
1

Gradually Learning Programming Supported by a
Growable Programming Language

Walter Cazzola and Diego Mathias Olivares

Abstract—Learning programming is a difficult task. The learn-
ing process is particularly disorienting when you are approaching
programming for the first time. As a student you are exposed to
several new concepts (control flow, variable, etc. but also coding,
compiling etc.) and new ways to think (algorithms). Teachers
try to expose the students gradually to the new concepts by
presenting them one by one but the tools at student’s disposal do
not help: they provide support, suggestion and documentation for
the full programming language of choice hampering the teacher’s
efforts. On the other side, students need to learn real languages
and not didactic languages. In this work we propose an approach
to gradually teaching programming supported by a programming
language that grows—together with its implementation—along
with the number of concepts presented to the students. The
proposed approach can be applied to the teaching of any
programming language and some experiments with Javascript
are reported.

Index Terms—Teaching of programming, gradual learning,
modular development of programming languages, modularity.

I. INTRODUCTION

Learning programming is a difficult task. It is widely
accepted that to turn a novice into an expert it takes more or
less ten years [1], [2]. Some studies [3]–[6] have been done
about why to learn programming is so complex and basically
it has turned out that the chosen programming language and
the exposure to the single programming concept are part of the
problem. Schneider [7] pointed out ten principles—still up-to-
date—about teaching programming that can be summarized
in: learning programming is not learning a programming
language and students must learn real programming languages
and tools. The survey reported in [8] and the TIOBE index1

show that imperative programming languages such as Java,
C and C++ are the most popular both in enterprise and in
educational sectors. While their potential and versatility is
mostly undisputed, their innate complexity and the complexity
of their tools could risk to divert students’ attention from the
key point of learning appropriate programming techniques in
general. Students that approach learning programming tend to
focus on learning the programming language since it looks
more practicable and it needs a certain and—in students
eyes—quantifiable amount of time to learn how to use it, its
syntax and its tools. The prominent issue lies within the core
components of these languages: each programming language
consists of many different features—such as control flow,

This work was partially supported by the MIUR project CINA: Composi-
tionality, Interaction, Negotiation, Autonomicity for the future ICT society

Walter Cazzola is with the Computer Science Department at Università
degli Studi di Milano. He can be contacted at cazzola@di.unimi.it.

1www.tiobe.com

variable definition, functions, and so on—, each bound to a
different construct or group of constructs of the language.
Due to their strict intertwining, the students are forced to
keep up with a considerable quantity of unknown constructs
and concepts since the beginning. This issue aggravates if we
consider that many of these constructs are not meant to be fully
explained until much further in the course, or worse, never. Let
us consider the Java version of the HelloWorld program:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello world");
}

}

This code snippet is typically used in the very first lesson
to explain students a couple of basic concepts—such as
strings and standard output—but they are also accidentally
exposed to many more concepts that cannot be hidden: class
declaration, methods (declaration and use), access modifiers,
packages, static members, arrays, arguments and types.
Typically, the teacher skips such concepts asking the students
to learn them by heart promising a proper explanation in
due time. Such an approach contributes to create a sense
of incompleteness and disorientation and the students get
the whole picture and have a full comprehension of what
they do only at the end. Look at [9] and [10] to have a
full comprehension of the problem of anticipating advanced
concepts at the beginning of the learning. Also support tools,
as IDEs, do not help the teacher in the compartmentalization
of the programming concepts [11] since they provide the
students with code skeletons to fill—e.g., look at the effect of
the Eclipse’s «new↪class» menu entry—without considering
any language restriction.

Bruce et al. [12] presented a phenomenographic study about
how first-year university students perceive the first program-
ming course experience. As a study result, they categorized the
replies upon what the students focus on and expect from an
introductory programming course. From Bruce et al.’s study
it is fairly evident that the more a student refines his idea
about what being a programmer and solving problems implies,
the less he recognizes the language syntax as a fundamental
basis for the course. The need for a precise syntactic pattern to
smooth the learning curve is directly proportional to the desire
of just "passing" the course without any genuine interest in it.
On the opposite a student aware and committed to his role as
a programmer and confident in the rest of the programming
community manages to see a language as a mere tool to solve
problems.

Teaching basic and advanced programming courses taught

www.tiobe.com

2

us that students tend to confuse the learning of programming
with the learning of the programming language. The students
try to master the programming language by learning any tiny
little detail of it; in the hope that such details hide an easy
solution to the proposed assignments: to master the language
to rule over all the problems. Evidently, this approach pro-
motes the wrong belief that to learn programming means to
learn the programming language instead of the correct thinking
that programming is a matter of being able to solve problems
independently of the used programming language. As Bret
Victor [13] said «Learning about “for” loops is not learning
to program, any more than learning about pencils is learning
to draw.»

