

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. � 2015 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 1026–1088

OPERATOR PRECEDENCE LANGUAGES: THEIR
AUTOMATA-THEORETIC AND LOGIC CHARACTERIZATION∗

VIOLETTA LONATI† , DINO MANDRIOLI‡ , FEDERICA PANELLA‡ , AND

MATTEO PRADELLA§

Abstract. Operator precedence languages were introduced half a century ago by Robert Floyd
to support deterministic and efficient parsing of context-free languages. Recently, we renewed our
interest in this class of languages thanks to a few distinguishing properties that make them attractive
for exploiting various modern technologies. Precisely, their local parsability enables parallel and
incremental parsing, whereas their closure properties make them amenable to automatic verification
techniques, including model checking. In this paper we provide a fairly complete theory of this class of
languages: we introduce a class of automata with the same recognizing power as the generative power
of their grammars; we provide a characterization of their sentences in terms of monadic second-order
logic as has been done in previous literature for more restricted language classes such as regular,
parenthesis, and input-driven ones; we investigate preserved and lost properties when extending the
language sentences from finite length to infinite length (ω-languages). As a result, we obtain a class
of languages that enjoys many of the nice properties of regular languages (closure and decidability
properties, logic characterization) but is considerably larger than other families—typically parenthesis
and input-driven ones—with the same properties, covering “almost” all deterministic languages.

Key words. operator precedence, visibly pushdown languages, monadic second-order logic,
ω-languages

AMS subject classifications. 03D05, 68Q45

DOI. 10.1137/140978818

Introduction. Operator precedence grammars (OPGs) and languages (OPLs)
certainly deserve an important place in the history of formal languages and compilers.
They were invented by Floyd [23] with the major motivation of enabling efficient,
deterministic parsing of programming languages. In fact Floyd’s intuition was inspired
by arithmetic expressions whose structure is determined either by explicit parentheses
or by the conventional, “hidden” precedence of multiplicative operators over additive
ones. By generalizing this observation Floyd defined three basic relations between
terminal symbols, namely, yields and takes precedence and equal in precedence (resp.,
denoted by symbols �, �, =̇), in such a way that the right-hand side (r.h.s.) of an
OPG rule is enclosed within a pair �, �, and =̇ holds between consecutive terminal
symbols thereof (in OPGs nonterminal symbols are “transparent,” i.e., irrelevant,
w.r.t. the precedence relations [23]).

Subsequently, under the main motivation of grammar inference, it was shown that,
once an operator precedence matrix (OPM) is given such that at most one relation
holds between any two terminal characters, the family of OPLs sharing the given
OPM is a Boolean algebra [19]. This result somewhat generalizes closure properties
enjoyed by regular languages and by context-free (CF) languages whose structure, i.e.,

∗Received by the editors July 22, 2014; accepted for publication (in revised form) May 18, 2015;
published electronically August 6, 2015. Preliminary versions of some results presented in this paper
appeared in [28, 29, 34]. This work was partially supported by MIUR project PRIN 2010LYA9RH-
006.

http://www.siam.org/journals/sicomp/44-4/97881.html
†DI, Università degli Studi di Milano, Milano 20133, Italy (lonati@di.unimi.it).
‡DEIB, Politecnico di Milano, Milano 20133, Italy (dino.mandrioli@polimi.it, federica.panella@

polimi.it).
§DEIB, Politecnico di Milano, Milano 20133, Italy and CNR IEIIT, Torino, Italy (matteo.

pradella@polimi.it).
1026

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sicomp/44-4/97881.html
mailto:lonati@di.unimi.it
mailto:dino.mandrioli@polimi.it
mailto:federica.panella@polimi.it
mailto:federica.panella@polimi.it
mailto:matteo.pradella@polimi.it
mailto:matteo.pradella@polimi.it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1027

the syntax tree, is immediately visible in the terminal sentences, such as parenthesis
languages [31] and tree-automata languages [11]. Such interesting algebraic properties
enabled original inference algorithms, such as those proposed in [20]. After these
initial results the theoretical investigation of OPLs was almost abandoned, most likely
because of the advent of more general grammars, mainly the left-to-right rightmost
(LR) ones [26], which support parsing algorithms for the whole class of deterministic
CF languages. Nevertheless OPG-based parsing remains of some interest thanks to
its simplicity and efficiency and is still used, at least partially, in many practical cases
[24].

In the last decades, instead, an independent branch of research generated a flour-
ishing of new results in terms of logic characterization of language families, ignited
by the pioneering results by Büchi [12] and Muller [32] on the monadic second-order
(MSO) logic characterization of regular languages over finite or infinite words (ω-
languages) and motivated mainly by the breakthrough application of model checking,
which is rooted in closure properties and decidability of the emptiness problem, be-
sides correspondence between automata-theoretic and logic language characterization.
The present state of the art exhibits plenty of language families and related charac-
terization in terms of various forms of logic formalisms (first order, propositional,
temporal logic, and more specialized ones [17, 1]); most of them are motivated by
the wish to extend model-checking techniques, i.e., decidability of system properties,
beyond the natural scope of finite-state machines.

Within such a rich literature, visibly pushdown languages (VPLs) [4], previously
known as input-driven languages (IDLs) [5], certainly deserve a major role. In a nut-
shell IDLs alias VPLs are based on, and extend, original parenthesis languages [31],
e.g., by allowing for unmatched closed and open parentheses at the beginning and end
of a sentence, respectively. Throughout the years this research field produced a fairly
complete study of this family of languages whose main features can be summarized
as follows:

• Being essentially a generalization of parenthesis languages their structure is
immediately transparent at the “surface sentence,” unlike more general CF
languages; arithmetic expressions, e.g., which are found in practically every
programming language, do not reflect in the sequence of the leaves of the
syntax tree the internal structure of the tree, which can be built only by
knowing that multiplication operators take precedence over the additive ones.

• They have a complete characterization in terms of pushdown-automata and
CF grammar families recognizing and generating, them, respectively.

• They are closed w.r.t. to all fundamental language operations (Boolean, con-
catenation, Kleene *, . . .), like regular languages and unlike more general CF
families.

• Within the landscape of algorithms that are necessary to develop model-
checking techniques—whose complexities span from NP to PSPACE,
EXPTIME, . . . completeness—they exhibit “comparable” complexities: for
instance, the core algorithm for determinizing nondeterministic visibly push-
down automata (VPAs) has 2O(s2) complexity w.r.t. the cardinality s of the
original state space and the inclusion problem for VPLs of both finite and
infinite strings is EXPTIME-complete.

• They are characterized in terms of a MSO logic that applies both to finite
and infinite-length words.

Similar results have been obtained also for other classes of languages on the basis of
the strong motivation provided by “model-checking-like” applications [10].

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1028 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Recently, our interest in OPLs has been renewed thanks to two, seemingly un-
related, properties thereof. The first one is their local parsability, i.e., the fact that
the typical shift-reduce parsing algorithm associated with them, determines the re-
placing of a r.h.s. by the corresponding left-hand side (l.h.s.) exclusively on the basis
of the embracing � and � relations, i.e., independently on parts of the string that
may be arbitrarily far from the considered r.h.s. This property is not enjoyed by
more powerful grammars such as LR ones and nowadays it may compensate for the
minor loss of generative power because it makes it easier and more efficient to exploit
parallelism and incrementality in the parsing of large strings formalizing complex sys-
tems and their behavior. The exploitation of this property, however, is the target of a
different and—so far—independent research whose first results are documented in [7]
and [6].

In this paper, instead, we focus on another, equally stimulating property of OPLs.
We realized, in fact, that the OPL family strictly includes the independently stud-
ied family of VPLs and other related ones such as balanced languages [8]. On the
basis of this somewhat surprising remark we further investigated other closure prop-
erties of OPLs besides the Boolean ones that were originally proved in [19]: the
result is that OPLs are, to the best of our knowledge, the largest class of languages
that enjoys all major closure properties that are typical of regular languages [18].1

Herewith the goal of this paper: in order to apply to OPLs the same successful
verification techniques formerly developed for regular languages, VPLs, and other—
input-driven—language families, we develop a complete automata-theoretic and logic
characterization of OPLs. In fact resuming the study of this old family of languages
showed unexpected similarities with, and generalizations of, the peculiar properties
of seemingly unrelated and differently motivated classes of languages.

In our opinion OPLs offer a surprising combination of the merits of IDLs and of
those of more general deterministic CF languages. On the one hand, in fact, they
are input driven since their analysis can be based exclusively on the input characters
and their pairwise relations; but, unlike more traditional IDLs, they are well suited to
formalize general programming languages and other languages of practical interest;
such a distinguishing feature allows us to extend to them closure and decidability
properties not enjoyed by more general CF languages. On the other hand, their minor
lack of power w.r.t. deterministic languages does not prevent them from including
most programming languages of practical interest: previous efforts in fact produced
compilers based on OPGs for various programming languages such as ALGOL 68 and
Prolog [23, 21]; more recently we exploited the mentioned property of local parsability
to produce parallel parsers for JSON and Lua [6].

Given the fairly numerous collection of strongly connected properties, we structure
the present paper into two main parts. The first one completes the path begun with
[19] and resumed with [18] by providing a fairly complete theory of traditional OPLs
defined on strings of finite length; precisely, we present the following:

• A new family of pushdown automata fully equivalent to OPGs; rather sur-
prisingly, in fact, a precise automata-theoretic characterization of OPLs was
missing in the original literature.2

1Other language families falling in between input-driven and CF languages, such as the height-
deterministic family [33] or the synchronized pushdown languages [14], enjoy some but not all of
the basic closure properties; furthermore, such families are, in general, nondeterministic.

2The operator precedence (OP) automata (OPAs) studied in this paper are significantly simplified
w.r.t. their original formulation proposed in [28].

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1029

• A complete characterization of OPLs in terms of MSO logic so as to align this
family with a now classic approach of the literature—rooted in the work by
Büchi. This allows, at least potentially, for the definition of model-checking
algorithms to prove properties of languages defined either by means of gener-
ating grammars or by means of recognizing automata. Given the prohibitive
complexity of decision algorithms based on MSO logic, however, it is common
practice in the literature to resort to model-checking algorithms based on less
powerful but simpler logics. We will provide a few hints on pursuing such an
approach in the conclusion.

In the second part of this paper we define ωOPLs, i.e., the OPLs of infinite
words. Infinite word languages are becoming more and more relevant in the literature
due to the need of modeling systems whose behavior proceeds indefinitely, such as
operating systems, control systems, etc. After introducing and comparing various
forms of acceptance of infinite words by our OPAs by paralleling classical literature of
ω-regular languages, we reinvestigate their main properties by pointing out which of
them are preserved from the finite-length case and which ones are lost. This includes
also a further characterization of ωOPLs in terms of MSO logic.

In the conclusions we briefly hint at further research directions, noticeably inves-
tigating the relations of OPLs with less powerful but less complex logics than MSO
ones, as it has been or is being done for other (input-driven) language families.

I: Finite Word Operator Precedence Languages.

This part is devoted to finite-length OPLs. After stating basic definitions and
terminology (section 1) and resuming previous results already available in the open
literature (section 1.1), we introduce the new class of pushdown automata explicitly
tailored at OPLs: in section 2 we give the basic definitions and provide examples to
show their usefulness in modeling various cases of practical interest; then we show the
equivalence between deterministic and nondeterministic versions of these automata, at
the price, however, of an increase in state space size given by an exponential function
with quadratic exponent; we also study the complexity of decision problems for OPLs.
Section 3 shows, in a constructive way, the equivalence between OPGs and the new
class of automata; finally, section 4 presents an MSO logic characterization of OPLs.

1. Preliminaries. A CF grammar is a 4-tuple G = (N,Σ, P, S), where N is
the nonterminal alphabet, Σ is the terminal one, P the rule (or production) set, and
S ⊆ N the set of axioms.3 The empty string is denoted ε. An empty rule has ε as
the r.h.s. A renaming rule has one nonterminal as the r.h.s. A grammar is reduced if
every rule can be used to generate some string in Σ∗. It is invertible if no two rules
have identical r.h.s’s.

The direct derivation relation is denoted by ⇒ and its reflexive transitive closure,
the derivation relation, is denoted by

∗⇒.
The following naming convention will be adopted, unless otherwise specified:

lowercase Latin letters a, b, . . . denote terminal characters; uppercase Latin letters
A,B, . . . denote nonterminal characters; letters u, v, . . . denote terminal strings; and
Greek letters α, β, . . . denote strings over Σ ∪ N . The strings may be empty, unless
stated otherwise.

3This less usual but equivalent definition of axioms as a set has been adopted for parenthesis
languages [31] and other IDLs; we chose it for this paper to simplify some notations and constructions.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1030 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

E → E + T | T
T → T × F | F
F → n | �E�

E

E

T

F

n

+ T

T

F

n

× F

� E

E

T

F

n

+ T

F

n

�

Fig. 1. A grammar generating arithmetic expressions with parentheses.

A→ B ×A | B
B → B + C | C
C → n | �A�

A

B

B

C

n

+ C

n

× A

B

C

� A

B

B

C

n

+ C

n

�

Fig. 2. A grammar generating the same arithmetic expressions as that of Figure 1 and the
corresponding tree where, instead, + takes precedence over ×.

In this initial part we will use arithmetic expressions, which are a small fraction of
practically all programming languages, as a running example to introduce and explain
the basic definitions, properties, and constructions referring to OPLs.

Example 1. Arithmetic expressions considered in this paper include two operators,
an additive one and a multiplicative one that takes precedence over the other one, in
the sense that, during the interpretation of the expression, multiplications must be
executed before sums; as usual, parentheses are used to specify a different precedence
hierarchy between the two operations. They are denoted by the special symbols �
and � to avoid overloading with the use of the same symbol in all other formulas
of this paper. Figure 1 presents a grammar and the derivation tree of expression
n+ n× �n+ n� generated thereby; all nonterminals are also axioms.

Notice that the structure of the syntax tree (uniquely) corresponding to the input
expression reflects the precedence order which drives computing the value attributed
to the expression. This structure, however, is not immediately visible in the ex-
pression: in fact, Figure 2 proposes a different grammar which generates the same
expressions as the grammar of Figure 1 but would associate with the same sentence
the syntax tree displayed in the right part of the figure. Yet another (ambiguous)
grammar could generate both. If instead we used a parenthesis grammar to generate

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1031

Table 1

The OPM of the grammar in Figure 1.

+ × � � n
+ � � � � �
× � � � � �
� � � �

.
= �

� � � �
n � � �

arithmetic expressions, it would produce the string �n + �n × �n + n��� instead of
the previous one and the structure of the corresponding tree would be immediately
visible in the expression. For this reason we say that such general grammars “hide”
the structure associated with a sentence—even when they are unambiguous—whereas
parenthesis grammars and other input-driven ones make the structure explicit in the
sentences they generate.

A rule is in operator form if its r.h.s. has no adjacent nonterminals; an operator
grammar (OG) contains just such rules. Notice that both grammars of Figure 1 and
of Figure 2 are OGs. Any CF grammar G = (N,Σ, P, S) admits an equivalent OG
G′ = (N ′,Σ, P ′, S), where the size of N ′ is O(|Σ| · (|Σ| + k · |P |)) and that of P ′ is
O(|Σ| · (|N |+ k · |Σ| · |P |)), k being the maximum length of P ’s r.h.s.’s [25, 38].

The coming definitions for OPGs [23] are from [19] and [18], where they are also
called Floyd grammars (FGs).

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A ∗⇒ Baα}, RG(A) = {a ∈ Σ | A ∗⇒ αaB},

where B ∈ N ∪ {ε}. The grammar name G will be omitted unless necessary to
prevent confusion. For the grammar of Figure 1 the left and right terminal sets of
nonterminals E, T , and F are, respectively,

L(E) = {+,×, n, �}, R(E) = {+,×, n, �},
L(T) = {×, n, �}, R(T) = {×, n, �},

L(F) = {n, �}, R(F) = {n, �}.

For an OG G, let α, β range over (N ∪ Σ)∗ and a, b ∈ Σ. Three binary OP relations
are defined:

equal in precedence: a
.
= b ⇐⇒ ∃A→ αaBbβ,B ∈ N ∪ {ε},

takes precedence: a� b ⇐⇒ ∃A→ αDbβ,D ∈ N and a ∈ RG(D),

yields precedence: a� b ⇐⇒ ∃A→ αaDβ,D ∈ N and b ∈ LG(D).

Notice that, unlike the usual arithmetic relations denoted by similar symbols, the
above precedence relations do not enjoy any one of the transitive, symmetric, reflexive
properties. For an OG G, the OPM M = OPM(G) is a |Σ| × |Σ| array that, for each
ordered pair (a, b), stores the set Mab of OP relations holding between a and b.

Table 1 displays the OPM associated with the grammar of Figure 1 where, for an
ordered pair (a, b), a is one of the symbols shown in the first column of the matrix
and b one of those occurring in its first line.

Given two OPMs M1 and M2, we define set inclusion and union:

M1 ⊆M2 if ∀a, b : (M1)ab ⊆ (M2)ab, M =M1∪M2 if ∀a, b : Mab = (M1)ab∪(M2)ab.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1032 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Definition 1.1 (OPG and OPL). An OG G is an OPG or FG iff M = OPM(G)
is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1. An OPL is a language generated by an
OPG.

From the above definition it is immediate to verify that both grammars of Figure 1
and of Figure 2 are OPGs (with different OPMs).

Two matrices are compatible if their union is conflict-free. A matrix is total (or
complete) if it contains no empty case. The following definition of Fischer normal
form (FNF) is adapted from the original one [22] to take into account that in our
basic definition of CF grammar S is a set rather than a singleton.

Definition 1.2 (FNF). An OPG is in FNF iff it is invertible, has no empty rule
except possibly A → ε, where A is an axiom not used elsewhere, and no renaming
rules.

Let G = (N,Σ, P, S) be an OPG; then an equivalent OPG G̃ = (Ñ ,Σ, P̃ , S̃) in

FNF, can be built such that Ñ is ℘(N) and |P̃ | is O(|P | · 2|N |·�k
2 �)), where k is the

maximum length of P ’s r.h.s.’s [25].
An FNF (manually) derived from the grammar of Figure 1 is given below. Notice

that in this case the size of the nonterminal alphabet and of the productions is much
smaller than the worst case upper bound provided by the general construction.

E → E + T | E + F | T + T | F + F | F + T | T + F,

T → T × F | F × F,

F → n | �E� | �T � | �F �.

It is well known that OPLs are a proper subfamily of deterministic CF languages:
for instance, it is impossible to generate the language {anban}, without producing a
precedence conflict a � a and a � a. Despite this theoretical limitation, OPLs have
been successfully used to formalize many programming languages and to support
their compilers; in this paper we will also provide several other examples of potential
applications of this model in different fields.

OPMs play a fundamental role in deterministic parsing of OPLs. Thus in the view
of defining automata to parse OPLs (OPAs) we pair them with the alphabet. To this
goal, we use a special symbol # not in Σ to mark the beginning and the end of any
string. This is consistent with the typical operator parsing technique which requires
the lookback and lookahead of one character to determine the precedence relation
[24]. The precedence relations in the OPM are implicitly extended to include #: the
initial # can only yield precedence, and other symbols can only take precedence over
the ending #.

Definition 1.3 (OP alphabet). An OP alphabet is a pair (Σ,M), where Σ is
an alphabet and M is a conflict-free OPM, i.e., a |Σ ∪ {#}|2 array that associates at
most one of the OP relations,

.
=, �, or �, with each ordered pair (a, b).

If Mab = {◦} with ◦ ∈ {�, .=,�} ,we write a ◦ b. For u, v ∈ Σ∗ we write u ◦ v if
u = xa and v = by with a ◦ b. The relations involving the # delimiter are constrained
as stated above.

The notion of chain introduced by the following definitions provides a formal
description of the intuitive concept of “invisible or hidden structure” discussed in
Example 1.

Definition 1.4 (chains). Let (Σ,M) be a precedence alphabet.
• A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]

an+1 ,
such that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1 �= ∅,
and a0 � a1

.
= a2 . . . an−1

.
= an � an+1.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1033

#
x0

n

+ x1

y0

n

× y1

� w0

z0

n

+ z1

n

�

#

Fig. 3. Structure of the chains in the expression #n+ n× �n+ n�# of Example 2.

• A composed chain is a word a0x0a1x1a2 . . . anxnan+1 with xi ∈ Σ∗, where
a0 [a1a2 . . . an]

an+1 is a simple chain, and either xi = ε or ai [xi]
ai+1 is a chain

(simple or composed) for every i : 0 ≤ i ≤ n. Such a composed chain will be
written as a0 [x0a1x1a2 . . . anxn]

an+1 .
• The body of a chain a[x]b, simple or composed, is the word x.

Example 2. The “hidden” structure induced by the OP alphabet of Example 1
for the expression #n+ n× �n+ n�# is represented in Figure 3, where #[x0 + x1]

#,
+[y0 × y1]

#, ×[�w0�]
#, �[z0 + z1]

� are composed chains and #[n]+, +[n]×, �[n]+, +[n]�

are simple chains.
Definition 1.5 (depth of a chain). Given a chain a[x]b the depth d(x) of its

body x is defined recursively: d(x) = 1 if the chain is simple, whereas

d(x0a1x1 . . . anxn) = 1 +max
i
d(xi).

The depth of a chain is the depth of its body.
For instance, the composed chain #[x0 + x1]

in Example 2 has depth 5. Thus,
if for an OPG G it is OPM(G) =M , the depth of a chain body x is the height of the
syntax tree, if any, whose frontier is x.

Definition 1.6 (compatible word). A word w over (Σ,M) is compatible with
M iff the two following conditions hold:

• for each pair of letters c, d, consecutive in w, Mcd �= ∅;
• for each factor (substring) x of #w# such that x = a0x0a1x1a2 . . . anxnan+1,
if a0 � a1

.
= a2 . . . an−1

.
= an � an+1 and, for every 0 ≤ i ≤ n, either xi = ε

or ai [xi]
ai+1 is a chain (simple or composed), then Ma0an+1 �= ∅.

For instance, the word n + n × �n + n� is compatible with the OP alphabet of
Example 1, whereas n+ n× �n+ n��n+ n� is not.

The chains fully determine the structure of the words; in particular, given an OP
alphabet, each word in Σ∗ compatible withM is assigned a tree structure by the OPM
M . If M is complete, then each word is compatible with M and the OPM M assigns
a structure to any word in Σ∗. For this reason we say that OPLs somewhat generalize
the notion of IDL, since their parsing is driven by the OPM which is defined on the
terminal alphabet, but they also allow us to generate sentences whose structure is
“invisible” before parsing.

The equal in precedence relations of an OP alphabet are connected with an impor-
tant parameter of the grammar, namely, the length of the r.h.s.’s of the rules. Clearly,
a rule A → A1a1 . . . AtatAt+1, where each Ai is a possibly missing nonterminal, is

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1034 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

associated with relations a1=̇a2 =̇ · · · =̇ at. If the =̇ relation is cyclic, i.e., there exist
a1, a2, . . . , an ∈ Σ (n ≥ 1) such that a1 =̇ a2 =̇ · · · =̇ an =̇ a1, there is a priori no finite
bound on the length of the r.h.s.’s of a production. Otherwise the length is bounded
by 2 · c+ 1, where c ≥ 1 is the length of the longest =̇-chain.

Previous literature [18, 28] assumed that all precedence matrices of OPLs are
.
=-cycle free. In the case of OPGs this prevents the risk of r.h.s.’s of unbounded
length [19], but could be replaced by the weaker restriction of production’s r.h.s. of
bounded length, or could be removed by allowing such unbounded forms of grammars,
e.g., with regular expressions as r.h.s. In our experience, such assumption helps to
simplify notation and some technicalities of proofs; moreover, we found that its impact
in practical examples is minimal. In this paper we accept a minimal loss of generation4

power and assume the simplifying assumption of
.
=-acyclicity. We will see, however,

that this hypothesis has an impact only on constructions involving grammars but is
irrelevant for the OP automata defined in this paper.

1.1. Previous results. Herein, we present some basic properties of OPLs that
have already been stated in previous literature. Preliminarily, notice that, since the
union of two acyclic OPMs might be cyclic, when we consider, in what follows, the
union M = M1 ∪ M2 of two OPMs M1 and M2 we always assume that M too is
acyclic.

Statement 1.1 (see [19]). OPLs are closed w.r.t. Boolean operations. Precisely,
given two OPLs L1, L2 with compatible OPMs M1 and M2, L1 ∩L2 and L1 ∪L2 are
OPLs whose OPM is contained in M1 ∪M2; furthermore, let Lmax

1 be the OPL of all
strings compatible with M1, then Lmax

1 \ L1 is an OPL whose OPM is contained in
M1. In particular, if M1 is a complete OPM, Lmax

1 is Σ∗ (where each sentence has
a structure determined by M1), then Σ∗ \ L1 is an OPL whose OPM is contained in
M1.

