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In a previous paper, we have discussed how the Landau potential (entering in
Landau theory of phase transitions) can be simplified using the Poincaré normal-
ization procedure. Here, we apply this approach to the Landau-deGennes func-
tional for the isotropic-nematic transitions, and transitions between different nematic
phases, in liquid crystals. We give special attention to applying our method in
the region near the main transition point, showing in full detail how this can
be done via a suitable simple modification of our Poincaré-like method. We also
consider the question if biaxial phases can branch directly off the fully symmetric
state; some partial results in this direction are presented. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4927426]

I. INTRODUCTION

In the Landau theory of phase transitions,1,2 the state of a system is described by minima of
a group-invariant potential Φ(x), depending on the order parameters x and on external physical
parameters (temperature, pressure, etc.) which control the phase transition. As these are varied,
the minima of the Landau potential change location and assume different invariance properties, so
corresponding to different phases.

The Landau potential is a polynomial one, and the order33 N of this is sometimes not so low;
moreover, all possible terms (that is, invariant monomials) of order up to N should be included.
Thus, in concrete applications, the Landau potential can be rather complex, and the study of its
minima depending on parameters can result quite difficult.

It would of course be convenient to have a criterion for simplifying the Landau potential,
i.e., to be able to drop certain of the invariant monomials. Different criteria to this effect have been
proposed in the literature, and among these we mention, in particular, the one by Gufan,3,4 then
recast in an earlier paper by the present author.5

In the companion paper,6 we have provided a simple discussion of how the technique created by
Poincaré in the framework of dynamical systems to simplify nonlinear terms7–14 could be adapted to
the framework of Landau theory; note that in this context one should most often refrain from a com-
plete simplification of the highest order terms, as the requirement of thermodynamic stability—that
is, convexity at large distances from the origin—should be taken into account, as discussed in Ref. 6
and recalled here in Sec. IV B.

This Poincaré-like approach is completely algorithmic and quite general; in particular, it can
be pushed up to any desired order (albeit some convergence issues should be controlled; these are
related to small denominators and will be completely explicit in any concrete computation; see the
remarks at the end of Sec. IV).34

In the present note, we want to proceed along the same lines to analyze a concrete problem,
i.e., the Landau-deGennes (LdG in the following) theory for the isotropic-nematic transitions in
liquid crystals;15–18 this also describes transitions between different nematic phases (biaxial, and
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different uniaxial ones, in particular, oblate and prolate uniaxial). In this respect, we will devote
special attention to the possible direct transition between the isotropic and a biaxial phase.19

More generally, we consider how our method can be applied near the main transition point; at
this point, the linear (homological) operator on which the Poincaré procedure is based is degenerate,
so that the standard method does not apply; however, our general method6 is formulated in such
a way to be readily applicable in this more general case. We show in full detail how this is done
operationally; this implicitly makes use of the “further normalization” technique developed for
dynamical systems,13,14 but we will not need to discuss it here.

It should be stressed that in this note, at difference with the general discussion given in Ref. 6,
we do not aim at mathematical generality, but have a very concrete case—i.e., a given Landau
potential, the LdG one—at hand. Also we know the order of the LdG potential. This means that
some of the issues in the general approach proposed in Ref. 6 can be substantially streamlined (see
Appendix B for a comparison); in particular, we do not need to proceed order by order but can
proceed by a direct computation35 taking into account the main ideas behind the Poincaré approach.

As well known, in the LdG theory,15–18 the order parameter is a tensorial one (this corresponds
to the general situation in liquid crystals16), i.e., a three-dimensional symmetric traceless matrix Q,
and the symmetry group, which in this case is the three-dimensional rotation group SO(3), acts on it
by conjugations, i.e., Q → RQR−1.36

The plan of the paper is as follows. We will first analyze in detail this SO(3) action (Sec. II)
and the LdG functional (Sec. III) and then pass to implement the Poincaré approach on the LdG
functional. We will first report on the results of computations up to order six (Sec. IV), as it would
follow from the fact the two basic invariants are of order two and three (see Secs. II and III), but
in subsequent analysis, it will result that working at this order we find a non-physical degeneration
(which also leads to non-physical results), so that we will extend our computations and analysis
to order eight (Sec. V); this will eliminate the degeneracy met at order six and give agreement
with classical results.18 Sec. VI is devoted to the analysis of the reduced LdG obtained through
our method. Here, we will find out that, as mentioned above, the computations at order six yield
a non-physical degeneration, which in turn gives results in disagreement with the widely accepted
ones.18 On the other hand, going at the next order in our expansion, i.e., order eight (a functional
of order seven is forbidden by the request of thermodynamic stability), we remove the degeneracy,
and it turns out the results obtained via the reduced functional are then in agreement with those
of the full theory.18 These computations are performed under a nondegeneracy assumption for the
quadratic term of the LdG potential, which fails precisely at the main transition point; so they
do not apply in the vicinity of the main phase transition. This region of the parameter space is
studied in Sec. VII; here, we will, in particular, look for biaxial solutions and conclude that under
some non-degeneracy assumptions (involving only coefficients of higher order terms in the LdG
potential), the branches identified in Sec. VI are unstable at the main bifurcation. We conclude our
work by summarizing and discussing our results in Sec. VIII. Two brief Appendices are devoted to
the Molien function (Appendix A) and to comparison with previous work (Appendix B). Two other
Appendices collect some involved formulas related to the discussion in Sec. V (Appendix C) and in
Sec. VII B (Appendix D).

We would like to mention that in our computations, several of the “intermediate” terms can
be eliminated from the LdG potential by a suitable change of coordinates;37 the relevant point here
is that the change of coordinates needed to reach this simpler form can, and will, be explicitly
computed.

We also mention that our work here follows the same approach as in the companion paper;6

however, there we considered only effects of changes of coordinates at first significant order, while
here higher orders effects are considered and are actually relevant in obtaining a more radical
simplification of the LdG functional. In terms of the Poincaré theory, this would correspond to a
“further normalization” of Poincaré normal forms (see also Appendix B in this respect). We avoid
entering in a discussion of the fine details of this procedure, thanks to the fact our computations
are completely explicit, and our “brute force” approach—made possible by dealing with a concrete
case rather than with a general theory (and the use of symbolic manipulation programs)—allows to
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avoid mathematical subtleties (see Refs. 13 and 14 for a discussion of these in terms of dynamical
systems).

II. THE SO(3) ADJOINT REPRESENTATION

In this section, we give some algebraic details on the SO(3) adjoint representation and its
invariants and covariants of low order. These will be of use in our subsequent computations.

A. Definition and generators

Let us consider the action of G = SO(3) on the spaceM of 3 × 3 symmetric traceless matrices

Q =
*...
,

x1 x2 x3

x2 x4 x5

x3 x5 −(x1 + x4)

+///
-

; (1)

we recall that if Q is such a matrix, the element R ∈ G acts on it by Q → RQR−1. As for the
infinitesimal SO(3) action, this is generated by

L1 =
*...
,

0 0 0
0 0 −1
0 1 0

+///
-

, L2 =
*...
,

0 0 1
0 0 0
−1 0 0

+///
-

, L3 =
*...
,

0 −1 0
1 0 0
0 0 0

+///
-

. (2)

These satisfy of course the so(3) Lie algebra relations

[Li,L j] = ϵ i jk Lk . (3)

B. Invariants

The orbits of this G-action are three-dimensional and are indexed by

T2 = Tr(Q2) , T3 = Tr(Q3) ; (4)

the trace of Q is also an invariant, but in this case a trivial one, as by definition Q ∈ M implies
Tr(Q) = 0.38

We also recall that in this case all orbits pass through the set of diagonal matrices, and of course
traces are invariant under conjugation. This helps in checking identities or inequalities among
invariants, e.g., the basic relation17,18

(T2)3 − 6 (T3)2 = 2 (λ1 − λ2)2 (2λ1 + λ2)2 (λ1 + 2λ2)2 ≥ 0 , (5)

where λ1, λ2 are the eigenvalues of Q. Note that for λ1 = λ2, i.e., in the uniaxial case, we have an
equality, and conversely the equality holds only in the uniaxial case.

It may be useful to have explicit expressions for the invariants in terms of the xi; with trivial
computations, these turn out to be

T2 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x1 x4, (6)

T3 = x1 (x2
2 − x2

4 − x2
5) − x4 (x2

1 − x2
2 + x2

3) + 2 x2 x3 x5 . (7)

It should be noted that, by definition, the invariants and hence the LdG functional are invariant
under conjugation by SO(3) matrices; thus, one could aim at working with matrices in diagonal
form. In this context, a particularly convenient parametrization is provided by (q,ω), where q ≥ 0 is
the amplitude of the tensorial order parameter

q = |Q| = 
T2 (8)

(see Eq. (11) below), and ω ∈ [0,1] is a measure of the biaxiality,17,18 defined in the present notation
by
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ω = 1 −


6 T2

3

T3
2

. (9)

Thus, the other three variables needed to complete a coordinate system besides (q,ω) could be
seen as irrelevant ones (being coordinates along the group orbits); note that relation (5) just requires
q ≥ 0, 0 ≤ ω ≤ 1.