Problem solving is typically taught by examples [14] and
this approach seconds the misbelief the students have about
what programming is. The solution to a problem is often
presented as an already cooked algorithm written in the
programming language of choice. Hardly the teacher has the
time during his/her lesson to present the mind process to get to
such a solution, since he/she is already busy in describing the
syntactic constructs used in the program, what they do, and
all the possible variants the language proposes. Students that
still have to tune up their programming skills are disoriented
by this approach: they understand what the program does
but they cannot either cook their own solution or adapt the
proposed solution to a different context (see [4] for a study
that supports this observation). More pre-cooked solutions
they get and more difficult for them becomes to separate
the programming language from the problem solving. At the
very end, students rarely get acquainted to the full-extent of
the programming language they use, and they feel disoriented
when facing problems that slightly divert from those presented
in the lectures. Even smarter students maintain a solving
approach based upon few constructs that they master at the
best, which often is not the most effective approach: it is
really hard to eradicate bad habits when students are focused
on learning the language rather than the problem to solve. The
first programming language learned marks the programmer
indelibly [15] and this also applies to the language constructs
the programmer learns first. This is a more evident side-effect
when the learner is exposed to the whole language since the
beginning and without any constraints on what construct to
use in solving a given problem. As Mason and Cooper [16]
found out through their experiment most of the problems
students have with learning how to program is bound to
the cognitive resources the students put at disposal and the
excessive cognitive load to learn a full programming language
demands them.

Training students to problem solving means to let them fully
explore what they have at their hands, sometimes addressing
them to different solution strategies but if the tool is too
complex, the exploration requires too much time that the
students steal from thinking about the problem. Sometimes the
only way to get students to experiment something is to force
them in that direction by limiting the choice to a particular
group of language constructs. Some extreme positions include

to delay the coding and thus the learning of the language2

and to substitute a programming language—rich of syntactic
constraints—with a formalism independent of any syntatic
aspect as either a modelling language as in [17] or pseudo-
code as in [18]. In our opinion, this could help the students
to focus on the problem solving aspect of programming but
coding and all the other aspects related to it (e.g., compiling,
debugging) are part of the learning process and cannot be
avoided. However, we agree that if the students could have
access to only a portion of the language and adequate support
tools at any stage of their learning process they could focus
more on the problem solving aspect and gradually master both
the language and how to use it to solve problems. This view
is perfectly in line with Kirschner et al. [19] experiment that
reports a failure in teaching programming without a deep and
gradual guidance as accidentally happens when the students
are exposed to full language since the beginning. In the
remainder of the paper we present our approach to teach how
to program that adopts a programming language customizable
by the teacher to his/her needs.

Paper outline. In Sect. II we describe a general idea
and model about how programming can be gradually taught
to students with the support of an incremental development
framework. In Sect. III, we instantiate the proposed teaching
model to use the Neverlang development framework to teach
Javascript and summarize our first experience. Finally in
Sect. IV and Sect. V we discuss some related work and draw
our conclusion respectively.

II. GRADUAL LEARNING OF PROGRAMMING

Summarizing our experience as teachers and those reported
in the literature (see Sect. I), we could conclude that the
students have to:
● focus on problem solving;
● learn mainstream programming languages; and
● be gradually exposed to new concepts

in order to render more effective the learning of program-
ming. Therefore the teaching strategy that accomplishes such
requirements should be the one where the students are guided
to learn how to program with a language through a gradual
and tool supported disclosing of language features.

A. Gradual learning: The idea.

In other words, students should interact with a growing
subset of the language along the whole course to master one
concept at a time.

Basically, this is what every teacher does by compartmental-
izing the arguments but this is normally hampered by support
tools that consider the language as a whole [11]. To really turn
on, this idea we need a (mainstream) programming language
whose charateristics and implementation can modularly grow
together with the number of concepts the students have al-
ready learned. Unfortunately, all the mainstream programming
languages miss this last characteristic. Their compilers/inter-
preters are monolithic, the languages are designed as a whole,

2http://www.edutopia.org/blog/radically-transforming-teaching-
programming-1-ajit-jaokar

http://www.edutopia.org/blog/radically-transforming-teaching-programming-1-ajit-jaokar
http://www.edutopia.org/blog/radically-transforming-teaching-programming-1-ajit-jaokar

3

and although students could be guided with some formal
restrictions, the support tools ignore such restrictions. The
development of ad hoc support tools as ProfessorJ [11] can
support the teacher with language restrictions only as long
as the students will not directly interact with the language
interpreter/compiler. Consequently, the teacher should rely on
a programming language whose implementation grows at the
pace of what the students are learning and whose growth can
be conveyed according to the teaching needs.

One possibility could be that the teacher partitions the
language of choice in subsets according to the desired teaching
order and then implements the compilers/interpreters corre-
sponding to each subset. This solution subsumes that the
teacher has a good knowledge about language grammars and
compiler development, and this would also be a highly time-
consuming task and a teacher could be disheartened by such
a burden. In alternative, the teacher could exploit one of
the frameworks that already supports the partitioning of the
language to teach (see Sect. IV). The problem with such frame-
works is their low degree of freedom: the proposed partitions
are predefined and can rarely be customized by the teacher;
both teacher and students are subdued to the framework’s
developers decisions about the right learning/teaching pace.