Statement 1.2 (see [18]). OPLs are closed w.r.t. concatenation and Kleene ∗
operation. Precisely, given two OPLs L1, L2 with compatible OPMs M1 and M2,
L1.L2 and L∗

1 are OPLs whose OPM is compatible with M1 ∪M2 (resp., M1). Notice
that in this case the construction of the new grammars may introduce new precedence
relations not existing in the original matrices. Furthermore, OPLs are closed under
alphabetical homomorphisms that preserve conflict freedom.

Statement 1.3 (see [18]). OPLs strictly include the family of VPLs. Precisely,
VPLs are the subfamily of OPLs whose OPM is a partitioned matrix, i.e., a matrix
whose structure is depicted in Figure 4.

2. OPAs. Next, we introduce a family of pushdown automata that recognize ex-
actly OPLs. OPLs being naturally oriented towards bottom-up parsing, their accept-
ing automata exhibit a typical shift-reduce attitude; they are considerably simpler,
however, than other classical automata of this type such as LR ones.

Definition 2.1 (OPA). A nondeterministic OPA is given by a tuple: A =
〈Σ,M,Q, I, F, δ〉, where

• (Σ,M) is an OP alphabet,
• Q is a set of states (disjoint from Σ),
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of final states,

4An example language that cannot be generated with an
.
=-acyclic OPM is the following: L =

{an(bc)n | n ≥ 0} ∪ {bn(ca)n | n ≥ 0} ∪ {cn(ab)n | n ≥ 0}.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1035

Σc Σr Σi
Σc � =̇ �
Σr � � �
Σi � � �

Legend
Σc denotes “calls”
i.e., a generalized version of open parentheses;
Σr denotes “returns”
i.e., a generalized version of closed parentheses;
Σi denotes internal characters
i.e., characters that are not pushed onto the stack and
are managed exclusively by finite-state control.

Fig. 4. A partitioned matrix, where Σc, Σr,Σi are a set of terminal characters. A precedence
relation in position Σα, Σβ means that relation holds between all symbols of Σα and all those of
Σβ.

• δ : Q× (Σ∪Q) → ℘(Q) is the transition function, which is the union of three
functions,

δshift : Q× Σ → ℘(Q), δpush : Q× Σ → ℘(Q), δpop : Q×Q→ ℘(Q).

We represent a nondeterministic OPA by a graph with Q as the set of vertices
and Σ∪Q as the set of edge labelings. The edges of the graph are denoted by different
shapes of arrows to distinguish the three types of transitions: there is an edge from
state q to state p labeled by a ∈ Σ denoted by a dashed (resp., normal) arrow iff
p ∈ δshift(q, a) (resp., p ∈ δpush(q, a)) and there is an edge from state q to state p
labeled by r ∈ Q and denoted by a double arrow iff p ∈ δpop(q, r).

To define the semantics of the automaton, we introduce some notation.
We use letters p, q, pi, qi, . . . to denote states in Q. Let Γ be Σ × Q and let Γ′

be Γ ∪ {⊥}; we denote symbols in Γ′ as [a, q] or ⊥. We set symbol([a, q]) = a,
symbol(⊥) = #, and state([a, q]) = q. Given a string Π = ⊥π1π2 . . . πn with πi ∈ Γ ,
n ≥ 0, we set symbol(Π) = symbol(πn), including the particular case symbol(⊥) = #.

A configuration of an OPA is a triple C = 〈Π, q, w〉, where Π ∈ ⊥Γ∗, q ∈ Q,
and w ∈ Σ∗#. The first component represents the contents of the stack, the second
component represents the current state of the automaton, while the third component
is the part of input still to be read.

A computation or run of the automaton is a finite sequence ofmoves or transitions
C1 � C2; there are three kinds of moves, depending on the precedence relation between
the symbol on top of the stack and the next symbol to read:

push move: if symbol(Π)� a then 〈Π, p, ax〉 � 〈Π[a, p], q, x〉 with q ∈ δpush(p, a);

shift move: if a
.
= b then 〈Π[a, p], q, bx〉 � 〈Π[b, p], r, x〉 with r ∈ δshift(q, b);

pop move: if a� b then 〈Π[a, p], q, bx〉 � 〈Π, r, bx〉 with r ∈ δpop(q, p).
Notice that shift and pop moves are never performed when the stack contains

only ⊥.
Push and shift moves update the current state of the automaton according to the

transition functions δpush and δshift, respectively: push moves put a new element on
the top of the stack consisting of the input symbol together with the current state of
the automaton, whereas shift moves update the top element of the stack by changing
its input symbol only. The pop move removes the symbol on the top of the stack,
and the state of the automaton is updated by δpop on the basis of the pair of states
consisting of the current state of the automaton and the state of the removed stack
symbol; notice that in this move the input symbol is used only to establish the �
relation and it remains available for the following move.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1036 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

q0 q1

q2 q3

n

�

q0, q1
+,×

n
�

q0, q1, q2, q3
+,×

�

stack state current input
⊥ q0 n+ n× �n+ n�#
⊥[n, q0] q1 +n× �n+ n�#
⊥ q1 +n× �n+ n�#
⊥[+, q1] q0 n× �n+ n�#
⊥[+, q1][n, q0] q1 ×�n+ n�#
⊥[+, q1] q1 ×�n+ n�#
⊥[+, q1][×, q1] q0 �n+ n�#
⊥[+, q1][×, q1][�, q0] q2 n+ n�#
⊥[+, q1][×, q1][�, q0][n, q2] q3 +n�#
⊥[+, q1][×, q1][�, q0] q3 +n�#
⊥[+, q1][×, q1][�, q0][+, q3] q2 n�#
⊥[+, q1][×, q1][�, q0][+, q3][n, q2] q3 �#
⊥[+, q1][×, q1][�, q0][+, q3] q3 �#
⊥[+, q1][×, q1][�, q0] q3 �#
⊥[+, q1][×, q1][�, q0] q3 #
⊥[+, q1][×, q1] q3 #
⊥[+, q1] q3 #
⊥ q3 #

Fig. 5. Automaton and example of computation for the language of Example 3. Recall that
shift, push, and pop transitions are denoted by dashed, normal, and double arrows, respectively.

We say that a configuration 〈⊥, qI , x#〉 is initial if qI ∈ I and a configuration
〈⊥, qF , #〉 is accepting if qF ∈ F . The language accepted by the automaton is defined
as

L(A) =

{
x | 〈⊥, qI , x#〉

∗
� 〈⊥, qF , #〉, qI ∈ I, qF ∈ F

}
.

Example 3. The OPA depicted in Figure 5 accepts the language of arithmetic
expressions generated by the OPG of Example 1. The same figure also shows an
accepting computation on input n+ n× �n+ n�.

Therefore, an OPA selects an appropriate subset within the “universe” of strings
in Σ∗ compatible with M . This property somewhat resembles the fundamental
Chomsky–Shützenberger theorem, in that a universe of nested structures—a Dyck
language—is restricted by means of an “intersection” with a finite-state mechanism.
For instance, the automaton of Figure 5 recognizes well-nested parenthesized arith-
metic expressions and could be modified in such a way that parentheses are used only
when needed to give the expression the desired meaning, i.e., a pair of parentheses

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1037

q0

q1

q1 q0

q1

q1 q0

q2

q3

q3 q2

q3

q3

q3 q3

q3

q3

q3
t0

x0

n

q0

+ x1
y0

n

q0

×

�

y1

w0

z0

n

q2

+ z1

n q2

q3

� q0

q1

q1

#

Fig. 6. Structure of chains and supports for the expression of Example 4.

containing a + is necessary only if it is adjacent to a ×; parentheses enclosing only ×
should be avoided.

The following definitions will be used throughout the paper to characterize OPA
behavior: we use arrows−→ , →, and =⇒ to denote push, shift, and pop transitions,

respectively.
Definition 2.2. Let A be an OPA. A support for a simple chain a0 [a1a2 . . . an]

an+1

is any path in A of the form

(2.1) q0
a1−→ q1 → · · · → qn−1

an→ qn
q0
=⇒ qn+1.

Notice that the label of the last (and only) pop is exactly q0, i.e., the first state of the
path; this pop is executed because of relations a0 � a1 and an � an+1.

A support for the composed chain a0 [x0a1x1a2 . . . anxn]
an+1 is any path in A of

the form

(2.2) q0
x0� q′0

a1−→ q1
x1� q′1

a2→ . . .
an→ qn

xn� q′n
q′0=⇒ qn+1,

where for every i : 0 ≤ i ≤ n,
• if xi �= ε, then qi

xi� q′i is a support for the (simple or composed) chain
ai [xi]

ai+1 ,
• if xi = ε, then q′i = qi.

Notice that the label of the last pop is exactly q′0.

The support of a chain with body x will be denoted by q0
x� qn+1.

Example 4. Figure 6 illustrates the supports of the chains that, for the OPA
described in Example 3, compose the structure of the expression n+ n× �n+ n�.

The chains fully determine the structure of the computation of any automaton
on a word compatible with M . Indeed, let Π ∈ ⊥Γ∗ with symbol(Π) = a � x � b:
an OPA A performs the computation 〈Π, q, xb〉 � 〈Π, p, b〉 without changing the

portion Π of the stack, iff a[x]b is a chain over (Σ,M) with a support q
x� p in A.

The depth of x corresponds to the maximum number of push/pop pairs nested in the
computation, i.e., the maximum height reached by the stack in one of the traversed
configurations, minus the height of the stack in the starting configuration.

Notice that the context a, b of a chain is used by the automaton to build its
support only because a� x and x� b; thus, the chain’s body contains all information
needed by the automaton to build the subtree whose frontier is that string, once
it is understood that its first move is a push and its last one is a pop. This is a
distinguishing feature of OPLs, not shared by other deterministic languages: we call

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1038 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

it the locality principle of OPLs, which is exploited elsewhere, e.g., to build parallel
and/or incremental OP parsers [7].

With reference to Example 3 and Figure 6, the parsing of substring n+ n within
the context �, � is given by the computation

〈Π, q2, n+ n �#〉
∗
� 〈Π, q3, �#〉 with Π = ⊥[+, q1][×, q1][�, q0]

which corresponds to support q2
n� q3

+−→ q2
n� q3

q3
=⇒ q3 of the composed chain

�[n+ n]�, where q2
n� q3 is the support q2

n−→ q3
q2
=⇒ q3 of the simple chains �[n]+

and +[n]�.

2.1. Examples. In this section we illustrate an example of application of OPLs,
which cannot be modeled by traditional classes of languages with an “explicit” struc-
ture such as parenthesis languages and VPLs. We shall present in section 4.3 exam-
ples in other interesting contexts (such as operating systems) which can be naturally
modeled by OPAs recognizing ω-languages, and are not recognizable by VPAs as well.
Other examples of application of OPLs to model systems in various application fields
outside the traditional one of programming languages are given in [35].

Indeed, the most distinguishable feature of the structure of VPLs is that in their
OPMs the

.
= relation occurs always and only between open and closed parentheses

(Σc and Σr elements in the notation of [3], resp.). Unlike traditional parenthesis
languages, however, in VPLs parentheses can remain unmatched, but only at the
beginning (Σr elements) and end (Σc elements) of the input string, respectively. This
initial extension, however, is not sufficiently general to cover several interesting cases
where an “event” of special type, e.g., a rollback or an exception, should force flushing
the stack of many pending elements, say write operations or procedure calls.

Example 5. OPAs can be used to model the run-time behavior of database
systems, e.g., for modeling sequences of users’ transactions with possible rollbacks.
Other systems that exhibit an analogous behavior are revision control (or versioning)
systems (such as subversion or git). As an example, consider a system for version
management of files where a user can perform the following operations on documents:
save them, access and modify them, undo one (or more) previous changes, restoring
the previously saved version.

The following alphabet represents the user’s actions: sv (for save), wr (for write,
i.e., the document is opened and modified), ud (for a single undo operation), rb (for a
rollback operation, where all the changes occurred since the previously saved version
are discarded).

An OPA that models the traces of possible actions of the user on a given document
is a single-state automaton 〈Σ,M, {q}, {q}, {q}, δ〉, where Σ = {sv, rb, wr, ud}, M is

M =

sv rb wr ud #
sv � =̇ � �
rb � � � � �
wr � � � =̇ �
ud � � � � �
� �

.
=

and δpush(q, a) = q ∀a ∈ {sv, wr}, δshift(q, a) = q ∀a ∈ {rb, ud} and δpop(q, q) = q.
A more specialized model of this system might impose that the user regularly

backs her work up, so that no more than N changes that are not undone (denoted
wr as before) can occur between any two consecutive checkpoints sv (without any

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1039

q0 0 1 2

q1

q4

q0, 0, 1

sv
wr

q0, 0, 1, 2

rb

w
r

sv wr

sv

0
wr

w
r

sv

1

wr ud

q4

0 1 2

0
1

2

q0

Fig. 7. OPA of Example 5, with N = 2.

rollback rb between them). Figure 7 shows the corresponding OPA with N = 2, with
the same OPM M . States 0, 1 and 2 denote, respectively, the presence of zero, one,
and two unmatched changes between two symbols sv.

An example of computation on the string sv wr ud rb sv wr wr ud sv wr rb wr sv
is shown in Table 2.

2.2. Determinism vs. nondeterminism. An important property of OPAs is
the equivalence between the deterministic and the nondeterministic version thereof.
This result also implies the closure of OPLs under complementation, yielding an
alternative proof to the traditional one presented in [19].

The deterministic version of OPAs is defined along the usual lines.
Definition 2.3 (deterministic OPA). An OPA is deterministic if I is a singleton,

and the ranges of δpush, δshift, and δpop are Q rather than ℘(Q).
It is well known that the equivalence between nondeterministic and deterministic

machines usually does not extend from finite-state to pushdown ones. VPAs are
however a noticeable exception. The construction described in [4] is extended here
to cover OPAs too. Our construction ensures that two different pop moves of two
different runs of the nondeterministic automaton never “mix up” their initial and
final states in the deterministic one by keeping track of the path of the automaton
since the push move that marks the origin of the chain to be reduced by the next
pop move. Precisely, the states of the deterministic automaton Ã are sets of pairs
of states, instead of sets of single states, of the nondeterministic automaton A: Ã
simulates A along the first component of the pair, whereas the second component
stores the state that gave origin to a push transition and it is propagated through
shift moves. The deterministic pop operations will simulate only the nondeterministic
ones defined on the states corresponding to the first component of the current state
and the state reached before the last push move, which corresponds to the state on
the top of the stack in an actual run of the nondeterministic automaton.

The following theorem formalizes the above informal reasoning.
Theorem 2.4. Given a nondeterministic OPA A with s states, an equivalent

deterministic OPA Ã can effectively be built with 2O(s2) states.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1040 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Table 2

Example of computation for the specialized system of Example 5.

stack state current input
⊥ q0 sv wr ud rb sv wr wr ud sv wr rb wr sv #
⊥[sv, q0] 0 wr ud rb sv wr wr ud sv wr rb wr sv #
⊥[sv, q0][wr, 0] q4 ud rb sv wr wr ud sv wr rb wr sv #
⊥[sv, q0][ud, 0] q4 rb sv wr wr ud sv wr rb wr sv #
⊥[sv, q0] 0 rb sv wr wr ud sv wr rb wr sv #
⊥[rb, q0] q1 sv wr wr ud sv wr rb wr sv #
⊥ q0 sv wr wr ud sv wr rb wr sv #
⊥[sv, q0] 0 wr wr ud sv wr rb wr sv #
⊥[sv, q0][wr, 0] 1 wr ud sv wr rb wr sv #
⊥[sv, q0][wr, 0][wr, 1] q4 ud sv wr rb wr sv #
⊥[sv, q0][wr, 0][ud, 1] q4 sv wr rb wr sv #
⊥[sv, q0][wr, 0] 1 sv wr rb wr sv #
⊥[sv, q0][wr, 0][sv, 1] 0 wr rb wr sv #
⊥[sv, q0][wr, 0][sv, 1][wr, 0] 1 rb wr sv #
⊥[sv, q0][wr, 0][sv, 1] 0 rb wr sv #
⊥[sv, q0][wr, 0][rb, 1] q1 wr sv #
⊥[sv, q0][wr, 0] 1 wr sv #
⊥[sv, q0][wr, 0][wr, 1] 2 sv #
⊥[sv, q0][wr, 0][wr, 1][sv, 2] 0 #
⊥[sv, q0][wr, 0][wr, 1] q0 #
⊥[sv, q0][wr, 0] q0 #
⊥[sv, q0] q0 #
⊥ q0 #

Proof. Let A be 〈Σ,M,Q, I, F, δ〉; Ã = 〈Σ,M, Q̃, Ĩ, F̃ , δ̃〉 is defined as follows:
• Q̃ = ℘(Q × (Q ∪ {�})), where Q ∩ {�} = ∅ and � is a symbol that stands
for the baseline of the computations; we will use K,Ki, K̄,K

′, . . . to denote
states in Q̃,

• Ĩ = I × {�} is the initial state of Ã,
• F̃ = {K | K ∩ (F × {�}) �= ∅},
• δ̃ : Q̃× (Σ ∪ Q̃) → Q̃ is the transition function defined as follows.
The push transition δ̃push : Q̃× Σ → Q̃ is defined by

δ̃push(K, a) =
⋃

(q,p)∈K
{(h, q) | h ∈ δpush(q, a)} .

The shift transition δ̃shift : Q̃× Σ → Q̃ is defined by

δ̃shift(K, a) =
⋃

(q,p)∈K
{(h, p) | h ∈ δshift(q, a)} .

The pop transition δ̃pop : Q̃× Q̃→ Q̃ is defined as follows:

δ̃pop(K1,K2) =
⋃

(r,q)∈K1,(q,p)∈K2

{(h, p) | h ∈ δpop(r, q)} .

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1041

Notice that, if |Q| = s is the number of states of the nondeterministic OPA A,
the deterministic OPA Ã that is obtained in this way has a set of states whose size is
exponential in s2, i.e., |Q̃| = 2|Q|·|Q∪{⊥}| which is 2O(s2).

The proof of equivalence between the two automata is by induction and is based
on Lemmas 2.5 and 2.6.

Lemma 2.5. Let y be the body of a chain with support q
y� q′ in A. Then, for

every p ∈ Q and K ∈ Q̃, if K � (q, p), there exists a support K
y� K ′ in Ã with

K ′ � (q′, p).
Proof. We argue by induction on the depth h of y. If h = 1 then y = a1a2 . . . an

and the support can be rewritten as in (2.1) with q0 = q and qn+1 = q′. Set K0 = K
and

K1 = δ̃push(K0, a1),

Ki = δ̃shift(Ki−1, ai), for every i = 2, . . . , n,

K ′ = δ̃pop(Kn,K).

Then

(2.3) K
a1−→ K1

a2→ · · · an−1− → Kn−1
an→ Kn

K
=⇒ K ′

is a support for C in Ã. Moreover, since K � (q, p), by the definition of δ̃ we have

K1 � (q1, q) since δpush(q, a1) � q1,
Ki � (qi, q) since δshift(qi−1, ai) � qi,
K ′ � (q′, p) since δpop(qn, q) � q′.

Now assume that the statement holds for supports with depth lower than h and
let y = x0a1x1a2 . . . anxn have depth h. The support can be rewritten as in (2.2)
with q0 = q and qn+1 = q′, where q′i = qi whenever xi is the empty word, and every
nonempty xi has depth lower than h.

Then, by the inductive hypothesis and the definition of δ̃, we can build a support

(2.4) K
x0� K ′

0
a1−→ K1

x1� K ′
1

a2→ · · · an→ Kn
xn� K ′

n

K′
0=⇒ K ′,

where, (q, p) being in K, we have

K ′
0 � (q′0, p) by inductive hypothesis on the support q = q0

x0� q′0,
K1 � (q1, q

′
0) since δpush(q

′
0, a1) � q1,

K ′
1 � (q′1, q

′
0) by inductive hypothesis on the support q1

x1� q′1,
Ki � (qi, q

′
0) since δshift(q

′
i−1, ai) � qi for every i = 2, . . . , n,

K ′
i � (q′i, q

′
0) by inductive hypothesis on the support qi

xi� q′i,
K ′ � (q′, p) since δpop(qn, q

′
0) � q′,

and this concludes the proof.

Lemma 2.6. Let y be the body of a chain with support K
y� K ′ in Ã. Then, for

every p, q′ ∈ Q, if K ′ � (q′, p) there exists a support q
y� q′ in A with (q, p) ∈ K.

Proof. First we present some remarks we will use in the proof.
(i) By the definition of δpush, if K̄

a−→ K in Ã, (q̄, q) ∈ K, (q, p) ∈ K̄, then

q
a−→ q̄ in A.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1042 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

(ii) By the definition of δshift, if K̄
a→ K in Ã, (r, q) ∈ K, then there exists a

state q̄ ∈ Q such that q̄
a−→ r in A and (q̄, q) ∈ K̄.

(iii) By the definition of δpop, if K̄
K
=⇒ K ′ in Ã and (q′, p) ∈ K ′, then there exists

a pair (r, q) ∈ K̄ such that (q, p) ∈ K and r
q

=⇒ q′ in A.
We argue by induction on the depth h of y. If h = 1, then y = a1a2 . . . an and the
support can be rewritten as in (2.3). Let K ′ � (q′, p); then, by remark (3) there exists

a pair (qn, q) ∈ Kn such that (q, p) ∈ K and qn
q

=⇒ q′ in Ã. Moreover, (qn, q) ∈ Kn

and Kn−1
an→ Kn imply by remark (2) the existence of a state qn−1 ∈ Q such

that (qn−1, q) ∈ Kn−1 and qn−1
an→ qn. Similarly one can verify that for every

i = n − 2, . . . 1 there exists qi ∈ Q such that (qi, q) ∈ Ki and qi
ai+1−→ qi+1. Finally,

K
a1−→ K1, (q1, q) ∈ K1, and (q, p) ∈ K imply by remark (1) that q

a1−→ q1 in A.
Thus, we built backward a path as in (2.1) with q0 = q, qn+1 = q′, (q, p) ∈ K, and
this concludes the proof of the induction basis.

Now assume that the statement holds for chains with depth lower than h. Let
y = x0a1x1a2 . . . anxn have depth h and consider a support as in (2.4) where K ′

i = Ki

whenever xi is the empty word, and every nonempty xi has depth lower than h. Let

(q′, p) ∈ K ′. Since K ′
n

K′
0=⇒ K ′, by remark (3) there exists a pair (q′n, q

′
0) ∈ K ′

n

with (q′0, p) ∈ K ′
0 and q′n

q′0=⇒ q′ in Ã. If xn �= ε, by the inductive hypothesis, since

(q′n, q
′
0) ∈ K ′

n there exists a support qn
xn� q′n with (qn, q

′
0) ∈ Kn.

Similarly one can see that, for all i = n− 1, . . . 2, 1, there exist q′i and qi (q
′
i = qi

whenever xi is empty) such that

qi
xi� q′i

ai+1−→ qi+1

with (q′i, q
′
0) ∈ K ′

i by remark (2) (since K ′
i

ai+1−→ Ki+1 in Ã and (qi+1, q
′
0) ∈ Ki+1),

and (qi, q
′
0) ∈ Ki by the inductive hypothesis (since Ki

xi� K ′
i in Ã and (q′i, q

′
0) ∈ K ′

i).

In particular q1
x1� q′1 with (q1, q

′
0) ∈ K1. Then, since also K ′

0
a1−→ K1 and

(q′0, p) ∈ K ′
0, by remark (1) we get q′0

a1−→ q1. Finally, since (q
′
0, p) ∈ K ′

0 and K
x0� K ′

0,
if x0 �= ε the inductive hypothesis implies the existence of a state q ∈ Q such that
q
x0� q′0 in Ã with (q, p) ∈ K. Hence we built a support as in (2.2) with q0 = q,

qn+1 = q′ and (q, p) ∈ K, and this concludes the proof.
To complete the proof of Theorem 2.4, we prove that there exists an accepting

computation for y in A iff there exists an accepting computation for y in Ã.

Let y be in L(A). Then it admits a support q
y� q′ with q ∈ I and q′ ∈ F . Then

for K = I × {�} � (q0,�), Lemma 2.5 implies the existence of a support K
y� K ′ in

Ã with K ′ � (q′,�). q′ ∈ F implies K ′ ∈ F̃ , hence y is accepted by Ã.

Conversely, let y be in L(Ã). Then y admits a support K̃
y� K ′ in Ã, with

K ′ ∈ F̃ . This means that there exists q′ ∈ F such that (q′,�) ∈ K ′. Hence, by

Lemma 2.6, there exists a support q
y� q′ in A with (q′,�) ∈ K̃, and this implies

q ∈ I. Thus the support q
y� q′ defines an accepting computation for y in A.

2.3. Complexity of OPL decision problems.
To conclude this section we point out that the basic decision problems for OPLs

have the same order of complexity as those for VPLs; precisely,
• the emptiness problem is in PTIME, OPLs and VPLs being a subclass of CF
languages;

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1043

. . .

β
B

. . .

A

α

. . .

β
A

α

Fig. 8. When parsing α, the prefix previously under construction is β.