For our approach, it is however convenient to operate with the xi variables, as degrees (orders)
are defined in terms of these. Any result given in terms of T2,T3 is promptly mapped to the (q,ω)
variables formulation by recalling that

T2 = q2 , T3 =
(1 − ω) q3

√
6

. (10)

Remark 1. Finally, we note that besides the SO(3) invariance mentioned above, the functions T2
and T3 are also invariant under the discrete transformations

(x1, x2, x3, x4, x5) → (x4, x2,±x5, x1,±x3) ,
(x1, x2, x3, x4, x5) → (x1,−x2,−x3, x4, x5) ,
(x1, x2, x3, x4, x5) → (x1,−x2, x3, x4,−x5) .

Correspondingly, we have subspaces which are invariant under the gradient dynamics of any
invariant potential (that is, the gradient at points of the subspace is granted to be tangent to the sub-
space), given by {x1 = x4, x3 = ±x5}, by {x2 = 0, x3 = 0}, and by {x2 = 0, x5 = 0}. The intersection
{x2 = x3 = x5 = 0, x4 = x1} of these is also an invariant (one-dimensional) subspace.

C. Five-dimensional representation

The adjoint SO(3) action can be described by a linear (vector) representation on the space
M = R5 = {x1, x2, x3, x4, x5}; the matrices corresponding to the adjoint action of the SO(3) genera-
tors Li are

J1 =

*........
,

0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −2
1 0 0 2 0

+////////
-

, J2 =

*........
,

0 0 2 0 0
0 0 0 0 1
−2 0 0 −1 0
0 0 0 0 0
0 −1 0 0 0

+////////
-

, J3 =

*........
,

0 −2 0 0 0
1 0 0 −1 0
0 0 0 0 −1
0 2 0 0 0
0 0 1 0 0

+////////
-

.

It is immediate to check these are not orthogonal with respect to the standard metric in R5. They are,
however, orthogonal with respect to the natural metric in the space of n-dimensional matrices (here
n = 5), identified by

⟨A,B⟩ = 1
n
Tr(A+B) ;

note that with this metric,

|Q|2 = ⟨Q,Q⟩ = T2(x) =

i, j

Q2
i j . (11)

It would thus be possible, at least in principles,39 to use the general approach provided in Ref. 6; we
will, however, prefer to operate by direct explicit computations.

D. Covariants

We are interested in explicitly determining the nonlinear covariants for this action, that is,
five-dimensional vectors Fk(x), homogeneous of degree k in the xi—hence Fk(ax) = akFk(x)—
which transform in the same way as x, i.e., according to the same five-dimensional representation of
SO(3).40
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This means satisfying at first order in ε the condition

(I + ε Jα) Fk(x) = Fk(x + εJαx) (12)

for α = 1,2,3, i.e., (I + εL)Fk(x) = Fk(x + εLx) for any L ∈ so(3). This is of course equivalent
to

g[F(x)] = F(gx) ∀g ∈ G = SO(3) . (13)

The multiplicity of these can be determined using Molien functions,20–25 see Appendix A.
Here, it is not enough to know the number of covariants (and invariants), but we need their
explicit expressions; they can be determined in several ways, including by direct explicit compu-
tations.

It turns out that there is a single covariant for each of the orders k = 1, k = 2, and k = 3, while
there are two covariants for each of the orders k = 4, k = 5, and k = 6; there are three covariants at
each of the orders k = 7 and k = 8.41

Some of these covariants are rather obvious, e.g., the (only) covariant of order one coincides
with x, and there are covariants of order k given by the product of an invariant of order (k − 1) with
x. That is, we have

F1 = x , F3 = T2 x , F(1)
4 = T3 x , F(1)

5 = (T2)2 x ,

F(1)
6 = T2T3 x , F(1)

7 = T3
2 x , F(2)

7 = T2
3 x , F(1)

8 = T2
2 T3 x .

(14)

Then, one can check by explicit computations that the second order covariant (whose existence
is guaranteed by Molien function computations) is given by

F2 =

*........
,

(x2
1 + x2

2 + x2
3) − 2 (x1x4 + x2

4 + x2
5)

3(x1x2 + x2x4 + x3x5)
3(x2x5 − x3x4)

(x2
2 + x2

4 + x2
5) − 2 (x2

1 + x2
3 + x1x4)

3(x2x3 − x1x5)

+////////
-

. (15)

This entails that we also have the covariants

F(2)
4 = T2 F2 , F(2)

5 = T3 F2 , F(2)
6 = T2

2 F2 ,

F(3)
7 = T2 T3 F2; F(2)

8 = T3
2 F2 , F(3)

8 = T2
3 F2 .

(16)

No other covariant exists at these orders, as guaranteed by the Molien function approach,22–24 or by
explicit computation.42

III. THE LANDAU-DEGENNES FUNCTIONAL AND ITS REDUCTION. ORDER SIX

It follows from our discussion in Section II, see, in particular, Eqs. (6) and (7), that the most
general invariant polynomial of order six can henceforth be written (with ci arbitrary constants) as

Φ = c1 T2 + c2 T3 + c3 T2
2 + c4 T2 T3 + c5 T3

2 + c6 T2
3 . (17)

In the following, we will suppose to be not at exactly the transition point, i.e., we will (until
Sec. VII) assume

c1 , 0 . (18)

Note this means we are requiring the quadratic part of the potential to be non-degenerate. As
discussed and emphasized in Ref. 6, this is an essential (and natural) condition for the standard
Poincaré approach to work.43

It is sometimes convenient to write Φ as

Φ =

4
k=0

Φk , (19)
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where Φk is homogeneous of order (k + 2); needless to say for the Φ of (17), we have

Φ0 = c1 T2, Φ1 = c2 T3, Φ2 = c3 T2
2 , Φ3 = c4 T2 T3, Φ4 = c5 T3

2 + c6 T2
3 . (20)

The central idea in the Poincaré approach7,8,10 is to perform near-identity changes of variables
x → y = x + εh(x). Note that here the small parameter ε does not need to be explicit; actually, it
should be seen as the size of the region in which we operate. In other words, we want to consider
changes of variables of the form

x → y = x + h(x) , (21)

where h is at least quadratic in the xi.
As we want to deal with polynomials, h should itself be a polynomial; moreover, in Landau

theory, symmetry is a central ingredient of the theory, and hence we should make sure that the
change of variables preserves the symmetry.

All in all, this means that we should look for changes of variables of form (21) with h a linear
combination of the higher order covariants identified above. That is, we set

h = k1 F2 + k2 F3 + k3 F(1)
4 + k4 F(2)

4 + k5 F(1)
5 + k6 F(2)

5 . (22)

Note that, contrary to what is discussed in our general approach described in Ref. 6, here we
are not working step by step, but just proceed by a brute force comprehensive computation; this is
possible in that we know a priori we just want to go to order six (or order eight in Sec. V), and this
order is not too high.

IV. POINCARÉ TRANSFORMATIONS ON THE LDG FUNCTIONAL OF ORDER SIX

We will thus consider the general Landau polynomial Φ(x) and operate on it via the change of
variables (21) and (22). This will produce a new Landau polynomial Φ, which can again be written
(with truncation at order six in the xi variables) in form (19), i.e., as

Φ =
4

k=0

Φk . (23)

A. Generalities

The expression of the Φk will depend both on the expression of the original homogeneous
polynomials Φm, hence on the coefficients cj, and on the coefficients ki appearing in (22). Note that
the former have physical significance and are given (at least for given values of the external physical
parameters) in our theory, but the latter are just indexing the change of variables and we can choose
them.

We will thus try to choose these in such a way to simplify as much as possible the resulting
Landau polynomial Φ. In particular, we will see that a suitable choice of the ki leads to Φk(x) = 0
for k = 1, . . . ,4; our simplification should, however, preserve the stability of the theory, see Subsec-
tion IV B.

We write

Φ(y) = Φ[x + h(x)] B Φ(x)
in terms of the explicit form of h provided by (22) and by the explicit expressions for the Fk; this
produces explicit expressions for the Φk(x).