Nowadays however new instruments allow the language
designer to build compilers and interpreters in a different
and non-monolithic way. The concept of modularity has
spread from basic software engineering to programming lan-
guage development as well: with the introduction of tools
like LISA [20], Silver/Copper [21], Spoofax [22], and Never-
lang [23]–[25] the development of programming languages
has taken a new turn towards language extensibility and
reusability. As we will show, these tools can be used to develop
a complete implementation of the language of choice, that can
be restricted and extended following the teacher decision with
little or no effort. This will smoothly support gradual learning
and will enable the teacher to define his subdivision of the
language at any time and towards any direction.

Clearly, a modular language design framework is not suf-
ficient by itself to accomplish our idea. In the first place
a complete modular implementation of the language of our
choice is necessary. This will be the foundation for the whole
compartmentalization used in the course; besides, the teacher
should be enabled to easily navigate, select and compose the
available set of language features to form the necessary support
tools. Tools as FeatureHouse/FeatureIDE [26], [27] for Spoofax
and AiDE [28]–[30] for Neverlang can support the teacher on
such a task.

B. Gradual learning: the model.

In the proposed model, the teacher initially has to prepare
the course by partitioning the programming language of choice
in a set of usable sub-languages according to the programming
concepts he wants to present and in which order. Such sub-
languages must be sortable in a sequence where—apart from
the first sub-language—every sub-language adds some pro-
gramming concepts to the previous one in the sequence and
the last one corresponds to the original language. Given such a

La
ng

uag
eGrowth

N
ew

C
oncepts

Exposure
Stude

nts
’ P

ra
ct

ic
e

Fig. 1. The learning stage

sequence, the learning process passes through three reiterated
steps (depicted in Fig. 1):

1) language growth;
2) exposure to new concepts; and
3) students’ practice

An iteration through these three steps is—what we call—a
learning stage and it coincides with the teaching/learning of
one sub-language. The three steps have to be reiterated until
all the sub-languages have been taught or the desired language
coverage is reached.

Language growth. This step corresponds to the work the
teacher has to do to pass from one learning stage to the
next in the sequence. As the language grows—that is, when
the teacher decides it is time to present new programming
concepts—the support tools have to grow as well—that is,
the students must have a compiler/interpreter that supports
exactly the programming concepts they should know at the
end of that learning stage. For example, if the language
used in the previous learning stage and the new one differ
for the presence of the for loop the new compiler will be
compliant to the one used by the students so far and it will
also support the for loop. Technically speaking, the teacher
decides which programming concepts wants to teach and to let
the students experiment on; selects the modules corresponding
to such programming concepts among those provided by the
modular language design framework and composes them to
form the needed compiler. Each learning stage relies on the
tools prepared in the previous stage enriched only by the
modules for the newly introduced concepts [31]. The selection
and composition of the modules can be eased by using specific
tools [27], [29]. Basically, the idea is that each new learning
stage provides a number of new concepts that the students have
to focus on. Thus, the approach is more effective as the number
of new concepts to master is small and strictly related to each
other. The new support tools are installed in the laboratories

4

and passed to the students.
Exposure to new concepts. The teacher exposes the

students to the new concepts. This is done through a batch
of frontal lectures and some hands-on sessions where the
students will experiment the new concepts on the development
framework prepared in the previous step. The length of the
exposure depends on the number of new concepts introduced,
the estimated difficulty of the new concepts and the learning
pace of the class. This last point affects the length of a single
learning stage that could change from a course edition to
another. The teacher can shorten or widen the learning stage
acting on the number of hands-on sessions: if the students
master the new concepts faster than expected, some hands-
on sessions can be removed, otherwise, some should be
introduced to help the students.

The gradual introduction of programming concepts helps the
students to exclusively focus on the new concepts. This has
the benefit that at any time any example the teacher shows to
the students will only use those concepts that the students are
acquainted with. Let us reconsider the HelloWorld example,
presented in the introduction, and the number of issues it has
when used in the first lecture on Java. With our approach
these issues can be avoided by restricting the first Java’s sub-
language to only contain constant strings and the printing
functionality, as in:

println("Hello world")

As said before, the programming concepts in a real pro-
gramming language are intrinsically intertwined and the later
introduction of a new concept can affect how the concepts
already in the language behave. For example, a partition where
the expression language on integers is a sub-language that
is extended with strings and the juxtaposition operator (+).
In this case, integers and strings can be used in the same
expression—as in "a"+0—whose interpretation hides some
extra concepts—as implicit type conversion. Thus, the frontal
lessons should face the intertwining of the new concepts with
those already learned and should show their interoperability
within the language context. Particular emphasis should be
put on how some language constructs evolve through these
additions, and how the composition of constructs from differ-
ent sources can increase the complexity and the variability of
the language semantics. As with a standard course, each of
these new topics should be contextualized within a proper set
of examples, which will work as guidelines for the next steps;
some examples can be used along the whole course to show
how these can vary when new concepts are introduced.