• the containment problem for deterministic OPAs is in PTIME too since it is
reduced to the intersection, complement, and emptiness problems which are
all in PTIME in the deterministic case;

• the containment problem in the nondeterministic case is instead EXPTIME
complete: the same arguments used in [4] for VPLs apply identically for
OPLs.

3. OPAs and OPGs.
Our next result is the equivalence between OPGs and OPAs.

3.1. From OPGs to OPAs.
Theorem 3.1. Let G = 〈N,Σ, P, S〉 be an OPG; then an OPA A such that

L(A) = L(G) can effectively be built. Furthermore, let m be the sum of the lengths of
the r.h.s.’s of G; then A has O(m2) states.

Proof. First, we describe a procedure to build a nondeterministic OPA A =
〈Σ,M,Q, I, F, δ〉 from a given OPG G with the same precedence matrix M as G.
Then we prove the equivalence between A and G.

The construction sharply differs from the traditional one involving CF grammars
and general pushdown automata, which is instead quite straightforward. This is due
to the remarkable peculiarities of OPAs—among them the locality principle—which
make them, in turn, significantly different from the more powerful general pushdown
automata and from the less powerful VPAs. To keep the construction as simple as
possible, we avoid introducing any optimization. Also, without loss of generality, we
assume that the grammar G has no empty or renaming rules.

A is built in such a way that a successful computation thereof corresponds to
building bottom-up a derivation tree in G: the automaton performs a push transition
when it reads the first terminal of a new r.h.s. It performs a shift transition when
it reads a terminal symbol inside a r.h.s., i.e., a leaf with some left sibling leaf. It
performs a pop transition when it completes the recognition of a r.h.s., then guesses
(nondeterministically) the nonterminal at the l.h.s. Each state contains two pieces of
information: the first component represents the prefix of the r.h.s. under construc-
tion, whereas the second component is used to recover the r.h.s. previously under
construction (see Figure 8) whenever all r.h.s.’s nested below have been completed.

Precisely, the construction of A is defined as follows. Let

P = {α ∈ (N ∪ Σ)∗Σ | ∃A→ αβ ∈ P}

be the set of prefixes, ending with a terminal symbol, of r.h.s.’s of G; define Q =
{ε} ∪ P ∪N , Q = Q × ({ε} ∪ P), I = {〈ε, ε〉}, and F = S × {ε} ∪ {〈ε, ε〉 | ε ∈ L(G)}.
Note that |Q| = 1 + |P|+ |N | is O(m); therefore |Q| is O(m2).

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1044 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

The transition functions are defined as follows for a ∈ Σ and α, α1, α2 ∈ Q,
β, β1, β2 ∈ {ε} ∪ P:

• δshift(〈α, β〉, a) �
{

〈αa, β〉 if α �∈ N,
〈βαa, β〉 if α ∈ N,

• δpush(〈α, β〉, a) �
{

〈a, α〉 if α �∈ N,
〈αa, β〉 if α ∈ N,

• δpop(〈α1, β1〉, 〈α2, β2〉) � 〈A, γ〉 for every A such that[
A→ α1 ∈ P if α1 /∈ N,
A→ β1α1 ∈ P if α1 ∈ N,

and γ =

{
α2 if α2 /∈ N,
β2 if α2 ∈ N.

Notice that the result of δshift and δpush is a singleton, whereas δpop may produce
several states, in case of repeated r.h.s.’s.

The states reached by push and shift transitions have the first component in P.
If state 〈α, β〉 is reached after a push transition, then α is the prefix of the r.h.s. that
is currently under construction and β is the prefix previously under construction; in
this case α is either a terminal symbol or a nonterminal followed by a terminal one.
If the state is reached after a shift transition, then α is the concatenation of the first
component of the previous state with the read character, and β is not changed from
the previous state. The states reached by a pop transition have the first component
in N : if 〈A, γ〉 is such a state, then A is the corresponding l.h.s, and γ is the prefix
previously under construction.

The equivalence between G and A derives from the following Lemmas 3.2 and
3.3, when β = γ = ε, Π = ⊥, and A is an axiom.

Example 6. Let G be the grammar introduced in Example 1. To apply the
construction of Theorem 3.1 first we need to transform G in such a way that there
are no renaming rules. The new grammar has the following productions,

E → E + T | T × F | n | �E�,

T → T × F | n | �E�,

F → n | �E�,

where E, T , and F are axioms.
Figure 9 shows an accepting computation of the equivalent automaton, together

with the corresponding derivation tree. Notice that the computation shown in Figure 9
is equal to that of Figure 5 up to a renaming of the states; in fact, the shape of syntax
trees and consequently the sequence of push, shift, and pop moves in OPLs depends
only on the OPM, not on the visited states.

Lemma 3.2. Let x be the body of a chain and β, γ ∈ P∪{ε}. Then, for all h ≥ 1,

〈β, γ〉 x� q implies the existence of A ∈ N such that A
∗⇒ x in G and q = 〈A, β〉.

Proof. We reason by induction on the depth h of x.
If h = 1, then x = a1a2 . . . an is the body of a simple chain, and the support is

as in (2.1) with q0 = 〈β, γ〉 and qn+1 = q. Then by the definition of push and shift
transition functions we have qi = 〈a1 . . . ai, β〉 for every i = 1, 2, . . . n, and by the
definition of pop transition function (recall that β �∈ N by hypothesis) it is q = 〈A, β〉
for some A such that A → a1 . . . an = x is in P . Hence A

∗⇒ x and the statement is
proved.

If h > 1, then as usual let x = x0a1x1 . . . anxn and let its support be decomposed
as in (2.2) with q0 = 〈β, γ〉 and qn+1 = q. Also set qi = 〈βi, γi〉 for i = 0, 1, . . . , n (in
particular β0 = β and γ0 = γ). Each nonempty xi being the body of a chain with
depth lower than h, the inductive hypothesis implies that there exists Xi ∈ N such

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1045

stack state current input

⊥ 〈ε, ε〉 n+ n× �n+ n�#

⊥[n, 〈ε, ε〉] 〈n, ε〉 +n× �n+ n�#

⊥ 〈E, ε〉 +n× �n+ n�#

⊥[+, 〈E, ε〉] 〈E+, ε〉 n× �n+ n�#

⊥[+, 〈E, ε〉][n, 〈E+, ε〉] 〈n, ε〉 ×�n+ n�#

⊥[+, 〈E, ε〉] 〈T, E+〉 ×�n+ n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉] 〈T×, E+〉 �n+ n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉] 〈�, E+〉 n+ n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉][n, 〈�, E+〉] 〈n,E+〉 +n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉] 〈E, �〉 +n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉][+, 〈E, �〉] 〈E+, �〉 n�#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉][+, 〈E, �〉][n, 〈E+, �〉] 〈n, �〉 �#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉][+, 〈E, �〉] 〈T, E+〉 �#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉] 〈E, �〉 �#

⊥[+, 〈E, ε〉][×, 〈T, E+〉][�, 〈T×, E+〉] 〈�E�, �〉 #

⊥[+, 〈E, ε〉][×, 〈T, E+〉] 〈F, T×〉 #

⊥[+, 〈E, ε〉] 〈T, E+〉 #

⊥ 〈E, ε〉 #

E

E

n

+ T

T

n

× F

� E

E

n

+ T

n

�

Fig. 9. Accepting computation of the automaton built in Theorem 3.1.

that Xi
∗⇒ xi in G, and qi = 〈Xi, βi〉. Thus, the support can be rewritten as

〈β, γ〉 x0� q′0
a1−→ 〈β1, γ1〉

x1� q′1
a2→ · · · an→ 〈βn, γn〉

xn� q′n
q′0=⇒ q,

where

q′i =

{
〈βi, γi〉 if xi = ε,
〈Xi, βi〉 otherwise

for every i. Now, by the definition of push and shift transition functions, one can
see that, for i �= 0, βi = X0a1 . . .Xi−1ai holds regardless of whether xi is empty or
not (setting Xi = ε if xi = ε). Thus, to compute the state q reached with the final
pop transition δpop(q

′
n, q

′
0), we have to consider four cases depending on whether x0

and xn are empty or not, which are exactly the four combinations considered in the
definition of δpop. In any case, q has the form 〈A, β〉, where A is a nonterminal of G
such that A→ X0a1X1 . . .Xn1anXn.

Lemma 3.3. Let x be the body of a chain and A ∈ N . Then, A
∗⇒ x in G implies

〈β, γ〉 x� 〈A, β〉 for every β, γ ∈ P ∪ {ε}.
Proof. We reason by induction on the depth h of the chain. If h = 1, then x is the

body of a simple chain, hence A
∗⇒ x means that A → x is a production. Thus, by

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1046 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

the definition of δ (recall that β �∈ N by hypothesis), we obtain a support as in (2.1)
with q0 = 〈β, γ〉, qn+1 = q, and qi = 〈a1 . . . ai, β〉 for every i = 1, 2, . . . n.

If h > 1, then x is the body of a composed chain with x = x0a1x1 . . . anxn.
Hence A

∗⇒ x in G implies that there exist X0, X1, . . . , Xn ∈ {ε}∪N (more precisely,

Xi = ε if xi = ε) such that A→ X0a1X1 . . . anXn and Xi
∗⇒ xi. The first step of the

computation is different depending on whether x0 is empty or not. In any case, we
have

〈β, γ〉 x0� q′0
a1−→ 〈X0a1, β〉, where q′0 =

{
〈β, γ〉 if x0 = ε,
〈X0, β〉 otherwise.

The computation goes on differently depending on whether x1, x2, . . . , xn−1 are empty
or not. However, by the inductive hypothesis and the definition of δshift, after reading
ai the automaton reaches state 〈X0a1 . . . Xi−1ai, β〉 for every i = 1, . . . , n, i.e., we
have the path

〈β, γ〉 x0� q′0
a1−→ 〈X0a1, β〉

x1� q′1
a2→ 〈X0a1X1a2, β〉

x2� q′2
a3→ · · · an→ 〈X0a1 . . . Xn−1an, β〉.

If xn �= ε, the computation proceeds with the last inductive step

〈X0a1 . . . Xn−1an , βn〉
xn� 〈Xn , X0a1 . . . Xn−1an〉.

Finally, the computation ends with a pop transition. There are four cases depending
on whether x0 and xn are empty or not, which are exactly the four combinations
considered in the definition of δpop. In any case, we build a support ending with state
〈A, β〉, and this concludes the proof.

Corollary 3.4. If the source grammar is in FNF, then the corresponding au-
tomaton is deterministic.

The thesis follows immediately by observing that the construction defined in
Theorem 3.1 is such that the values defined by δpush and δshift are always singleton,
whereas δpop produces as many states as many l.h.s.’s have the same r.h.s.’s. Thus,
since the initial state is a singleton and grammars in FNF have no repeated r.h.s.’s, the
automaton resulting from the construction is already deterministic. This corollary has
an interesting effect in terms of size of the produced automata as pointed out below.

Remark 1. Given a grammar G with |N | nonterminals the construction of The-
orem 3.1 produces an automaton with O(m2) states, where m is defined as in Theo-
rem 3.1; thus, if we build a deterministic OPA from a generic OPG G by first building
a nondeterministic automaton and then transforming it into the deterministic version,
we obtain an automaton with 2O(m4) states; instead, if we first transform the orig-
inal G in FNF we obtain an equivalent grammar G̃ with O(2|N |) nonterminals and

m̃ = O(2m|N |2); then, by applying the construction of Theorem 3.1 we directly obtain

a deterministic automaton with O(m̃2) = O(22m|N |2) states.
Nevertheless, the size of the complete automaton is clearly hardly manageable by

human execution; thus we implemented a prototype (nonoptimized) tool to perform
the construction.5

5The tool is called Flup, available at https://github.com/bzoto/flup.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/bzoto/flup

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1047

3.2. From OPAs to OPGs.
The construction of an OPG equivalent to a given OPA is far simpler than the converse
one, thanks to the explicit structure associated with words by the precedence matrix.

Theorem 3.5. Let A be an OPA; then an OPG G such that L(G) = L(A) can
effectively be built.

Proof. Given an OPA A = 〈Σ,M,Q, I, F, δ〉, we show how to build an equivalent
OPG G having OPM M. The equivalence between A and G should then be rather
obvious.

G’s nonterminals are the 4-tuples (a, q, p, b) ∈ Σ×Q×Q×Σ, written as 〈ap, qb〉.
G’s rules are built as follows:

• for every support of type (2.1) of a simple chain, the rule

〈a0q0, qn+1
an+1〉 −→ a1a2 . . . an

is in P ; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then
〈#q0, qn+1

#〉 is in S;
• for every support of type (2.2) of a composed chain, add the rule

〈a0q0, qn+1
an+1〉 −→ Λ0a1Λ1a2 . . . anΛn,

where, for every i = 0, 1, . . . , n, Λi = 〈aiqi, q′iai+1〉 if xi �= ε and Λi = ε
otherwise; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then
add 〈#q0, qn+1

#〉 to S and, if ε is accepted by A, add A→ ε, A being a new
axiom not otherwise occurring in any other rule.

Notice that the above construction is effective thanks to the hypothesis of =̇-
acyclicity of the OPM (remember that, as discussed in section 1, this hypothesis could
be replaced by weaker ones). This implies that the length of the r.h.s. is bounded
(see section 1); on the other hand, the cardinality of the nonterminal alphabet is
finite (precisely it is O(|Σ|2 · |Q|2). Hence there is only a finite number of possible
productions for G and only a limited number of chains to be considered.

4. MSO logic characterization. In his seminal paper [12] Büchi provided a
logic characterization of regular languages: he defined an MSO syntax on the integers
representing the position of characters within a string and, by means of clever argu-
ments, gave algorithms to build a finite-state machine (FSM) recognizing exactly the
strings satisfying a given formula and, conversely, to build a formula satisfied by all
and only the strings accepted by a given FSM. Subsequently, a rich literature consid-
erably extended his work to more powerful language families—typically, CF [13]—and
different logic formalisms, e.g., first-order or tree logics [1, 10, 16]. To the best of our
knowledge, MSO logic characterizations of CF languages refer to “visible structure
languages,” i.e., to languages whose strings make their syntactic structure immedi-
ately visible in their external appearance, such as “tree languages” [39]6 and VPLs
[3] which explicitly refer to this peculiar property in their name. In this section we
provide a complete MSO logic characterization of OPLs, which, instead, also include
invisible-structure languages, whose syntax trees associated with external strings must
be built by means of suitable parsing algorithms, in which the OPM plays a major
role.

Similarly to other approaches, in particular to the VPLs one, which in fact are
a subclass of OPLs, we begin by defining a suitable binary predicate on the string

6It is not a coincidence that tree automata [39] have been defined by extending the original
finite-state ones.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1048 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

positions. However the original definition of [4] which states the � relation between
the positions of two matching parentheses (calls and returns in VPLs terminology)
cannot be naturally extended to the more general case of OPL strings. In fact the �
relation between two matching parentheses, which are extremes of the frontier of a
subtree, is typically one-to-one (with the exclusion of the particular case of unmatched
parentheses which however occur only at the begin and end of a string), whereas, in
general, the relation between leftmost and rightmost leaves of an OPL subtree can
be many-to-one or one-to-many or both. A further consequence of the more general
structure of OPL trees is that, unlike FSMs, tree automata, and VPAs, OPAs are
not real-time automata as they may have to perform a series of pop moves without
advancing their running head; this in turn produces the effect that, whereas in regular
and VPLs each position is associated with a unique state visited by the machine during
its behavior, for OPLs the same position may refer to several states—i.e., to several
subsets of positions according to Büchi’s approach.

Consequently, the approach we describe here departs from previous ones along
two main directions:

• The binary relations between positions referring to a pop operation are at-
tached to the lookback and lookahead positions which in OP parsing embrace
the r.h.s. to be reduced; thus, the formal definition of the relation will be
based on the notion of chain.

• The sets of positions associated with the different automaton states are sub-
divided into three, not necessarily disjoint, subsets: one describing the state
reached after a push or shift operation, and two to delimit the positions
corresponding to each pop operation; in such a way we obtain a unique iden-
tification thereof.

4.1. An MSO logic over OP alphabets. Let (Σ,M) be an OP alphabet.
Let us define a countable infinite set of first-order variables x , y , . . . and a countable
infinite set of MSO (set) variablesX ,Y , In the following we adopt the convention
to denote first- and second-order variables in boldface italic font.

Definition 4.1 (MSO logic over (Σ,M)). Let V1 be a set of first-order vari-
ables and V2 be a set of second-order (or set) variables. The MSOΣ,M (MSO logic
over (Σ,M)) is defined by the following syntax (symbols Σ,M will be omitted unless
necessary to prevent confusion):

ϕ := c(x) | x ∈ X | x ≤ y | x � y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ,

where7 c ∈ Σ ∪ {#}, x, y ∈ V1, and X ∈ V2.
An MSO formula is interpreted over a (Σ,M) string w, w.r.t. assignments ν1 :

V1 → {0, 1, . . . |w| + 1} and ν2 : V2 → ℘({0, 1, . . . |w| + 1}), in the following way.
• #w#,M, ν1, ν2 |= c(x) iff #w# = w1cw2 and |w1| = ν1(x).
• #w#,M, ν1, ν2 |= x ∈ X iff ν1(x) ∈ ν2(X).
• #w#,M, ν1, ν2 |= x ≤ y iff ν1(x) ≤ ν1(y).
• #w#,M, ν1, ν2 |= x � y iff #w# = w1aw2bw3, |w1| = ν1(x), |w1aw2| =
ν1(y), and aw2b is a chain a[w2]

b.
• #w#,M, ν1, ν2 |= ¬ϕ iff #w#,M, ν1, ν2 �|= ϕ.
• #w#,M, ν1, ν2 |= ϕ1 ∨ ϕ2 iff #w#,M, ν1, ν2 |= ϕ1 or #w#,M, ν1, ν2 |= ϕ2.
• #w#,M, ν1, ν2 |= ∃x .ϕ iff #w#,M, ν′1, ν2 |= ϕ, for some ν′1 with ν′1(y) =
ν1(y) for all y ∈ V1 \ {x}.

7This is the usual MSO over strings, augmented with the � predicate.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1049

n + n × � n + n �

0 1 2 3 4 5 6 7 8 9 10

Fig. 10. The string of Figure 1, with positions and relation �.

• #w#,M, ν1, ν2 |= ∃X .ϕ iff #w#,M, ν1, ν
′
2 |= ϕ, for some ν′2 with ν′2(Y) =

ν2(Y) for all Y ∈ V2 \ {X }.
To improve readability, we will drop M , ν1, ν2, and the delimiters # from the

notation whenever there is no risk of ambiguity; furthermore we use some standard
abbreviations in the formulas, such as x + 1, x − 1, x = y , x �= y , x < y .

A sentence is a formula without free variables. The language of all strings w ∈ Σ∗

such that w |= ϕ is denoted by L(ϕ):

L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

Figure 10 illustrates the meaning of the � relation with reference to the string of
Figure 1: we have 0 � 2, 2 � 4, 5 � 7, 7 � 9, 5 � 9, 4 � 10, 2 � 10, and 0 � 10.
Such pairs correspond to contexts where a reduce operation is executed during the
parsing of the string (they are listed according to their execution order).

In general x � y implies y > x + 1, and a position x may be in such a relation
with more than one position and vice versa. Moreover, if w is compatible with M ,
then 0 � |w|+ 1.

Example 7. Consider the language of Example 1. The following sentence states
that all parentheses are well-matched:

∀x∀y

⎛⎝x � y ⇒

⎛⎝�(x + 1) ⇒
�(y − 1)∧

¬∃z (z < y ∧ x � z)∧
¬∃v (x < v ∧ v � y)

⎞⎠⎞⎠ .

Note that this property is guaranteed a priori by the structure of the OPM.
The following sentence instead defines the language where parentheses are used

only when they are needed (i.e., to give precedence of + over ×):

∀x∀y

⎛⎜⎜⎝ x � y∧
�(x + 1)∧�(y − 1)

⇒ (×(x) ∨ ×(y)) ∧ ∃z

⎛⎜⎜⎝
x + 1 < z < y − 1 ∧+(z) ∧

¬∃u∃v

⎛⎝x + 1 < u < z ∧ �(u)∧
z < v < y − 1 ∧ �(v)∧

u − 1 � v + 1

⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎠.

The following theorem states the main result of this section.
Theorem 4.2. A language L over (Σ,M) is an OPL iff there exists an MSO

sentence ϕ such that L = L(ϕ).
The proof is constructive and structured in the following two subsections.

4.2. From MSO to OPAs.
Statement 4.1. Let (Σ,M) be an OP alphabet and ϕ be an MSO sentence.

Then L(ϕ) can be recognized by an OPA over (Σ,M).
Proof. The proof follows the one by Thomas [40] and is composed of two steps:

first the formula is rewritten so that no predicate symbols nor first-order variables are
used; then an equivalent OPA is built inductively.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1050 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

q0 q1 q2

q

q3 qF
[X̄]

[X̄] q2
[X i]

[X i]

q1

[X̄]

[X̄]

q0 [X̄]

[X̄]

[X̄]

q

[X j]

[X j]
q0 [X̄]

[X̄]

q0, qF

Fig. 11. OPA for atomic formula ψ = Xi � Xj .

Let Σ be {a1, a2, . . . , an}. For each predicate symbol ai we introduce a fresh
set variable X i, therefore formula ai(x) will be translated into x ∈ X i. Following
the standard construction of [40], we also translate every first-order variable into a
fresh second-order variable with the additional constraint that the set it represents
contains exactly one position. The only difference is that formulas like x � y will be
translated into formulas X i � X j , where X i, X j are singleton sets. In this case, the
semantics of � is naturally extended to second-order variables that are singletons.

Let ϕ′ be the formula obtained from ϕ by such a translation, and consider any
subformula ψ of ϕ′: let X 1,X 2, . . . ,X n,X n+1, . . .X n+m(ψ) be the (second-order)
free variables appearing in ψ. Recall that X 1, . . . ,X n represent symbols in Σ, hence
they are never quantified.

As usual we interpret formulas over strings; in this case we use the alphabet

Λ(ψ) =
{
α ∈ {0, 1}n+m(ψ) | ∃!i s.t. 1 ≤ i ≤ n, αi = 1

}
.

A string w ∈ Λ(ψ)∗, with |w| = �, is used to interpret ψ in the following way: the
projection over the jth component of Λ(ψ) gives a valuation {1, 2, . . . , �} → {0, 1} of
X j for every 1 ≤ j ≤ n+m(ψ).

For any α ∈ Λ(ψ), the projection of α over the first n components encodes a
symbol in Σ, denoted as symb(α). The matrix M over Σ can be naturally extended
to the OPM M(ψ) over Λ(ψ) by defining M(ψ)α,β =Msymb(α),symb(β) for any α, β ∈
Λ(ψ).

We now build an OPA A equivalent to ϕ′. The construction is inductive on the
structure of the formula: first we define the OPA for all atomic formulas. We give
here only the construction for �, since for the other ones the construction is standard
and is the same as in [40].

Figure 11 represents the OPA for atomic formula ψ = X i � X j (notice that
i, j > n, and that both X i and X j are singleton sets). For the sake of brevity, we
use notation [X i] to represent the set of all tuples Λ(ψ) having the ith component
equal to 1; notation [X̄] represents the set of all tuples in Λ(ψ) having both ith and
jth components equal to 0.

The semantics of � requires for X i � X j that there must be a chain a[w2]
b in

the input word, where a is the symbol at the only position in X i, and b is the symbol
at the only position in X j . By definition of chain, this means that a must be read,
hence in the position represented by X i the automaton performs either a push or a

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1051

shift move (see Figure 11, from state q0 to q1), as pop moves do not consume input.
After that, the automaton must read w2. In order to process the chain a[w2]

b, reading
w2 must start with a push move (from state q1 to state q2), and it must end with one
or more pop moves, before reading b (i.e., the only position in X j—going from state
q3 to qF).

This means that the automaton, after a generic sequence of moves corresponding
to visiting an irrelevant (for X i � X j) portion of the syntax tree, when reading the
symbol at position X i performs either a push or a shift move, depending on whether
X i is the position of a leftmost leaf of the tree or not. Then it visits the subsequent
subtree ending with a pop labeled q1; at this point, if it reads the symbol at position
X j , it accepts anything else that follows the examined fragment.

Then, a natural inductive path leads to the construction of the automaton as-
sociated with a generic MSO logic formula: the disjunction of two subformulas can
be obtained by building the union automaton of the two corresponding automata;
similarly for negation. The existential quantification of X i is obtained by projection
erasing the ith component; since OPLs are closed under alphabetical homomorphisms
preserving the OPM (see Statement 1.2), and since the OPM is determined only by
the first n components of the alphabet’s elements which are never erased by quantifi-
cation, such a projection produces a well-defined automaton for any ψ. Finally, the
alphabet of the automaton equivalent to ϕ′ is Λ(ϕ′) = {0, 1}n, which is in bijection
with Σ.

