
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 909–930 PII: S0305-4470(04)61111-5

Grover’s algorithm on a Feynman computer

Diego de Falco and Dario Tamascelli

Dipartimento di Scienze dell’ Informazione, Università di Milano, Via Comelico 39,
20135 Milano, Italy

Received 19 March 2003
Published 7 January 2004
Online at stacks.iop.org/JPhysA/37/909 (DOI: 10.1088/0305-4470/37/3/025)

Abstract
We present an implementation of Grover’s algorithm in the framework of
Feynman’s cursor model of a quantum computer. The cursor degrees of
freedom act as a quantum clocking mechanism, and allow Grover’s algorithm
to be performed using a single, time-independent Hamiltonian. We examine
issues of locality and resource usage in implementing such a Hamiltonian.
In the familiar language of Heisenberg spin–spin coupling, the clocking
mechanism appears as an excitation of a basically linear chain of spins, with
occasional controlled jumps that allow for motion on a planar graph: in this
sense our model implements the idea of ‘timing’ a quantum algorithm using a
continuous-time random walk. In this context we examine some consequences
of the entanglement between the states of the input/output register and the
states of the quantum clock.

PACS number: 03.67.Lx

1. Introduction

The starting point of our discussion is the analysis of the physical aspects of Grover’s algorithm
given in [1] and [2].

Suppose one is given an ‘oracle’ that is able to compute, in a quantum reversible way, the
indicator function of a binary word a of an assigned length µ. We will assume, for the sake of
definiteness, that this computation is performed by applying a unitary transformation A to the
states of a ‘register’ consisting of spin 1/2 systems.

Suppose that A results from the action, for a fixed amount of time t̄ , of a Hamiltonian
K(a):

A = exp(−i · t̄ · K(a)). (1.1)

It is then possible to arrange things in such a way that the state |a〉 that corresponds to having
‘the word a written on the register’, is the ground state of K(a).

0305-4470/04/030909+22$30.00 © 2004 IOP Publishing Ltd Printed in the UK 909

http://stacks.iop.org/ja/37/909

910 D de Falco and D Tamascelli

Figure 1. Pr(t) ∼= 1
2 − 1

2 · (J0(
t

2µ/2) − J2(
t

2µ/2)).

The search for the ground state of K(a) is performed, in [2], following the simple idea of
perturbing the Hamiltonian K(a),

K(a) → K(a) + β (1.2)

with a perturbation β chosen in such a way that a suitable initial condition oscillates about the
state |a〉 with a period proportional to 2µ/2, becoming, at a time O(2µ/2), parallel to the target
state.

By applying Trotter’s product formula to exp(−i · t · (K(a) + β)), it is shown, in [1], that
no significant loss in the probability Pr(t) of finding a, at suitable values of time t , results from
alternating intervals of time in which only the ‘oracle’ Hamiltonian K(a) is active, thus in fact
applying the ‘oracle’ transformation A = exp(−i · t̄ · K(a)), with intervals in which only β is
active, applying in fact the ‘estimator’ transformation

B = exp(−i · t̄ · β). (1.3)

The oscillatory nature of the quantum search algorithm is confirmed, in this discrete time
setting, by the analysis of [3].

In this paper we examine some simple models, variants of Feynman’s cursor model [4],
in which the physical agent that alternatively administers the transformations A and B to the
quantum register is itself a quantum system.

The models of quantum control mechanisms that we consider here are highly idealized
(as compared, say, to the quantized electromagnetic field modes used in [6] to explore some
aspects of Grover’s algorithm). They are, however, simple enough to allow for explicit
expressions, as a function of time, of the probability Pr(t) of finding a on the register.

For the models that we are going to consider, we will show, using techniques developed
in [7], that the overlap probability Pr(t) between the state at time t and the target state admits,
in a suitable time scale, asymptotic expressions of the form

Pr(t) ∼= 1

2
− 1

2
·
(

J0

(
t

2µ/2

)
− J2

(
t

2µ/2

))
(1.4)

where J0 and J2 are Bessel functions of the first kind.
A plot of (1.4), given in figure 1, shows the effect of a quantum control mechanism that we

will try to understand in this paper: there are large intervals of time over which the oscillations
of the state of the register about the ground state appear to be damped.

Grover’s algorithm on a Feynman computer 911

The paper is organized as follows.
In section 2 we study the simplest model, a linear chain quantum walk [5] that is able to

perform Grover’s algorithm.
In section 3 we study a family of continuous-time quantum walks arising from Feynman’s

suggestion [4] of a quantum clocking mechanism that is able to implement, at the quantum
level, the notion of ‘subroutine’.

Grover’s algorithm, with its alternance, for a prescribed large number of times, of the
action of an ‘oracle’ A and an ‘estimator’ B, provides, indeed, the natural testing ground for
quantum subroutines.

In sections 2 and 3 both the ‘oracle’ A and the ‘estimator’ B are treated as ‘primitives’ that
can be performed in a single ‘step’ of the clocking mechanism. In section 4 we decompose
them into more elementary ‘steps’ involving only the two reversible primitives SWITCH
(a reversible version of a conditional jump) and NOT; we examine the computational costs
involved in this decomposition.

Section 5 is devoted to numerical examples and section 6 to concluding remarks.

2. The linear chain model

Let µ be a positive integer. Set:

ν = µ + 1. (2.1)

The input/output register of all the models that we are going to consider will be formed by a
collection σ(1), σ (2), . . . , σ (µ), σ (ν) of spin 1/2 systems.

We denote by (σ1(i), σ2(i), σ3(i)) ≡ (σx(i), σy(i), σz(i)) the three components of σ(i)

with respect to an assigned reference frame, and by Hregister the 2ν dimensional state space of
the ‘register degrees of freedom’.

Let a = (a1, a2, . . . , aµ) ∈ {−1, 1}µ be a fixed binary word of length µ.
With reference to the fixed word a, define a linear operator A : Hregister → Hregister through

its action on the simultaneous eigenstates of (σ3(1), σ3(2), . . . , σ3(µ), σ3(ν)):

A|σ3(1) = z1, . . . , σ3(µ) = zµ, σ3(ν) = zν〉

=
{

|σ3(1) = z1, . . . , σ3(µ) = zµ, σ3(ν) = −zν〉 if z = a

|σ3(1) = z1, . . . , σ3(µ) = zµ, σ3(ν) = zν〉 if z �= a
(2.2)

where z = (z1, z2, . . . , zµ) ∈ {−1, 1}µ, zν ∈ {−1, 1}.
The ‘oracle’ A performs a quantum reversible computation of the indicator function of a

by flipping the z component of the output qubit σ(ν) iff the word a is written on the register
in terms of the z components of the input qubits σ(1), σ (2), . . . , σ (µ).