Students’ practice. The last step of a learning stage fo-
cuses on self-learning. Students cannot really master new pro-
gramming concepts if their only exposure to them is through
the guidance of the teacher: they have to autonomously work
with the new concepts on some homework prepared by the
teacher. In the traditional approach this activity represents a
potential risk for information smuggling: students can look
for help on different sources—as the Internet, friends and
relatives—that could provide suggestions that pass over the
compartmentalization imposed by the teacher. As seen in [4],
to anticipate new concepts can disorient the students—they

can apply the solution without understanding how and why it
works—, the students will focus their attention on exploring
the new concepts rather than mastering the concepts already
at their disposal and last but not least the students will spend
more time on the programming language than on the problem
solving aspect [32]. It is important to notice that in every
learning stage only a subset of the programming language is
available and the code written for that subset cannot run in a
standard environment for that language but it only runs on the
environment prepared by the teacher. Therefore, each stage has
its own support tools that will render useless those helps that
need programming concepts not in the language yet. Students
are forced to solve these problems within the boundaries of
their environment, and in some cases they are driven to solve
previous problems using a whole different approach. Being
driven to make as much profit as possible out of such a limited
set of resources is what in our view trains problem solving
versatility in the most effective way.

C. Modularity as a learning asset

The high mutability derived from modular composition
could improve a programming course in several ways. First
of all, a compiler created in this way can be adapted to fit
in—without exceeding—what the students should learn lesson
by lesson. A restricted scope helps to concentrate and exploit
available features in a better way. This is particularly impor-
tant when the teacher has to deal with both novice learners
and autodidact programmers. It is undeniable and commonly
appreciated that the interest in a computer science degree often
derives from a self-nurtured interest. However unsupervised
learning has the possible downside of resulting in some ac-
quired quirks, not to say completely wrong coding behaviors.
In our field experience, this commonly involves misuses of
language constructs, limited problem solving capabilities—
they code before thinking—and poor coding etiquette. The
proposed teaching process can therefore be seen as a complete
rewiring of what students should already know, aimed at
making them (re)discover all possible approaches when facing
a problem.

Moreover, the flexibility of a modular structure enables
different learning paths tailored on the degree character-
istics and course targets. So far, we chose—for sake of
comprehensibility—to describe the approach as to be bound to
a linearly incremental model, but this is far from being manda-
tory. Let us remind that language features cannot be considered
as independent compartments: most of them actually have
strong cooperative bounds between each other representing
their related crosscutting concerns. These relationships would
come to light as soon as any pervading feature gets included
into the compiler bundle. If the teacher perceives that this
could trigger some learning dynamics which he wants to
postpone, he can as well decide to temporarily remove some
old features in order to force the students to focus on the new
features and to postpone the effects these concepts have on
those already learned.

Such versatility implies another interesting asset: compiler
growth guidelines do not have to be unique and predefined.

5

ExpressionsStatements

Functional

Concern

Object Orientation Variables

...

Fig. 2. Radar chart describing some of the potential learning paths

It is true that the final goal should always be to help students
learn programming and master a programming language as
a versatile and complete tool, but we are not limited to a
single learning path. Figure 2 shows the interdependences
between the programming concepts of a language and the
possible learning paths a teacher can follow. The origin of
the radar chart represents the empty language and each axis
represents the degree of completion of a given programming
concept—the complete language coincides with the external
boundaries of the chart. According to what the teacher wants
to prioritize, the growth of the language can protrude toward
different directions before completeness. For example, it is
either possible to prepare a course that starts by exploring in
detail imperative constructs and internal state mutability, or a
course based on the functional paradigm with first order func-
tions, list type, operations and so on. The essential condition
is that within every learning stage, modules should be added
with respect to their dependency requirements (see [28]–[30]).
This has to be done to maintain the internal language grammar
consistent and devoid of gaps or unsatisfied rules—e.g., adding
a list comprehension feature before defining other basic list
manipulation constructs is useless. Both the incremental nature
of this method and the finiteness of the language guarantee that
regardless of the chosen approach, the final progression status
will coincide with the complete language.

D. Course/language partitioning

Few things should be considered when partitioning a pro-
gramming language for teaching:
● Each sub-language must be usable, that is, at each learn-

ing stage the sub-language contains enough programming
concepts to permit the students to experiment with them.

● Each programming concept depends on other program-
ming concepts—e.g., conditional statements need boolean
expressions or something equivalent.

● Each sub-language must be self-contained—i.e., all the
dependencies of a programming concept must be satisfied
by the concepts in the sub-language itself.

Dependencies among programming concepts provide a re-
lationship useful to group the programming concepts and par-
tition the language. Programming concepts can be structured
in a dependency graph and topologically sorted. Slicing the
dependency graph according to the topological sort provides a
set of sub-languages that respect the last two considerations.
On the other hand, the resulting partition could be far from any
teaching asset and the sub-languages could contain too many
programming concepts to fit in the proposed learning model
or could break the first consideration at all. Dependencies can
be used to automatically provide an initial partition, but the
teacher has to fine tune the result to his teaching decisions.

Dependencies represent also the blocking factor for the
whole process. Programming concepts could be too inter-
dependent and therefore difficult to split in separate sub-
languages according to the teaching needs. For example, ex-
ception handling in Java relies on objects—exceptions in Java
are objects—but exception handling is a general programming
concept and it could be desirable to introduce it independently
of the object-oriented concepts. To accomplish this need, some
less demanding variants can be provided for any programming
concept—e.g., an exception handling mechanism that deals
with integers instead of objects—that will be replaced by
the full version once the students are acquainted with all the
needed concepts, i.e., they are in the sub-language used in the
current learning stage.