4.3. From OPAs to MSO.
When considering a chain a[w]b we assumew = w0a1w1 . . . a�w�, with

a[a1a2 . . . a�]
b

being a simple chain (any wg may be empty). We denote by sg the position of sym-
bol ag for g = 1, 2, . . . , � and set a0 = a, s0 = 0, a�+1 = b, and s�+1 = |w| + 1.
Furthermore, we define the following shortcut notations:

x ◦ y :=
∨

Ma,b=◦
a(x) ∧ b(y) for ◦ ∈ {�, .=,�},

Tree(x , z , v , y) := x � y ∧

⎛⎝(x + 1 = z ∨ x � z) ∧ ¬∃t(z < t < y ∧ x � t)
∧

(v + 1 = y ∨ v � y) ∧ ¬∃t(x < t < v ∧ t � y)

⎞⎠ .

If x � y then there exist (unique) z and v such that Tree(x , z , v , y) is satisfied.
In particular, if w is the body of a simple chain, then 0 � �+1 and Tree(0, 1, �, �+1) are
satisfied; if it is the body of a composed chain, then 0 � |w|+1 and Tree(0, s1, s�, s�+1)
are satisfied. If w0 = ε then s1 = 1, and if w� = ε then s� = |w|. In the example of
Figure 10 relations Tree(2, 3, 3, 4), Tree(2, 4, 4, 10), Tree(4, 5, 9, 10), Tree(5, 7, 7, 9) are
satisfied, among others.

Statement 4.2. Let (Σ,M) be an OP alphabet and A be an OPA over (Σ,M).
Then there exists an MSO sentence ϕ such that L(A) = L(ϕ).

Proof. Let A = 〈Σ,M,Q, q0, F, δ〉 be deterministic (this simplifying assumption
does not cause loss of generality, since nondeterministic OPAs are equivalent to de-
terministic ones by Theorem 2.4). Without loss of generality we also assume that the
transition function of A is total. We build an MSO sentence ϕ such that L(A) = L(ϕ).
The main idea for encoding the behavior of the OPA is based on assigning the states
visited during its run to positions along the same lines stated by Büchi in Thomas [40]
and extended for VPLs [4]. Unlike finite-state automata and VPAs, however, OPAs
do not work on-line. Hence, it is not possible to assign a single state to every posi-
tion. Let Q = {q0, q1, . . . , qN} be the states of A with q0 initial; as usual, we will use

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1052 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

t0

B3 C 3

x1

B3 C 3

y1

B3 C 3

w0

B3 C 3

x0 y0 z0 z1

B1 C 1 B1 C 1 B3 C 3 B3 C 3

A0 A1 A0 A1 A0 A2 A3 A2 A3 A3

n + n × � n + n �

0 1 2 3 4 5 6 7 8 9 10

Fig. 12. The string of Figure 1 with Bi, Ai, and Ci evidenced for the automaton of Figure 5.
Pop moves of the automaton are represented by linked pairs Bi, Ci; labels refer to supports of
Figure 6.

second-order variables to encode them. We shall need three different sets of second-
order variables, namely, A0,A1, . . . ,AN , B0,B1, . . . ,BN , and C 0,C 1, . . . ,CN . Set
Ai contains those positions of word w where state qi may be assumed after a shift or
push transition, i.e., after a transition that “consumes” an input symbol. Sets B i and
C i encode a pop transition concluding the reading of the body w0a1w1 . . . alwl of a
chain whose support ends in a state qi: set B i contains the position of symbol a that
precedes the corresponding push, whereas C i contains the position of al, which is the
symbol on top of the stack when the automaton performs the pop move. Figure 12
presents such sets for the example automaton of Figure 5, with the same input as in
Figure 10. Notice that each position, except the last one, belongs to exactly one Ai,
whereas it may belong to several B i and at most one C i.

Then, sentence ϕ is defined as follows:

(4.1) ϕ := ∃e
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C 0,C 1, . . . ,CN

⎛⎝Start0 ∧ ϕδ ∧
∨
qf∈F

Endf

⎞⎠ ,

where the first and last subformulas encode the initial and final states of the run,
respectively; formula ϕδ is defined as ϕδpush ∧ ϕδshift ∧ ϕδpop and encodes the three
transition functions of the automaton, which are expressed as the conjunction of
forward and backward formulas. Variable e is used to refer to the end of a string.

To complete the definition of ϕ, we incrementally introduce more notation:

Succk(x , y) := x + 1 = y ∧ x ∈ Ak,

Nextk(x , y) := x � y ∧ x ∈ Bk ∧ ∃z , v (Tree(x , z , v , y) ∧ v ∈ C k),

Qi(x , y) := Succi(x , y) ∨ Nexti(x , y).

The shortcut Qi(x , y) is used to represent that A is in state qi when at position x and
the next position to read, possibly after scanning a chain, is y . Since the automaton
is not real time, we must distinguish between push and shift moves (case Succi(x , y)),

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1053

and pop moves (case Nexti(x , y)). For instance, with reference to Figures 10 and 12,
Succ2(5, 6), Next3(5, 9), and Next3(5, 7) hold.

The shortcuts representing the initial and final states of the parsing of a string of
length e are defined as follows:

Starti := 0 ∈ Ai ∧ ¬
∨
j
=i

(0 ∈ Aj),

Endf := ¬∃y(e + 1 < y) ∧ Nextf (0, e + 1) ∧ ¬
∨
j
=f

(Nextj(0, e + 1)).

ϕδpush is the conjunction of the following two formulas. The former states the sufficient
condition for a position to be in a set Ai, when performing a push move:

ϕpush fw := ∀x , y
N∧
i=0

N∧
k=0

(x � y ∧ c(y) ∧Qi(x , y) ∧ δpush(qi, c) = qk ⇒ y ∈ Ak) .

The latter formula states the symmetric necessary condition:

ϕpush bw := ∀x , y
N∧
k=0

⎛⎝x � y ∧ c(y) ∧ y ∈ Ak

∧
(x + 1 = y ∨ x � y)

⇒
N∨
i=0

(Qi(x , y) ∧ δpush(qi, c) = qk)

⎞⎠.

ϕδshift is defined analogously, w.r.t. shift moves instead of push moves:

ϕshift fw := ∀x , y
N∧
i=0

N∧
k=0

(x
.
= y ∧ c(y) ∧Qi(x , y) ∧ δshift(qi, c) = qk ⇒ y ∈ Ak) ,

ϕshift bw := ∀x , y
N∧
k=0

⎛⎝x
.
= y ∧ c(y) ∧ y ∈ Ak

∧
(x + 1 = y ∨ x � y)

⇒
N∨
i=0

(Qi(x , y) ∧ δshift(qi, c) = qk)

⎞⎠.

Finally, to define ϕδpop we introduce the shortcut Treei,j(x , z , v , y), which represents
the fact that A is ready to perform a pop transition from state qi having on top of
the stack state qj ; such pop transition corresponds to the reduction of the portion of
string between positions x and y (excluded):

Treei,j(x , z , v , y) := Tree(x , z , v , y) ∧Qi(v , y) ∧Qj(x , z).

Formula ϕδpop is thus defined as the conjunction of three formulas. As before, the
forward formula gives the sufficient conditions for two positions to be in the sets Bk

and C k, when performing a pop move, and the backward formulas state symmetric
necessary conditions:

ϕpop fw := ∀x , z , v , y
N∧
i=0

N∧
j=0

N∧
k=0

(Treei,j(x , z , v , y) ∧ δpop(qi, qj) = qk

⇒ x ∈ Bk ∧ v ∈ C k),

ϕpop bwB := ∀x
N∧
k=0

⎛⎝x ∈ Bk ⇒ ∃y , z , v
N∨
i=0

N∨
j=0

Treei,j(x , z , v , y) ∧ δpop(qi, qj) = qk

⎞⎠ ,

ϕpop bwC := ∀v
N∧
k=0

⎛⎝v ∈ C k ⇒ ∃x , y , z
N∨
i=0

N∨
j=0

Treei,j(x , z , v , y) ∧ δpop(qi, qj) = qk

⎞⎠ .

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1054 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Now notice that ϕ ≡
∨
qf∈F

ψ0,f , where

ψi,k := ∃e
∃A0,A1, . . . ,AN ,
∃B0,B1, . . . ,BN

∃C 0,C 1, . . . ,CN .
(Starti ∧ ϕδ ∧ Endk) ,

Hence, the proof that L(A) = L(ϕ) is a direct consequence of the following Lemmas 4.3

and 4.4, stating that w |= ψi,k iff qi
w� qk in A, for every word w compatible with

(Σ,M).

Lemma 4.3. Let w be the body of a chain #[w]#. If qi
w� qk in A, then w |= ψi,k.

Proof. We prove the lemma by induction on the depth of chains. Note that, even
if A is deterministic, some chains could have different supports. However, we will
show that every support produces exactly one assignment that satisfies ψi,k.

Let w be the body of a simple chain with support

(4.2) qi = qt0
a1−→ qt1

a2→ · · · a�→ qt�
qt0=⇒ qk.

We prove that w |= ψi,k for e ,A0,A1, . . . ,AN ,B0, . . . ,BN ,C 0, . . . ,CN defined as
follows. First-order variable e equals |w|, Bh is empty except for Bk = {0}, C h is
empty except for C k = {�}; for every 0 ≤ x ≤ �, let Ah contain x iff tx = h (i.e.,
x ∈ Atx), and this also implies Qtx (x , x + 1). Then Starti and Endk are satisfied
trivially since Tree(0, 1, �, � + 1) holds. We now prove that also ϕδpush

, ϕδshift
, and

ϕδpop are satisfied; we omit considering all cases where the antecedents are false.
• ϕpush is satisfied for x = 0 and y = 1 since we have a1(1), #� a1, Qi(0, 1),
1 ∈ At1 , and δpush(qi, a1) = qt1 .

• ϕshift is satisfied ∀1 ≤ x < � and y = x + 1 since we have ay(y), ax
.
= ay ,

Qtx (x , y), y ∈ Aty , and δshift(qtx , ay) = qty .
• ϕpop is satisfied for x = 0 and y = |w| + 1 = � + 1 since we have
Treet�,i(0, 1, �, �+ 1), 0 ∈ Bk, � ∈ C k, and δpop(qt� , qi) = qk.

Let now w be the body of a composed chain with support

(4.3) qi = qt0
w0� qf0

a1−→ qt1
w1� qf1

a2→ · · · ag→ qtg
wg� qfg . . .

a�→ qt�
w�� qf�

qf0=⇒ qk.

We prove that w |= ψi,k for a suitable assignment. By the inductive hypothesis, for ev-
ery g = 0, 1, . . . , � such that wg �= ε we have wg |= ψtg ,fg . Let A0

g, . . . ,AN
g,B0

g, . . . ,
BN

g,C 0
g, . . . , CN

g be (the naturally shifted versions of) an assignment that satisfies
ψtg ,fg . In particular this implies sg ∈ Atg , Nextfg (sg, sg+1), and sg ∈ Atg ∪Bfg for
each g such that wg �= ε. Then define Ah,Bh,Ch as follows. Let Ah include all
Ah

g, Bh include all Bh
g, C h include all Ch

g. Also let Bk contain s0, C k contain
s�, and Atg contain sg whenever wg is empty; in particular, this implies Qfg(sg, sg+1)
for every 0 ≤ g < �. Finally, e is defined as the length of w.

Then we show that ψi,k is satisfied by checking every subformula. Starti and Endk
are satisfied trivially since Tree(0, s1, s�, |w|+ 1) holds. By the inductive hypothesis,
all other axioms are satisfied within every wg. Thus, we only have to prove that they
are satisfied in positions sg for 0 ≤ g ≤ �. We omit considering all cases where the
antecedents are false.

• ϕpush is satisfied for x = 0 and y = s1 since we have a1(s1), #�a1 Qf0(0, s1),
s1 ∈ At1 , and δpush(qf0 , a1) = qt1 .

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1055

• ϕshift is satisfied for all x = sg and y = sg+1 with 1 ≤ g < � since we have
ag(sg), asg

.
= asg+1 , Qfg (sg, sg+1), sg ∈ Atg , and δshift(qfg , ag) = qtg .

• ϕpop is satisfied for x =0 and y = |w|+1 since we have Treef�,f0(0, s1, s�,|w|+1),
0 ∈ Bk, � ∈ C k, and δpop(qt� , qi) = qk.

Hence w |= ψi,k for every w with a suitable support, and this concludes the
proof.

Lemma 4.4. Let w be the body of a chain #[w]#. If w |= ψi,k then qi
w� qk in

A.
Proof. Let e = |w|, A0, . . . ,AN ,B0, . . . ,BN ,C 0, . . . ,CN be an assignment that

satisfies ψi,k. In particular this implies 0 ∈ Ai ∧ Nextk(0, |w| + 1), and such i, k are
unique by definition of Starti and Endk. Then the following properties hold.

1. For each 0 ≤ x ≤ |w|, there exists a unique index i such that Succi(x , x +1)
holds true. This can be proved by induction on x by applying the formulas
for δpush and δshift.

2. For each x , y such that x � y , let z , v such that Tree(x , z , v , y) holds, then
there exists a unique pair of indices i, j such that Treei,j(x , z , v , y) holds, and
there exists a unique index k such that Nextk(x , y). This can be proved by
induction on the depth of the chain between positions x and y , by applying
the formulas for δpop and property 1.
Moreover, if Treei,j(x , z , v , y) holds, then Nextk(x , y) holds iff δpop(qi, qj) =
qk.

Hence, by properties 1 and 2, for each x , y such that x + 1 = y or x � y , there
exists a unique i such that Qi(x , y) holds true.

Now, for every g let tg be the index such that g ∈ Atg . tg is unique by property 1
and in particular t0 = i.

We proceed by induction on the depth h of w. Let h = 1 and w = a1a2 . . . a� be
the body of a simple chain. In this case tg is the unique index such that Succtg (g, g+1).
Then, by ϕpush bw with y = 1, we have δ(qt0 , a1) = qt1 ; and by ϕshift bw with 1 ≤
g < �, we have δshift(qtg , ag+1) = qtg+1 . Moreover, since Treet�,t0(0, 1, �, � + 1) ∧
Nextk(0, �+ 1), we get δ(qt� , qt0) = qk by property 2. Hence we have built a support
of the type (4.2).

Let now h > 1 and w = w0a1w1 . . . a�w�. For 0 ≤ g ≤ �, since sg � sg+1 ∨
sg+1 = sg + 1, by properties 1 and 2 above there exists a unique index fg such
that Qfg (sg, sg+1) holds. Notice that wg = ε implies fg = tg, otherwise we have

wg |= ψtg ,fg and, by the inductive hypothesis, there exists a support qtg
sg� qfg

in A. Thus, for every 0 ≤ g < �, by applying ϕpush bw with y = sg+1 we get
δ(qfg , ag+1) = qtg+1 . Moreover, since Treef�,f0(0, s1, s�, |w|+1)∧Nextk(0, |w|+1), by
property 2 above we get δ(qt� , qi) = qk. Hence we have built a support of type (4.3)
and this concludes the proof.

II: Operator precedence ω-languages.

Languages of infinite-length strings, called ω-languages, have been introduced to
model nonterminating processes; thus they are becoming more and more relevant
nowadays when most applications are “ever-running”, often in a distributed environ-
ment. Again, the foundations of the theory of ω-languages are due to the pioneering
work by Büchi [12] and others [32, 30, 37, 9]. Büchi, in particular, investigated their
main algebraic properties in the context of finite-state machines, pointing out com-
monalities and differences w.r.t. the finite-length counterpart [12, 40]. His work has

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1056 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

then been extended to larger classes of languages; among them, again noticeably, the
class of VPLs; and again, in this part we face the same job for the class of OPLs.
OPLs, in fact, are not only useful to model programs, which are typically of finite
length, but are also well-suited to formalize possibly neverending sequences of events:
for instance, the previous Example 5 can be naturally extended to model the behavior
of a database that is never put off.

This part is organized as follows. In section 5 we first extend to ω-languages
a few basic definitions given in Part I for finite-length languages and generalize to
OPAs the classical accepting criteria for ω-languages, then we show by means of
an example the usefulness of ωOPAs to model and analyze various system types;
section 6 shows the relations between the various classes of ωOPLs classified according
to the acceptance criteria defined in the previous section; section 7 shows which
closure properties are preserved and which ones are lost when moving from finite-
length languages to the various classes of ω-languages; finally, section 8 extends to
ω-languages the characterization in terms of MSO logic.

5. Basic definitions of ω-languages. Preliminarily we introduce some further
properties related to chains that are necessary when chains occur within infinite words.

Definition 5.1. Let (Σ,M) be a precedence alphabet and w a word on Σ com-
patible with M :

• A chain in w is maximal if it does not belong to a larger composed chain. In
a finite word w preceded and ended by #, only the outmost chain #[w]# is
maximal.

• An open chain is a sequence of symbols b0 � a1
.
= a2

.
= · · · .= an for n ≥ 1.

• A letter a ∈ Σ in a word #w with w ∈ Σ∗ compatible with M , is pending if
it does not belong to the body of a chain. In a word w preceded and ended by
#, there are no pending letters.

Furthermore, we generalize in a natural way to the infinite case the notion of a
string compatible with an OPM: given a precedence alphabet (Σ,M), we say that
an ω-word w is compatible with the OPM M if every prefix of w is compatible with
M . We denote by LM ⊆ Σω the ω-language comprising all infinite words x ∈ Σω

compatible with M .
Next, we adopt for OPAs operating on infinite strings the same acceptance criteria

that have been adopted in the literature for regular and other classes of languages.
Definition 5.2 (Büchi OP ω-automaton). A nondeterministic Büchi OP ω-

automaton (ωOPBA) is given by a tuple A = 〈Σ,M,Q, I, F, δ〉, where Σ, Q, I, F, δ
are defined as for OPAs; the OPM M is restricted to be a |Σ∪{#}|× |Σ| array, since
ω-words are not terminated by the delimiter #.

Configurations and (infinite) runs are defined as for OPAs on finite-length words.
Then, let “∃ωi” be a shorthand for “there exist infinitely many i’s” and let ρ be a run
of the automaton on a given word x ∈ Σω. Define Inf(ρ) = {q ∈ Q | ∃ωi 〈βi, qi, xi〉 ∈
ρ , qi = q} as the set of states that occur infinitely often in configurations in ρ. A run
ρ of an ωOPBA on an infinite word x ∈ Σω is successful iff there exists a state qf ∈ F
such that qf ∈ Inf(ρ). A accepts x ∈ Σω iff there is a successful run of A on x. The
ω-language recognized by A is L(A) = {x ∈ Σω | A accepts x}.

The classical notion of acceptance for Muller automata can be likewise defined
for OPAs.

Definition 5.3 (Muller OP ω-automaton). A nondeterministic Muller OPA
(ωOPMA) is a tuple 〈Σ,M,Q, I, T , δ〉, where Σ,M,Q, I, δ are defined as for ωOPBAs
and T is a collection of subsets of Q, T ⊆ ℘(Q), called the table of the automaton.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1057

Table 3

calla reta callb retb int1 int2 serve1 serve2
calla � =̇ � � � � �
reta � � � � � � � �
callb � � =̇ � � � �
retb � � � � � � � �
int1 � �

.
= �

int2 � � �
.
=

serve1 � � � � � � � �
serve2 � � � � � � � �
� � � � �

A run ρ of an ωOPMA on an infinite word x ∈ Σω is successful iff Inf(ρ) ∈ T ,
i.e., the set of states occurring infinitely often in the configurations of ρ is a set in
the table T .

Definition 5.4. A nondeterministic Büchi OPA accepting with empty stack
(ωOPBEA) is a variant of ωOPBA where a run ρ is successful iff there exists a state
qf ∈ F such that configurations with stack ⊥ and state qf occur infinitely often in ρ.

Thus, a run of an ωOPBEA is successful iff the automaton traverses final states
with an empty stack infinitely often. We will use the following simple normal form
for ωOPBEA.

Definition 5.5. An ωOPBEA is in normal form if the set of states is partitioned
into states that are always visited with an empty stack and states that are never visited
with an empty stack.

For all the above classes of automata, say, ω-XXX, their deterministic counterpart
ω-DXXX is defined as usual.

Example 8 (managing interrupts). Consider a software system that is designed
to work forever and must serve requests issued by different users but subject to inter-
rupts. Precisely, assume that the system manages two types of “normal operations”
a and b, and two types of interrupts with different levels of priority.

We model its behavior by introducing an alphabet with two pairs of calls and
returns, calla, callb, reta, retb, for operations a and b and symbols int1, serve1 de-
noting the lower level interrupt and its serving, respectively, and int2, serve2 denoting
the higher level ones. Not only do both interrupts discard possible pending calls not
already matched by corresponding returns, but also the serving of a higher priority
interrupt erases possible pending requests for lower priority ones, but not those that
occurred before the higher priority interrupt just served: thus, a sequence such as
int1int2 int1 int1 serve2 should produce popping the second and third int1 without
matching them, to match immediately int2 with serve2, but would leave the first
occurrence of int1 still pending; the next serve1, if any, would match it, whereas
possible further serve1 would remain unmatched. Furthermore neither calls to, nor
returns from, operations a and b can occur while any interrupt is pending.

Table 3 shows an OPM that assigns to sequences on the above alphabet a structure
compatible with the described priorities. Then, a suitable ω-automaton can specify
further constraints on such sequences; for instance the ωOPBA of Figure 13 restricts
the set of ω-sequences compatible with the matrix by imposing that all int2 are
eventually served by a corresponding serve2; furthermore lower priority interrupts
are not just discarded when a higher priority one is pending but they are simply
disabled, i.e., they are not accepted as a correct system behavior.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1058 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

q0

q1 q2

calla, callb

reta, retb

q0

int1, serve1 int2

int1

serve1

q1

int2

q0

int2

serve1

serve2

q2

q0

q1

Fig. 13. ωOPBA recognizing the language of Example 8.

For instance, the ω-word calla int1 int2 int1 . . . is not accepted by the ωOPBA
because int1 is not accepted from state q2 reached after reading int2; similarly,
calla int1 int2 serve2 calla is rejected since, after serving int2 the automaton would
be back in state q1 with int1 pending (the prefix calla int1 int2 serve2 is compati-
ble with the OPM and int1 is pending therein) but no calla is admitted in q1 since
there is no precedence relation between int1 and calla. On the contrary the ω-word
calla int1(int2 serve2 serve1 calla calla reta)

ω is accepted: in fact the automaton
reaches q1 after reading calla (and popping it) followed by int1; then, after receiv-
ing and serving the higher priority interrupt, it would serve the pending instance of
int1 returning to q0; from this point on it would enter an infinite loop during which
it would process the input string (calla calla reta int2 serve2 serve1)

ω traversing

the states q0
calla−→ q0

calla−→ q0
reta−→ q0

q0
=⇒ q0

int2−→ q2
serve2−−→ q2

q2
=⇒ q0

q0
=⇒ q0

serve1−→
q1

q0
=⇒ q0 leaving the first calla and serve1 unmatched. Notice that all finite prefixes

calla int1(int2 serve2 serve1 calla calla reta)
n int2 serve2 serve1 calla calla, with

n > 0, end with the open chain calla � calla. Finally, observe that the automa-
ton would accept some strings beginning with serve1 which might appear somewhat
counterintuitive but is consistent with the general philosophy of admitting unmatched
elements; it would be easy, however, to forbid such a string beginning.

We call Linterrupt the language recognized by this ωOPBA.
A more sophisticated policy that could easily be formalized by means of a suitable

ω-automaton is a “weak fairness requirement” imposing that, after a first calla not
matched by reta but interrupted by a int1 or int2, a second calla cannot be interrupted
by a new lower priority interrupt int1 (but can still be interrupted at any time by
higher priority ones).

This example too retains some typical features of VPLs, namely, the possibility
of having unmatched calls or returns but, again, it strongly generalizes them in that
unmatched elements can occur in various places of the whole string, e.g., due to the
occurrence of interrupts or other exceptional events.

Further examples illustrating the modeling capabilities of OPLs both on finite
and infinite strings are reported in [35].

6. Relationships among classes of ωOPLs. Here we study the relationships
among languages recognized by the different classes of OP ω-automata and visibly
pushdown ω-automata (with Büchi acceptance criterion), denoted as ωBVPA. Such

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1059

L(ωOPBA) ≡ L(ωOPMA)

L(ωOPBEA)

L(ωDOPBEA)

L(ωDOPMA)

L(ωDOPBA)

L(ωBVPA)

L(ωDBVPA)

�

Fig. 14. Containment relations for ωOPLs. Solid lines denote strict inclusion of the lower
class in the upper one; dashed lines link classes which are not comparable. It is still open whether
L(ωOPBEA) ⊆ L(ωDOPMA) or not.

relations are summarized by the diagram in Figure 14, where solid lines denote strict
inclusion and dashed lines link classes that are not comparable.

In the following, we first present the proofs of the weak containment relations
holding among the various classes: most of them follow trivially from the definitions,
except for the equality between L(ωOPBA) and L(ωOPMA). Then we will prove
strict inclusions and incomparability relations by means of a suitable set of examples
that separate the various classes.