Define, in a similar way, a linear operator B : Hregister → Hregister through the following
action on the simultaneous eigenstates of (σ1(1), σ1(2), . . . , σ1(µ), σ3(ν)):

B|σ1(1) = x1, . . . , σ1(µ) = xµ, σ3(ν) = zν〉

=
{

|σ1(1) = x1, . . . , σ1(µ) = xµ, σ3(ν) = −zν〉 if x = 1µ

|σ1(1) = x1, . . . , σ1(µ) = xµ, σ3(ν) = zν〉 if x �= 1µ

(2.3)

where x = (x1, x2, . . . , xµ) ∈ {−1, 1}µ, zν ∈ {−1, 1} and 1µ = (1, 1, . . . , 1︸ ︷︷ ︸
µ times

).

The ‘estimator’ B performs a quantum reversible computation of the indicator function
of the word 1µ by flipping the z component of the output qubit σ(ν) iff the word 1µ is written
on the register in terms of the x components of the input qubits σ(1), σ (2), . . . , σ (µ).

912 D de Falco and D Tamascelli

Figure 2. The Hamiltonian (2.11) describes an XY interaction between nearest neighbour cursor
spins. A is the ‘coupling constant’ between spins corresponding to odd links; B is the ‘coupling
constant’ between spins corresponding to even links. Both A and B are, in fact, functions of the
register spins.

The quantum clocking mechanism that administers, in the correct order, the various
primitives to the register is, in Feynman’s cursor model [4], formed by a collection of a certain
number s of spin 1/2 systems τ(1), τ (2), . . . , τ (s) where

τ(j) = (τ1(j), τ2(j), τ3(j)) ≡ (τx(j), τy(j), τz(j)) j = 1, . . . , s. (2.4)

We shall denote byτ±(j) = (τx(j)± i ·τy(j))/2 the raising and lowering operators for the
z components of the cursor spins and by Hcursor the 2s dimensional state space of the ‘cursor
degrees of freedom’.

For each j ∈ {1, . . . , s − 1} define a linear operator A(j) : Hregister ⊗ Hcursor →
Hregister ⊗ Hcursor through the position

A(j) = Aforward(j) + Abackward(j) (2.5)

where

Aforward(j) = A ⊗ τ+(j + 1) · τ−(j) (2.6)

and

Abackward(j) = A∗ ⊗ τ+(j) · τ−(j + 1). (2.7)

For each j ∈ {1, . . . , s − 1} define a linear operator B(j) : Hregister ⊗ Hcursor →
Hregister ⊗ Hcursor through the analogous position

B(j) = Bforward(j) + Bbackward(j) = B · τ+(j + 1) · τ−(j) + B∗ · τ+(j) · τ−(j + 1). (2.8)

Set, furthermore,

C(j) = Cforward(j) + Cbackward(j) (2.9)

where

Cforward(j)=
{
Aforward(j) ifj is odd
Bforward(j) if j is even

and Cbackward(j)=
{
Abackward(j) ifj is odd
Bbackward(j) if is even.

(2.10)

In this section we will study the evolution of the system formed by the register spins and by
the cursor spins under the action of a Hamiltonian operator of the form

H = −λ

2
·

s−1∑
j=1

C(j) (2.11)

where, for notational convenience, we have indicated by −λ/2 a coupling constant.
A graphical representation of the Hamiltonian H is given, for an odd value of s, in

figure 2.

Grover’s algorithm on a Feynman computer 913

The solution of the Schrödinger equation

i · d

dt
|ψ(t)〉 = H |ψ(t)〉 (2.12)

under the initial condition

|ψ(0)〉 = |σ1(1)= 1, . . . , σ1(µ)= 1, σ1(ν)= −1〉 ⊗ |τ3(1)= 1, τ3(2)= −1 . . . , τ3(s)= −1〉
(2.13)

is quite elementary because of the following conservation laws:

[H, σ1(ν)] = 0 (2.14)
H,

s∑
j=1

τ3(j)

 = 0 (2.15)

[H,P] = 0. (2.16)

The operator P in (2.16) is the projector
∑s

j=1 |ϕj 〉〈ϕj | on the subspace spanned by the initial
condition

|ϕ1〉 ≡ |ψ(0)〉 (2.17)

and by it logical successors |ϕk〉, which are defined [8], for k = 2, . . . , s, by

|ϕk〉 =
s−1∑
j=1

Cforward(j)|ϕk−1〉 = Cforward(k)|ϕk−1〉. (2.18)

The solution of (2.12) under (2.13), will be, because of (2.16), of the form

|ψ(t)〉 =
s∑

j=1

c(t, j ; s)|ϕj 〉 (2.19)

where the coefficients c(t, j ; s) satisfy the differential equations:

i
d

dt
c(t, j ; s) = −λ

2
· (c(t, j − 1; s) + c(t, j + 1; s)) for 1 � j � s (2.20)

under the boundary conditions

c(t, 0; s) = 0 (2.21)

c(t, s + 1; s) = 0 (2.22)

and the initial condition

c(0, j ; s) = δ1,j for 1 � j � s. (2.23)

The explicit solution of equations (2.20)–(2.23) is [9]:

c(t, j ; s) = 2

s + 1

s∑
n=1

exp[i · λ · t · cos(ϑ(n; s))] · sin(ϑ(n; s)) · sin(j · ϑ(n; s)) (2.24)

where

ϑ(n; s) = n · π

s + 1
. (2.25)

914 D de Falco and D Tamascelli

As the initial condition |ϕ1〉 is an eigenstate, belonging to the eigenvalue 1, of the operator

Q =
s∑

j=1

j · 1 + τ3(j)

2
(2.26)

its logical successor |ϕk〉 will be an eigenstate |Q = k〉 of Q belonging to the eigenvalue k.
Because of (2.14) and (2.18), it is then

|ϕk〉 = C(k − 1) . . . C(2)C(1)|σ1(1) = 1, . . . , σ1(µ) = 1〉 ⊗ |σ1(ν) = −1〉 ⊗ |Q = k〉
(2.27)

where

C(j) =
{

A if j is odd
B if j is even.