By construction, we will get

Φ0(x) = Φ0(x) ,
as follows from the change of variables being a near-identity one; higher order terms will be
affected by our change of variables. In any case, having chosen a covariant change of coordinates
(21) guarantees the Φk(x) will be invariant; hence, written in the same form as in (20) (obviously
with different coefficients), that is, we have necessarily
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Φ1 = γ3 T3, Φ2 = γ4 T2
2 ,

Φ3 = γ5 T2 T3, Φ4 = γ6 T3
2 + γ7 T2

3 . (24)

The expressions for the coefficients γk can be computed explicitly by simple albeit increasingly
involved algebra; it is convenient to perform these on a computer using a symbolic manipulation
language.

B. Maximal order terms and convexity

In dealing with the maximal order terms—that is, the terms of the order N at which we truncate
the Landau polynomial—some care should be taken. In fact, these terms control the thermodynam-
ical stability of the theory.1,2 The criterion to ensure such a stability is that the Landau polynomial
should be convex for large (absolute) values of the order parameter; in our case, this means large
|Q|. In our case, and more generally when the Poincaré transformations would be able to completely
cancel terms of this order and N is even, a simple way to guarantee the criterion is satisfied is
by having a highest order term of the type ΦN = |Q|2q = ρq, where q = (N + 2), and of course
ρ = |Q|2. See also Ref. 6.

C. The simplifying transformation. I: Non-maximal orders

We will now implement the procedure described above. Thus, at first order, we get

Φ1 = (c2 + 9 c1 k1) T3(x) . (25)

Obviously, it suffices to choose

k1 = −
c2

9 c1
, (26)

which is possible, thanks to (18), in order to get Φ1 = 0, i.e., eliminate the cubic terms from the
Landau potential.

The quartic term reads

Φ2 = (1/3) (c3 + 2c2k1 + 3c1k2
1 + 2c1k2) [T2(x)]2 ; (27)

by choosing k1 according to (26), this reduces to

Φ2 = *
,
3c3 −

5c2
2

27c1
+ 2c1k2+

-
[T2(x)]2 . (28)

It thus suffices to choose

k2 =
5 c2

2 − 27 c1 c3

54 c2
1

(29)

to get Φ2(x) = 0 as well. Note we are again using (18); this will also be true in the next steps, but we
will not remark it any more.

The term of order five turns out to be

Φ3 = (c4 + 18c3k1 + 9c2k2
1 + 3c2k2 + 9c1k1k2 + 2c1k3 + 9c1k4) T2(x) T3(x) ; (30)

choosing k1 and k2 as in (26) and (29), this reduces to

Φ3 =
1

27 c2
1

�
8c3

2 − 81c1c2c3 + 27c2
1(c4 + c1(2k3 + 9k4))� T2(x) T3(x) . (31)

Here, we have two parameters, k3 and k4, which are not yet determined. By choosing, e.g.,

k3 =
−8c3

2 + 81c1c2c3 − 27c2
1c4 − 243c3

1k4

54 c3
1

(32)

(note we are free to set k4 = 0 if desired), or however k3 and k4 satisfying
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2 k3 + 9 k4 =
−8c3

2 + 81c1c2c3 − 27c2
1c4

27 c3
1

,

we get Φ3 = 0.
In this way, under the assumption c1 , 0, we have reduced original Landau potential (17) to the

simpler form

Φ(x) = c1 T2(x) + α [T2(x)]3 + β [T3(x)]2 ; (33)

here, c1 is the same coefficient as in the original potential, while α and β are coefficients depend-
ing on the original coefficients ci as well as on the coefficients ki entering in the function h(x)
identifying the transformation, see (22).

By explicit computations, these are (recall k4 is undetermined and can be set to zero if
desired)

α = [−29c4
2 + 558c1c2

2c3 − 1701c2
1c2

3 − 216c2
1c2c4 + 972c3

1c5 + 1296c3
1c2k4] / [972 c3

1], (34)

β = [−c4
2 + 12c1c2

2c3 − 6c2
1c2c4 + 3c3

1c6 − 27c3
1c2k4] / [3 c3

1] . (35)

D. The simplifying transformation. II: Maximal order

We have now to deal with terms of maximal order. Thus, we should not try to set α = β = 0,
and hence Φ4 = 0, but rather try to simplify this term while being guaranteed it remains convex for
large |Q|.

It should be noted that the natural norm for the tensorial order parameter Q is just the one
induced by the natural scalar product inM = GL(3), i.e.,

|Q|2 = ⟨Q,Q⟩ = 1
3
Tr(Q+Q) ; (36)

thus, we have simply

|Q|2 = 1
3

T2(x) . (37)

In other words, convexity is guaranteed if we have Φ4 = a2[T2(x)]3 for any nonzero real number
a; we will just set a = 1. This means looking for a transformation, i.e., for coefficients k5 and k6

identifying the transformation, which maps (α, β) above into α = 1, β = 0.
This is obtained by choosing (the formulas can be slightly simplified by a suitable choice of the

value of the undetermined parameter k4)

k5 =
�
29c4

2 − 558c1c2
2c3 + 27c2

1(63c2
3 + 8c2c4) + 324c3

1(3 − 3c5 − 4c2k4)� �1944c4
1

�−1
, (38)

k6 =
�
c4

2 − 12c1c2
2c3 − 3c3

1c6 + 3c2
1c2(2c4 + 9c1k4)� �27c4

1

�−1
. (39)

We have thus reduced the Landau polynomial of order six to the form

Φ(x) = c1 T2(x) + [T2(x)]3 . (40)

The transformation producing this simplification has been made completely explicit, being encoded
in the coefficients k1, . . . , k6.

Finally, we note that, as discussed in Ref. 6, we should pay some attention to the requirement
that the resulting series is a well ordered one; as the denominators δm appearing in the formula
for km grow as cm1 , we should require c1 > ε. In other words, the radius of convergence of our
transformation (acting on the order parameters x) is estimated by |c1|, i.e., by the distance from the
transition point c1 = 0: the transformation allow to deal with the Landau polynomial in a simpler
form provided we do not get too near to the transition point.

Thus, we can use it to analyze the possible phases at a given nonzero value of the lead-
ing parameter c1 (and possibly secondary phase transitions), but not to analyze the situation
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(e.g., compute the critical exponents) at the primary transition point c1 = 0. This problem will be
tackled in Sec. VII.

V. SIMPLIFICATION OF THE LDG FUNCTIONAL AT ORDER EIGHT

We will now consider what happens if we have to deal with a higher order, i.e., order eight,
functional; one purpose of this section is to show that even in this case one can obtain completely
explicit formulas.44

More relevantly, when in Sec. VI we will discuss the physical implications of our computa-
tions, we will find that going to order eight does remove an un-physical degeneration obtained at
order six and gives results in agreement with those obtained (through different methods) in the
literature.18

In this case, we can still attempt a full cancellation of the terms of order six and seven while the
highest (eight) order terms should not be fully eliminated but just simplified, for the same reason as
discussed above.

A. Invariants, covariants, generating functions

We have now to consider also higher order polynomials, so that (17) will be replaced by

Φ = c1 T2 + c2 T3 + c3 T2
2 + c4 T2 T3 + c5 T3

2 + c6 T2
3 + c7 T2

2 T3 + c8 T2 T2
3 + c9 T4

2 . (41)

Correspondingly, we will still consider a change of variables of form (21) but (22) will now be
replaced by

h = k1 F2 + k2 F3 + k3 F(1)
4 + k4 F(2)

4 + k5 F(1)
5 + k6 F(2)

5

+ k7 F(1)
6 + k8 F(2)

6 + k9 F(1)
7 + k10 F(2)

7 + k11 F(3)
7 . (42)

B. Terms of order six

Needless to say, up to order five, we get the same results as above. The order six is not any
more, in this framework, the maximal one; hence, we can attempt to fully eliminate it without
harming thermodynamical stability.

We know a priori that the invariant polynomial will be of the form

Φ4(x) = α [T2(x)]3 + β [T3(x)]2 ; (43)

the values of the coefficients α and β—provided k1, k2, and k3 are chosen according to (26), (29),
and (32)—are given by (34) and (35). It is possible to make both α and β—and hence Φ4—vanish
by choosing (these formulas can also be slightly simplified by a suitable choice of the undetermined
parameter k4)

k5 = [29c4
2 − 558c1c2

2c3 + 243c2
1(7c2

3 − 4c1c5) − 216c2
1c2(−c4 + 6c1k4)] [1944 c4

1]−1 , (44)

k6 = [c4
2 − 12c1c2

2c3 − 3c3
1c6 + 3c2

1c2(2c4 + 9c1k4)] [27 c4
1]−1 . (45)

C. Terms of order seven

At order seven, we have only one invariant, i.e., we know that

Φ5 = γ T2
2 T3 . (46)

Setting k1, . . . , k6 as determined at lower orders, we get an explicit expression for γ which depends
moreover on the two parameters k7 and k8; these can be chosen—and actually one of these can
be chosen at will—so to obtain γ = 0; details are given in Appendix C. In other words, we can
obtain

Φ5 = 0 .
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D. Terms of order eight

At order eight, we are at maximal order and we should not fully eliminate terms of this order;
with the same discussion as in the N = 4 case of Sec. IV, we see that they should instead be
reduced, if possible, to Φ6 = [T2(x)]4.