6.1. Weak inclusion results.

Theorem 6.1. The following inclusion relations hold:

L(ωBVPA) ⊆ L(ωOPBA), L(ωDBVPA) ⊆ L(ωDOPBA).

Proof. Let A = 〈QA, IA,ΓA, δA, FA〉 be an ωBVPA8 over a partitioned alphabet
Σ = (Σc,Σr,Σi). An ωOPBA B that recognizes the same language as A is defined in
a straightforward way as follows: B = 〈Σ,M,QB, IB, δB, FB〉, where

• QB = QA × ΓA,
• IB = IA × {�},
• FB = FA × ΓA,
• M is the precedence matrix induced by the partition on Σ:

Σc Σr Σi
Σc �

.
= �

Σr � � �
Σi � � �
� � �

• the transition function δ : QB × (Σ ∪ QB) → ℘(QB) is defined as follows,
where q1, q2 ∈ QA.
The push transition δBpush : QB × Σ → ℘(QB) is defined

– for a ∈ Σc, δBpush(〈q1, γ1〉, a) = {〈q2, γ2〉 | (q1, a, q2, γ2) ∈ δA},

8Among the many equivalent definitions for VPAs we adopt here the original one in [3].

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1060 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

– for a ∈ Σi, δBpush(〈q1, γ〉, a) = {〈q2, γ〉 | (q1, a, q2) ∈ δA},
– for a ∈ Σr, δBpush(〈q1,�〉, a) = {〈q2,�〉 | (q1, a,�, q2) ∈ δA}.

The shift transition δBshift : QB × Σ → ℘(QB) is defined
– for a ∈ Σr, δBshift(〈q1, γ〉, a) = {〈q2, γ〉 | (q1, a, γ, q2) ∈ δA}, i.e., the
ωOPBA simulates the pop move of the ωBVPA by setting, as state q2,
a state reached by the ωBVPA while reading the return symbol a.

The pop transition δpop : QB ×QB → ℘(QB) is defined
– for δBpop(〈q1, γ1〉, 〈q2, γ2〉) = {〈q1, γ2〉}, i.e., restores the state reached

by the ωBVPA after its pop move.
If the original ωBVPA is deterministic, so is the ωOPBA obtained with the above

construction, and this yields the second relation.
Proposition 6.2. The following inclusion relations hold:

L(ωOPBEA) ⊆ L(ωOPBA),

L(ωDOPBEA) ⊆ L(ωDOPBA) ⊆ L(ωDOPMA) ⊆ L(ωOPMA).

Proof. The first inclusion follows trivially from the definition of ωOPBA and
ωOPBEA in normal form: given an ωOPBEA whose set of states is partitioned into
states that are always visited with empty stack and states that are never visited with
empty stack, we can define an equivalent ωOPBA that has as final states the final
states of the ωOPBEA that are always visited with empty stack.

The inclusion follows similarly for the deterministic counterparts of these classes
of ωOPAs, since this ωOPBA is deterministic if the ωOPBEA is deterministic.

About the relations involving Muller automata, L(ωDOPBA) ⊆ L(ωDOPMA)
derives from the fact that any ωDOPBA B = 〈Σ,M,Q, q0, F, δ〉 is equivalent to an
ωDOPMA A = 〈Σ,M,Q, q0, T , δ〉 whose acceptance component T consists of all
subsets of Q including some final state of B, namely, T = {P ⊆ Q | P ∩ F �= ∅}; the
last relation is obvious.

In the case of classical finite-state automata on infinite words, nondeterministic
Büchi automata and nondeterministic Muller automata are equivalent and define the
class of ω-regular languages. Traditionally, Muller automata have been introduced
to provide an adequate acceptance mode for deterministic automata on ω-words. In
fact, deterministic Büchi automata cannot recognize all ω-regular languages, whereas
deterministic Muller automata are equivalent to nondeterministic Büchi ones [40].

For VPAs on infinite words, instead, the paper [4] showed that the classical de-
terminization algorithm of Büchi automata into deterministic Muller automata is no
longer valid, and deterministic Muller ωVPAs are strictly less powerful than nonde-
terministic Büchi ωVPAs. A similar relationship holds for ωOPAs too.

Theorem 6.3. L(ωOPBA) = L(ωOPMA).
Proof. Each ωOPBA is equivalent to an ωOPMA having the same underlying

OPA and acceptance component T consisting of all subsets of states including some
final state of B (as for their deterministic counterpart, see proof of Proposition 6.2).

Conversely, any ω-language recognized by an ωOPMA A = 〈Σ,M,Q, I, T , δ〉 can
be recognized by an ωOPBA B with the same precedence matrix and with O(s2s)
states, where s is the number of states of A. We can assume that T is a singleton.
Indeed, L(A) can be expressed as

L(A) =
⋃
T∈T

L(AT), where AT = 〈Σ,M,Q, I, {T }, δ〉.

Since L(ωOPBA) is closed under union (a property that will be proved later, with

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1061

Theorem 7.6), if each language L(AT) is accepted by an ωOPBA, then L(A) too is
accepted by an ωOPBA.

Thus, let T be the singleton {T }. Let us build an ωOPBA B = 〈Σ,M, Q̃, I, F, δ̃〉
that accepts the same language as A as follows. Q̃ includes elements of two types:
states of A and states (q, R) where q ∈ Q and R ⊆ Q is a set (that we informally call
“box”), which will be used to test whether the run of A is successful.

Intuitively, the automaton B simulates A, reading the input string x, along a
sequence of states q, and then guesses nondeterministically the point after which a
successful run ρ of A on x stops visiting the states that occur only finitely often in
the run, and ρ begins to visit all and only the states in the set T . After this point
B switches to the states of the form (q, R) and collects in R the states visited by A
during the run, “emptying the box” as soon as it contains exactly the set T . Every
time it empties the box, B resumes collecting the states that A will visit from that
point onwards. If the final states of B are defined as those ones when it collects exactly
the set T , then B will visit infinitely often these final states iff A visits all and only
the states in T infinitely often.

More formally, B is defined by
• Q̃ = Q ∪ (Q × ℘(Q)),
• F = {(q, T) | q ∈ T },
• δ̃ : Q̃× (Σ ∪ Q̃) → ℘(Q̃), where the push function is defined by

– δ̃push(q, a) = δpush(q, a) ∪ {〈p, {p}〉 | p ∈ δpush(q, a)} ∀q ∈ Q, a ∈ Σ,

– δ̃push(〈q, R〉, a) =
{

{〈p,R ∪ {p}〉 | p ∈ δpush(q, a)} if R �= T,
{〈p, {p}〉 | p ∈ δpush(q, a)} if R = T

∀q ∈ Q,R ⊆ Q, a ∈ Σ.
The shift function is defined analogously.
The pop function δ̃pop : Q̃× Q̃→ ℘(Q̃) is defined by

– δ̃pop(q1, q2) = δpop(q1, q2) ∪ {〈p, {p}〉 | p ∈ δpop(q1, q2)}
∀q1, q2 ∈ Q,

– δ̃pop(〈q1, R〉, q2) =
{

{〈p,R ∪ {p}〉 | p ∈ δpop(q1, q2)} if R �= T,
{〈p, {p}〉 | p ∈ δpop(q1, q2)} if R = T,

– δ̃pop(〈q1, R1〉, 〈q2, R2〉) =
{

{〈p,R1 ∪ {p}〉 | p ∈ δpop(q1, q2)} if R1 �= T,
{〈p, {p}〉 | p ∈ δpop(q1, q2)} if R1 = T

∀q1, q2 ∈ Q,R,R1, R2 ⊆ Q.
First, we show that L(A) ⊆ L(B). Let x ∈ L(A), and let ρ be a successful run

on x. There exists a finite prefix v ∈ Σ∗ of x = vu1u2 . . . such that the infinite path
followed by A after reading v (i.e., on the infinite word u1u2 . . .) visits all and only
states in T infinitely often. Thus, the run ρ can be written as

ρ = 〈α0 = ⊥, q0, x = vu1u2 . . .〉
∗
� 〈α|v|, q|v|, u1u2 . . .〉

+

� · · ·
+

� 〈αi, qi, ui . . .〉
+

� · · · ,

where {qi | i > |v|} = T and q0 ∈ I. Then, there is a successful run ρ̃ of B on the
same word, which follows singleton states of A while it reads v,

ρ̃ = 〈β0 = α0 = ⊥, q0, x = vu1u2 . . .〉
∗
� 〈β|v| = α|v|, q|v|, u1u2 . . . , 〉

and then switches to states augmented with a box: 〈β|v| = α|v|, q|v|, u1u2 . . .〉 �
〈β|v|+1 = α|v|+1, 〈p, {p}〉 , ũ1u2 . . .〉, where 〈α|v|, q|v|, u1u2 . . .〉 � 〈α|v|+1, p, ũ1u2 . . .〉
and u1 = aũ1.

Since after this point A visits each state in T and only these states infinitely
often, B will reach infinitely often final states (q, T) ∈ F , emptying infinitely often

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1062 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Table 4

Membership properties of some ω-languages, proved in section 6.2 or consequences of inclusion
relations proved in previous sections. The table displays only the relations needed to prove the results
in this and the following section.

L(
ω
D
O
P
B
E
A
)

L(
ω
O
P
B
E
A
)

L(
ω
D
O
P
B
A
)

L(
ω
D
O
P
M
A
)

L(
ω
O
P
B
A
)

L(
ω
D
B
V
P
A
)

L(
ω
B
V
P
A
)

La−finite �∈ ∈ �∈ ∈ �∈ ∈
La∞ ∈ ∈
LωDyck-pr(c,r) ∈ ∈ ∈
Lrepbsd /∈ �∈ �∈ ∈ ∈
La2abseq �∈ �∈ ∈ ∈ ∈
Lω
abseq ∈

Linterrupt ∈ ∈ ∈ ∈ ∈ �∈ �∈

a b
a � �
b � �
� �

q0 q1

a

b

q0, q1

b

a

q0, q1

Fig. 15. ωDOPBEA, with its OPM, for La∞.

its box as soon as it gets full, and resuming the collection of states therein with the
subsequent state in the run.

Conversely, L(B) ⊆ L(A). Let x ∈ Σω be an infinite word in L(B). Define the
projection π : Q ∪ (Q × ℘(Q)) → Q as π(q) = q and π(〈q, R〉) = q ∀q ∈ Q,R ⊆ Q.
Given a run ρ̃ of the automaton B, let π(ρ̃) be the natural extension of π on a run. By
construction, if ρ̃ is a run of B on an ω-word, then π(ρ̃) = ρ is a run for A on the same
word. Now, let ρ̃ be a successful run for B on x; ρ = π(ρ̃) is a run for A on x. Since
only the states augmented with a box are final states, then after a sequence (possibly
empty) of singleton states initially traversed by B, the automaton will definitively
visit only states of the form (q, R) (in fact, no singleton state is reachable again from
these states).

By induction on the number of final states reached by B along its run, it can be
proved that, for each pair of final states consecutively reached by B, say (qFi , Ri) and
(qFi+1 , Ri+1), the portion of the run visited between them, say ρ̃i, is such that the
set of states reached along π(ρ̃i) equals exactly T . Finally, since final states in ρ̃ are
visited infinitely often, the run π(ρ̃) is successful for A.

6.2. Strict inclusion and incomparability results. To prove the strict inclu-
sion and incomparability relations summarized in Figure 14, we introduce examples
of ω-languages, whose membership properties are summarized in Table 4.

1. For Σ = {a, b}, La∞ = {x ∈ Σω : x contains an infinite number of occurrences
of letter a} is recognized by the ωDOPBEA depicted in Figure 15.

2. La−finite = {x ∈ Σω : x contains a finite number of occurrences of a}, i.e.,
the complement of La∞, is clearly recognized by an ωDOPMA and by an

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1063

c r
c �

.
=

r � �
� �

q0 q1

r

q0

c

q0

c

r

q1

Fig. 16. ωDOPMA and ωDOPBEA recognizing LωDyck-pr(c,r).

Table 5

Matrices for Lrepbsd, where ◦ ∈ {�,�, .=}.

M1 c r
c �

.
=

r � �
� �

M2 c r
c ◦ �
r ◦ �
� �

ωOPBEA, but cannot be recognized by any ωDOPBA. The proof of this
latter fact resembles the classical proof (see [40]) that deterministic Büchi
automata are strictly weaker than nondeterministic Büchi ones.

3. For Σ = {c, r}, let LωDyck-pr(c,r) be the language of ω-words composed by
an infinite sequence of finite-length words belonging to the Dyck language
with pair c, r with possibly pending returns, i.e., letters r not matched by any
previous corresponding letter c. LωDyck-pr(c,r) is recognized by the ωDOPMA
and the ωDOPBEA whose state graph is depicted in Figure 16 and with
acceptance component defined, respectively, by the table T = {{q0}, {q0, q1}}
and the set of final states F = {q0}.

4. For Σ = {c, r}, let Lrepbsd be the language (studied in [4]) consisting of
ω-words x on Σ such that x has only finitely many pending calls, i.e., oc-
currences of letter c not matched by any subsequent corresponding letter r
(repbsd stands for repeatedly bounded stack depth). Lrepbsd is accepted by
an ωOPBA, but cannot be accepted by any ωOPBEA.
Intuitively, an ωOPBEA accepts a word iff it reaches infinitely often a fi-
nal configuration with empty stack reading the input string; however, the
automaton is never able to remove all the input symbols piled on the stack
since it cannot pop the pending calls interspersed among the correctly nested
letters c, otherwise it would either introduce conflicts in the OPM or it would
not be able to verify that they are finite in number.
More formally, assume by contradiction that there is an ωOPBEA A =
〈Σ,M,Q, I, F, δ〉 recognizing Lrepbsd. M must satisfy the following con-
straints since

• rω ∈ Lrepbsd, then M#r = {�} and Mrr = {�};
• crω ∈ Lrepbsd, then M#c = {�}, and either Mcr = {�} or Mcr = { .=};
• r(cr)ω ∈ Lrepbsd, thus if c

.
= r, Mrc = {�};

• c(cr)ω ∈ Lrepbsd, thus if c
.
= r, Mcc �= {�}.

Hence, M must comply with one of the matricesM1 orM2 shown in Table 5.
Let w = crc2r2c3r3 . . . cnrn . . . ∈ Lrepbsd and let ρ be an accepting run of A
on w starting from a state q0 ∈ I. The proof that Lrepbsd /∈ L(ωOPBEA) is
based on the two straightforward remarks:

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1064 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

a b
a � =̇
b � �
�

q0 q1 q2 q3

q4

a a a

a

b

b

q3

q0

Fig. 17. An ωDOPBA recognizing language La2abseq.

• If, along a run, an ωOPA (or also an OPA) reaches a state with an
empty stack, the subsequent suffix of the run does not depend on the
transitions performed until that state.

• Since Q is finite, there exist p, q ∈ Q, and an infinite set of indexes E ⊆
N \ {0, 1, 2} such that, for each i ∈ E, ρ has a prefix: q0

vi� p
wi� q, where

vi = c1r1 . . . ci−2ri−2ci−1ri−2 and wi = rcir and, given the precedence
relations in M1 and M2, both p and q are reached with an empty stack,
just before performing a push move while reading the letter r in w that
follows, respectively, vi and wi. For each i ∈ E, let ρi be the finite factor
of ρ given by p

wi� q.
Let J ⊆ E be the set of indexes in E such that ∀i ∈ J , ρi visits a final state
with empty stack. We can build a run ρ′, which differs from ρ in that

• for every i ∈ E \J , the factor ρi is replaced by a ρj for some j ∈ E, with
j > i;

• for every i ∈ J , the factor ρi is replaced by a ρj with i < j ∈ J if
|J | = ∞, or i < j ∈ E if |J | <∞.

ρ′ is an accepting run in A, along which the automaton reads a word with
infinitely many pending calls, which does not belong to Lrepbsd, and this is a
contradiction.
Furthermore, Lrepbsd is not recognizable by any ωDOPMA. The proof of this
fact resembles the analogous proof in [4]; indeed, that proof is essentially
based on topological properties of the state graph of the automata and it is
general enough to adapt to both ωVPAs and ωOPAs.

5. For Σ = {a, b}, let Labseq = {akbk | k ≥ 1} and La2abseq = {x ∈ Σω | x =
a2Lωabseq}. Language La2abseq is recognized by an ωDOPBA, but it is not
recognized by any ωOPBEA (nor a fortiori by any ωDOPBEA).
Indeed, words in Labseq can be recognized only with the OPM M depicted
in Figure 17: any other OPM will prevent verifying that the number of a’s
equals that of b’s in subwords belonging to Labseq. Since a� a, an ωOPBEA
piles up on the stack the first sequence a2 of a word and cannot remove
it afterwards; hence it cannot empty the stack infinitely often to accept a
string in La2abseq. There is, however, an ωDOPBA (and thus an ωDOPMA)
that recognizes such a language: it is shown in Figure 17. Notice also that
Lωabseq can be recognized by an ωOPBEA, with OPMM and with state graph
depicted in Figure 17 but with state q2 instead of q0 as initial state.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1065

Table 6

Closure properties of families of ω-languages. (L1 ·L2 denotes the concatenation of a language
of finite-length words L1 with an ω-language L2).

L(
ω
D
O
P
B
E
A
)

L(
ω
O
P
B
E
A
)

L(
ω
D
O
P
B
A
)

L(
ω
D
O
P
M
A
)

L(
ω
O
P
B
A
)

L(
ω
B
V
P
A
)

Intersection Yes Yes Yes Yes Yes Yes
Union Yes Yes Yes Yes Yes Yes

Complement No No No Yes Yes Yes
L1 · L2 No No No No Yes Yes

7. Closure properties. Table 6 displays the closure properties of the various
families of ω-languages. In order to prove them, we first introduce some preliminary
constructions in section 7.1. Then in section 7.2 we present the proofs for L(ωOPBA);
in particular, closure under complement and concatenation are the cases that require
novel investigation techniques w.r.t. previous literature. In section 7.3 we prove the
closure properties for other classes of ωOPA.

7.1. Preliminary properties and constructions. The following construc-
tions will be exploited to prove several closure properties. Indeed, they would be
useful even to prove the same properties in the case of finite-length languages; how-
ever, since such properties have already been proved in previous literature [18, 19] by
referring to OPGs rather than OPAs, we present them in this part, which is where
they are exploited in this paper.

We begin by introducing the deterministic product of transition functions, defined
by extending the usual construction for finite-state automata. Such a definition is
meaningful when applied to automata that share the same precedence matrix, because
they perform the same type of move (push/shift/pop) while reading the input word.

Definition 7.1. Let Q1 and Q2 be two disjoint sets of states of two deterministic
automata sharing the same OP alphabet and let δ1 and δ2 be their transition functions.
Their product state Q is defined as Q = Q1×Q2 and their product transition function
δ : Q× (Σ ∪Q) → Q is defined as follows, where q1, q2, p1, p2 ∈ Q, a ∈ Σ:

δpush((q1, q2), a) = (δ1push(q1, a), δ2push(q2, a)),

δshift((q1, q2), a) = (δ1shift(q1, a), δ2shift(q2, a)),

δpop((q1, q2), (p1, p2)) = (δ1pop(q1, p1), δ2pop(q2, p2)).

Clearly |Q| = |Q1| · |Q2|.
Although this paper is not concerned with translations, we are going to need the

following definition of OP Büchi ω-transducers during some technical steps; other
types of ω-transducers could be defined similarly but are not necessary in this paper.

Definition 7.2 (OP (Büchi) ω-transducer). An OP ω-transducer is defined in
the usual way as a tuple T = 〈Σ,M,Q, I, F,O, δ, η〉, where Σ, M , Q, I, F are defined as
in Definition 2.1 , O is a finite set of output symbols, the transition function δ and the
output function η are defined by 〈δ, η〉 : Q×(Σ∪Q) → ℘F (Q×O∗), where ℘F (Q×O∗)
denotes the set of finite subsets of Q×O∗, and 〈δ, η〉 can be seen as the union of three
functions, 〈δshift, ηshift〉 : Q×Σ → ℘F (Q×O∗), 〈δpush, ηpush〉 : Q×Σ → ℘F (Q×O∗),
and 〈δpop, ηpop〉 : Q×Q→ ℘F (Q×O∗).

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1066 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

A configuration of the ω-transducer is denoted 〈β, q, w〉 ↓ z, where C = 〈β, q, w〉
is the configuration of the underlying ωOPBA and the string after ↓ represents the
output of the automaton in the configuration. The transition relation � is naturally
extended from ωOPBAs, by concatenating the output symbols produced at each move
with those generated in the previous moves. Runs and acceptance by the transducer
are defined as in the corresponding ωOPBA.

The transduction τ(x), x ∈ Σω, generated by T is the set of ω-strings produced
during its nondeterministic successful runs over x.

The next statement is propaedeutic to many constructive proofs of closure prop-
erties, where the operands are in general OPAs with compatible but not identical
matrices, and the result’s matrix must often be the union of the two original ones. If
A is an OPA with precedence matrix M and M ′ ⊇M , then clearly A works also over
M ′ but the language recognized by A over M ′ is not necessarily the same, since the
presence of precedence relations in M ′ that are not included in M may allow for suc-
cessful runs on some words that are, instead, not successful in the original OPA. The
next statement proves, however, that the precedence matrix of an OPA can always
be extended (up to completion), provided that conflict freedom is preserved, without
affecting the recognized language.

Statement 7.1 (extended matrix normal form). Let A = 〈Σ,M,Q, I, F, δ〉 be
an OPA (over finite-length or omega words) with |Q| = s. For any conflict-free OPM
M ′ ⊇M , there exists an OPA with OPM M ′ that recognizes the same language as A
and has O(|Σ|2s) states.

Proof. First consider finite-length words. The new OPAA′ = 〈Σ,M ′, Q′, I ′, F ′, δ′〉
is derived from A in the following way:

• Q′ = Σ̂ × Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e., the first component of a state
is the lookback symbol, the second component is a state of A, and the third
component is the lookahead symbol;

• I ′ = {#} × I × {a ∈ Σ̂ |M#a �= ∅};
• F ′ = {#} × F × {#};
• δ′ : Q′ × (Σ ∪Q′) → ℘(Q′) is the transition function defined as follows.
Let a ∈ Σ̂, b ∈ Σ, q ∈ Q. The push transition δ′push : Q′ × Σ → ℘(Q′) is
defined by

δ′push(〈a, q, b〉, b) = {〈b, p, c〉 | p ∈ δpush(q, b) ∧Mab = {�} ∧Mbc �= ∅}.
The shift transition δ′shift : Q

′ × Σ → ℘(Q′) is defined analogously:

δ′shift(〈a, q, b〉, b) = {〈b, p, c〉 | p ∈ δshift(q, b) ∧Mab = { .=} ∧Mbc �= ∅}.
The pop transition δ′pop : Q′ ×Q′ → ℘(Q′) is defined by

δ′pop(〈a1, q1, a2〉, 〈b1, q2, b2〉) =
{
〈b1, q3, a2〉

∣∣∣∣ q3 ∈ δpop(q1, q2)∧
Ma1a2 = {�} ∧Mb1a2 �= ∅

}
,

where a1, b2 ∈ Σ, a2, b1 ∈ Σ̂, q1, q2 ∈ Q.
Clearly, the OPA A′ has OPM M ′ and accepts the same language as A.
This construction can be naturally extended to ωOPAs: in particular, for ωOPBA

the set of final states of A′ is F ′ = Σ̂×F ×Σ, i.e., a run of A′ is accepting iff it visits
infinitely often final states of A, independently of the lookback and the lookahead
symbols considered for these states. For ωOPBEA this acceptance component may
be further refined as F ′ = {#} × F × Σ. For ωOPMA, T ′ = {t | t = A1 × S ×
A2, S ∈ T , A1 ⊆ Σ̂, A2 ⊆ Σ}, where T ⊆ ℘(Q) is the table of A. Furthermore, the
transformation preserves determinism.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1067

7.1.1. OPA’s version without # as lookahead. In this section we illustrate
a new version of OPAs that do not rely on the end marker # for the recognition of a
finite-length word.

The new model is defined by slightly modifying the semantics of the transition
relation and of the acceptance condition of original OPAs, in such a way that a string
is accepted by an automaton if it reaches a final state right at the end of the parsing
of the whole word, and does not perform any pop move determined by the ending
delimiter # to empty the stack; thus the automaton stops just after having pushed on
the stack (or updated the top of the stack symbol with) the last symbol of the string.

In this alternative characterization of OPAs, the semantics of the transition re-
lation differs from the classical definition in that, once a configuration with the end
marker as lookahead is reached, the computation cannot evolve in any subsequent con-
figuration, i.e., a pop move C1 ��# C2 with C1 = 〈Π[a, p], q, x#〉 is performed only
if x �= ε (where symbol ��# denotes a move according to this variation of the semantics
of the transition relation). The language accepted by the automaton according to this
new semantics (denoted as L�#) is the set of words

L�#(A) = {x | 〈⊥, qI , x#〉
∗
��# 〈⊥γ, qF , #〉, qI ∈ I, qF ∈ F, γ ∈ Γ∗}.