(2.28)

It helps, we think, to read the solution (2.19) in the following terms: an excitation (a
single spin ‘up’) of the linear chain τ(1), τ (2), . . . , τ (s) for which the operator Q defined
in (2.26) has the meaning of a position operator, performs a quantum walk, ruled by
equation (2.20), on the sites of figure 2; a transition of one step to the right has, according
to (2.20), the same probability amplitude per unit time as a transition of one step to the left;
because of the conservation law (2.16), either transition is accompanied by the application to
the state of the register spins σ(1), σ (2), . . . , σ (µ) of the transformation associated with the
link going from the initial site to the final site.

If k is an odd number, k = 2 · n + 1, it is C(k − 1) . . . C(2)C(1) = (B · A)n.
An explicit expression for (B · A)n|σ1(1) = 1, . . . , σ1(µ) = 1〉 can be found by the

iterative procedure of [3]:

(B · A)n|σ1(1) = 1, . . . , σ1(µ) = 1〉 =

αn(µ) · |a〉3 + βn(µ) ·

∑
z�=a

|z〉3

 (2.29)

where

αn(µ) = (−1)n · sin((2 · n + 1) · χ(µ)) (2.30)

χ(µ) = arcsin(2−µ/2) (2.31)

βn(µ) = (−1)n√
2µ − 1

· cos((2 · n + 1) · χ(µ)). (2.32)

In (2.29) we have omitted explicit reference to |σ1(ν) = −1〉, as the conservation law (2.14)
allows us to do, and we have set, for every z = (z1, z2, . . . , zµ) ∈ {−1, 1}µ,

|z〉3 = |σ3(1) = z1, . . . , σ3(µ) = zµ〉. (2.33)

The case of an even value of k, k = 2 · n + 2, can be analysed in a similar way, by observing
that

A · (B · A)n|σ1(1) = 1, . . . , σ1(µ) = 1〉 =

−αn(µ) · |a〉3 + βn(µ) ·

∑
z�=a

|z〉3

 . (2.34)

Summarizing, and considering, for the sake of definiteness, the case of an odd value of s,
s = 2 · g + 1, the solution of (2.12) under the initial condition (2.13) can be written as

Grover’s algorithm on a Feynman computer 915

|ψ(t)〉 =
g∑

n=0

c(t, 2n + 1; s)

αn(µ)|a〉3 + βn(µ)

∑
z�=a

|z〉3

 ⊗ |σ1(ν) = −1〉 ⊗ |Q = 2n + 1〉

+
g−1∑
n=0

c(t, 2n + 2; s) ·

−αn(µ)|a〉3 + βn(µ)

∑
z�=a

|z〉3

⊗ |σ1(ν) = −1〉 ⊗ |Q = 2n + 2〉 (2.35)

where the amplitudes c(t, j ; s) are given by (2.23) and (2.24).
The probability Pr(t) that simultaneous measurements of σ3(1), σ3(2), . . . , σ3(µ) on the

state |ψ(t)〉 give, respectively, the values a1, a2, . . . , aµ (namely, the probability of finding the
word a written, ‘in the z direction’, on the input part of the register) is therefore given by

Pr(t) =
g∑

n=0

αn(µ)2 · (|c(t, 2n + 1; s)|2 + |c(t, 2n + 2; s)|2)

=
s∑

x=1

|c(t, x; s)|2·(sin(χ(µ) · xodd))
2. (2.36)

If x is a positive integer, we have denoted, in (2.36), by xodd the largest odd number not larger
than x.

It is possible to give a simple approximation of (2.36) by means of the approximations
for the coefficients c(t, x; s) studied in [7]. It is, indeed, for s � 1 and for 0 < λ · t < s

|c(t, x; s)|2 ≈ 4 · x2

(λ · t)2
Jx(λ · t)2 ≡ f (t, x). (2.37)

It is, furthermore, possible, for large values of t , to treat the discrete random variable having
the probability mass function f (t, x) as a continuous random variable having the probability
density function

ρ(t, x) = 4 · x2

π · (λ · t)2
√

(λ · t)2 − x2
I(0,λ·t)(x) (2.38)

where I(0,λ·t)(x) is the indicator function of the interval (0, λ · t).
In the context of these approximations,

Pr(t) ≈
∫ λ·t

0

4 · x2

π · (λ · t)2
√

(λ · t)2 − x2
· (sin(χ(µ) · x))2 dx

= 1

2
− 1

2
(J0(2 · χ(µ) · λ · t) − J2(2 · χ(µ) · λ · t)). (2.39)

Figure 3 is a plot of the right-hand sides of (2.36) (the dashed graph) and (2.39) (the solid
line). With respect to the exact expression (2.36) for Pr(t), the approximate expression
(2.39) misses only the effects of the reflection that takes place because of the boundary
condition (2.22).

The approximation (2.39) gives us control on the position t0 of the first, and absolute,
maximum of Pr(t):

t0 = z0

2 · λ · χ(µ)
≈ z0

2 · λ
2µ/2 (2.40)

where

z0 ≈ 3.518 (2.41)

is the position of the first zero, on the positive real axis, of the function 3 · J1(z) − J3(z).

916 D de Falco and D Tamascelli

Figure 3. The example shown here of (2.39) as an approximation to (2.36) corresponds to the
following choice of the parameters: µ = 6; s = 2µ+1 + 1 = 129 (with this choice, there are, in the
superposition (2.19), terms corresponding to up to 2µ = 64 queries of the oracle A); λ = 3 · π/8
(with this choice [7], the average speed 〈ψ(t)|Q|ψ(t)〉/t of the cursor is close to 1 for s � 1 and
for t < s).

The height of the first, and absolute, maximum of Pr(t) is given by

Pr(t0) ≈ 1
2 − 1

2 (J0(z0) − J2(z0)) ≈ 0.92. (2.42)

3. Quantum subroutines

The interest of the computational capabilities exhibited by the simple XY model of figure
2 is strongly limited by the observation that, in order to observe the probability maximum
(2.42), one needs a chain of cursor spins whose length s grows exponentially with µ. In this
section we will show that this cost in terms of space can be made linear in µ by using quantum
subroutines.