Partitioning can be carried out by directly choosing which
modules should or should not be composed in the sub-
language compiler. This, even if feasible, implies that the
teacher has enough skills and time to dig through compiler
code and can manually recognizes the dependencies to respect.
This is not always the case and this process should be assisted
by specific tools as in [27], [28].

III. GRADUAL LEARNING: AN EXPERIMENTAL SET-UP

In the previous sections, we motivated and presented a
general model for gradually teaching programming to fresh-
men students. Basically, this model relies on exposing the
students to few programming concepts at a time with the
support of an extensible language whose growth follows the
teacher’s teaching pace. Now we present an instantiation of
the model that exploits the Neverlang development framework,
the description of an experiment with the gradual teaching of
Javascript, and the discussion of some initial results.

A. Neverlang language environment & AiDE

The Neverlang [23]–[25] development framework promotes
code reuse and sharing by making language units first-class
concepts. Language components are developed as separate
units that can be compiled and tested independently, enabling
developers to share and reuse the same units across differ-
ent language implementations. The base unit is the module

(Listing 1). A module—that coincides with a programming
concept—may contain a syntax definition and/or a semantic
role. A role defines actions that should be executed when
some syntax is recognized, as prescribed by the syntax-
directed translation technique. Syntax definitions are portions

6

Fig. 3. AiDE screenshot showing part of the feature model for Neverlang.JS (selected features are in green).

module com.example.AddExpr {
reference syntax {
AddExpr^ Term;
AddExpr^ AddExpr "+" Term;

}

role(evaluation) {
0 { $0.value = $1.value; }
2.{ $2.value = (Integer) $3.value + (Integer) $4.value; }.

}
}

slice com.example.AddExprSlice {
concrete syntax from com.example.AddExpr
module com.example.AddExpr with role evaluation

}

language com.example.CalcLang {
slices com.example.AddExprSlice com.example.MulExprSlice

com.example.ParenExprSlice com.example.ExprAssocSlice
com.example.NumbersSlice

roles syntax < evaluation < ... // other roles
}

Listing 1: Neverlang’s slice and language constructs.

of BNF grammars represented as sets of grammar rules or
productions. Semantic actions are defined as code snippets
that refer to nonterminals in the grammar.

Syntax definitions and semantic roles are tied together
using slices. For instance, module com.example.AddExpr in
Listing 1 declares a reference syntax for sum, and actions
are attached to the nonterminals on the right of the two

productions by referring to their position in the grammar. The
slice com.example.AddExprSlice declares that we will be
using this concrete syntax in our language with that partic-
ular semantics. Finally, the language descriptor (Listing 1),
indicates which slices are required to be composed together
to generate the compiler for the language. The language de-
scriptor is the cornerstone of the whole mechanism and allows
for easily restricting or extending a programming language. To
transparently cope with the dependencies each programming
concept has on other programming concepts, the AiDE tool is
provided to select the desired components and to automatically
generate the corresponding language descriptor.

The AiDE tool uses an internal clustering algorithm exploit-
ing Neverlang dependency definitions to synthesize, optimize
and manipulate the language’s feature model (See Fig. 3).
Through an interactive graphical user interface, the user can
toggle different nodes of the feature model, triggering chain
activation toward their parents or deactivation toward their
leaves if required. While, an internal builder dynamically
updates an internal implementation of a temporary language,
adding or removing slices as necessary. The user can bind
the ongoing language interpreter configuration to an interac-
tive console, to verify the consistency of its language and
test its behavior. When the language satisfies the required
expectations, a stable copy of the development environment
is prepared and ready to be dispatched to any JVM compliant

7

1

Numeric type
+ expr.

2

Boolean type
+ expr.,

Rel./Eq. expr.

3

String type +
expr.

4

Variable decl.
+ assign

5

Conditional
stat./expr.

6

Loop
statements

7

Code block,
break +
continue

8

Functions

9

Recursion

10

First-class
functions

11

Objects,
methods

12

Exception
Handling

13

Constructors,
prototype

model

Fig. 4. Learning stages used to teach Javascript.

Language

Functions

Simple First-class Recursion

Statements

ExprExpr ConditionalConditional Var. decl. Loops break/continue Block Exc. handling

Expressions

String Assign Cond. Fun. calls NumericNumeric Eq./Rel.Eq./Rel. BooleanBoolean

Literals

NumericNumeric BooleanBoolean String Vars Obj./Arr.

Fig. 5. An abstraction of the Javascript feature model.3

workstation.
The Neverlang development framework is shipped with a

modular implementation of Javascript [33]. This implemen-
tation covers the ECMAScript 3 language specification. This
Javascript modularization provides more than 50 programming
concepts implemented in 73 slices—over 3000 code lines). A
Java modularization is under implementation.