Now we have two invariants of order eight, i.e., T4
2 and T2T2

3 ; thus, we know a priori that, for
whatever choice of the ki, we will have

Φ6(x) = ξ [T2(x)]4 + η T2(x) [T3(x)]2
for some ξ, η; thus, we should aim at

ξ = 1 , η = 0 .

Explicit forms for ξ and η are easily computed (and reported in Appendix C). The requirements
ξ = 1, η = 0 can be satisfied by a suitable choice of the parameters k8 and k9 (explicit for of these
choices are given again in Appendix C).

These present a new feature: while so far all the denominators only depended on c1, at this stage
we will have denominators of the parameters (and also of the resulting coefficients for Φ6) which
also depend on c2.

Thus, for the results to make sense, we should require not only |c1| large enough (which, as we
remarked several time, is inherent to the very spirit of the standard Poincaré approach) but also |c2|
large enough as well.

On the other hand, if we only require ξ = 1 (without requiring also η = 0), this can be satis-
fied with parameters—and resulting coefficients—which do not see the appearance of c2 in the
denominator (see Appendix C).

With the choices described above, and with the same cautionary notes about the need to have
|c1| and |c2| large enough, we can reduce the Landau polynomial to the form

Φ(x) = c1 T2(x) + [T2(x)]4 ; (47)

needless to say what matters here are not the explicit (and rather involved) expressions obtained for
k1, . . . , k9, but the fact such expressions can be explicitly determined and yield (47).

If we assume |c1| large enough, but are not ready to make any assumption regarding c2, we can
still reduce the Landau polynomial to the form

Φ(x) = c1 T2(x) + [T2(x)]4 + η T2(x) [T3(x)]2 . (48)

VI. BIAXIAL AND UNIAXIAL NEMATIC PHASES. I: ANALYSIS OF THE SIMPLIFIED
POTENTIAL AWAY FROM THE MAIN TRANSITION POINT

A physically relevant question is whether the theory allows for direct transitions to biaxial
phases, or if only transitions to uniaxial ones are allowed directly from the fully isotropic phase;19

see, e.g., the discussion in Ref. 18. This section is devoted to applying our approach in this context.
As already mentioned, our method cannot (without modifications, see Sec. VII) deal with the degen-
eration corresponding to the phase transitions. On the other hand, our method provides some hint,
consisting in the form of the would-be bifurcating branch after the phase transition; this information
will allow (see Sec. VII C) to identify an ansatz for the would-be biaxial bifurcating solution and
effectively run computations to provide the first term in the series expansion of a biaxial branch
bifurcating directly from the fully symmetric solutions, and determine its stability.

It should be recalled that in the present notation, anisotropy is measured by the parameter
ω ∈ [0,1], defined in terms of T2 and T3 by (9); see also Fig. 1. The biaxial phase has ω > 0, while
the uniaxial one is characterized by ω = 0.

Remark 2. A good deal of the discussion about this problem present in the literature has been
conducted using either the (q,ω) coordinates or the orbit space ones, i.e., (T2,T3). It should be
stressed that from the point of view of perturbation theory this causes troubles, in that one is
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FIG. 1. The allowed phase space in terms of invariants. Inequality (5) implies the state of the system belongs to the region

between the two curves T3=±

T 3

2 /6. The borders of this region correspond to ω = 0, i.e., to the uniaxial phase, the interior
to 0 <ω < 1 to the biaxial phase.

destroying the grading present in the x coordinates; moreover, the branching point (q,ω) = (0,0)
or (T2,T3) = (0,0) is lying on the border of the domain of definition. We will thus work in the x
coordinates in order to reduce the LdG potential; once this is done, working in the (q,ω) or (T2,T3)
variables is legitimate.

A. Sixth order potential

The result of the computations with a sixth order LdG potential is that we can always reduce to
a potential of form (40). When we look for critical points, these are identified by

∇Φ =
�
c1 + 3[T2(x)]2� ∇T2(x) = 0 . (49)

Thus, all (and only, apart from the trivial one x = 0) the points satisfying

T2(x) = |Q(x)|2 = 
− c1/3 (50)

are critical ones. Needless to say, this is possible only for c1 < 0; for c1 > 0, the fully isotropic phase
is stable.

The point is that (50) does not depend at all on T3; thus, the outcome of our computations at
order six is that all values of T3(x) compatible with the value of T2(x) in view of (5) would be
allowed.

This makes little sense physically, and is in contrast with well established results in the liter-
ature.18 As we are dealing with a perturbation approach and the situation obtained at order six is
degenerate (no selection on T3), it is natural to try to remove the degeneration by going at higher
orders.

B. Eight order potential

Going at order eight, the situation is indeed different. If we are ready to make assumptions on
c2—besides those on c1—then the situation is similar to the one described above, except that Φ will
be of form (47) and hence the critical points identified by

∇Φ =
�
c1 + 4[T2(x)]3� ∇T2(x) = 0 . (51)

Thus, all (and only, apart from the trivial one x = 0) the points satisfying

T2(x) = 3 |Q(x)|2 = (− c1/4)1/3 (52)

are critical ones. Note that now symmetry breaking phases again are possible only for c1 < 0, as
expected.

On the other hand, if we want to deal with a generic c2, we only get to Φ given by (48); we
assume η , 0 (or we would be reduced to the previous case).
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In the following, we will also write

c1 = − λ
to emphasize this is a varying parameter (we will consider the other ones as given) and that we are
interested in the case c1 < 0 (so that the origin is not a minimum). Thus, (48) reads now

Φ(x) = − λ T2(x) + η T2(x) [T3(x)]2 + [T2(x)]4 . (53)

An explicit expression for η is computed in Appendix C.

C. Analysis of the reduced potential

With (53), critical points are identified by

∇Φ =
�
− λ + 4 [T2(x)]3 + η [T3(x)]2� ∇T2(x) + [2 η T2(x)T3(x)] ∇T3(x) = 0 . (54)

Writing this explicitly in terms of the x would produce a quite involved equation, which cannot
be easily handled; it is convenient to analyze the problem in form (54).

This equation requires the vanishing of a vector, which is expressed as the sum of the two gradi-
ents ∇T2 and ∇T3 with certain x-dependent coefficients. If the two gradients are not collinear, the
coefficients must vanish separately (the gradients themselves are nowhere zero outside the origin),
while in case of collinearity, the two vectors can combine to give a zero sum. Thus, in order to
discuss solutions to (54), we should distinguish two cases, i.e., points such that ∇T3(x) = µ∇T2(x)
for some real constant µ and points such that ∇T3(x) , µ∇T2(x) for any µ.

Let us first consider the case where the two gradients are nowhere collinear. In this case, we
must have




c1 + 4 T3
2 + η T2

3 = 0 ,

2 η T2 T3 = 0 ;
(55)

recalling that by hypothesis η , 0,45 we have either T2 = 0 or T3 = 0. The first case implies |Q|2 = 0
and is thus not relevant.

In the second case, T3 = 0, which implies ω = 1 and hence a biaxial phase, the other equation
yields

T2 = −(−c1/4)1/3 = − (λ/4)1/3 ; (56)

for λ > 0, this entails q2 < 0 and is thus not acceptable.
We can now pass to consider the case where there are points x ∈ R5 such that the two gradients

are collinear. The explicit expressions for the gradients are easily obtained. With lengthy explicit
computations (performed with Mathematica and not to be reported here), it turns out that when
we require ∇T3 = µ ∇T2, there are four possibilities for µ, i.e. (here and in the following, we write

θ B

(x1 − x4)2 + 4 x2

2)

(a) µ = − x1 ,

(b) µ = − x4 ,

(c) µ = − (1/2) [x1 + x4 + θ] ,
(d) µ = − (1/2) [x1 + x4 − θ] .

(57)

Each of the µ values given in (57) allows for two (multi-dimensional) branches of nontrivial
critical points of the LdG potential. We will now briefly discuss their features and identify one-
parameter families of solutions embedded in such branches. It should be stressed that such one-
parameter families fall within the scope of Remark 1; thus, the restriction to these is legitimate
independently of the normalization procedure.