This new version of the automaton, called no-#-lookaheadOPA (��#OPA) is closer to
the traditional acceptance criterion of general pushdown automata; we emphasize,
however, that, unlike normal acceptance by the final state of a pushdown automaton,
which can perform a number of ε-moves after reaching the end of a string and accepts
it if just one of the visited states is final, this type of automaton cannot perform any
(pop, i.e., ε-) move when it reaches the end of the input string. The following lemmas
(Lemmas 7.3 and 7.4) prove the equivalence between the original version of OPAs and
the new one.9

Lemma 7.3. Let A1 be a nondeterministic OPA defined on an OP alphabet (Σ,M)
with s states. Then there exists a nondeterministic ��#OPA A2 on (Σ,M) and O(s2)
states such that L(A1) = L�#(A2).

We first explain informally the rationale of the simulation of A1 by A2, with the
aid of an example; then we formally define its construction and prove their equivalence.

Consider a word of finite length w compatible with M : the string #w can be
factored in a unique way as a sequence of bodies of chains and pending letters as

w = # w1a1w2a2 . . . wnan,

where ai−1 [wi]
ai are maximal chains and each wi can be possibly missing with a0 = #

and ∀i : 1 ≤ i ≤ n− 1, ai� ai+1 or ai
.
= ai+1. Let ij ∈ {1, 2, . . . , n}, 1 ≤ j ≤ k, k ≥ 1,

be indexes such that
(7.1)
#�ai1 = a1

.
= · · · .= ai2−1�ai2

.
= · · · .= ai3−1�ai3

.
= · · · .= aik−1�aik

.
= aik+1 . . .

.
= an.

When reading w, the symbols of the string are progressively put on the stack, either
by a push move or by a shift move and, whenever a chain wi is recognized, the symbol
on the top of the stack is popped. Hence, after reading w the stack contains only the
symbols # ai2−1 ai3−1 . . . an that are the ending symbols of the open chains in the
sequence (7.1).

9Only Lemma 7.3 will be used in Part 4.3 of this paper but we include both for completeness
and possible further exploitation.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1068 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

〈 ⊥ [+, q1] [×, q1] [�, q0] , q3 , #〉

q3 ∈ F1 q3 q3 q3

Fig. 18. Configuration of the OPA of Example 3 just before looking ahead at #.

〈 ⊥ [+, 〈q1, q3 〉] [×, 〈q1, q3 〉] [�, 〈q0, q3 〉] , 〈q3, q3 〉 , #〉

Fig. 19. Configuration of the �#OPA described in Example 9.

When w is read by a standard OPA, the automaton performs a series of pop
moves at the end of the string due to the presence of the end delimiter #. These
moves progressively empty the stack. The run is accepting if it leads to a final state
after all pop moves.

A nondeterministic automaton that, unlike standard OPAs, does not resort to
the end delimiter # for the recognition of a string must guess nondeterministically
the ending point of each open chain and guess how, in an accepting run, the states in
these points would be updated if the final pop moves were progressively performed.
The automaton must behave as if, at the same time, it simulates two snapshots of the
accepting run of a standard OPA: a move during the reading of the input, and a step
during the final pop transitions which will later on empty the stack, leading to a final
state. To this aim, the states of a standard OPA are augmented with an additional
component.

A ��#OPA A2 equivalent to a given OPA A1 thus may be defined so that, after
reading each prefix of a word, it reaches a final state whenever, if the word were
completed in that point with #, A1 could reach an accepting state with a sequence
of pop moves. In this way, A2 can guess in advance which words may eventually lead
to an accepting state of A1, without having to wait until reading the delimiter # and
to perform final pop moves. In other words, it simulates the possible lookahead of the
delimiter. Before going into the details of the construction, the following example
illustrates the above intuitive description.

Example 9. We refer to the computation of the OPA in Example 3. Consider the
input word of this computation without the end marker #. The sequence of pending
letters in the input word corresponds to three open chains, according to (7.1), with
starting symbols +, ×, �, respectively.

Figure 18 shows the configuration just before looking ahead at the symbol #. The
states depicted within a box are those placeholders that an equivalent ��#OPA should

fill up to guess in advance the last pop moves q3 = q3
q0
=⇒ q3

q1
=⇒ q3

q1
=⇒ q3 ∈ F1

of the accepting run. The corresponding configuration of the ��#OPA is depicted in
Figure 19.

Proof of Lemma 7.3. Let A1 be 〈Σ,M,Q1, I1, F1, δ1〉 and define A2 =
〈Σ,M,Q2, I2, F2, δ2〉 as follows.

• Q2 = {B,Z, U} ×Q1 ×Q1.
Hence, a state 〈x, q, p〉 of A2 is a tuple whose first component denotes a
nondeterministic guess for the next input symbol to be read, i.e., whether
it is a pending letter which is the initial symbol of an open chain (Z), or a

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1069

Table 7

Example of an accepting computation for the word n+n× �n+n� of a �#OPA that is equivalent
to the OPA of Example 3.

stack state current input
⊥ 〈B, q0, q3〉n+ n× �n+ n�#
⊥[n, 〈B, q0, q3〉] 〈B, q1, q3〉 + n× �n+ n�#
⊥ 〈Z, q1, q3〉 + n× �n+ n�#
⊥[+, 〈Z, q1, q3〉] 〈B, q0, q3〉 n× �n+ n�#
⊥[+, 〈Z, q1, q3〉][n, 〈B, q0, q3〉] 〈B, q1, q3〉 × �n+ n�#
⊥[+, 〈Z, q1, q3〉] 〈Z, q1, q3〉 × �n+ n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉] 〈Z, q0, q3〉 �n+ n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉] 〈B, q2, q3〉 n+ n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉][n, 〈B, q2, q3〉] 〈B, q3, q3〉 + n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉] 〈B, q3, q3〉 + n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉][+, 〈B, q3, q3〉] 〈B, q2, q3〉 n�#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉][+, 〈B, q3, q3〉][n, 〈B, q2, q3〉] 〈B, q3, q3〉 �#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉][+, 〈B, q3, q3〉] 〈B, q3, q3〉 �#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉] 〈U, q3, q3〉 �#
⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][�, 〈Z, q0, q3〉] 〈Z, q3, q3〉 #

pending letter within an open chain other than the first one (U), or a symbol
within a maximal chain (B). The second component of a state represents
the current state q in A1. To illustrate the meaning of the last component,
consider an accepting run of A1 and let q be its current state just before a
push move to be performed when reading the first symbol of an open chain;
also, let r be the state reached by such a push move and s be the state of the
automaton when the stack element pushed by this move (possibly updated
by subsequent shifts) is going to be popped leading to a state p. Then, in
the same position of the corresponding run of A2, the current state would
be 〈Z, q, p〉 ∈ Q2 and state 〈x, r, s〉 ∈ Q2 will be reached by A2 (x being
nondeterministically any one of B, Z, U); in other words, the last component
p represents a guess about the state that will be reached in A1 when the
stack element pushed by this move will be popped. Hence we can consider

only states 〈Z, q, p〉 ∈ Q2 such that s
q

=⇒ p in A1 for some s ∈ Q1. In all the
other positions the last component is simply propagated.
For instance, Table 7 shows an accepting run on the word n+n× �n+n� of a

��#OPA that is equivalent to the OPA of Example 3. Note that before reading
the �, which is the beginning of an open chain, the automaton is in the state
〈Z, q0, q3〉 and then moves to 〈B, q2, q3〉 guessing the state that is reached by
the pop move that occurs in the corresponding run of the OPA after reading
the �. Before reading the second n, which is the body of a maximal chain,
instead, the automaton is in state 〈B, q0, q3〉 and, after popping n from the
stack, moves to 〈Z, q1, q3〉 since the following × is the beginning of an open
chain.

• I2 = {〈x, q, qF 〉 | x ∈ {Z,B}, q ∈ I1, qF ∈ F1}.
• F2 = {〈Z, q, q〉 | q ∈ Q1}.
• The transition function is defined as the union of three functions.
The push transition function δ2push : Q2 × Σ → ℘(Q2) is defined as follows,
where p, q, r, s ∈ Q1, a ∈ Σ.

– Pending letter at the beginning of an open chain:

δ2push (〈Z, q, p〉, a) =
{
〈x, r, s〉 | x ∈ {B,Z, U}, r ∈ δ1push(q, a), s

q
=⇒ p in A1

}
.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1070 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

– Symbol of a maximal chain:

δ2push (〈B, q, p〉, a) = {〈B, r, p〉 | r ∈ δ1push(q, a)} .

The shift transition function δ2shift : Q2 × Σ → ℘(Q2) is defined as follows:
– Pending letter within an open chain:

δ2shift (〈U, q, p〉, a) = {〈x, r, p〉 | x ∈ {B,Z, U}, r ∈ δ1shift(q, a)} .

– Symbol of a maximal chain:

δ2shift (〈B, q, p〉, a) = {〈B, r, p〉 | r ∈ δ1shift(q, a)} .

Notice that the second component of the states computed by δ2push and δ2shift
is independent of the first component of the starting state.
The pop transition function δ2pop : Q2 × Q2 → ℘(Q2) can be executed only
within a maximal chain since there is no pop determined by the ending de-
limiter:

δ2pop (〈B, q, s〉, 〈B, p, s〉) =
{
〈x, r, s〉 | x ∈ {B,Z, U}, q p

=⇒ r in A1

}
.

All other moves lead to an error state.
Let us prove first L(A1) ⊆ L�#(A2). Consider a word w ∈ L(A1). Then there

exists a support q
w� q′ in A1 with q ∈ I1 and q′ ∈ F1. If w = w1a1w2a2 . . . wnan,

where ai are pending letters and wi are maximal chains, let k be the number of
open chains determined by the sequence of pending letters in w according to the
structure (7.1), and let ai1 = a1, ai2 , . . . , aik be their initial symbols. Also, for every
i = 2, . . . , n, let t(i) be the greatest index t such that it < i, i.e., ai is within the t(i)th
open chain beginning with ait(i) . In particular, for i = n, if an−1 � an then ik = n,
otherwise t(n) = k. As a notational convention, denote by �−→ a move that can be
either a push or a shift.

Then the above support for w can be decomposed as

q = q̃0
w1� q1

a1−→ q̃1
w2� q2

a2�−→ · · · wn� qn
an�−→ q̃n = pk,(7.2)

q̃n = pk
qik=⇒ pk−1

qik−1
=⇒ pk−2 =⇒ · · · =⇒ p2

qi2=⇒ p1
qi1=q1=⇒ p0 = q′,

where qi = q̃i−1 if wi = ε for i = 1, 2, . . . , n. Notice that, for every t, qit is the
state reached in this path before the push move that pushes symbol ait on the stack;
moreover, when the last symbol in the open chain beginning with ait is to be popped,
the current state is pt and then the symbol on the top of the stack (whose state
component is qit) is removed and A1 moves to state pt−1.

Starting with state 〈Z, q1, p0〉 if w1 = ε or with 〈B, q̃0, p0〉
w1� 〈Z, q1, p0〉 if w1 �= ε,

an accepting computation of A2 can be built on the basis of the following facts:

• Since A1 performs q1
a1−→ q̃1 and p1

q1
=⇒ p0, then δ2push(〈Z, q1, p0〉, a1) �

〈x, q̃1, p1〉 in A2 for x ∈ {B,Z, U}. This is a push move that can be applied
at the beginning of the first open chain, a1, where p1 is the guess about the
state that will be reached before the stack symbol pushed on the stack by
this move will be popped.

• In general, for every t, since A1 executes qit
ait−→ q̃it and pt

qit=⇒ pt−1, then
δ2(〈Z, qit , pt−1〉, ait) � 〈x, q̃it , pt〉 for x ∈ {B,Z, U}. This is a push move that

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1071

can be applied at the beginning of the tth open chain, i.e., when reading ait ,
where pt is the guess about the state that will be reached before the stack
symbol with the last letter of the chain will be popped. In particular, if
ik = n, we can reach state 〈Z, q̃n, pk〉 which is final in A2 since qn = pk.

• For every maximal chain wi of w (with i ≥ 2) consider its support q̃i−1
wi� qi

in the sequence (7.2). Then in A2 we have a sequence of moves starting
from a state 〈B, q̃i−1, pt(i)〉 and reading wi, that ends in 〈x, qi, pt(i)〉, where
x ∈ {U,Z}. Notice that the last component of the states does not change
because we are within a maximal chain. During the reading of wi, the last
component is equal to pt(i), as guessed by the push move at the beginning of
the current open chain.

• For every i �∈ {i1, i2, . . . , ik}, since δ1shift(qi, ai) � q̃i, then δ2shift(〈U, qi, pt(i)〉, ai)
contains 〈x, q̃i, pt(i)〉, for x ∈ {B,Z, U}. In particular, if n �= ik, then t(n) = k
and for i = n we can reach state 〈Z, q̃n, pk〉 which is final in A2, since q̃n = pk.

Thus, by composing in the right order the previous moves, one can obtain an accepting
computation for w in A2.

Conversely, to prove that L�#(A2) ⊆ L(A1), consider a word w ∈ L�#(A2). This
means that there exists a successful run of A2 on w. Let w be factorized as above;
then the accepting run for w can be decomposed as

π0
w1� ρ1

a1−→ π1
w2� ρ2 . . . ρi

ai�−→ πi
wi+1� · · · wn� ρn

an�−→ πn,

where πi, ρi ∈ Q2, ρi = πi−1 if wi = ε, π0 ∈ I2, and πn ∈ F2. By projecting this path
on the second component of states πi and ρi (let them, resp., be pi and ri ∈ Q1),
we obtain a path in A1 labeled by w. This path is not accepting because there are
symbols left on the stack that need to be popped, but we can complete this path
arguing by induction on the structure of maximal chains according to the definition
of δ2. Precisely, one can verify that Q1 contains suitable states pi (for 0 ≤ i ≤ n), ri
(for 1 ≤ i ≤ n), st (for 1 ≤ t ≤ k), with ri = pi−1 whenever wi = ε, such that the
following facts hold:

• π0 ∈ I2, hence π0 = 〈x0, p0, s0〉 with p0 ∈ I1 and s0 ∈ F1; x0 is B if w1 �= ε,
otherwise x0 = Z.

• π0
w1� ρ1 in A2 implies that the last component of state π0 is propagated

through chain w1 without change; hence ρ1 = 〈Z, r1, s0〉 with p0
w1� r1 in A1.

• ρ1
a1−→ π1 is a push move of A2 at the beginning of an open chain, and this

implies that the last component of π1 is a guess on the state from which A1

would perform the corresponding pop, so that π1 = 〈x1, p1, s1〉 with r1
a1−→ p1

and s1
r1=⇒ s0 in A1; the first component is x1 = B if w2 �= ε otherwise x1

equals Z or U according to whether a2 starts an open chain or not, respec-
tively,

• The pop moves within πi
wi+1� ρi+1 for 1 ≤ i < i2, and the shift moves within

an open chain ρi
ai→ πi for 1 < i < i2 propagate the last component without

changing it. Hence ρi = 〈U, ri, s1〉 and πi = 〈xi, pi, s1〉 with pi−1
wi� ri

ai→ pi

in A1. The first component is xi = B if wi �= ε, otherwise xi = Z for
i = i2 − 1, and xi = U in the other cases.

• ρi2
ai2−→ πi2 is a push move of A2 at the beginning of an open chain, and this

implies that the last component of πi2 is a guess on the state from which
A1 would perform the corresponding pop, so that πi2 = 〈xi2 , pi2 , s2〉 with

ri2
ai2−→ pi2 and s2

ri2=⇒ s1 in A1. The first component is xi2 = B if wi2 �= ε

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1072 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

otherwise x1 equals Z or U according to whether ai2 +1 begins an open chain
or not, respectively.

• Similarly for the following moves in the run.
In general, we get

ρi = 〈yi, ri, st(i)〉 for every i = 1, 2, . . . , n,

πi = 〈xi, pi, st(i)〉 for every i �∈ {i1, i2, . . . , ik},
πit = 〈xit , pit , st〉 for every t = 1, 2, . . . , k

with ri
ai�−→ pi, st

rit=⇒ st−1, pi−1
wi� ri in A1,

and yi ∈ {Z,U}, xi ∈ {B,Z, U} for every i and t.

For i = n we have n = ik or t(n) = k, hence πn = 〈xn, pn, sk〉, and pn = sk and
xn = Z since πn ∈ F2. Thus, in A1 there is an accepting run

I1 � p0
w1� r1

a1−→ p1
w2� r2 . . . ri

ai�−→ pi
wi+1� · · · wn� rn

an�−→ pn = sk,

pn = sk
rik=⇒ sk−1

rik−1
=⇒ sk−2 =⇒ · · · =⇒ s2

ri2=⇒ s1
ri1=r1=⇒ s0 ∈ F1.

The next lemma completes the proof of equivalence between OPAs and ��#OPAs.
Lemma 7.4. Let A2 be a nondeterministic ��#OPA defined on an OP alphabet

(Σ,M) with s states. Then there exists a nondeterministic OPA A1 on (Σ,M) and
O(|Σ|s) states, such that L(A1) = L�#(A2).

Proof. Let A2 be 〈Σ,M,Q, I, F, δ〉 and consider, first, an equivalent form of A2,
where all states are enriched with a lookahead symbol and no final state is reached
by a pop edge: Ã2 = 〈Σ,M,Q2, I2, F2, δ2〉, where

• Q2 = Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e., the first component of a state is a
state of A2 and the second component of the state is the lookahead symbol;

• I2 = I × {a ∈ Σ̂ |M#a �= ∅} is the set of initial states of Ã2;
• F2 = F × {#};
• the transition function δ2 : Q2× (Σ∪Q2) → ℘(Q2) is defined in the following
natural way, where a, b ∈ Σ, p, q, r ∈ Q:

– δ2push(〈p, a〉, a) = {〈q, b〉 | q ∈ δpush(p, a) ∧Mab �= ∅},
– δ2shift(〈p, a〉, a) = {〈q, b〉 | q ∈ δshift(p, a) ∧Mab �= ∅},
– δ2pop(〈p, a〉, 〈q, b〉) = {〈r, a〉 | r ∈ δpop(p, q)} \ F2.

It is easy too see that L�#(A2) = L�#(Ã2). Furthermore, the final states of Ã2 cannot
be reached by pop edges: in fact, these pop transitions cannot be performed by a

��#OPA according to the semantics of the transition relation ��#, since it stops a
computation right before reading the delimiter #, when the parsing of the word ends.

Thus, we build, without loss of generality, an OPA A1 equivalent to the ��#OPA
Ã2. A1 = 〈Σ,M,Q1, I1, F1, δ1〉 has only one final state, reachable through a pop edge
by all final states of Ã2. Its role is to let A1 empty the stack after reading a word
that is accepted by Ã2.

• Q1 = Q2 ∪ {qaccept}.
• I1 = I2 ∪ {qaccept} if I2 ∩ F2 �= ∅; I1 = I2 otherwise.
• F1 = {qaccept}.
• The transition function δ1 equals δ2 on all states in Q2; in addition A1 has
departing pop edges from the final states in F2 to qaccept and qaccept has no
outgoing push/shift edge but only self-loops pop edges.
The push transition function δ1push : Q1×Σ → ℘(Q1) is defined as δ1push(q, c) =
δ2push(q, c) ∀q ∈ Q2, c ∈ Σ. The shift function is defined analogously.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1073

The pop transition δ1pop : Q1 ×Q1 → ℘(Q1) is defined by
δ1pop(q, p) = δ2pop(q, p), ∀q, p ∈ Q2,
δ1pop(q, p) = qaccept, ∀q ∈ (F2 ∪ {qaccept}), p ∈ Q2.

We now show that L(A1) = L�#(Ã2).

L(A1) ⊆ L�#(Ã2): in fact, if the OPA A1 recognizes a word, then it is either

the empty word and thus qaccept ∈ I1 and also Ã2 has a successful run on it, or A1

recognizes a word w �= ε and there exists a run σ of A1 which ends in the final state
qaccept with empty stack. Notice that qaccept is reached by a pop move from a state
in F2, say qf ∈ F2:

σ : q0 ∈ I2
w� qf =⇒ qaccept(

p∈Q1
=⇒ qaccept)

∗,

and qf itself is reached exactly when the reading of w is finished, since, as said before,
a state in F2 cannot be reached by pop moves. This condition is necessary to avoid
the presence of sequences of pop moves from nonaccepting states toward final states.
Then the path from q0 to qf , which traverses the same states and edges as σ, represents

a run of Ã2 which ends in a final state qf right after the reading of the whole word,

thus accepting w. Conversely, the relation L(A1) ⊇ L�#(Ã2) derives easily from the

fact that, if Ã2 accepts a word along a successful run, then A1 recognizes the word
along the same run, possibly emptying the stack in the final state qaccept.

Remark 2. With some further effort—and a further exponential leap in the
automaton’s size—a deterministic version of this ��#OPA could also be built. We
did not include it here, however, since the ��#OPA construction will be applied only
in this part to prove the closure w.r.t. concatenation with finite-length languages of
ωOPLs: we will see that such a closure holds only for nondeterministic automata.

7.2. Closure properties and emptiness problem for class L(ωOPBA).
L(ωOPBA) enjoys all closure and decidability properties suitable for model checking.
Precisely, the emptiness problem is decidable for OPAs in polynomial time because
they can be interpreted as pushdown automata on infinite-length words, e.g., [13]
shows an algorithm that decides the alternation-free modal μ-calculus for context-
free processes, with linear complexity in the size of the system’s representation.

The following theorems state that L(ωOPBA) is a Boolean algebra closed under
concatenation.

Theorem 7.5 (L(ωOPBA) is closed under intersection). Let L1 and L2 be ω-
languages recognized by two ωOPBA defined over the same alphabet Σ, with compatible
precedence matrices M1 and M2 and with s1 and s2 states, respectively. Then L =
L1 ∩L2 is recognizable by an ωOPBA with OPM M =M1 ∩M2 and O(s1s2) states.

Proof. Let A1 = 〈Σ,M1, Q1, I1, F1, δ1〉 and A2 = 〈Σ,M2, Q2, I2, F2, δ2〉 be two
ωOPBA with L(A1) = L1 and L(A2) = L2 and with compatible precedence matrices
M1 and M2. Suppose, without loss of generality, that Q1 and Q2 are disjoint and do
not contain {0, 1, 2}.

First, observe that, the two OPMs being compatible, at each move either the two
automata perform the same type of move (push/shift/pop), or at least one of them
stops without accepting since its transition function is not defined.

An ωOPBA that recognizes L1 ∩ L2 is defined in a similar way as for classical
finite-state Büchi automata; precisely, A = 〈Σ,M =M1 ∩M2, Q, I, F, δ〉, where

• Q = Q1 ×Q2 × {0, 1, 2};
• I = I1 × I2 × {0};
• F = Q1 ×Q2 × {2};

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1074 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

• the transition function δ : Q × (Σ ∪ Q) → ℘(Q) is defined as follows, where
p1, q1, p2, q2 ∈ Q, a ∈ Σ:

– δpush(〈p1, p2, x〉, a) = {〈r1, r2, y〉 | r1 ∈ δ1push(p1, a)∧ r2 ∈ δ2push(p2, a)},
– δshift(〈p1, p2, x〉, a) = {〈r1, r2, y〉 | r1 ∈ δ1shift(p1, a) ∧ r2 ∈ δ2shift(p2, a)},
– δpop(〈p1, p2, x〉, 〈q1, q2, z〉) =

{〈r1, r2, y〉 | r1 ∈ δ1pop(p1, q1) ∧ r2 ∈ δ2pop(p2, q2)},
and the third component of the states is computed as follows:

– if x = 0 and r1 ∈ F1 then y = 1,
– if x = 1 and r2 ∈ F2 then y = 2,
– if x = 2 then y = 0,
– y = x otherwise.

Reading an input string, the automaton A simulates A1 and A2, respectively,
on the first two components of the states, whereas the third component keeps track
of the succession of visits of the two automata to their final states: in particular its
value is 0 at the beginning, then switches from 0 to 1, from 1 to 2, and then back to
0, whenever the first automaton reaches a final state and the other one visits a final
state afterwards. This cycle is repeated infinitely often whenever both the automata
reach their final states infinitely many times along their run.

Conversely, if an ω-word x does not belong to L1 ∩ L2, then at least one of the
runs of A1 and A2 must either stop because the transition function of the automaton
is undefined for the given input or it does not visit infinitely often final states. Hence,
A cannot have a successful run on x and the word is rejected by A too.