For every non-negative integer K , we are going to exhibit a quantum clocking
mechanism able to apply 2K times the transformation BA to the ‘register’ qubits
σ(1), σ (2), . . . , σ (µ), σ (ν), by repeatedly using the same ‘piece of hardware’ that applies BA
just once.

This clocking mechanism will involve

s(K) = 4 · K + 3 (3.1)

‘cursor’ qubits τ(1), τ (2), . . . , τ (s(K)).
In order to keep track of the progress of the 2K executions of the assigned ‘subroutine’

BA, there must be a subsystem (the ‘subroutine counter’) having 2K different states: it will be
constructed in terms of K qubits ρ(1), ρ(2), . . . , ρ(K).

For this additional set of spin 1/2 systems we will use, for j = 1, . . . , K , notations such
as ρ(j) = (ρ1(j), ρ2(j), ρ3(j)) ≡ (ρx(j), ρy(j), ρz(j)) and ρ±(j) = (ρx(j) ± i · ρy(j))/2.

We will denote by Hcounter the 2K dimensional state space of the ‘counter degrees of
freedom’.

The definition of the Hamiltonian operator on Hregister ⊗ Hcursor ⊗ Hcounter will be given
by an iterative scheme.

Grover’s algorithm on a Feynman computer 917

Figure 4. ‘Do BA once’. h0(i, i + 2) = (A · τ+(i + 1) · τ−(i) + B · τ+(i + 2) · τ−(i + 1)) · 1counter.

Figure 5. ‘Do BA twice’.

Set, for i = 1, 2, . . . , s(K) − 2

h0(i, i + 2) = (Aforward(i) + Bforward(i + 1)) ⊗ 1counter

= (A · τ+(i + 1) · τ−(i) + B · τ+(i + 2) · τ−(i + 1)) ⊗ 1counter (3.2)

where 1counter is the identity operator in Hcounter. The operator h0(i; i + 2) applies just once
(20 = 1) the transformation BA to the register, while the cursor jumps from site i to site i + 2.
This operator is represented graphically in figure 4.

For i = 1, 2, . . . , s(K) − 6 define

h1(i, i + 6) = ρ+(1) · τ+(i + 1) · τ−(i) + ρx(1) · τ+(i + 2) · τ−(i + 1) + h0(i + 2, i + 4)

+ ρ−(1) · τ+(i + 6) · τ−(i + 4) + ρ+(1) · τ+(i + 5) · τ−(i + 4)

+ ρ−(1) · τ+(i + 1) · τ−(i + 5). (3.3)

A graphical representation of this term is given in figure 5.
The term ρ−(1) ·τ+(i + 6) ·τ−(i + 4)+ρ+(1) ·τ+(i + 5) ·τ−(i + 4) in (3.3) is an example of

the implementation of a conditional jump through the SWITCH primitive. The first addendum
acts non-vanishingly only in the subspace belonging to the eigenvalue +1 of the controlling
qubit ρ3(1) and sends the excitation of the cursor from i + 4 to i + 6; the second addendum, in
turn, acts non-vanishingly only in the subspace belonging to the eigenvalue −1 of ρ3(1) and
sends the excitation of the cursor from i + 4 to i + 5. Note that in this implementation of the
IF . . . THEN, ELSE . . . construct, the controlling bit ρ3(1) gets inverted.

The iteration step from hj−1to hj is given by

hj (i, i + 4 · j + 2) = ρ+(j) · τ+(i + 1) · τ−(i)

+ ρx(j) · τ+(i + 2) · τ−(i + 1) + hj−1(i + 2, i + 4 · j)

+ ρ−(j) · τ+(i + 4 · j + 2) · τ−(i + 4 · j)

918 D de Falco and D Tamascelli

Figure 6. ‘Do BA 2j times while the cursor moves from i to i + s(j) − 1’.

+ ρ+(j) · τ+(i + 4 · j + 1) · τ−(i + 4 · j)

+ ρ−(j) · τ+(i + 1) · τ−(i + 4 · j + 1) (3.4)

and is represented in figure 6.
For a fixed value of the positive integer K we define the forward part of the Hamiltonian

as

Hforward(K) = hK(1, s(K)) = hK(1, 4 · K + 3) (3.5)

and the Hamiltonian as

H(K) = Hforward(K) + Hbackward(K) = Hforward(K) + Hforward(K)∗. (3.6)

We study, in this section, the Schrödinger equation

i · d

dt
|ψ(t)〉 = −λ

2
· H(K)|ψ(t)〉 (3.7)

under the initial condition

|ψ(0)〉 = |σ1(1) = 1, . . . , σ1(µ) = 1, σ1(ν) = −1〉
⊗ |τ3(1) = 1, τ3(2) = −1 . . . , τ3(s(K)) = −1〉
⊗ |ρ3(1) = −1, . . . , ρ3(K) = −1〉 ≡ |ϕ1〉. (3.8)

As in section 2, the problems (3.7) and (3.8) are extremely easy to solve because of the
conservation laws

[H(K), σ1(ν)] = 0 (3.9)
H(K),

s(K)∑
j=1

τ3(j)

 = 0 (3.10)

[H(K), P (K)] = 0. (3.11)

The operator P(K) in (3.11) is the projector

P(K) =
p(K)∑
j=1

|ϕj 〉〈ϕj | (3.12)

Grover’s algorithm on a Feynman computer 919

on the subspace spanned by the p(K) = 2K+3 − 5 orthonormal vectors defined by

|ϕ1〉 = |ψ(0)〉 (3.13)

|ϕj 〉 = Hforward(K)|ϕj−1〉 for j = 2, 3, . . . , p(K) = 2K+3 − 5. (3.14)

Because of the above considerations, the solution of (3.7) and (3.8) will be of the form

|ψ(t)〉 =
p(K)∑
j=1

c(t, j ;p(K))|ϕj 〉 (3.15)

where, following the line of reasoning leading to (2.24), it is easy to show that

c(t, j ;p(K)) = 2

p(K) + 1

s∑
n=1

exp[i · λ · t · cos(ϑ(n;p(K)))]

· sin(ϑ(n;p(K))) · sin(j · ϑ(n;p(K))). (3.16)

A full understanding of the solution (3.15) requires the analysis of the states |ϕj 〉, for
j = 1, 2, 3, . . . , p(K).