B. Gradual learning experiment

At the moment, the experimentation is quite limited and it
has mainly focused on tuning up the whole process. Javascript
was a forced choice since it is the only real programming
language with a modular implementation in Neverlang. While
it is true that rarely Javascript is mentioned as a propaedeutic
programming language [34], its richness of programming
concepts provided an interesting test bed for the course com-
partmentalization.

3The full feature model we get from AiDE is available at http://neverlang.
di.unimi.it/aide/njs_graph.png.

The Javascript has been split in 13 sub-languages or learning
stages. Figure 4 shows the chosen partitioning and also the
adopted teaching path. Each sub-language extends the previous
in the sequence with more programming concepts. The last
sub-language coincides with the full Javascript. The considered
sub-languages are:

1) the expression language on numbers;
2) boolean type with boolean and relational operators;
3) string type with operators on strings;
4) variable declarations and assignments;
5) conditional statements;
6) loop statements;
7) code block, scope, break and continue statements;
8) functions without recursion;
9) recursion;

10) first-class functions;
11) objects and methods;
12) exception handling and
13) constructors and the prototype model

http://neverlang.di.unimi.it/aide/njs_graph.png
http://neverlang.di.unimi.it/aide/njs_graph.png

8

var n = 10
var result = 1

while (n > 1) {
result = result*n;
n = n-1;

}

result;

function factorial(n) {
var result = 1;

while (n > 1) {
result = result*n;
n = n-1;

} return result;
}

factorial(10);

a) with the 7th sub-language b) with the 8th sub-language

function factorial(n) {
if (n <= 1)
return 1;

else
return n*factorial(n-1)

}

factorial(10);

function MyMath() {
this.factorial = function(n) {
if (n <= 1) return 1;
else return n * this.factorial(n-1);

}
}

new MyMath().factorial(10);

c) with the 9th sub-language d) with the 11th sub-language

Listing 2: Evolution of the factorial implementation with the evolution of the Javascript sub-sets.

Once decided the learning stages, we followed the idea of
a smooth expansion of the language capabilities, starting from
an essential core calculator and gradually adding different
kinds of expressions, literals and statements to finish with
more complex concepts as functions, objects and exception
handling, in accordance to the programming concepts relevant
to each single stage in the chosen learning path. From the
teaching point of view, we focused on the main programming
concepts: to what extent these have to be taught is at teachers’
discretion.

Each sub-language has its own interpreter that imposes the
students’ boundaries about what they can or cannot experi-
ment with. Particular relevance relies on the evolution of the
programming concepts when other concepts are introduced,
e.g., in the first ten sub-languages numbers and booleans
were just primitive types; once the objects are introduced
in the language (11th sub-language) they are wrapped into
objects whenever a method is applied to them. This was
realized through different implementations of the same concept
to be used according to the progress of the learning path.
These extra modules were realized for this experiment since
not available in the original modularization. The code we
additionally implemented represents more or less the 7% of
the total.

The subdivision of the concepts in learning stages has
been done without considering the language modularization
provided by Neverlang but according to the teaching needs.
Once all the stages were clearly defined we started to cope
with Neverlang and AiDE to realize the support tools (the
interpreters of the sub-languages in our case). AiDE (Fig. 3)
provides a graphical interface to the available programming
concepts to choose from. Basically, all the programming
concepts are structured in a feature model [35] that shows
the dependencies, alternatives, and incompatibilities between
concepts. Selecting a programming concept automatically in-
cludes all the programming concepts such a concept depends
on—e.g., the inclusion of the * operator automatically includes
the numeric primitives. The few variants—of the same concept

we had to define—were introduced as mutually exclusive
alternatives and an explicit choice was necessary to include
the correct version at each learning stage.

Figure 5 depicts an abstract view of the Javascript feature
model. In particular, it shows the AiDE configuration related
to the fifth sub-language. All the programming concepts with
a solid border are part of the language. Nodes filled with the
same pattern represent programming concepts belonging to
one of the previous sub-languages: numeric (), booleans (),
and conditional statement concern (). The red dashed lines
() represent dependency relationships between single
features, that must be respected to guarantee a stable growth.
Inner nodes represent groups of programming concepts, while
nodes with a dashed border () denote programming concepts
not selected yet. Out of this configuration we get an interpreter
supporting only the selected programming concerns and that
can be used by the students in the corresponding learning
stage.

Each learning stage focused on the study of the new pro-
gramming concepts both in theory through frontal lectures but
especially on hands-on sessions and homeworks. The hands-on
session had a semi-tutorial structure and helped in focusing on
some proposed problems and their solution with the available
programming concepts. Some of the proposed problems are
repeated from a learning stage to the other to permit the
students to experiment on how the problem solution can benefit
from the newly introduced concepts. For example, the factorial
is one of the recurring problems and Listing 2 reports some of
the most interesting variants. These four code fragments show
the evolution of the factorial implementation along with the
progresses on the Javascript coverage:

1) The first script has been realized in a pure imperative
context, with only variables, numeric and boolean types,
arithmetic and relational expressions, assignments, con-
ditional and loop statements.

2) The context evolves through the addition of functions
without either recursion or first-class.

9

3) The next step adds the availability of recursion within
function body allowing for a significant code simplifica-
tion.