(a) Case (a) gives two two-dimensional branches,

x2 = x3 = 0, x5 = ±


2x2
1 − x1x4 − x2

4 . (58)
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Note these are acceptable only for −2x1 ≤ x4 ≤ x1. With (58), we get immediately

T2 = 3 x2
1 , T3 = − 2 x3

1 ; ω = 1 − 2
√

2
3
≈ 0.057 191 . (59)

Simpler formulas are obtained by choosing special values for x4, e.g., we can choose x4 = 0
and get the one-dimensional representative branch x2 = x3 = x4 = 0, x5 = ±

√
2x1 or choose

x4 = x1, with also x2 = x3 = x5 = 0.
Inserting conditions (58) into the equation ∇Φ = 0, we get immediately that the latter

yields

x1 = ±
(

λ

4 (27 + 4η)
)1/6

, (60)

which is of course acceptable only for either one of

{λ ≥ 0 and η > −27/4 , λ ≤ 0 and η < −27/4} . (61)

(b) Similarly, case (b) also gives two two-dimensional branches,

x2 = x5 = 0, x3 = ±


2x2
4 − x1x4 − x2

1 . (62)

These are acceptable only for x4 ≤ −x1/2 or x4 ≥ x1. With (62), we get immediately

T2 = 3 x2
4 , T3 = − 2 x3

4 ; ω = 1 − 2
√

2
3

. (63)

Simpler formulas are obtained choosing special values for x4, e.g., choosing x4 = x1, we get
the one-dimensional branch representative x2 = x3 = x5 = 0, x4 = x1.

Inserting conditions (58) into the equation ∇Φ = 0, we get immediately that the latter
yields again (60); conditions (61) do still apply. Actually, the one-dimensional representa-
tives obtained for (a) and (b) are just the same.

(c) As for (c), in this case, we get two three-dimensional branches,

x3 = ±
1
√

2


2x2

2 + 2x4(x4 + θ) − x1(x1 + x4 − θ) ,

x5 = ±
−θ − x1 + x4

4x2


4[x2

2 + x4(x4 + θ)] + 2x1(θ − x4 − x1) . (64)

These are acceptable provided all the arguments of the roots are positive; we will not analyze
this condition in detail. The expressions for T2 and T3 are readily obtained.

Formulas become simpler if we set x4 = x1, which implies θ = 2x2; in this case, we get

T2 = 3(x1 + x2)2 , T3 = −2(x1 + x2)3 ; ω = 1 − 2
√

2
3

. (65)

The resulting two-dimensional branch is identified by x3 = ±


x2(3x1 + x2), x5 = −x3; for
x1 > 0, this is acceptable for x2 ≤ −3x1 or x2 ≥ 0, while for x1 < 0, we require either x2 ≤ 0
or x2 ≥ −3x1.

In both cases, we can set x2 = x1, which gives a one dimensional representative for this
branch, x2 = x1, x3 = ±2x1, x4 = x1, x5 = ∓2x1. Inserting these into the equation ∇Φ = 0, the
latter yields again (60); conditions (61) do again apply.

(d) Finally, case (d) gives two three-dimensional branches as well (again we will not discuss in
detail the bounds on the admissible values),

x3 = ±
1
√

2


2x2

2 + 2x4(x4 − θ) − x1(x1 + x4 + θ) ,

x5 = ±
θ − x1 + x4

4x2


4[x2

2 + x4(x4 − θ)] − 2x1(θ + x4 + x1) . (66)
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Here, again we get simpler formulas by choosing x4 = x1, which yields

T2 = 3 (x1 − x2)2 , T3 = − 2 (x1 − x2)3 ; ω = 1 − 2
√

2
3

. (67)

The two-dimensional branch is identified by x3 = ±


x2(x2 − 3x1), x5 = x3. For x1 > 0, this
requires either x2 < 0 or x2 > 3x1; for x1 < 0, it requires either x2 ≥ 0 or x2 ≤ 3x1.

In both cases, we can set x2 = −x1 and have a one-dimensional representative of the
branch, x2 = −x1, x3 = ±2x1, x4 = x1, x5 = ±2x1. Inserting these into the equation ∇Φ = 0,
the latter yields again (60); conditions (61) do again apply.

We have thus discussed the properties of these branches of solutions but not yet investigated
their stability. In order to do so, we can consider the Hessian Hi j = (∂2Φ/∂xi∂x j) along the solution
branches. In this computation, it will be convenient to consider the one-dimensional representative
identified above.

Note that due to the dimensionality of the branches, we will always have two zero eigenvalues.
Thus, the condition of stability is that the other three eigenvalues are positive.

((a)and(b)) In case (a), we easily obtain the Hessian, which is rather simple; its eigenvalues are

σ(a) = {0 , 0 , 18 λ , − 18 η λ

27 + 4η
, − 18 η λ

27 + 4η
} . (68)

Recalling (61), the denominator is always positive for λ ≥ 0; thus, the condition for
(existence and) local stability of this branch is

λ > 0 , − 27/4 < η < 0 . (69)

With our choice of the one-dimensional representative, case (b) is identical to (a);
hence, we get the same formulas and results.

((c)and(d)) In case (c), we get a quite more complex Hessian; its eigenvalues can still be
computed and we get

σ(b) = {0 , 0 , − 12 η λ

27 + 4η
,

3 (486 + 47η − γ) λ
8 (27 + 4η) ,

3 (486 + 47η + γ) λ
8 (27 + 4η) } , (70)

where we have written

γ =


236 196 + 94 068 η + 9377η2 ;

the argument of the square root is always positive. The last two eigenvalues do
always have the same sign as λ; thus, again for λ > 0, this is a stable branch
for −27/4 < η < 0. Computations and results are just the same in case (d) as for
case (c).

The present discussion suffices to conclude that in cases (a)–(d), we have branches of critical
points with non-zero ω, i.e., biaxial ones, and that they are stable46 for λ > 0 provided −27/3 < η
< 0. Note that these are quite weakly biaxial, as shown by the value of ω = [1 − 2

√
2/3] ≈ 0.057 191

(such a low value can pose serious problem for experimentally distinguishing this biaxial solution
from a uniaxial one).

It should be stressed that our discussion does not give a proof of the possibility of direct transition
from the fully isotropic phase to biaxial phases (actually, in Sec. VII, we will see things are quite
different). In fact, our reduction procedure fails precisely at the c1 = 0 point.

The present analysis identifies branches of biaxial solutions existing near—but not “too near”—to
the critical point. If there is a branch of biaxial solutions stemming directly from the critical point, it
must be of the same form, and thus our analysis gives a hint for the form of the critical branch to be
sought for in this subsequent analysis, developed in Sec. VII.47
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VII. BIAXIAL AND UNIAXIAL NEMATIC PHASES. II: THE MAIN TRANSITION REGION

In Section VI, we have implemented our method under the assumption −c1 = λ , 0. If we want
to consider the parameter region near the main phase transition at λ = 0, that discussion does simply
not apply.

In this section, we will apply again our method keeping in mind we want to analyze exactly the
region near c1 = 0. This will produce some different results than for c1 bounded away from zero, and
these results can be used to analyze the biaxial phase problem.

On the other hand, it is known that the analysis of the biaxial phase problem leads to consider
an intricate situation as parameters are varied; in our case, we will have less parameters (after the
simplification), but as the Physics has not changed we should expect an equally intricate situation. The
analysis of this lies outside the limits of the present paper, so we will be satisfied with showing that
our method allows to identify a simpler LdG potential via a change of variables which is admissible
in a full neighborhood (whose size will depend on |c2| , 0, see below) of the main transition point.

In simplifying the LdG potential, we will work under the assumption that the next-to-leading
order term is nonzero, i.e.,

c2 , 0 ; (71)

this condition takes the place of (18).

A. Simplified potential—order six

In order to analyze the phase transition taking place at λ = 0, we can implement the simplification
procedure paying attention to the fact that no division by a factor c1 should take place.

We will first conduct our discussion based on the order six LdG potential. We will thus write Φ
and h as in Sec. IV, see (17) and (22) (actually we only need generators up to order four, i.e., in (22)
we can set k5 = k6 = 0), that is, we have (repeating here these formula for convenience of the reader)

Φ = c1T2 + c2T3 + c3T2
2 + c4T2T3 + c5T3

2 + c6T2
3 ; h = k1F2 + k2F3 + k3F41 + k4F42 .

With these, we obtain a transformed potential Φ written in the same way but with γi taking the
place of ci (for i , 1). By explicit computations, we easily get the detailed form of the γi. These
become simpler if we set, as we do in the following, k1 = 0; the reader will easily observe that no
further reduction would be possible by considering a nonzero k1 (as we cannot divide by factors
containing c1). With this, we get

γ2 = c2 ,

γ3 = c3 + 2c1k2 ,

γ4 = c4 + 3c2k2 + 2c1k3 + 9c1k4 ,

γ5 = c5 + c1k2
2 + 4c3k2 + 2c2k4 ,

γ6 = c6 + 3c2k3 .