Theorem 7.6 (L(ωOPBA) is closed under union). Let L1 and L2 be ω-languages
recognized by two ωOPBA defined over the same alphabet Σ, with compatible prece-
dence matrices M1 and M2 and with s1 and s2 states, respectively. Then L = L1∪L2

is recognizable by an ωOPBA with OPM M =M1 ∪M2 and O(|Σ|2(s1 + s2)) states.
Proof. Let A1 and A2 be ωOPBAs accepting L1 and L2 over OPMs M1 and M2,

respectively. Without loss of generality we may assume M = M1 = M2 (otherwise
one can apply Statement 7.1 increasing the number of states by a factor |Σ|2). For
i = 1, 2, let Ai = 〈Σ,M,Qi, Ii, Fi, δi〉. Then the ω-language L = L1∪L2 is recognized
by the ωOPBA A = 〈Σ,M,Q = Q1∪Q2, I = I1∪I2, F = F1 ∪F2, δ〉 whose transition
function δ : Q × (Σ ∪Q) → ℘(Q) is the nondeterministic union of δ1 and δ2, defined
by setting ∀p, q ∈ Q, a ∈ Σ,

δpush(q, a) =

{
δ1push(q, a) if q ∈ Q1,
δ2push(q, a) if q ∈ Q2,

δshift(q, a) =

{
δ1shift(q, a) if q ∈ Q1,
δ2shift(q, a) if q ∈ Q2,

δpop(p, q) =

{
δ1pop(p, q) if p, q ∈ Q1,
δ2pop(p, q) if p, q ∈ Q2,

The above definition is well-posed since it applies to automata that share the same
precedence matrix because they perform the same type of move (push/shift/pop)
while reading the input word.

Since the sets of states of the two automata are disjoint and Q is their union,
then for every x ∈ Σω there exists a successful run in A iff there exists a successful
run of A1 on x or a successful run of A2 on x.

Clearly, the number of states of A is |Q| = |Q1| + |Q2| and this concludes the
proof, recalling the possible factor |Σ|2 implied by Statement 7.1.

Theorem 7.7 (closure of L(ωOPBA) under complementation). Let M be a
conflict-free precedence matrix on an alphabet Σ. Let L be an ω-language on Σ that
is recognized by a nondeterministic ωOPBA with precedence matrix M and s states.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1075

Then the complement of L w.r.t. LM (the language of all the words x ∈ Σω com-
patible with M) is recognized by an ωOPBA with the same precedence matrix M and

2O(s2+|Σ|s log|Σ|s) states.
Proof. The proof follows to some extent the structure of the corresponding proof

for L(ωBVPA) [4], but it exhibits some relevant technical aspects which distinctly
characterize it; in particular, we need to introduce an ad-hoc factorization of ω-words
due to the more complex management of the stack performed by OPAs.

Let A = 〈Σ,M,Q, I, F, δ〉 be a nondeterministic ωOPBA with |Q| = s. Without
loss of generality A can be considered complete w.r.t. the transition function δ, i.e.,
there is a run of A on every ω-word on Σ compatible with M .

An ω-word w ∈ Σω compatible with M can be factored as a sequence of chains
and pending letters w = w1w2w3 . . . , where either wi = ai ∈ Σ is a pending letter
or wi = ai1ai2 . . . ain is the body of the chain li [wi]

firsti+1 , where li denotes the last
pending letter preceding wi in the word and firsti+1 denotes the first letter of word
wi+1. Let also, by convention, a0 = # be the first pending letter.

Such factorization is not unique, since a string wi can be nested into a larger chain
having the same preceding pending letter. The factorization is unique, however, if we
additionally require that the body wi has no prefix (including itself) uib such that
li [ui]

b is a chain; in fact, in this case, as soon as a chain body with its context is
identified after a pending letter, it becomes part of the factorization and what follows
is either the beginning of a new body or a new pending letter.

For instance, for the word w = �a� c �︸ ︷︷ ︸ b�a�︸ ︷︷ ︸ d�︸︷︷︸ b . . . , with precedence rela-

tions in the OPM a � b and b � d, two possible factorizations are w = w1bw3b . . .
and w = w1bw3w4b . . . , where b is a pending letter and #[w1]

b = #[w1]
b = #[ac]b,

b[w3]
b = b[w3d]

b, b[w3]
d = b[a]d, and b[w4]

b = b[d]b are chains. The second factoriza-
tion is the unique one where each word wi has no prefix uib such that li [ui]

b is a chain.
Let x ∈ Σ∗ be the body of some chain a[x]b and let T (x) be the set of all triples

(q, p, f) ∈ Q × Q × {0, 1} such that there exists a support q
x� p in A, and f = 1

iff the support contains a state in F . Also let T be the set of all such T (x), i.e.,
T contains sets of triples identifying all supports for some chain, and set PR to be
the finite alphabet Σ ∪ T . A pseudorun for the word w in A’s uniquely factorized as
w1w2w3 . . . as stated above, is the ω-word w′ = y1y2y3 . . . ∈ PRω, where yi = ai if wi
is a pending letter, otherwise yi = T (wi).

For the unique factorization in the example above, then, w′ = T (ac) b T (a) T (d)
b

The automaton recognizing the complement of L = L(A) w.r.t. LM can be built
as an “online composition” of a transducer ωOPBA B that computes the pseudorun
corresponding to an input word w, and a Büchi finite-state automaton BR that rec-
ognizes all the pseudoruns of ω-words not accepted by A: while reading w, B outputs
the pseudorun w′ of w online, and the states of BR are updated accordingly. The
automaton accepts if both B and BR reach infinitely often final states.

In order to define BR we first define a nondeterministic Büchi finite-state automa-
ton AR = 〈PR,QAR , IAR , FAR , δAR〉 over the alphabet PR whose language includes
all pseudoruns w′ of any words w ∈ L(A).

The states of AR correspond to the states of A, but are extended with a lookback
symbol that, in a correct pseudorun, represents the last pending letter of the input
word read so far. AR has all transitions corresponding toA’s push and shift transitions
but is devoid of pop edges (in fact it is a finite-state automaton). In addition, for
every S ∈ T it is endowed with arcs labeled S which link, for each triple (q, p, f) in S

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1076 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Fig. 20. Containment relations for languages, where PSM = {w′ ∈ PRω | w′ is the pseudorun
in A for w ∈ LM} and PA = {w′ ∈ PRω | w′ is the pseudorun in A for w ∈ L(A)}.

and a ∈ Σ̂ = Σ∪{#}, either the pair of states 〈a, q〉, 〈a, p〉 if f = 0, or 〈a, q〉, 〈a, p′〉 if
f = 1, where 〈a, p′〉 is a new final state which takes into account the states in F met
along the support q � p and which has the same outgoing edges as 〈a, p〉.

Formally, QAR = Σ̂ × (Q ∪ Q′), where Q′ = {q′ | q ∈ Q}, IAR = {#} × I,
FAR = Σ̂ × (F ∪ Q′). The transition function of AR is defined as follows, where
a ∈ Σ̂, q ∈ Q, q′ ∈ Q′, S ∈ T (δpush and δshift are the transition functions of A):

• δ(〈a, q〉, b) =
{

〈b, δpush(q, b)〉 if a� b,
〈b, δshift(q, b)〉 if a

.
= b,

• δ(〈a, q〉, S) = {〈a, p〉 | 〈q, p, 0〉 ∈ S} ∪ {〈a, p′〉 | 〈q, p, 1〉 ∈ S},
• δ(〈a, q′〉, X) = δ(〈a, q〉, X), ∀X ∈ PR.

Notice that, given a set S ∈ T , the existence of an edge S between the pairs of
states q, p in the triples in S can be decided in an effective way.

The automaton AR built so far is able to parse all pseudoruns and recognizes
all pseudoruns of ω-words recognized by A. However, since its moves are no longer
completely determined by the OPMM , it can also accept input words along the edges
of the graph of A that are not pseudoruns since they do not correspond to a correct
factorization on PR. This is irrelevant, however, since the aim of the proof is to devise
an automaton recognizing the complement of L(A), and all the words in LM \ L(A)
are parsed along pseudoruns, which are not accepted by AR. If one gives as input
words only pseudoruns (and not generic words on PR), then they will be accepted by
AR if the corresponding words on Σ belong to L(A), and they will be rejected if the
corresponding words do not belong to L(A) (see Figure 20). Then we can construct
a deterministic Büchi automaton BR that accepts the complement of L(AR) on the
alphabet PR [36]. If BR receives only input words on PR that are pseudoruns, then
it will accept only words in LM \ L(A).

Now we define a nondeterministic transducer ωOPBA B which on reading w
generates online the pseudorun w′. The transducer B nondeterministically guesses
whether the next input symbol is a pending letter, the beginning of a chain appearing
in the factorization of w, or a symbol within such a chain, and uses stack symbols Z,
B, or elements in T , respectively, to distinguish these three cases.

Whenever the automaton reads a pending letter it outputs the same letter, whereas
when it completes the recognition of a chain of the factorization, performing a pop
move that removes from the stack an element with state B, it outputs the set of all
the pairs of states which define a support for the chain. Thus, the output w′ produced
by B is unique, despite the nondeterminism of the translator.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1077

Formally, the transducer ωOPBA B = 〈Σ,M,QB, IB, FB , PR, δB, ηB〉 is defined
as follows:

• QB = {Z,B} ∪ T , i.e., a state in QB represents the guess of whether the
next symbol to be read is a pending letter (Z), the beginning of a chain (B),
or a letter within such a chain wi (T ∈ T). In the third case, T contains
all information necessary to correctly simulate the moves of A during the
parsing of the chain wi of w, and compute the corresponding symbol yi of w

′.
In particular, T is a set comprising all triples (r, q, ν), where r represents the
state reached before the last push move, q represents the current state reached
by A, and ν is a bit that reminds us of whether, while reading the chain, a
state in F has been encountered (as in the construction of a deterministic
OPA on words of finite length, it is necessary to keep track of the state from
which the parsing of a chain started, to avoid erroneous merges of runs on
pop moves).

• IB = FB = {B,Z}.
• The transition function and the output function are defined as the union of
three pairs of functions. Let a ∈ Σ, T, S ∈ T .
The push pair 〈δBpush, ηBpush〉 : QB × Σ → ℘F (QB × PR∗) is defined as
follows, where the symbols after ↓ denote the output.

– Push of a pending letter.

〈δBpush, ηBpush〉 (Z, a) = {B ↓ a, Z ↓ a} .

– Push at the beginning of a chain of the factorization.

〈δBpush, ηBpush〉 (B, a) = {T ↓ ε} ,
where T = {〈q, p, ν〉 | q ∈ Q, p ∈ δpush(q, a), ν = 1 iff p ∈ F} .

– Push within a chain of the factorization.

〈δBpush, ηBpush〉 (T, a) = {S ↓ ε} , where

S =

{
〈q, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. ν =

[
ξ if p /∈ F,
1 if p ∈ F,

p ∈ δpush(q, a)

}
.

The shift pair 〈δBshift, ηBshift〉 : QB×Σ → ℘F (QB×PR∗) is defined as follows.
– Pending letter.

〈δBshift, ηBshift〉 (Z, a) = {B ↓ a, Z ↓ a} .

– Shift move within a chain of the factorization.

〈δBshift, ηBshift〉 (T, a) = {S ↓ ε} , where

S =

{
〈r, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. ν =

[
ξ if p /∈ F,
1 if p ∈ F,

p ∈ δshift(q, a)

}
.

The pop pair 〈δBpop, ηBpop〉 : QB×QB → ℘F (QB×PR∗) is defined as follows.
– Pop at the end of a chain of the factorization.

〈δBpop, ηBpop〉(T,B〉) = {B ↓ R, Z ↓ R} , where

R =

{
〈r, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. p ∈ δpop(q, r), ν =

[
ξ if p �∈ F
1 if p ∈ F

}
.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1078 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

– Pop within a chain of the factorization.10

〈δBpop, ηBpop〉(T, S〉) = {R ↓ ε}, where

R =

{
〈t, p, ν〉 | ∃〈r, q, ξ〉 ∈ T, ∃〈t, r, ζ〉 ∈ S s.t. p ∈ δpop(q, r),

ν =

[
ξ if p �∈ F
1 if p ∈ F

}
.

An error state is reached in any other case.
We conclude the construction by computing the size of the resulting automaton,

which is an “online composition” of B and BR. The Büchi finite-state automaton
AR has O(|Σ|s) states and hence the automaton BR has 2O(|Σ|s log|Σ|s) states [40,

36], whereas the transducer B has |QB| = 2O(s2) states. Thus the ωOPBA has

2O(s2+|Σ|s log|Σ|s) states.
To prove that B produces all A’s pseudoruns—whether accepting or not—observe,

first that its guess about reading a pending letter, or the beginning of a chain belonging
to the unique factorization defined above, or reading a symbol within such a chain,
is essentially the same as the one described in the proof of Lemma 7.3, where the
recognition of a maximal chain is replaced by the recognition of a chain with no
prefixes that are chains; thus, wrong guesses are resolved at the time of a pop move
(e.g., a pop move is not defined on a first state of type Z). Furthermore, pending
letters, when correctly guessed as such, are output as soon as they are read (the
incorrectly guessed ones belong to runs that will be aborted); elements of T are output
only when a chain of the factorization is recognized, i.e., the transition is defined on
a pair of states whose second component is B, which separates these moves from the
pop ones occurring within a chain of the factorization; the set T output during the
move records all pairs of states that can be the beginning and the end of a support
of the recognized chain. Finally the input string is accepted iff infinitely many times
either pending letters are read or chains of the factorization are recognized, or both
facts occur, i.e., the string is compatible with the OPM, and the produced output is
the pseudorun associated with the input by definition, independently of whether the
original A’s run was accepting, i.e., infinitely many times sets of triples with ν = 1
have been output, or not.

Let us finally consider the case of concatenation between a finite-length OPL and
a language in L(ωOPBA). For classical families of automata (on finite- or infinite-
length words) the closure with respect to concatenation is traditionally proved by
building an automaton which simulates the moves of the first automaton while reading
the first word of the concatenation and—whether deterministically or not—once it
reaches some final state, it switches to the initial states of the second one. This
natural approach has already been proved ineffective for OPLs in the case of finite-
length words since the structure of two concatenated strings is not necessarily the
concatenation of the two structures, so that the actions of the second automaton
cannot be independent from those of the previous one ([18] provides a constructive
proof of the closure of finite-length OPLs w.r.t. concatenation in terms of generating
grammars); in fact, the lack of the # delimiter between the two strings prevents the
typical lookahead mechanisms which drive the operator-based parsing; thus, the stack
cannot be emptied by the normal sequence of pop moves before beginning the parse

10Remember that we consider only chains having no prefixes that are chains.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1079

of the new string. In the case of ω-languages the difficulty is further exacerbated by
the fact the automaton might never be able to empty the stack as, e.g., in the case
of a language L1 ⊆ {a, b}∗ with a � a, b � a, concatenated with L2 = {aω}. Notice
also that, after reading the first finite word in the concatenation, it would not be
possible to determine whether this word might be accepted by—possibly nondeter-
ministically—guessing the position of a potential delimiter #, since this check would
require us to know the states already reached and piled on the stack, which are not
visible without emptying the stack itself.

To overcome the above difficulties we follow this approach:
• We give up deterministic parsing. In fact the different computational power
between deterministic and nondeterministic automata is a distinguishing prop-
erty when moving from finite- to infinite-length languages. Thus, we nonde-
terministically guess the point of separation between the first finite word and
the second infinite one.

• To afford the second major problem, i.e., the lack of enough knowledge to
decide whether the guessed first word would be accepted by the corresponding
automaton, we use ��#OPAs introduced in section 7.1.

The following theorem exploits the above approach. Its proof differs significantly
from the nontrivial proof of closure under concatenation of OPLs of finite-length
words [18], which, instead, can be recognized deterministically.

Theorem 7.8 (L(ωOPBA) is closed under concatenation). Let L1 ⊆ Σ∗ be a
language of finite words recognized by an OPA with OPM M1 and s1 states. Let
L2 ⊆ Σω be an ω-language recognized by a nondeterministic ωOPBA with OPM M2

compatible with M1 and s2 states. Then the concatenation L1 · L2 is also recognized
by an ωOPBA with OPM M ⊇M1 ∪M2 and O(s21 + s22) states.

Proof. Let A1 be a nondeterministic OPA on (Σ,M1) that recognizes L1 and let
A2 = 〈Σ,M2, Q2, I2, F2, δ2〉 be a nondeterministic ωOPBA with OPMM2 compatible
with M1 that accepts L2. Suppose, without loss of generality, that the sets of states
of A1 and A2 are disjoint.

To define an automaton ωOPBA A that accepts L1 · L2, we first build a ��#OPA
A′

1 = 〈Σ,M1, Q1, I1, F1, δ1〉 such that L�#(A
′
1) = L(A1).

The automaton A can recognize the first finite words in the concatenation L1 ·L2

by simulating A′
1: reading the input string, if A′

1 reaches a final state at the end of
a finite-length prefix, then it belongs to L1 and A immediately starts the recognition
of the second infinite string without the need to perform any pop move to empty the
stack. From this point onwards, then, A checks that the remaining infinite portion of
the input belongs to L2, behaving as the ωOPBA A2.

The strings belonging to the concatenation of two OPLs, however, may contain
new chains that span over the two concatenated words. Consider, for instance, the
concatenation of L1 = {ambn | m ≥ n ≥ 1} with L2 = {c+bω}; notice that any OPA
recognizing L1 must be defined on an OPM such that a � a, a

.
= b, b � b to be able

to compare the occurrences of a with those of b; assume also the further precedence
relations a�c, c�c, c�b (such relations could be mandated, e.g., by other components
of either language not included here for simplicity). An automaton recognizing L1 ·L2

can deterministically find the borderline between words x ∈ L1, and y ∈ L2; after
finishing reading x it will have on its stack m−n remaining a’s; however, since a�c it
cannot empty the stack and must push all c’s on top of the a’s. Only when receiving
the first b, it will pop all c’s until the top of the stack will store an a. Since a

.
= b,

and b � b the next action must consist in shifting the b by replacing the topmost a
and then popping it, thus consuming part of the stack left by the analysis of x; in

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1080 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

other words, it must produce the support of a chain a[ab]b, whose left part belongs to
L1 and whose right part belongs to L2.

Therefore, A cannot merely read the second infinite word performing the same
transitions as A2, but it can still simulate this ωOPBA by keeping in the states some
summary information about its runs. In this way, while reading the second word in
the concatenation, whenever A has to reduce a chain that extends to the previous
word in L1 and, therefore, must perform a pop move of a symbol in the portion of
the stack piled up during the parsing of the first word, it can restore the state that
A2 would instead have reached, resuming therefrom as in a run of A2.

Precisely, A is defined as the tuple 〈Σ,M,Q, I, F, δ〉 where we have the following:
• M ⊇ M1 ∪M2 and may be supposed to be a complete matrix, for instance,
assigning arbitrary precedence relations to the empty entries, so that the
strings in the concatenation of languages L1 and L2 are compatible with M .

• Q = Q1 ∪ Q2 ∪ Q2 × (Q2 ∪ {−}), i.e., the set of states of A includes the
states of A′

1 and A2, along with the states of A2 extended with a second
component. The first component is the state of Q2 that A2 would reach in
its corresponding computation on the second word of the concatenation, and
the second one represents the state of the symbol that is on the top of the
stack when the current input letter is read in this run of A2. Storing this
component is necessary to guarantee that, whenever the automaton A has
to perform a pop move that removes symbols that have been piled on the
stack during the recognition of the first word in the concatenation, it is still
possible to compute the state that A2 would have reached instead.
This second component is denoted ′−′ if all the preceding symbols in the stack
have been piled up during the parsing of the first word of the concatenation
(thus the stack of A2 is empty).

• I = I1 ∪ {〈q0,−〉 | q0 ∈ I2} if ε ∈ L1; I = I1 otherwise.
• F = F2 ∪ F2 × (Q2 ∪ {−}).
• The transition function δ : Q × (Σ ∪ Q) → ℘(Q) is δ = δ1 ∪ δ2 ∪ δjoin

and is defined as the union of three functions: the transition functions of A′
1

and A2 by which it simulates the first automaton on the first word of the
concatenation and the second automaton on the second one, and a function
δjoin that handles the nondeterministic transition from the simulation of the
first automaton to the second one and the parsing of the suffix (within the
second word of the concatenation) of the chains that span over the two words.
Function δjoin is defined as follows: let c ∈ Σ, p ∈ Q1, q, q1, q2, q3 ∈ Q2,
r ∈ (Q2 ∪ {−}).
The push transition function δjoinpush : Q× Σ → ℘(Q) is defined by

– δjoinpush(p, c) = {〈q0,−〉 | q0 ∈ I2, if ∃pf ∈ F1 s.t. δ1push(p, c) � pf},
i.e., A nondeterministically enters the initial states of A2 after the recog-
nition of a word in L1;

– δjoinpush(〈q, r〉, c) = δ2push(q, c),
i.e., A simulates a push move of A2, reaching a state in Q2, whenever
it starts to recognize a chain in the second word of the concatenation
(which thus does not extend to the first word).

The shift transition function δjoinshift : Q× Σ → ℘(Q) is defined by

– δjoinshift(p, c) = {〈q0,−〉 | q0 ∈ I2, if ∃pf ∈ F1 s.t. δ1shift(p, c) � pf},
i.e., A nondeterministically enters the initial states of A2 after the recog-
nition of a word in L1;

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1081

Table 8

Size of state sets of languages recognizing L1 ∩ L2, L1 ∪ L2, ¬L1, and L3 · L1. The results on
ωOPBAs have been proved, respectively, in Theorems 7.5, 7.6, 7.7, and 7.8. The complexity results
on ωBVPAs derive from the constructions and proofs of their closure properties shown in [4].

L(ωOPBA) L(ωBVPA)
L1 ∩ L2 O(s1s2) O(s1s2)

L1 ∪ L2 O(|Σ|2(s1 + s2)) s1 + s2

¬L1 2O(s21+|Σ|s1 log|Σ|s1) 2O(s21)

L3 · L1 O(s21 + s23) s1 + s3

– δjoinshift(〈q1,−〉, c) = {〈q2, q1〉 | q2 ∈ δ2push(q1, c)},
i.e., A simulates the push move induced by the precedence relation #�c
that, in the corresponding run of A2, starts the recognition of a chain
that is a prefix of the second word of the concatenation;

– δjoinshift(〈q1, q2〉, c) = {〈q3, q2〉 | q3 ∈ δ2shift(q1, c)},
i.e., A performs a shift move within a chain that spans over the two
words of the concatenation.

The pop transition function δjoinpop : Q×Q→ ℘(Q) is defined by

– δjoinpop(〈q,−〉, p) = 〈q,−〉,
i.e., A concludes to recognize a chain, at the end of the first word of the
concatenation, induced by the precedence relations with the letters of
the second string, and consumes the corresponding stack symbols piled
while reading the first word;

– δjoinpop(〈q1, q2〉, p) = {〈q3,−〉 | q3 ∈ δ2pop(q1, q2)},
i.e., whenever the precedence relations induce a merge of the chains of
the words of the concatenation, A restores the state q3 of A2 from which
a run of A2 will continue;

– δjoinpop(q1, 〈q2, r〉) = {〈q3, r〉 | q3 ∈ δ2pop(q1, q2)},
i.e., A completes the recognition of a chain that belongs to a composed
chain spanning over the two words of the concatenation.

One can verify that, after having simulated A′
1 and nondeterministically guessed

the end of a word in L1, A proceeds with the simulation of A2 and accepts the
remaining ω-string iff it belongs to L2. In fact, the projection on the first component
of the states visited along A’s run on the second word of the concatenation identifies
a successful run of A2 on the same word.

To summarize, Table 8 displays the complexities of the various constructions to
obtain the closure w.r.t. Boolean operations and concatenation; it also compares them
with the corresponding complexities for VPLs showing that the only main difference
occurs in the case of concatenation.

7.3. Closure properties of the other classes of ωOPLs. The class of lan-
guages recognized by ωDOPMAs is a Boolean algebra. The other classes are closed
only under union and intersection.

Theorem 7.9 (L(ωDOPMA) is a Boolean algebra). Let L1 and L2 be ω-
languages that are recognized by two ωDOPMAs defined over the same alphabet Σ,
with compatible precedence matrices M1 and M2 and s1 and s2 states, respectively.
Then L1 ∩ L2 (resp., the complement of L1 w.r.t. LM , or L1 ∪ L2) is recognized by
an ωDOPMA with OPM M =M1 ∩M2 and s1s2 (resp., s1, or |Σ|4s1s2) states.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1082 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

Proof. Let A1 = 〈Σ,M1, Q1, q01, T1, δ1〉 and A2 = 〈Σ,M2, Q2, q02, T2, δ2〉 be
ωDOPMAs recognizing languages L1 and L2. Assume without loss of generality that
their transition function is total (otherwise, it can be naturally completed once the
set of states is extended with an “error” state).