4) In the last version, an object is created as a container for
the value, and the function is used as one of its methods.
This further expands the idea of variable scoping and
contextual binding (this).

Few things should be said about the considered learning
path. We decided to initially focus on the imperative aspect of
Javascript then on functions and only finally on objects. We
are aware that this could be arguable, but this is not our point:
any teacher can be comfortable in teaching programming
following the path he prefers. The proposed model is not
stick to a particular learning path, but it depends only on
the teacher’s decisions: this is the point. It is pretty easy
to change the learning path and give more emphasis to
functional programming: it is just a matter of selecting the
programming concepts related to function declaration, function
call, recursion, and first class functions before those about
variables, assignments and control flow statements. Roughly
speaking the 8th, 9th and 10th sub-languages in Fig. 4 should
be set before the 4th sub-language in the learning path.
The “roughly” is because the new partitioning would have
completely new sub-languages than those we used. This also
bring forth to some different implementations of the proposed
exercises, e.g., a first significant version of the factorial script
can already be realized with the 5th sub-language:

function factorial(n) {
return ((n <= 1) && 1) || (n * factorial(n-1));

}

factorial(10);

that will be completely functional and a gradual language
increment will divert factorial implementation from those
shown in Listing 2—e.g., to show a functional version that
does not use recursion becomes impossible since without
both loops and recursion you cannot implement the factorial.

Also the linear progression is not set in stone, as program-
ming concepts can be added from a learning stage to the other
it is also possible to remove them and it is completely up
to the teacher. Hence, for example, if the teacher decides
that functions and recursion are not necessary—if not an
obstacle—to the learning of the full extent of the control
flow statements he can remove them from the programming
language and fork the learning path.

C. Experimental evaluation

The initial experimentation has been done with a set of
10 subjects chosen among the freshmen enrolled to the first
year programming course of the computer science degree. The
students volunteered and they represented more or less the
10% of the whole class. The students went to different high
schools with different backgrounds and different final marks;
half of them already learned programming, a couple of them
were autodidacts and one of them was already acquainted with
Javascript.

The course lasted 14 weeks with 8 teaching hours per week.
Basically each frontal lecture has at least one hands-on session

week n. slots learning stages

1

num. & expr. 1. numeric type and operators
hands on session

boolean 2. boolean type and relational operators
hands on session

2

strings 3. string type and operators
hands on session

var, array 4. arrays, variables and assignment
hands on session

3

ternary expression

5. conditional expressions and statementshands on session

if, switch

hands on session

4

while, do while

6. loop statementshands on session

for, for in

hands on session

5

block, break, continue

7. code blocks, break and continue statementshands on session

hands on session

hands on session

6

function definition

8. function definition and use

arguments, return

hands on session

hands on session

7

hands on session

hands on session

recursion

9. recursion
recursion vs iteration

8

hands on session

accumulator pattern

hands on session

first-class function

10. first class function
9

hands on session

closures, generators

hands on session

hands on session

10

objects, methods

11. objects and methods

hands on session

hands on session

setter, getter

11

hands on session

generator object

hands on session

hands on session

12

exception

12. exception handlingtry, catch, throw

hands on session

hands on session

13

func., gen. constructors

13. constructors and prototype model

hands on session

hands on session

hands on session

14

inheritance, prototype chain

hands on session

hands on session

hands on session

TABLE I
DISTRIBUTION OF THE LEARNING STAGES OVER THE 14 WEEKS

associated. Homeworks were done out of the teaching hours.
The first two weeks covered the learning stages from one to
four; since then any learning stages lasted one week apart 4
weeks for the stages from eight to ten and 2 weeks each per
the eleventh and thirteenth stages. In parallel the remaining
students were learning Java with the traditional approach. The
10 students had to do the exams with the other students
on Java, thus a few more lessons (a week) to catch up the
differences with Java were necessary. Table I summarizes the
distribution of the learning stages over the fourteen weeks.
Note that the term week is used as a logical container for
four lessons not necessarily these lessons occurred in the same
calendar week but they could span several calendar weeks to
consider holidays, breaks and strikes. Table I also highlights
the number of frontal and hands on sessions dedicated to each

10

learning stage (each slot lasts 2 consecutive hours).
The experiment has been evaluated through a questionnaire

to answer the following research questions:
1) does the proposed learning process favorite problem-

solving over programming language?
2) does the proposed learning process annihilate previous

knowledges about programming?
The questionnaires were anonymous and delivered to the
students once they passed the exam; this freed the students
from the fear of retaliation in case of a negative judgement.
The questionnaire is divided into two parts. The first part
asked for the students’ previous knowledge of programming
with questions as which languages they know, how and when
they learned it and so on—the figures at the begin of this
sub-section summarize the results of these questionnaires—
the second part were open questions about the course and the
learning process. Some of the questions were:
● Did the limited number of concepts at disposal help you

focusing on problem solving?
● Did an interpreter that supports only the known concepts

help you focusing on problem solving?
● If you already knew how to program did you benefit from