It is now easy to choose the ki so to get a simpler form for the LdG potential; in particular, we
want to set either one of




γ5 = 0 , γ6 = 1 (a) ,
γ5 = 1 , γ6 = 0 (b) ,
γ5 = 1 , γ6 = 1 (c) ;

(72)

actually in all cases, one can also set γ4 = 0, see below.
The reader can check that in all cases explicit solutions for the critical points of the simplified

potential Φ can be explicitly obtained.
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Case (a) is obtained by choosing

k2 =
18c2

2 − 108c1c3 −
�

108c1c3 − 18c2
2

�2 − 108c2
1(27c5c1 + 4c6c1 − 4c1 − 6c2c4)

54c2
1

= − c4

3c2
+ *
,
−2c3c4

c3
2

+
3c5

2c2
2

+
2c6

9c2
2

− 2
9c2

2

+
-

c1 +O
�
c2

1

�
;

k3 =
1 − c6

3c2
;

k4 =
−c1k2

2 − 4c3k2 − c5

2c2

= *
,

2c3c4

3c2
2

− c5

2c2

+
-
+ *
,

4c4c2
3

c4
2

− 3c5c3

c3
2

− 4c6c3

9c3
2

+
4c3

9c3
2

−
c2

4

18c3
2

+
-

c1 +O
�
c2

1

�
.

With these, we obtain

Φ = − λ T2 + γ2 T3 + T2
3 . (73)

The remaining coefficients are given in terms of the original ones by

γ2 = c2 , γ3 = c3 + 2c1k2 = c3 +
2c4

3c2
λ +O(λ2) . (74)

We obtain case (b) by choosing

k2 =
18c2

2 − 108c1c3 −
�

108c1c3 − 18c2
2

�2 − 108c2
1(27c5c1 + 4c6c1 − 27c1 − 6c2c4)

54c2
1

= − c4

3c2
+ *
,
−2c3c4

c3
2

+
3c5

2c2
2

+
2c6

9c2
2

− 3
2c2

2

+
-

c1 +O
�
c2

1

�
;

k3 = −
c6

3c2
;

k4 =
1 − c1k2

2 − 4c3k2 − c5

2c2
.

With these, we obtain

Φ = −λ T2 + γ2 T3 + γ3 T2
2 + T3

2 . (75)

The remaining coefficients are again given in terms of the original ones by (74).
Finally, we note that case (c) is obtained for

k2 =
18c2

2 − 108c1c3 −
�

108c1c3 − 18c2
2

�2 − 108c2
1(27c5c1 + 4c6c1 − 31c1 − 6c2c4)

54c2
1

= − c4

3c2
+ *
,
−2c3c4

c3
2

+
3c5

2c2
2

+
2c6

9c2
2

− 31
18c2

2

+
-

c1 +O
�
c2

1

�
;

k3 =
1 − c6

3c2
;

k4 =
−3c4

2 + 18c1c3c
2
2 +
√

3


3c4
2 − 36c1c3c

2
2 + 6c2

1

(
18c2

3 + c2c4
)
+ c3

1(−27c5 − 4c6 + 31)c2
2 − 3c2

1c4c2 + 2c3
1(c6 − 1)

27c3
1c2

= *
,

2c3c4

3c2
2

− c5

2c2
+

1
2c2

+
-
+ *
,

4c4c
2
3

c4
2

− 3c5c3

c3
2

− 4c6c3

9c3
2

+
31c3

9c3
2

−
c2

4

18c3
2

+
-
c1 +O

(
c2

1

)
.

In this case, the potential reads

Φ = −λ T2 + γ2 T3 + γ3 T2
2 + T2

3 + T3
2 , (76)
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with the remaining coefficients given explicitly by (74) once again.
It is maybe worth remarking that having kept both terms of order six but having fixed their coef-

ficients to one, we are guaranteed of convexity at large |x |; in fact, in terms of (q,ω) variables, we
have

T3
2 + T2

3 =


1 +

(1 − ω)2
6


q6 .

The reader can note that γ2 and γ3, and actually also k2, are the same in the three cases; both facts
are natural, in that the three cases differ only for order six terms.

We have thus shown that, with explicit computations, the Landau-deGennes potential can be
reduced, uniformly in a neighborhood of the transition point c1 = −λ = 0 (again, the size of this neigh-
borhood being controlled by c2 , 0) to a simpler form, i.e., to either (73) or (75) or (76). Retaining
the γ2 and γ3 terms was unavoidable due to the requirement to avoid any division by a c1 factor.

B. Simplified potential—order eight

A similar analysis can be performed for the LdG potential of degree eight, as suggested by the
discussion of Sec. VI, see (41): in this case, we obtain more involved formulas, and several options are
possible concerning the simplification of the highest order term (i.e., retaining the T4

2 or the T2T2
3 one;

equivalently, setting γ8 = 0, γ9 = 1 or γ8 = 1, γ9 = 0) and some of the sub-maximal ones. It should
be stressed that we can again arrive at a reduced eight order potential for which explicit (albeit rather
involved) expressions for the critical points can be obtained.

Here, we will consider two possible forms of the reduced potential, which correspond to the
maximal possible simplification (in the sense of eliminating as many terms as possible), i.e.,




Φ = −λ T2 + γ2 T3 + γ3T2
2 + γ5 T3

2 + T2 T2
3 (a) ,

Φ = −λ T2 + γ2 T3 + γ3T2
2 + γ6 T2

3 + T4
2 (b) . (77)

In case (a), the remaining coefficients are given in terms of the original ones by

γ2 = c2 ,

γ3 = c3 +
2c4

3c2
λ +

4c6

9c2
2

λ2 , (78)

γ5 =

(
c5 −

4c3c4

3c2

)
− *
,

c2
4

c2
2

+
16c3c6

9c2
2

− 2c7

3c2

+
-
λ +O

�
λ2� .

In case (b), the remaining coefficients are given in terms of the original ones by

γ2 = c2 ,

γ3 = c3 +
2c4

3c2
λ , (79)

γ6 =

(
c6 −

9c3c4

c2
+

27c5

4

)
− *
,

27c2
4

4c2
2

− 9c7

2c2

+
-
λ +O

�
λ2� .

The coefficients of the change of coordinates taking us to these expressions are rather involved
and are given in Appendix D.

C. Branching unstable biaxial solutions

It would be natural to attempt to use these results to analyze the biaxial phase problem; this would
have led us too far, but we present here some computations based on the simplified potential and
related to the one-dimensional weakly biaxial branches determined (outside the transition region) in
Sec. VI. We will show here that these branches are unstable at the transition point.
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It will suffice to consider the LdG potential at order six, i.e., (17), with h of form (22); we will
consider the reduced potential of form (75), i.e.,

Φ = − λ T2 + γ2 T3 + γ3 T2
2 + T3

2 , (80)

with actually

γ2 = c2; lim
λ→0

γ3 = c3 .

The discussion of Sec. VI suggests to focus on the one-dimensional manifold

M = {x1 = x, x2 = 0, x3 = 0, x4 = x, x5 = 0} .
Doing this, we are reduced to study a one-dimensional problem, described by the effective poten-

tial

Ψ = − 3 λ x2 − 2 γ2 x3 + 9 γ3 x4 + x6 . (81)

We will write λ = ε, and look for a solution as a power series in ε, i.e., as

x =

k

zk εk .

With standard computations, we obtain at first orders

z1 = −
1
γ2

; z2 = 6
γ3

γ3
2

; z3 = − 72
γ2

3

γ5
2

; z4 = 4 *
,

γ2
2 + 270γ3

3

γ7
2

+
-

; z5 = − 144 γ3 *
,

γ2
2 + 126γ3

3

γ9
2

+
-
.

In order to study the stability of this solutions, we consider the Hessian Hb computed on the
solutions branch so determined. This will also be written as a series expansion, and we get

Hb = H1 ε + H2 ε
2 +O(ε3) ; H1 =

*........
,

0 0 0 3 0
0 −6 0 0 0
0 0 0 0 0
3 0 0 0 0
0 0 0 0 0

+////////
-

; H2 =
18γ3

γ2
2

*........
,

1 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

+////////
-

.

As for the eigenvalues, we have a double zero eigenvalue (which corresponds to the degeneracy of
the problem, as discussed in Sec. VI), and three nonzero ones, which are

µ1 = −6 *
,
1 − 6

γ3

γ2
2

ε+
-
ε ; µ2 = −3 *

,
1 − 6

γ3

γ2
2

ε+
-
ε ; µ3 = 3 *

,
1 + 6

γ3

γ2
2

ε+
-
ε . (82)

Thus, for small ε (that is, small λ), we have an unstable branch. For γ3 > 0, this becomes stable
for

λ > λs ≃
γ2

2

6γ3
. (83)

Some numerical experiments, conducted assigning random values to γ2 and γ3, confirm this
description. Moreover, they show we always have a stable solution on the manifold M , but this is not
branching off from the origin.