Because of (3.9), all of them are eigenstates of σ1(ν) belonging to the eigenvalue −1. We
will, from now on, omit the explicit reference to this fact, using the shorthand notation, for
x ∈ {−1, 1}µ,

|σ1(1)= x1, . . . , σ1(µ) = xµ, σ1(ν) = −1〉 ≡ |σ1(1) = x1, . . . , σ1(µ) = xµ〉 ≡ |x〉1. (3.17)

Because of (3.10), each of the states |ϕj 〉 is an eigenstate of the operator (‘position of the
cursor’ or, with reference to the intuition developed in section 2, ‘position of the clocking
quantum walk’)

Q =
s(K)∑
j=1

j · 1 + τ3(j)

2
. (3.18)

This fact justifies a notation such as

|τ3(1) = −1, τ3(2) = −1, . . . , τ3(i) = +1, . . . , 1, τ3(s(K)) = −1〉 ≡ |Q = i〉. (3.19)

Using these notations we will write, for instance

|ϕ1〉 = |1〉1 ⊗ |Q = 1〉 ⊗ |ρ3(1) = −1, . . . , ρ3(K) = −1〉 ≡ |1〉1 ⊗ |Q = 1〉 ⊗ |ρ3 = −1〉.
(3.20)

Each of the vectors |ϕj 〉 will be, furthermore, a simultaneous eigenvector of each of the
operators ρ3 = (ρ3(1), ρ3(2), . . . , ρ3(K)). Calling rj ∈ {−1, 1}K the collection of the
eigenvalues to which |ϕj 〉 belongs, we will write

|ϕj 〉 = Aεj (BA)nj |1〉1 ⊗ |Q = qj 〉 ⊗ |ρ3 = rj〉. (3.21)

The explicit iterative algorithm by which εj , nj , qj , rj can be computed is strictly parallel to
the iteration procedure of figures 4 and 6.

For the discussion that follows it is sufficient to give here the explicit expressions of the
exponents εj and nj .

εj =
{

1 if j ∈ {j1, j2, . . . , j2K }
0 otherwise

(3.22)

920 D de Falco and D Tamascelli

where, for i = 1, 2, . . . , 2K ,

ji = 2 · K + 2 + 5 · (i − 1) + 3 ·
i−1∑
x=1

e2(x) = 2 · K + 2 + 5 · (i − 1) + 3 ·
K−1∑
h=1

(i − 1)/2K−h�.

(3.23)

In (3.23) we have indicated by e2(x) the exponent of the prime factor 2 in the factorization of
the positive integer x, and by y� the integer part of the positive real number y.

Let us focus our attention on the states |ϕj1〉, |ϕj2〉, . . . , |ϕj2K
〉.

|ϕj1〉 = A|1〉1 ⊗ |Q = 2 · K + 2〉 ⊗ |ρ3(1)

= −1, . . . , ρ3(K) = −1〉 ≡ |1〉1 ⊗ |Q = 2 · K + 2〉 ⊗ |Nρ3 = 1〉 (3.24)

where j1 = 2 · K + 2.
In (3.24) we have given a numerical meaning to the content of the subroutine counter by

defining the operator

Nρ3 = 1 +
K∑

y=1

1 + ρ3(y)

2
2y−1. (3.25)

In all the predecessors |ϕ1〉, |ϕ2〉, . . . ,
∣∣ϕj1−1

〉
of

∣∣ϕj1

〉
the register is in its initial state |1〉1.

The immediate successor of |ϕj1〉 is∣∣ϕj1+1
〉 = BA|1〉1 ⊗ |Q = 2 · K + 3〉 ⊗ ∣∣Nρ3 = 1

〉
. (3.26)

In all of the states
∣∣ϕj1+1

〉
, . . . ,

∣∣ϕj2−1
〉

the register remains in the state BA|1〉1; the content of
the register changes only at step j2, where it is∣∣ϕj2

〉 = ABA|1〉1 ⊗ |Q = 2 · K + 7〉 ⊗ ∣∣Nρ3 = 2
〉
. (3.27)

At each of the steps ji the state of the register gets acted upon by an additional A and at step
ji + 1 by an additional B. In steps from ji + 2 to ji+1 − 1 the state of the register remains
unaltered.

The content of the register becomes (BA)2K |1〉1 for the first time at step j2K +1 = p(K)−K

and remains such until the last step p(K).
The exponent nj in (3.21) is therefore equal to the number of ‘non-trivial’ steps ji that

precede step j :

nj = |{1 � i � 2K : ji < j}|. (3.28)

It is, therefore

nj = 0 for j < 2 · K + 2

n2·K+3 = 1 (3.29)

nj = 2K for j � p(K) − K.

For 2 · K + 3 � j � p(K) − K , nj grows in an approximately linear way because of the
inequalities

2 · K + 2 + 5 · (i − 1) + 3 ·
(

1 − 1

2L(i)

)
· (i − 1) − 3 · L(i) � ji (3.30a)

ji � 2 · K + 2 + 5 · (i − 1) + 3 ·
(

1 − 1

2L(i)

)
· (i − 1) (3.30b)

with L(i) = log2(i − 1)�, which easily follow from (3.23) and from the fact that
x − 1 < x� � x.

Grover’s algorithm on a Feynman computer 921

Figure 7. Both sides of the approximate equality Pr(t) ≈ 1
2 − 1

2 (J0(χ(µ) · λ · t/2) − J2(χ(µ) ·
λ · t/2)) are plotted. As in figure 3, the approximate expression misses the abrupt phase change
present in the exact result, which is due to reflection at the end of the computational path.