An ωDOPMA A with OPM M = M1 ∩M2 recognizing L = L1 ∩ L2 may be
defined adopting the usual product construction for ω-regular automata, requiring
that a successful path in A corresponds to paths that visit infinitely often sets in the
table T1 and T2. More precisely let A = 〈Σ,M,Q, q0, T , δ〉, where

• Q = Q1 ×Q2;
• q0 = (q01, q02);
• πi (i = 1, 2) is defined as the projection from Q1 ×Q2 on Qi, that can also
be naturally extended to define projections on paths of the automata, and let
T = {P ⊆ Q1 ×Q2 | π1(P) ∈ T1 ∧ π2(P) ∈ T2};

• the transition function δ is the product of δ1 and δ2 (see Definition 7.1).
Let ρ be a successful path of A, starting in the initial state q0 = (q01, q02): since
it is accepting, the set Inf(ρ) = P ∈ T . By the definition of T , the paths ρ1 and
ρ2 that are the projection of ρ on the set of states of A1 and A2, respectively, have
Inf(ρ1) = π1(P) ∈ T1 and Inf(ρ2) = π2(P) ∈ T2: hence ρ1 and ρ2 are successful
paths for the two automata, and x belongs to L(A1) ∩ L(A2).

Let now x ∈ L(A1) ∩ L(A2); thus, x labels two successful paths ρ1 and ρ2 of the
two automata, i.e., Inf(ρ1) ∈ T1 and Inf(ρ2) ∈ T2. The path ρ of A which visits the
pairs of states of the two automata, performing the same type of move they perform
for each input symbol, is defined as π1(Inf(ρ)) = Inf(ρ1) ∈ T1 and π2(Inf(ρ)) =
Inf(ρ2) ∈ T2. Therefore, by the definition of T , ρ is a successful path for A.

To recognize the complement of L1, given that A is deterministic and its
transition function is total, it is clearly sufficient to build the ωDOPMA A′ =
〈Σ,M1, Q1, q01,℘(Q1) \ T1, δ〉 whose table is the complement of T1 w.r.t. ℘(Q1).

To obtain the closure w.r.t. union, we can assume that M1 =M2 w.l.o.g. (other-
wise one can apply Statement 7.1, increasing the number of states of each automaton
of a factor |Σ|2) and apply De Morgan’s law. The number of states of the resulting
automaton is |Q1| · |Q2| and this concludes the proof, recalling the factor |Σ|2 · |Σ|2
implied by the possible aplication of Statement 7.1. Notice that, if one considers
automata with compatible but not equal matrices, De Morgan’s law could not be
applied; in fact, the equality

L1 ∪ L2 = LM1∩M2 \ [(LM1 \ L1) ∩ (LM2 \ L2)]

does not hold, unless M1 =M2.
Proposition 7.10. Let L1 and L2 be ω-languages recognized by two ωOPBEA

(resp., ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible
precedence matrices M1 and M2 and with s1 and s2 states, respectively. Then L =
L1∩L2 is recognized by an ωOPBEA (resp., ωDOPBA, ωDOPBEA) with OPM M =
M1 ∩M2 and O(s1s2) states.

Proof. For ωOPBEA, we can assume without loss of generality that the automaton
is in normal form with partitioned sets of states (see Definition 5.5), and apply the
same construction as for ωOPBA (see Theorem 7.5). The use of automata with
partitioned sets of states guarantees that a run of A on an ω-word reaches infinitely
often a final state with empty stack iff both A1 and A2 have a run for the word which
traverses infinitely often a final state with empty stack.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1083

For ωDOPBA and ωDOPBEA, the proof derives from the fact that, if A1 and A2

are deterministic, then the resulting intersection automaton is deterministic
too.

Proposition 7.11. Let L1 and L2 be ω-languages recognized by two ωOPBEA
(resp., ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible
precedence matrices M1 and M2 and s1 and s2 states, respectively. Then L = L1∪L2

is recognized by an ωOPBEA (resp., ωDOPBA, ωDOPBEA) with OPMM =M1∪M2

and O(|Σ|2s1s2)) (resp., O(|Σ|4s1s2)) states.
Proof. The proof for ωOPBEA is analogous to the proof of closure under union

for ωOPBA (see Theorem 7.5).
For the determistic models, the construction must be refined. Let A1 and A2

be ωDOPBA accepting L1 and L2 over OPMs M1 and M2, respectively. As usual,
we assume that both transition functions are complete and M1 = M2 (otherwise
one can apply Statement 7.1, increasing the number of states of a factor |Σ|2). Let
Ai = 〈Σ,M,Qi, q0i, Fi, δi〉 for i = 1, 2. An ωDOPBA (resp., ωDOPBEA) A3 which
recognizes L1 ∪ L2 is then defined by adopting the usual product construction for
regular automata, A3 = 〈Σ,M,Q3, q03, F3, δ3〉, where

• Q3 = Q1 ×Q2,
• q03 = (q01, q02),
• F3 = F1 ×Q2 ∪Q1 × F2,
• and the transition function is the product of δ1 and δ2.

The number of states of A3 is given by the product |Q1| · |Q2| and this concludes the
proof, recalling the factor |Σ|2 · |Σ|2 implied by Statement 7.1.

Theorem 7.12 (ωDOPBA, ωOPBEA, ωDOPBEA are not closed under com-
plement). Let L be an ω-language accepted by an ωDOPBA (resp., ωOPBEA
or ωDOPBEA) with OPM M on alphabet Σ. There does not necessarily exist an
ωOPBEA (resp., ωOPBEA or ωDOPBEA) recognizing the complement of L w.r.t.
LM .

Proof. Language La∞ can be recognized by an ωDOPBAwith an OPMM (shown,
for instance, in Figure 15), but there’s no ωDOPBA that can recognize the comple-
ment of this language w.r.t. LM , i.e., the language La−finite, as mentioned in sec-
tion 6.2. The same argument on La∞ holds also for ωDOPBEAs.

Finally, as regards ωOPBEAs, Lωabseq is recognized by the ωOPBEA with OPM
M and state graph presented in section 6.2. However, no ωOPBEA can recognize the
complement of this language w.r.t. LM . Such an ωOPBEA, in fact, should have OPM
M so that no word in Lωabseq can be accepted. The precedence relation Maa = {�}
(which is necessary to verify that in a sequence of type (akbh)ω there is at least one
substring with k �= h), however, prevents an ωOPBEA from accepting the word aω,
which belongs to the complement of Lωabseq w.r.t. LM , since it implies that, while
reading the word, the ωOPBEA can never reach a state with empty stack.

Theorem 7.13 (ωDOPBA, ωOPBEA, ωDOPBEA, and ωDOPMA are not closed
under concatenation). Let L2 be an ω-language accepted by an ωOPBEA (resp.,
ωDOPBA, ωDOPBEA, or ωDOPMA) with OPMM on alphabet Σ and let L1 ⊆ Σ∗ be
a language (of finite words) recognized by an OPA with a compatible precedence matrix.
The ω-language defined by the concatenation L1 ·L2 is not necessarily recognizable by
an ωOPBEA (resp., ωDOPBA, ωDOPBEA, or ωDOPMA).

Proof. For ωDOPBAs, let Σ = {a, b} and consider the language La−finite, which
can be seen as the concatenation La−finite = L1 ·L2 of a language of finite words L1 =
{a, b}∗, which can be clearly recognized by an OPA, and an ω-language L2 = {bω},
which can be recognized by an ωDOPBA, with compatible precedence matrices. Since

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1084 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

language La−finite cannot be recognized by an ωDOPBA, then the class of languages
L(ωDOPBA) is not closed w.r.t. concatenation.

Given Σ = {c, r}, the language Lrepbsd cannot be recognized by an ωOPBEA
(resp., ωDOPBEA or ωDOPMA), as shown in section 6.2. Consider the OPA that
accepts the language L1 = Σ∗ of words of finite length whose OPM is the same as the
precedence matrix depicted in Figure 16. These words have necessarily a finite number
of pending calls, since they have finite length. Moreover, letA2 be an ωOPBEA (resp.,
ωDOPBEA or ωDOPMA) that recognizes the ω-language LωDyck-pr(c,r) and which is
depicted in Figure 16. The concatenation ω-language L1 ·LωDyck-pr(c,r) is exactly the
set of ω-words with a finite number of pending calls, i.e., Lrepbsd. Hence, the class of
languages L(ωOPBEA) (resp., L(ωDOPBEA) or L(ωDOPMA)) is not closed w.r.t.
concatenation.

8. MSO logic characterization of ωOPLs. We finally provide a characteri-
zation of ωOPLs in terms of an MSO logic which is interpreted over infinite words.
As usual, we focus our attention on L(ωOPBA), the most general class of ωOPLs.

We adopt the same conventions and notation as in section 4, and extend the
formula evaluation over ω-strings in the natural way. To distinguish the infinite case
from the finite one, we will use the symbol |=ω instead of |=. Given an OP alphabet
(Σ,M) and an MSO formula ϕ, we denote the language of all strings w ∈ Σω such
that #w |=ω ϕ by Lω(ϕ) = {w ∈ Σω | #w |=ω ϕ}.

Example 10 (managing interrupts). Consider again the system that manages
interrupts described in Example 8. The same rules enforced by the automaton of
Figure 13 are also formalized by the following sentences.

• All int2 are eventually served by a corresponding serve2:

∀x (int2(x) ⇒ ∃y(serve2(y) ∧ (y = x + 1 ∨ x � y))).

• Lower priority interrupts are not accepted when a higher priority one is pend-
ing:

∀x , y (int2(x) ∧ serve2(y) ∧ x � y ⇒ ∀k (x < k < y ⇒ ¬int1(k))).

As another example consider the “weak fairness requirement” also mentioned in
Example 8 which states that after a first calla not matched by reta but interrupted by
an int1 or int2, a second calla cannot be interrupted by a new lower priority interrupt
int1 (but can still be interrupted at any time by higher priority ones): the sentence
below formalizes such a constraint.

¬∃x 1, x 2(x 1 < x 2 ∧ calla(x 1) ∧ calla(x 2)

∧∀x 3(x 1 ≤ x 3 ≤ x 2 ∧ calla(x 3) ⇒ ¬∃y3(reta(y3) ∧ (y3 = x 3 + 1 ∨ x 3 � y3)))

∧∃z 1, z 2((int1(z 1) ∨ int2(z 1)) ∧ int1(z 2) ∧
2∧
i=1

(z i = x i + 1 ∨ x i � z i))).

Theorem 8.1. Let (Σ,M) be an OP alphabet. L is accepted by a nondeterminis-
tic ωOPBA A over (Σ,M) iff there exists an MSO sentence ϕ such that L = Lω(ϕ).

The construction of a nondeterministic ωOPBA equivalent to an MSO formula is
identical to the one given for finite strings.

The converse construction also follows essentially the same path as in the case of
finite-length languages; thus, we only point out the few relevant differences w.r.t. the

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1085

construction of section 4. Formula ϕ is defined as

(8.1) ϕ :=
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C 0,C 1, . . . ,CN

⎛⎝ ∨
qi∈I

Starti ∧ ϕδ ∧ ϕunique ∧
∨
qf∈F

Acceptf

⎞⎠ ,

where Starti is defined as in section 4, and Acceptf is a shortcut representing the
Büchi acceptance condition (a final state is reached infinitely often):

Acceptf := ∀x∃y(x < y ∧ y ∈ Qf).

Formula ϕδ encodes the nondeterministic transition functions of the automaton and
is obtained from formula ϕδpush ∧ ϕδshift ∧ ϕδpop defined in section 4, by replacing
expressions such as qk = δ(. . .) by expressions such as qk ∈ δ(. . .). Finally, formula
ϕunique is defined as the conjunction of the following formulas:

ϕuniqueA := ∀x
N∧
i=0

⎛⎝x ∈ Ai ⇒ ¬
N∨
j=0

(j �= i ∧ x ∈ Aj)

⎞⎠ ,

ϕunique next := ∀x , y
N∧
k=0

⎛⎝Nextk(x , y) ⇒ ¬
∨
j
=k

Nextj(x , y)

⎞⎠ .

Such formulas were not necessary in the finite case because they were implied by the
determinism of the automaton.

The proof that formula ϕ is satisfied by all and only the words accepted by A is
again based on Lemmas 4.3 and 4.4, but we need some more properties to cope with
infinite words.

Any ω-word w ∈ Σω compatible with M can be factored, as in the proof of
Theorem 7.7, as a sequence w = w1w2w3 . . . , where either wi ∈ Σ is a pending letter
or wi is the body of the chain ai [wi]

bi , where ai is the last pending letter before wi
and bi is the first symbol of wi+1. A similar factorization holds for a finite word #w
without end delimiter. We denote by P the set of positions in a (finite or infinite)
string w that correspond to pending letters and by E the set of positions of the right
delimiter of the chains of the factorization. These two sets are not necessarily disjoint,
and EP is their union:

z ∈ P := ∀x , y (x < z < y ∧ x � y ⇒ #(y)),

z ∈ E := ∃x (x ∈ P ∧ x � z),

z ∈ EP := z ∈ P ∨ z ∈ E .

Any prefix of an infinite string w which ends in an EP position of w is called an
EP-prefix of w.

Let us define

ψi,k(A0, . . . ,AN ,B0, . . .BN ,C 0, . . . ,CN) := Starti ∧ ϕ′
δ ∧ Finalk,

where

Finalk := ∃y∃e (y ∈ Qk ∧ y ≤ e ∧ e ∈ EP ∧ ∀z (y ≤ z ∧ z ∈ EP ⇒ z = e))

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1086 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

and ϕ′
δ is as ϕδ except for the formula ϕδpop , where the constraint ¬#(y) is conjuncted

to the antecedent of ϕδpop fw
, and ϕδpop bwB

and ϕδpop bwC
are replaced by the unique

formula

ϕpop bw := ∀x , z , v , y
N∧
k=0

⎛⎝ x ∈ Bk ∧ v ∈ C k

∧
¬#(y) ∧ Tree(x , z , v , y)

⇒
N∨
i=0

N∨
j=0

⎛⎝Treei,j(x , z , v , y)
∧

δpop(qi, qj) � qk

⎞⎠⎞⎠.
We will interpret formula ψi,k over finite strings. More precisely, let w′ be an

EP-prefix of a string w ∈ Σω. It is w |=ω ϕ iff there exist an initial state qi, a final
state qf , and an assignment A0, . . . ,CN such that w′ |= ψi,f (A0, . . . ,CN) for an
infinite number of EP-prefixes w′ of w. In this case, a position x in a prefix w′ may
start a chain that goes beyond the end of w′, hence, in such cases x is in Bk in the
assigment satisfying w |=ω ϕ but w′ �|=ω ϕpop bwB. This is the reason why we replace
the backward formulas of ϕδpop in ϕ′

δ.
For any assignment for A0, . . . ,CN , it is w′ |= ψi,k(A0, . . . ,CN) iff there exists a

run of A for w′ beginning from state qi that visits state qk somewhere after the last EP
position before |w′|. The run can be built reasoning as in Lemmas 4.3 and 4.4 within
the chains of the factorization, and using formulas ϕδpush and ϕδshift for the positions
of pending letters. The properties corresponding to states qi and qk are provided by
formulas Starti and Finalk. If w′ and w′′ are EP-prefixes of w and both satisfy ψi,k
with the same assignment to A0, . . . ,CN , then for the corresponding runs built with
such a construction, one is the prefix of the other.

Hence w |=ω ϕ if and only if there exist infinitely many (finite) runs of A on
EP-prefixes of w, each of them beginning from qi and visiting the same final state qf
somewhere after its last EP position; such runs are all prefixes of the same infinite
run ρ.

Furthermore, since there is a move in ρ that reaches qf while reading the suffix of
each of those EP-prefixes after its last EP position, then ρ traverses infinitely often
qf , and hence ρ is accepting for A.

Symmetrically, one can prove that if there exists an accepting run ρ for an ω-string
w in A, then w |=ω ϕ.

9. Concluding remarks. In this paper we have supplied a number of results
about OPLs which, together with previous recent and less recent ones, qualify OPLs
as the largest class of deterministic CF languages that enjoy all of the following basic
properties which have a strong impact on various types of practical applications,
spanning from parsing to model checking:

• Local parsability: this property, not pursued in this paper, allows for realizing
simple and efficient parallel and/or incremental algorithms [7, 6].

• Closure under all main language operations—Boolean ones, concatenation,
Kleene *, and others [18].

• Automata-theoretic and MSO logic characterization.
• Extension of all the above properties to the case of ω-languages, i.e., lan-
guages consisting of infinite-length strings, with the noticeable and typical
exception of the lack of equivalence between deterministic and nondetermin-
istic automata—under the Büchi acceptance condition.

As for the complexity of the constructions used to prove our results we have shown
that they are in general of the same order as those of corresponding constructions for
less powerful language families—typically, VPLs; the few cases of different complexity
have been pointed out in Table 8.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPERATOR PRECEDENCE LANGUAGES 1087

This fairly complete foundational characterization of OPLs can now ignite—and
partially already did—further research along several directions. On the one side we
are developing practical tools exploiting the above properties both in parsing and in
automatic verification; on the other side we envisage many interesting special cases
of OPLs motivated by different possible applications.

For instance, we are investigating the use of logic formalisms simpler than MSO
logic to characterize suitable subclasses of general OPLs, in the same vein as it has
been done for regular languages [15], VPLs [2], and for various cases of tree lan-
guages [1, 10]; a first result on this respect is that free languages, a subclass of OPLs
originally motivated by grammar inference [19, 20] can be defined in terms of a first-
order logic rather than a second-order one [27].

We are also investigating new, less usual application fields for OPLs, or suitable
subclasses thereof, beyond the traditional field of programming languages, e.g., in the
direction suggested by Examples 5, 8, and others not reported here which are in the
same vein as the application indicated for VPLs but considerably extend its scope.

Acknowledgment. We are very grateful to the anonymous reviewers for their
constructive criticism and their thoughtful, precise, and very detailed suggestions to
improve the original manuscript.

REFERENCES

[1] L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M.J. Marx, and M. de Ri-

jke, PDL for ordered trees, J. Appl. Non-Classical Logics, 15 (2005), pp. 115–135.
[2] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin, First-order

and temporal logics for nested words, Logical Methods Comp. Sci., 4 (2008), pp. 1–44.
[3] R. Alur and P. Madhusudan, Visibly pushdown languages, in ACM Symposium on Theory

of Computing (STOC), ACM, New York, 2004, pp. 202–211.
[4] R. Alur and P. Madhusudan, Adding nesting structure to words, J. ACM, 56 (2009), 16.
[5] B. B. von Braunmühl and R. Verbeek, Input-driven languages are recognized in log n space,

in Proceedings of the Symposium on Foundations of Computation Theory, Lecture Notes
in Comput. Sci. 158, Springer, Berlin, 1983, pp. 40–51.

[6] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, F. Panella, and M. Pradella, The PA-
PAGENO parallel-parser generator, in 23rd International Conference on Compiler Con-
struction (CC), Springer, Berlin, 2014, pp. 192–196.

[7] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, and M. Pradella, Parallel parsing of
operator precedence grammars, Inform. Process. Lett., 113 (2013), pp. 245–249.

[8] J. Berstel and L. Boasson, Balanced grammars and their languages, in Formal and Natural
Computing, W. Brauer and G. Rozenberg, eds., Lecture Notes in Comput. Sci. 2300,
Springer, Berlin, 2002, pp. 3–25.

[9] L. Boasson and M. Nivat, Adherences of languages, J. Comput. System Sci., 20 (1980),
pp. 285–309.

[10] A. Boral and S. Schmitz, Model-checking parse trees, in Proceedings 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Wash-
ington, DC, 2013, pp. 153–162.

[11] W. S. Brainerd, The minimalization of tree automata, Inform. and Control, 13 (1968),
pp. 484–491.

[12] J. R. Büchi, On a decision method in restricted second order arithmetic, in Proceedings of the
1960 International Congress on Logic, Methodology and Philosophy of Science (LMPS’60),
E. Nagel, P. Suppes, and A. Tarski, eds., Stanford University Press, Stanford, CA, 1962,
pp. 1–11.

[13] O. Burkart and B. Steffen, Model checking for context-free processes, in CONCUR ’92,
Lecture Notes in Comput. Sci. 630, Springer, Berlin, 1992, pp. 123–137.

[14] D. Caucal and S. Hassen, Synchronization of grammars, in Computer Science—Theory and
Applications, E. A. Hirsch, A. A. Razborov, A. L. Semenov, and A. Slissenko, eds., Lecture
Notes in Comput. Sci. 5010, 2008, Springer, Berlin, pp. 110–121.D

ow
nl

oa
de

d
04

/2
6/

16
 to

 1
59

.1
49

.1
92

.4
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1088 V. LONATI, D. MANDRIOLI, F. PANELLA, M. PRADELLA

[15] C. Choffrut, A. Malcher, C. Mereghetti, and B. Palano, On the expressive power of
FO[+], in Language and Automata Theory and Applications, Lecture Notes in Comput.
Sci. 6031, Springer, Berlin, 2010, pp. 190–201.

[16] C. Choffrut, A. Malcher, C. Mereghetti, and B. Palano, First-order logics: Some char-
acterizations and closure properties, Acta Inform., 49 (2012), pp. 225–248.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM Trans. Program. Lang. Syst.,
8 (1986), pp. 244–263.

[18] S. Crespi Reghizzi and D. Mandrioli, Operator precedence and the visibly pushdown property,
J. Comput. System Sci., 78 (2012), pp. 1837–1867.

[19] S. Crespi Reghizzi, D. Mandrioli, and D. F. Martin, Algebraic properties of operator prece-
dence languages, Inform. and Control, 37 (1978), pp. 115–133.

[20] S. Crespi Reghizzi, M. A. Melkanoff, and L. Lichten, The use of grammatical inference
for designing programming languages, Comm. ACM, 16 (1973), pp. 83–90.

[21] K. De Bosschere, An operator precedence parser for standard prolog text, Softw., Pract.
Exper., 26 (1996), pp. 763–779.

[22] M. J. Fischer, Some properties of precedence languages, in Proceedings of the First Annual
ACM Symposium on Theory of Computing, ACM, New York, 1969, pp. 181–190.

[23] R. W. Floyd, Syntactic analysis and operator precedence, J. ACM, 10 (1963), pp. 316–333.
[24] D. Grune and C. J. Jacobs, Parsing Techniques: A Practical Guide, Springer, New York,

2008.
[25] M. A. Harrison, Introduction to Formal Language Theory, Addison Wesley, Reading, MA,

1978.
[26] D. E. Knuth, On the translation of languages from left to right, Inform. and Control, 8 (1965),

pp. 607–639.
[27] V. Lonati, D. Mandrioli, F. Panella, and M. Pradella, First-order Logic Definability

of Free Languages, in 10th International Computer Science Symposium in Russia (CSR),
Lecture Notes in Comput. Sci. 9139, Springer, Cham, Switzerland, 2015, pp. 310–324.

[28] V. Lonati, D. Mandrioli, and M. Pradella, Precedence automata and languages, in 6th
International Computer Science Symposium in Russia (CSR), Lecture Notes in Comput.
Sci. 6651, Springer, Berlin, 2011, pp. 291–304.

[29] V. Lonati, D. Mandrioli, and M. Pradella, Logic characterization of invisibly structured
languages: The case of Floyd languages, in 39th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM), Lecture Notes in Comput.
Sci. 7741, Springer, Berlin, 2013, pp. 307–318.

[30] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inform.
and Control, 9 (1966), pp. 521–530.

[31] R. McNaughton, Parenthesis grammars, J. ACM, 14 (1967), pp. 490–500.
[32] D. E. Muller, Infinite sequences and finite machines, in Proceedings of the Fourth Annual

Symposium on Switching Circuit Theory and Logical Design, SWCT ’63, Washington, DC,
1963, IEEE, Piscataway, NJ, pp. 3–16.

[33] D. Nowotka and J. Srba, Height-deterministic pushdown automata, in Mathematical Founda-
tions of Computer Science 2007, L. Kucera and A. Kucera, eds., Lecture Notes in Comput.
Sci. 4708, Springer, Berlin, 2007, pp. 125–134.

[34] F. Panella, M. Pradella, V. Lonati, and D. Mandrioli, Operator precedence ω-languages,
in 17th International Conference on Developments in Language Theory (DLT), Lecture
Notes in Comput. Sci. 7907, Springer, Berlin, 2013, pp. 396–408.

[35] F. Panella, M. Pradella, V. Lonati, and D. Mandrioli, Operator precedence ω-languages,
preprint, arXiv:1301.2476, 2013.

[36] D. Perrin and J.-E. Pin, Infinite Words, Pure Appl. Math. 141, Elsevier, Amsterdam, 2004.
[37] M. O. Rabin, Automata on Infinite Objects and Church’s Problem, CMBS Reg. Conf. Ser.

Math., AMS, Providence, RI, 1972.
[38] A. K. Salomaa, Formal Languages, Academic Press, New York, 1973.
[39] J. Thatcher, Characterizing derivation trees of context-free grammars through a generaliza-

tion of finite automata theory, J. Comput. Syst. Sci., 1 (1967), pp. 317–322.
[40] W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, Vol.

B, MIT Press, Cambridge, MA, 1990, pp. 133–191.

D
ow

nl
oa

de
d

04
/2

6/
16

 to
 1

59
.1

49
.1

92
.4

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