VIII. DISCUSSION AND CONCLUSIONS

The Landau-deGennes potential describing the isotropic-nematic phase transition (and those
between different nematic phases) in liquid crystals is a sixth order polynomial, depending on six
parameters, see (17); going to the next order, we have an eight order parameter, depending on nine
parameters, see (41). We have shown that passing to suitable non-homogeneous new variables, see
(21) and (42), the potential is written in a simpler form, see (48), depending only on two parame-
ters. The transformation to reach this simpler form has been explicitly determined in terms of the
coefficients ci appearing in the original potential.
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This allows to study the equilibrium points of the potential in the new variables, i.e., using the
simplified form Φ(x). Albeit going back to the original variables requires to invert the nonlinear
change of variables (21) and (42) and is thus a nontrivial task (but see below); qualitative information
obtained from the simplified potential remains true in whatever coordinates.

The quantitative aspect would concern the value of the parameters at which phase transitions
occur, and the relation between the value of the parameters ci and those assumed by the order param-
eters xi. As mentioned above, in order to pass from the new variables xi to the old ones, one should
invert the nonlinear change of variables (21) and (42); note that it suffices to work at a finite order in
ε = |x|, so that the inversion is obtained by a series expansion. Explicit formulas could be obtained
for the case at hand, but they are very complex and not significant.48

A significant weakness of our standard method, built in the basic idea behind the Poincaré normal-
ization approach, is that it cannot be applied when the quadratic part of the Landau potential van-
ishes. Or, this is precisely the situation met at the main transition point, and one would be specially
interested in analyzing the transition region. Our method is however flexible enough so that by a
small modification—consisting in avoiding to operate division by factor which vanishes at the tran-
sition point—it can be also applied around critical points (this makes that low order terms cannot
be eliminated, but several among the higher order terms are anyway erased), as shown explicitly in
Sec. VII.

We have moreover considered a concrete open problem, i.e., that of possible direct transition
from the fully isotropic phase to the biaxial one.18,19 The implementation of the method in the singular
region as in Sec. VII can be used to analyze in simpler terms the possibility of having a stable biaxial
phase branching directly off the fully symmetric state, and we hope to be able to tackle this problem
in the near future. Some partial results, concerning the special one-dimensional branches identified
by Remark 1 and studied in Sec. VI, are presented in Sec. VII C.

In conclusion, we have shown by explicit computations that the Poincaré approach, devised to
study critical points of dynamical systems, can also be profitably adopted to simplify computations
in Landau theory of phase transitions. We have here considered a concrete and relevant application,
i.e., the Landau-deGennes theory for the isotropic-nematic transition in liquid crystals, but it is clear
that the validity of the Poincaré approach is much more general.

It should also be mentioned that the LdG theory considered here did not satisfy the simple hypoth-
eses considered in Ref. 6 (under which quite general results were obtained) for the standard metric in
R5, but did for standard metric in GL(3). Rather than discussing things with this metric, here we have
implemented the essential of Poincaré ideas, i.e., looked for a near-identity change of variables which
does preserve the symmetry of the problem at hand and depends on arbitrary parameters; the latter
can be chosen to obtain a simpler form of the function under study (in this case the LdG potential) in
the new variables.

This also shows that the method proposed in Ref. 6 can be applied avoiding the (mild) math-
ematical sophistication which would be needed to take into account the non-standard metric to be
introduced in the orbit space, see Appendix B. The direct approach pursued here has also another
advantage, also discussed in Appendix B, i.e., that in this way we are able to take into account the
higher order effects which were not considered in previous work.6
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APPENDIX A: THE MOLIEN FUNCTION

The Molien function49 is a generating function; given a (“source”) representation T of a group
G, acting on a vector space with variables xi, the coefficients of its expansion in series of the param-
eter yield the number of independent tensors (with components being polynomials in the xi) which
transforms under a possibly different (“target”) representation T of G.

In the case of interest here, G = SO(3), vector representations are indexed by an integer number
ℓ and have odd dimension (2ℓ + 1) [spinor representations are indexed by half-integer numbers m/2,
with m odd, and have even dimension (m + 1)]; thus, the trivial representation ℓ = 0 has dimension
1, the defining representation ℓ = 1 has dimension 3, and the ℓ = 2 representation we are considering
here has dimension 5. The Molien function will then be denoted as Fℓ,λ(t), where t is the parameter
and ℓ, λ refer to the “source” and the “target” representations, respectively.

Here, we are interested in F2,0(t) and in F2,2(t), providing, respectively, the number of invariants
and of covariants for the ℓ = 2 representation at different orders. These turn out to be

F2,0 =
1

(1 − t2) (1 − t3) ; F2,2 =
t + t2

(1 − t2) (1 − t3) .

Expanding these in series up to the order of interest here, we easily obtain

F2,0(t) = 1 + t2 + t3 + t4 + t5 + 2t6 + t7 + 2t8 +O
�
t9� ,

F2,2(t) = t + t2 + t3 + 2t4 + 2t5 + 2t6 + 3t7 + 3t8 +O
�
t9� .

We refer, e.g., to Refs. 20–25 for details on the Molien function, both in the specific case G =
SO(3) and in general.

APPENDIX B: COMPARISON WITH PREVIOUS WORK

We will now sketch how the same problem could be tackled following strictly the procedure
given in Ref. 6. We will just follow this procedure, referring to Ref. 6 for its justification and detail;
the understanding of the main body of the present work does not depend in any way on this appendix.

As mentioned above, the SO(3) representation given by the Ja is not orthogonal with respect to
the standard scalar product in R5, and thus we have to introduce a suitable scalar product for the proce-
dure described in Ref. 6 to work, in particular, for the Sartori P-matrix26,27 to be properly defined.
This turns out to be the one associated to the matrix

M =

*........
,

4/3 0 0 −2/3 0
0 1 0 0 0
0 0 1 0 0
−2/3 0 0 4/3 0

0 0 0 0 1

+////////
-

.

The gradients ∇Ti(x) of the two basic invariants are easily computed. The P-matrix, defined by
Pαβ = (∇Iα,∇Iβ) with Iα the invariants, is

P = *
,

4 T2 6 T3

6 T3 (4/3)T2
2

+
-
.

Proceeding as in Ref. 6, the homological operator L0 is therefore

L0 = 4 c1 T2 (∂/∂T2) .
This is discussed in Ref. 6; here, it suffices to say that under a change of variables generated by a
function Hm (homogeneous of degree m + 2), the terms Φk with m < k are not changed, while the
term Φm is changed into Φm = Φm − L0(Hm). (The terms Φk with k > m are changed in a more
complex way; this could be described in precise terms14 but is not relevant here.)
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We should then apply this on homogeneous invariant generating functions of order up to five or
seven (depending if we are in the framework of Section IV or V), i.e.,

H1 = k1 T3 , H2 = k2 T2
2 , H3 = k3 T2 T3 ,

H4 = k4 T3
2 + k5 T2

3 , H5 = k6 T2
2 T3 .

This yields immediately

L0(H1) = 0 , L0(H2) = 8 c1 k2 T2
2 = 8 c1 H2 , L0(H3) = 4 c1 k3 T2 T3 = 4 c1 H3 ,

L0(H4) = 12 c1 k4 T3
2 , L0(H5) = 8 c1 k6 T2

2 T3 = 8 c1 H5 .

Thus, the terms Φ2,Φ3,Φ5 and the term proportional to T3
2 in Φ4, see (41), are in the range of L0 and

by the discussion of Ref. 6 can be eliminated from the LdG functional.
Note that, on the other hand, the general results of Ref. 6 do not imply the elimination of Φ1 and

of the other term in Φ4; this point will be discussed in a moment.
Moreover, as discussed in Ref. 6, while we can conclude that in the first effective step (assuming

we just choose k1 = 0, i.e., do not perform any change with cubic generating function), one should
choose k2 = c2/(8c1), the actual determination of generating functions at higher orders, hence of ki
with i > 2, requires to consider in detail the effect of the previous transformation(s) on the coefficient
ci.

The procedure discussed in the present paper does instead provide a simultaneous computation
of the modified coefficients in the potential and of those identifying the generating function; we recall
this is possible because we know a priori at which order we want to stop, while the procedure given
in Ref. 6 can in principles be pursued up to any order.