This justifies the approximation

nj ≈

0 for 1 � j � 2 · K + 2

1 + 2K−1
p(K)−3·K−3 (j − (2 · K + 3)) for 2 · K + 3 � j � p(K) − K

2K for p(K) − K � j � p(K)

(3.31)

that we shall use in what follows.
Following the same line of reasoning that leads from (2.19) to (2.36), we can conclude

that, in the state (3.15), the probability Pr(t) of finding the register in the state |a〉3 is given by

Pr(t) =
p(K)∑
j=1

αnj
(µ)2 · |c(t, j ;p(K))|2 (3.32a)

≈
p(K)∑
j=1

(sin(χ(µ) · (2 · nj + 1)))2 · 4 · j 2

(λ · t)2
Jj (λ · t)2. (3.32b)

≈
p(K)∑
j=1

(
sin

(
χ(µ) · j

4

))2

· 4 · j 2

(λ · t)2
Jj (λ · t)

≈
∫ λ·t

0

4 · x2

π · (λ · t)2 ·
√

(λ · t)2 − x2

(
sin

(
χ(µ) · x

4

))2
dx

= 1

2
− 1

2
(J0(χ(µ) · λ · t/2) − J2(χ(µ) · λ · t/2)). (3.32c)

Figure 7 shows a plot of the exact expression (3.32a) of Pr(t) and of its approximation (3.32c).
It corresponds, for the sake of comparison with figure 3 to the following choice of parameters:
µ = 6, K = 6 (with this choice, there are, in the superposition (3.15), terms corresponding to
up to 2µ queries of the oracle A), λ = 3 ·π/8 (with this choice [7], the computation proceeds at
an average rate of one transition per unit time in the sense that

∑p(K)

j=1 j · |c(t, j ;p(K))|2 ≈ t

for 0 < t < p(K)).

922 D de Falco and D Tamascelli

4. Equivalent ‘local’ Hamiltonians

The explicit expression, in terms of the register spins, of the ‘oracle’ operator A defined in
(2.2) is

A = I + (σ1(ν) − I) ·
µ∏

i=1

I + ai · σ3(i)

2
. (4.1)

The analogous expression for the ‘estimator’ operator B defined in (2.3) is

B = I + (σ1(ν) − I) ·
µ∏

i=1

I + σ1(i)

2
(4.2)

where I is the identity operator in Hregister.
In the Hamiltonian H defined by (2.11) and in the Hamiltonian H(K) defined by (3.6)

there are, therefore, ‘non-local’ terms such as A ⊗ τ+(j + 1) · τ−(j) and B · τ+(j + 1) · τ−(j)

involving many-body interactions among two cursor spins and all the register spins.
This section is a brief digression on the analysis of the computational cost, in terms of

space (additional qubits), (average) time and probability (of ever finding the computation
completed) involved in substituting such non-local terms with equivalent terms in which only
interactions between two cursor spins and at most one register spin appear.

For the sake of definiteness we concentrate our attention, to start with, on the CNOT
primitive:

CµNOT (j, j + 1) = CNOT ⊗ τ+(j + 1) · τ−(j) + Hermitian conjugate (4.3)

where

CNOT = I + (σ1(ν) − I) ·
µ∏

i=1

I + σ3(i)

2
. (4.4)

(‘Flip the z component of the νth qubit iff all the µ input qubits point in the +z direction,
starting with the cursor in position j ’).

The case µ = 1 of one controlling qubit has been studied in [4]. It involves the introduction
of s1 = 6 cursor qubits τ(j), τ (j + 1), . . . , τ (j + 5) and, supposing that the controlling qubit
is σ3(1) and the controlled one is σ3(ν), of the ‘local’ Hamiltonian

c1not (j, j + 5) = σ−(1) · τ−(j) · τ+(j + 1) + σ1(ν) · τ−(j + 1) · τ+(j + 2)

+ σ+(1) · τ−(j + 2) · τ+(j + 5) + σ+(1) · τ−(j) · τ+(j + 3)

+ I · τ−(j + 3) · τ+(j + 4) + σ−(1) · τ−(j + 4) · τ+(j + 5)

+ Hermitian conjugate. (4.5)

A graphical representation of (4.5) is given in figure 8.
The term R(j + 3, j + 4) = I · τ−(j + 3) · τ+(j + 4) in (4.5), represented as R(1) in

figure 8, plays the role of a delay line of length 1. It makes the length T1 = 4 of the
computation independent of the input word in the sense that an initial state of the form
|σ3(1) = 1〉 ⊗ |σ3(ν) = zν〉|Q = j〉 has the same number of logical successors

|σ3(1) = −1〉 ⊗ |σ3(ν) = zν〉|Q = j + 1〉
|σ3(1) = −1〉 ⊗ |σ3(ν) = −zν〉|Q = j + 2〉
|σ3(1) = +1〉 ⊗ |σ3(ν) = −zν〉|Q = j + 5〉

(4.6)

as an initial state of the form |σ3(1) = −1〉 ⊗ |σ3(ν) = zν〉|Q = j〉, which has the successors
|σ3(1) = +1〉 ⊗ |σ3(ν) = zν〉|Q = j + 3〉
|σ3(1) = +1〉 ⊗ |σ3(ν) = zν〉|Q = j + 4〉
|σ3(1) = −1〉 ⊗ |σ3(ν) = zν〉|Q = j + 5〉.

(4.7)

Grover’s algorithm on a Feynman computer 923

Figure 8. c1not (j, j + 5). This is a streamlined version of figure 8 of [4].

Figure 9. cµ−1not → cµnot .

Figure 9 shows the iteration step leading from cµ−1not to cµnot through the introduction of
the additional controlling qubit σ3(µ). The length of each computation increases from the
previous value Tµ−1 to

Tµ = Tµ−1 + 2 = 2 · (µ + 1). (4.8)

The number of cursor qubits increases, also because of the delay line R(Tµ−1), from the
previous value sµ−1 to

sµ = 2 + sµ−1 + Tµ−1 = (µ + 1) · (µ + 2). (4.9)

The iteration step cµ−1not → cµnot is explicitly given by

cµnot (j, j + sµ − 1) = σ−(µ) · τ−(j) · τ+(j + 1) + cµ−1not (j + 1, j + sµ−1)

+ σ+(µ) · τ−(j + sµ−1) · τ+(j + sµ − 1) + σ+(µ) · τ−(j) · τ+(j + sµ−1 + 1)

+
Tµ−1−1∑

k=1

τ−(j + sµ−1 + k) · τ+(j + sµ−1 + k + 1)

+ σ−(µ) · τ−(j + sµ−1 + Tµ−1) · τ+(j + sµ − 1)

+ Hermitian conjugate. (4.10)

924 D de Falco and D Tamascelli

Figure 10. c2not (1, 12). Links (1, 2) and (2, 3) correspond to terms in the forward part of the
Hamiltonian which act non-trivially (by flipping them) only on states having the two controlling
bits ‘up’. The term of link (3, 4) acts on such states by flipping the controlled bit. If one of the
controlling bits is ‘down’, only the delay lines are (5, 6) and (8, 11) are active, instead. The other
links correspond to terms that restore the controlling bits to their initial values.

