
non-Markovian in the other regime (slow noise).

For the BLP measure, our numerical results show that
the pair of optimal states lies on the equator of the Bloch
sphere (i.e., n, = 0), independently on the parameters of the
noise. A numerical optimization over the azimuth angle is
still in order for computing the measure. The optimal angle
depends on the two parameters y and w and the dependence is
sometimes not smooth. We found that the two measures are in
disagreement, i.e., the BLP measure is always non-zero and is
vanishing for y — oo, whereas the RHP measure is vanishing
for y greater than a certain threshold. This is shown in Fig. 7,
where the two measures are calculated for a range of values of
the switching rate y and for different values of w. From Fig. 7
we can see that both measures depend approximately on 1/y
at small y. While the RHP measure suddenly goes to zero for
v above a certain threshold value, which depends on w, the
BLP measure only vanishes asymptotically. The BLP measure
appears to be independent of w at small values of y. We recall

D
1.0 ~\
"ot \
0.6 | \
04| TN
0.2 +
1 1 1 1 1 t
0 2 4 6 8 10

FIG. 7. Left panel: Log-log plot of the non-Markovianity measures Nppp (solid) and Nrpp (dashed) as functions of the spectral width y for a qubit subjected to
RTN noise, for w =1 (blue), w = (2\/5)‘1 (yellow), w =0.1 (green), and w =0.01 (orange). The two measures decrease monotonically for increasing y. There
is a threshold value for y (that depends on w) above which the RHP measure is zero. The BLP measure, instead, is always non-zero and vanishes for y — oo,
i.e., when K (7 —t’) ~ §(¢ —t’). For small y, both measures are proportional to 1/y. For small w (orange line), we recover the results obtained for the dephasing,
with both measures vanishing at y =2 (vertical dashed line). Right panel: Trace distance D between the pairs of states that maximize Eq. (17) as a function of
time for w =1 and y =0.1 (dotted green), y = 1 (dashed orange), y = 10 (solid blue). We see that the trace distance oscillates in time: in the intervals in which it
increases the map is not divisible. The oscillations get smaller for higher y: they are barely noticeable in the plot for y = 10.



024113-9 M. A. C. Rossi and M. G. A. Paris

that the two measures only pose a sufficient condition for the
dynamical map to be non-divisible, i.e., non-Markovian. The
RHP measure fails to capture the non-Markovian behavior
of the map because the trajectory quickly enters the set of
separable states, as one can see from Fig. 3. On the other
hand, the BLP measure is always non-zero, meaning that the
map is non-Markovian, unless we let w — 0. In this case, we
approach the dephasing limit, and the BLP and RHP measures
coincide and vanish at y = 2.2 This is shown in the left
panel of Fig. 7 for w = 0.01 (green line). For non-vanishing
w, the non-Markovianity measure vanishes for high values
of y, as one can expect, since the stochastic process that
models the noise tends to the Markovian limit, i.e., when
K@—1t)~6(t-1).

In the right panel of Fig. 7, we show, for different values
of vy, the behavior of the trace distance D(¢) between the
pair of states that maximize the integral in Eq. (17). For
smaller values of vy, the oscillations are very pronounced.
When 7y increases, the oscillations become less appreciable
(D(t) seems to decay monotonically in the plot for y = 10,
solid blue line), but derivative of the trace distance is always
positive in the first oscillation.

Given the need to optimize over an angle, and the need
to reach very long evolution times in order to capture all
the oscillations in the trace distance, evaluating the BLP
measure for the Gaussian noise is practically unfeasible.
However, initial pairs of states can be found for which
the trace distance do not decay monotonically for a very
wide range of values of vy, and this allows us to conclude
that also Gaussian transverse noise with a Lorentzian
spectrum induces non-Markovian quantum dynamics on
qubits.

VI. CONCLUSIONS

In this paper, we have addressed the dynamics of
open single- and two-qubit systems evolving in a classical
fluctuating environment described either by Gaussian or non-
Gaussian transverse noise, i.e., characterized by a noise
spectrum with typical frequencies that are close to the
characteristic frequency of the qubit(s). In the two-qubit case,
we have considered both the interactions with separate and
common environments.