Finally, let us come back to the terms which are eliminated in the present approach but seemingly
not in the general one discussed in Ref. 6. It was mentioned in there that the method only considered
first order effects, and that one could take into account also higher order ones, mimicking what is
done in dynamical systems,10,13,14 thus obtaining a “further reduction.” The procedure proposed here
does take these higher order effects into account and hence obtains the further reduction, avoiding
at the same time the relatively sophisticated mathematical tools which would be needed to obtain a
comprehensive theory (valid at all orders) of it.14

APPENDIX C: REDUCTION OF TERMS OF ORDER SEVEN AND EIGHT

Here, we give explicit formulas for the reduction of terms of order seven and eight, considered
in Section V.

1. Terms of order seven

As mentioned in the text, at order seven, we have only one invariant,

Φ5 = γ T2
2 T3 ;

by explicit computations, it results that

γ = c7 + 27c5k1 + 4c6k1 + 30c4k2
1 + 54c3k3

1 + 5c4k2 + 54c3k1k2 + 9c2k2
1k2 + 3c2k2

2 + 4c3k3 + 4c2k1k3

+2c1k2k3 + 18c3k4 + 18c2k1k4 + 9c1k2k4 + 3c2k5 + 9c1k1k5 + 2c2k6 + 6c1k1k6 + 2c1k7 + 9c1k8 .

Setting k1, . . . , k6 as determined at lower orders, we get

γ = [112c5
2 − 2160c1c3

2c3 + 1080c2
1c2

2c4 − 54c2
1c2(−135c2

3 + 54c1c5 + 8c1c6)
+729c3

1(−4c3c4 + c1(c7 + 2c1k7 + 9c1k8))] / [729c4
1] .

Note this depends on the two parameters k7 and k8; thus, one of these will remain undetermined (and
can, e.g., be set to zero, or to some other convenient value).
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If we choose, e.g.,

k7 = [−112c5
2 + 2160c1c3

2c3 − 1080c2
1c2

2c4 + 54c2
1c2(−135c2

3 + 54c1c5 + 8c1c6)
−729c3

1(−4c3c4 + c1(c7 + 9c1k8))] [1458 c5
1]−1,

then γ vanishes, and Φ5 with it.

2. Terms of order eight

We will refer to the formulas and notation of Sec. V D.
In general terms, with k1, . . . , k7 taking the values determined at lower orders (apart from the

undetermined k4), we have

ξ =

3609c1c

4
2c3 + 27c2

1c
2
2(516c1c5 + 32c1c6 − 1149c2

3) + 24c2
1c

3
2(342c1k4 − 85c4)

+1944c3
1c2(7c3c4 − 2c1c7 − 48c1c3k4 + 12c2

1k8) + 2187c3
1(33c3

3 − 36c1c3c5 + 8c2
1(c9 + 2c4k4 + 3c1k

2
4

+2c1k9)) − 101c6
2

 
17 496c15

−1
,

η =

5886c1c

4
2c3 − 266c6

2 + 243c2
1c

2
2(28c1c5 + 6c1c6 − 113c2

3) − 18c2
1c

3
2(172c4 + 171c1k4)

+243c4
1(−9c2

4 − 18c3c6 − 54c1c4k4 + c1(4c8 − 81c1k
2
4)) + 1458c3

1c2(c3(13c4 + 24c1k4) − 2c1(c7 + 3c1k8))


×

971c5

1

−1
.

The requirements ξ = 1, η = 0 are satisfied by setting

k8 =

5886c1c

4
2c3 − c2

1c
2
2(27 459c2

3 + 3096c2c4) + c3
1c2(18 954c3c4 + 6804c2c5 + 1458c2c6 − 3078c2

2k4)
−c4

1(2187c2
4 + 4374c3c6 + 2916c2c7 − 34 992c2c3k4) + c5

1(972c8 − 13 122c4k4) − 19 683c6
1k

2
4 − 266c6

2



×

8748c5

1c2
−1

,

k9 =

−57 915c1c

4
2c3 + c

2
1c

2
2(312 741c2

3 + 30 888c2c4) − c3
1(216 513c3

3 + 192 456c2c3c4 + 96 228c2
2c5 + 14 256c2

2c6)
+c4

1(17 496c2
4 + 236 196c3c5 + 34 992(c3c6 + c2c7)) + c5

1(52 488(1 − c9) − 7776c8) + 2431c6
2



×

104 976c6

1

−1
.

As remarked in Sec. V D, these see the appearance of c2 factors in the denominator, so are valid
under the assumption—besides that |c1| is large enough—that |c2| is large enough as well. Note that
even if we require only η = 0, we would however get denominators depending on c2 as well.

On the other hand, the condition ξ = 1 (without requiring η = 0) can be satisfied by choosing

k9 =

101c6

2 − 3609c1c
4
2c3 + 3c2

1c
2
2(10 341c2

3 + 680c2c4) + 972c4
1(81c3c5 + 4c2c7 + 96c2c3k4)

−27c3
1(2673c3

3 + 504c2c3c4 + 4c2
2(129c5 + 8c6 + 76c2k4)) − 52 488c6

1k
2
4 − 5832c5

1(−3 + 3c9 + 6c4k4 + 4c2k8)


× [34 992 c6
1]−1 .

In this case, we obtain (as usual, these formulas would be slightly simplified by a suitable choice for
the undetermined parameters k4 and k8)

η =
�
−266c6

2 + 5886c1c4
2c3 + 243c2

1c2
2(−113c2

3 + 28c1c5 + 6c1c6) − 18c2
1c3

2(172c4 + 171c1k4)
+243c4

1(−9c2
4 − 18c3c6 − 54c1c4k4 + c1(4c8 − 81c1k2

4)) − 1458c3
1c2(−c3(13c4 + 24c1k4)

+2c1(c7 + 3c1k8))] × [972 c5
1]−1 .

APPENDIX D: THE TRANSFORMATION FOR THE LdG POTENTIAL OF DEGREE EIGHT
NEAR THE MAIN TRANSITION POINT

In this appendix, we provide explicit expressions for the coefficients ki appearing in h, see (42),
used to obtain simplified potentials (77). For the more involved expressions, we will just give the
series expansion in c1. Higher order coefficients appearing in (42), i.e., k9, k10, . . . have no role in this
computation and can be set to zero.
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The potential of case (a) is obtained by choosing

k2 =
2c1c6 − 3c2c4

9c2
2

;

k3 = −
c6

3c2
;

k4 = 0 ;

k5 =
4c2

4 + 4c3c6 − 3c2c7

9c2
2

+

�
3(4c8 + 27c9 − 4)c2

2 − 2(81c4c5 + 26c4c6 + 54c3c7)c2 + 18c3
�
11c2

4 + 8c3c6
��

54c4
2

c1 +O
�
c2

1

�
;

k6 = 0 ;

k7 = −
(c8 − 1)c2

2 − 3c4c6c2 + c1c2
6

3c3
2

;

k8 = −
9c9c

2
2 − 18c4c5c2 − 12c3c7c2 + 22c3c

2
4 + 16c2

3c6

18c3
2

+

�
−3(6c5c6 + c4c7 + c3(4c8 + 27c9 − 4))c2

2 + 2
�
2c3

4 + c3(81c5 + 34c6)c4 + 54c2
3c7

�
c2 − 18c2

3

�
11c2

4 + 8c3c6
��

27c5
2

c1

+O
(
c2

1

)
.

As for the potential of case (b), this is obtained by choosing

k2 = −
c4

3c2
;

k3 =
9c5c2

2 − 12c3c4c2 + c1c2
4

4c3
2

;

k4 = −
9c5c2

2 − 12c3c4c2 + c1c2
4

18c3
2

;

k5 = 0 ;

k6 =
−6c7c3

2 + 8c2
4c2

2 + c1
�(4c8 + 27c9 − 27)c2

2 − 2c4(27c5 + 4c6)c2 + 18c3c2
4

�

12c2
�
c3

2 − 6c1c3c2 + c2
1c4

� ;

k7 =
c2(−9c4c5 + 8c4c6 − 4c2c8) − 36c3

�
c2

4 − c2c7
�

12c3
2

+

�
−3

�
−27c2

5 + 8c4c7 + 8c3(4c8 + 27c9 − 27)� c2
2 + 4

�
7c3

4 + 6c3(45c5 + 8c6)c4 + 216c2
3c7

�
c2 − 1440c2

3c
2
4

�

48c5
2

c1

+O
(
c2

1

)
;

k8 =
−9(c9 − 1)c2

2 + 21c4c5c2 − 10c3c
2
4

18c3
2

+

�
−144c2

3c
2
4 + 216c2c3c5c4 + c2

�
4c3

4 − 81c2c
2
5

��
c1

216c5
2

+O
(
c2

1

)
.
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