Figure 11. Probability of finding the computation of CCNOT completed. Note that at every time
this probability is strictly smaller than 1.

Of particular conceptual relevance is the case µ = 2 of the CCNOT (or TOFFOLI) primitive
(figure 10), known to be a universal reversible primitive.

Figure 11 corresponds to the solution of the Schrödinger equation

i · d

dt
|ψ(t)〉 = −λ

2
c2not (1, 12)|ψ(t)〉 (4.11)

under an initial condition of the form |ψ(0)〉 = |σ3(1) = z1, σ3(2) = z2〉 ⊗ |σ3(ν) = zν〉⊗.
|Q = 1〉. It gives, as a function of time, the probability |c(t, T2; T2)|2 of finding
the cursor in the state |Q = s2〉 and the register in the state |σ3(1) = z1, σ3(2) = z2〉⊗∣∣σ3(ν) = (

1 − 2 · δ1,z1 · δ1,z2

) · zν

〉
.

Grover’s algorithm on a Feynman computer 925

Figure 12. ‘Do BA twice’ on a register of µ = 3 qubits as described in terms of three-body
interactions.

5. Numerical examples

The analysis of CNOT in terms of three-body interactions presented in section 4 can be
extended, of course, to the ‘estimator’ B: one has to just substitute σ3(i) with σ1(i) in (4.4)
and, correspondingly (in figure 9 and in (4.10)) the raising and lowering operators for the z

components of the register spins σ±(j) = (σx(j) ± i · σy(j))/2 with the raising and lowering
operators (σz(j) ∓ i · σy(j))/2 for the x components.

The cost of writing B in terms of at most three-body interactions is, therefore, quadratic
in terms of space, because sµ = (µ + 1) · (µ + 2).

This cost is linear in terms of time, as measured, say, by the position of the first maximum
of |c(t, Tµ; Tµ)|2, which grows as an approximately linear function of Tµ = 2 · (µ + 1).

There is, in addition, as shown in [7] and exemplified in figure 11 a non-trivial cost in
terms of probability because of the upper bound

|c(t, Tµ; Tµ)|2 � const/(Tµ)2/3. (5.1)

We refer the reader to equation (1.3) of [7] for an argument showing that the above probability
cost can be compensated for by the addition of a chain of telomeric sites of length proportional
to Tµ = 2 · (µ + 1); in the examples that follow we neglect, for simplicity, this additional
linear space cost.

In this section we will suppose, essentially for notational convenience, that the ‘oracle’
A has been implemented, in a way analogous to the ‘estimator’ B, in terms of three-
body interactions through the obvious substitution of σ3(i) with ai · σ3(i) in (4.4) and,
correspondingly, of σ±(j) with (σx(j) ± i · aj · σy(j))/2 in figure 9 and in (4.10).

Only minor changes would be needed if A had a different time cost in terms of the number
TA of logical successors of an initial condition: the only point to stress is that TA would appear
in the analysis of the probabilistic aspects of the algorithm, for instance, in determining the
length of a telomeric chain required for achieving a given level of probability.

Figure 12 shows the simplest non-trivial example (corresponding to µ = 3 and K = 1)
of the kind of systems that emerge from the above considerations.

The dots in figure 12 refer to the cursor spins τ . The links in the left and right ‘handles’,
such as (1, 2) and (41, 42), represent interactions between the corresponding cursor spins
mediated by the subroutine counter spin ρ.

The ascending or descending links in A describe interactions between cursor spins
mediated by the various (σx(j) ± i · aj · σy(j))/2, j = 1, . . . , µ.

In B there appear, instead, with the same role, (σz(j) ∓ i · σy(j))/2.

926 D de Falco and D Tamascelli

Figure 13. 〈ψ(t)|ρ3(1)|ψ(t)〉 as a function of t . We are using, as usual, λ = 3 · π/8, so that the
time coordinate can be read as the mean value of the number of computational steps performed.

Figure 14. 〈ψ(t)|Q|ψ(t)〉 as a function of time. Here and in figure 13 the ticks on the time axis
call attention on the significant instants in which AB has been executed once and twice and on the
instants in which the cursor gets reflected at the boundaries.

The output qubit σ1(ν) appears in the ‘top’ links (6, 7) and (25, 26).
All the other interactions, in the delay lines, are pure XY interactions between cursor

spins.
We wish to describe in some detail the time evolution |ψ(t)〉 of such a system, starting from

the initial condition |ψ(0)〉 = |σ1(1) = 1, σ1(2) = 1, σ1(3) = 1, σ1(4) = −1〉 ⊗ |Q = 1〉 ⊗
|ρ3(1) = −1〉.

Figure 13 describes the behaviour of the subroutine counter in terms of the expectation
value 〈ψ(t)|ρ3(1)|ψ(t)〉.

Figure 14 describes the behaviour of the cursor in terms of the expectation value
〈ψ(t)|Q|ψ(t)〉.

Figure 15 shows the behaviour of the register in terms of the expectation value of
the projector on the state |σ3(1) = a1, σ3(2) = a2, σ3(3) = a3, σ1(4) = −1〉 ⊗ |Q =
43〉 ⊗ |ρ3(1) = −1〉.

In equivalent terms, what is represented, as a function of time, in figure 15 is the probability
that the following two conditions are satisfied: the clocking degrees of freedom take the values

Grover’s algorithm on a Feynman computer 927

Figure 15. Probability that (Q = 43)∧(ρ3(1) = −1)∧(σ3(1) = a1)∧(σ3(2)∧a2)∧(σ3(3) = a3)

as a function of time. The dashed line is the upper bound (5.1).

Figure 16. 〈ψ(t)|Pa|ψ(t)〉 as a function of time. Figure 15 is reproduced for comparison.

Q = 43 and ρ3(1) = −1 corresponding to the computation having been completed and the
register is in the target state.