We have analyzed in detail the properties of the
quantum map and the dynamics of quantum correlations,
also comparing the effects of the two kinds of noise and
discussing the stable states of the dynamics.

Upon studying in detail the evolution of an initially
maximally entangled state we have identified, for both kinds

- e [pips (1 = 20%) — 20% (292 + Yz — 40?)]
1=
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of noise, two different working regimes. In the first one,
when the spectral width of the noise y is small, quantum
correlations oscillate heavily and there are sudden deaths
and rebirths of entanglement. The frequency of oscillations
depends on w and is doubled if the two qubits are affected by a
common environment. In the second regime, the correlations
decay to zero, with sudden death of entanglement and with
oscillations. The time constant of the decay is roughly
inversely proportional to vy, i.e., the decay is slower for
very fast noise. In the common-environment case, the discord
does not vanish in time. The reason is that the stable state
of the dynamics does not lie in the set of states with zero
discord.

Our results indicate that non-Gaussian noise leads to
peculiar features that are not present in the Gaussian noise
case, in particular, in the slow-noise regime; however, there
are regions of the parameter space in which the two noises
produce very similar effects on the dynamics of the qubit.
This means that while in general the spectrum alone is
not enough to characterize the effect of the noise, the
dynamics under the effect of one kind of noise may be
simulated with high quantum fidelity with the other kind of
noise by suitably tuning the parameters. This correspondence
may in turn be exploited to obtain analytic or semi-
analytic results for otherwise intractable kind of (Gaussian)
spectrum.

Finally, we have shown that the quantum map is always
non-Markovian (contrarily to what happens for a dephasing
dynamics in the presence of the same kind of noise) and we
quantified the non-Markovianity with the BLP measure for
the RTN. We also highlighted the discrepancy between the
BLP measure and the RHP measure based on entanglement,
which fails to capture the non-Markovianity of the dynamical
map for a region of the parameters.
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APPENDIX: TRANSFER MATRIX ELEMENTS

Here, we write explicitly the nonzero elements of the
3 x 3 transfer matrix 7 of Eq. (23). Here, y; and 5; are the
solutions of Egs. (25) and (26)

e3[4 — 4% (2 + 1) + 2yps (1 = 30w?) + 15 (1 — 207)]

41 - w? (292 + )| + 2y (1 - 6w?) + 123 (1 = 5w?)
e {2y p30? + o [2yw? + w3 (1 - 20?)] + 8w*}

41 - w?(2y* + )] + 2ypu3 (1 — 6w?) + 13 (1 - 502

41 - (2y2 + )| + 2y (1 - 6w2) + p3 (1 - 5w2)’

(AD)
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o wer?! [4w? (3y + p2) — y 11 3] wer1 [4w? (us — y) + pa (Y3 + 40?)]
" ! 41 - (2y2 + )| + 2y (1 - 6w?) + 5 (1 = 5w?)  8y?w? —4 = 2y (1 - 6w?) — 13 (1 — 5w?) + 4w*
werd [z (292 + yus — 4w?) + 4y (1 - 207)] A2)
8y2w? — 4 = 2y 3 (1 — 6w?) — k2 (1 - Sw?) + 4wt
) e [y (y — ps) + yps + 4 (1 + w?)] et (272 + ypy — 4 + s — 4w?)
T22 = 2)/0.)

(2y + p3) e

y{4[1-w?2y2 + )] + 2y (1 - 602) + 2 (1 = 502} ¥ [8y%w? —4 = 2y (1 — 6w?) — 3 (1 = 5w?) + 4w?|

41+ 2% (1 =y + w*] + 2yps (1 - 20w?) + y%(l + w?)

(81 —n1m3) 7

(A3)

(8 — nom3) M

T33 = 2w2

e [4yns +4(y? — 1 + w?) + 1]

+
8(y2w? — 1+ w*) — 2132y (1 — 4w?) + 13 (1 = 5w?)]
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