Figure 16 shows a less conventional usage of the same machine: at any time of your
choice read the content of register only. In more precise terms, figure 16 gives a plot of the
expectation value 〈ψ(t)|Pa|ψ(t)〉 of the projector Pa = |a〉33〈a| ⊗ 1cursor ⊗ 1counter.

Note that, in the case of Grover’s algorithm, there is a definite advantage, offered by the
quantum clocking mechanism studied here, in having a superposition of states in which BA has
acted a number of times on the register: it is precisely the entanglement between the states of
the register and the states of the quantum clock described by (3.15) that leads to the behaviour
of the upper graph in figure 16.

The behaviour of figure 8 shows the possibility of making full use of this advantage for
large values of the number 2K of applications of AB.

The mechanism through which the overlap probability Pr(t) can be made definitively close
to 1/2 is evident from (3.32b): one is taking, there, the average of (sin(χ(µ) · (2 · nj + 1)))2

over many periods, with respect to a probability measure 4·j 2

(λ·t)2 Jj (λ · t)2 which is, for large

928 D de Falco and D Tamascelli

Figure 17. 〈ψ(t)|Pa|ψ(t)〉 as a function of time, computed with the SWITCH primitives
implemented as in figure 18.

Figure 18. As compared to figure 9, projectors, instead of creation and annihilation operators, are
used here.

values of t , fairly uniform over many periods, because of the wave packet spreading studied
in [7].

In the context of figures 12 and 16, this simple argument is complicated by the details of
the way in which A and B have been implemented in ‘local’ terms.

Figure 16 corresponds to an implementation analogous to figures 8 and 9 in which the
SWITCH primitives have been realized through spin raising and lowering operators σ±.

A perfectly legitimate alternative consists in using, instead, projection operators. One
can use, for instance, (1 + σ3)/2 instead of σ∓ in the upper branches of figures 8 and 9 and
(1 − σ3)/2 instead of σ± in the lower branches.

Figure 17 shows the effect of this substitution. The improvement with respect to
figure 16 is, of course, due to the fact that, now, the register qubits controlling the switches
are not flipped during execution of A and B. The results of previous incomplete computations
are, therefore, stored in a more efficient way.

Is it more convenient to implement the SWITCH primitives as in figure 9, with the
controlling bit changing its state, or as in figure 18?

Grover’s algorithm on a Feynman computer 929

If Grover’s algorithm is a game in which Alice challenges Bob to find the word a hidden
in the coupling constants of part A of figure 12, figure 9 would be a better strategy for Alice
and figure 18 a better strategy for Bob.

But if, in figure 12, A is, say, a molecule waiting for an enzyme B to orient in some
convenient way its chemical bonds, figure 18 would be, for both A and B, a better strategy.

And, we add as a concluding remark of this section, the pseudo-dissipative behaviour of
figures 1, 3, 7, 16 and 17 would help maintain a considerable level of overlap with the target
orientation even after the optimal time O(2µ/2) has elapsed.

6. Conclusions and outlook

The SWITCH primitive can be implemented, at the quantum level, as a step of a continuous-
time quantum walk, namely as a term of the form σ−(j) · τ+(f1) · τ−(i) + σ+(j) · τ+(f2) · τ−(i)

in the register+cursor Hamiltonian.
The NOT primitive σx(j) · τ+(f) · τ−(i) can be similarly viewed as a step of the quantum

walk of the clocking excitation accompanied by the flipping of an assigned qubit of the register.
We have shown in section 4 that the CCNOT (or TOFFOLI) primitive and therefore every

reversible computation can be described in terms of SWITCH and NOT.
The main body of this paper has been devoted to issues of clocking and synchronization

of networks, such as that in figure 12, made of the above two building blocks.
The term ‘synchronization’ refers here to the systematic use we have made of delay

lines in order to comply with the (essentially classical) requirement (or prejudice?) that all
computational paths be of the same length: can one think of examples in which it is
computationally advantageous to release this condition?

On the explicit example of Grover’s algorithm we have shown—see for instance
figures 16 and 17 and the asymptotic behaviour of figure 3—that it is computationally
advantageous to release the other classically ‘obvious’ requirement that the output must be
read from the register only after a measurement of the cursor has attributed a sharp value to the
number of computational steps performed: the entanglement (2.19) or (3.15) between states
of the clock and states of the register is, indeed, at the roots of the behaviour observed in the
above figures.

As a final example of the ‘obvious’ classical requirements that our model opens to
criticism and scrutiny we call attention to the initial conditions |τ3(1) = 1, τ3(2) = −1, . . . ,

τ3(s) = −1〉 in (2.13) and |τ3(1) = 1, τ3(2) = −1, . . . , τ3(s(K)) = −1〉 in (3.8): because
of the conservation laws (2.15) and (3.10) they correspond to the ‘obvious’ requirement of
having just one clocking excitation. Could one release this requirement and allow, instead,
the evolution (2.12) or (3.7) to take place out of the

∑ 1+τ3(j)

2 = 1 subspace? Stated more
precisely: is there any example in which this is computationally advantageous?

Acknowledgment

It is a pleasure to thank Professor Ludwig Streit for his kind hospitality at CCM (Centro de
Ciencias Matematicas, University of Madeira) during completion of this work.

References

[1] Grover L 2001 From Schrödinger’s equation to the quantum search algorithm Am. J. Phys. 69 769–77
[2] Farhi E and Gutmann S 1998 An analog analogue of a digital quantum computation Phys. Rev. A 57 2403–6
[3] Boyer M, Brassard G, Hoeyer P and Tapp A 1998 Tight bounds on quantum searching Fortsch. Phys. 46 493–506

930 D de Falco and D Tamascelli

[4] Feynman R 1986 Quantum mechanical computers Found. Phys. 16 507–31
[5] Childs A, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D 2002 Exponential algorithmic speed up by

quantum walk Preprint quant-ph/0209131
[6] Barnes J and Warren S 1999 Decoherence and programmable quantum computation Phys. Rev. A 60 4363–74
[7] Apolloni B and de Falco D 2002 The clock of a quantum computer J. Phys. A: Math. Gen. 35 10033–51
[8] Peres A 1985 Reversible logic and quantum computers Phys. Rev. A 32 3266–76
[9] Gramß T 1995 Solving the Schrödinger equation for the Feynman quantum computer. Santa Fe Institute Working

Papers, 95-09-082. (www.santafe.edu/sfi/publications/working-papers.html)