your previous knowledges?
● If you already knew how to program did you learn

programming differently from the first time?
Single answers were terse (more or less one sentence each)
and we could manually analyze them. All the answers to the
same question where collected together. From each answer
we extracted all the nouns and the associated adjectives.
For each noun the extracted adjectives have been normalized
through the use of a simple ontology and all synonyms were
replaced by a champion adjective provided by the ontology;
the normalization was necessary to level the different ter-
minology used by the students. Then the frequency of the
normalized adjectives has been calculated and used to establish
the percentage of satisfaction. The comments were positive.
All the students stated that the approach nurtured the focusing
on problem solving (50% of the students gave an excellent
judgement whereas the other 50% a very good judgement,
these last set includes all the students already acquainted with
programming). The question about the interpreter got identical
remarks and the sensation is that the students tend to unify the
number of concepts with the interpreter that supports them. All
the students already acquainted with programming admitted
that they did not benefit from the previous knowledges and
that learning was different since they had to approach problem
solving from a different perspective—limited and fixed number
of concepts at disposal. To further sum up the answers:

i) a development framework that grows with students’
knowledges helps to focus on the problems rather than
on the language,

ii) experienced students are challenged to solve the problems
without relying on the previous knowledges and from a
different perspective.

This positively satisfy our initial research questions. The
feelings of the students were in line with our expectations.
In particular, we were aware that the students already ac-
quainted with programming could be disappointed or annoyed

by the proposed approach, in fact, reading the comments
(and not their simplification) we discover that they were
initially frustrated by the approach that limited their possibility
especially on the initial problems too easy for them. In the
end they were happy about the process since it permitted to
approach different solutions to the same problem with different
programming concepts.

We are far from a real evaluation but we are pretty satisfied
with the students’ comments. Especially considered that all of
them were able to pass the exam on a different—even if—close
language. In the future, we are going to do a more exhaustive
evaluation tailored on the learning rather than on the process
that will involve more colleagues and different programming
languages.

IV. RELATED WORK

The Mini-languages approach [32], [36] arose significantly
after the first release of the didactic language Logo [37]. Those
languages consist of a simple and mostly graphic programming
environment, where an actor has to find his way to solve a
given task within its microworld: this is possible through the
insertion of a list of commands in sequence, given by the
student, by way of a simple but structured scripting language.
Most of them provide basic control structures—conditionals,
loops, recursions—and even mechanisms to create custom
instruction sets. There are many examples of them, with
distinct types of target audience ranging from elementary
school students to college freshmen. It was largely demon-
strated how the short time required to master a mini-language
allowed the students to focus on the more important issues
of problem solving and algorithm development [32], therefore
setting a well-founded basis for the learning of more complete
languages. The downside is that these languages can hardly
be extended outside the scope of their micro-world, and so
they mostly fulfill their utility as a preliminary learning tool.
Domain-specific languages can be considered today’s mini-
languages, their development is flexible enough to ease their
growing [31], [38] and therefore they could be used to teach
programming as described in this work.

SP/k [39] was one of the first experiments aimed at teaching
how to program in a complete language—in this particular
case PL/I—by providing a controlled subset. In a similar
fashion to our proposal, they developed distinct learning steps:
each of them adds new language features while retaining
the previous ones. The difference is that these steps are
precompiled, non interchangeable and strictly sequential: SP/1
starts from simple expression interpretation, SP/2 introduces
variables and assignment, SP/3 selection and repetition, and
so on. Though being considered a subset of PL/I, SP/k has its
own compiler, since some semantic concerns implicitly solved
in PL/I—e.g., automatic type conversion, typos in reference
names—are treated differently in SP/k, to solicit the attention
of the students. Of course being PL/I an obsolete language
itself, it is not realistic to think to employ such tool within
modern programming courses.

DrScheme [40] is a tool based on the Scheme programming
language, which acts as a proxy environment. It is designed

11

to limit the syntax for those Scheme features that are com-
monly misleading when used by unexperienced programmers.
Moreover it is capable of giving more precise responses when
dealing with particular errors or corner cases. The provided
environment allows to enable different levels of syntax and
protection by some predefined settings. As a complete toolset
it includes a syntax checking tool and a static debugger. Even
DrScheme is not actually modular by definition, and as much
as SP/k is created as a set of increasing clusters upon the
language syntax and features. As a learning toolset, it is strictly
paired with its graphical development environment and its
usage within the original Scheme interpreter is hardly possible.

ProfessorJ [11] is another similar tool which uses the
same approach of DrScheme applied to Java, as its graphical
programming environment itself maintains the same structure.
As an additional feature, much of Java auxiliary constructs—
class and method modifiers for instance—are given as hidden,
implicitly defined, and non-rewritable at the core of the
environment, to show their proper usage little by little, each
increasing cluster upon the language. Similarly to DrScheme
the increasing clusters are quite coarse and prearranged in a
fixed way.

V. CONCLUSIONS

Teaching how to program is a hard task. It is particularly
difficult to separate the teaching of the programming language
from the teaching of the problem solving aspect. Teachers
try to compartmentalize the programming concepts to expose
the students to few concepts at a time and get their attention
on solving the problem rather than on learning the language
syntax. This approach tends to fail due to a lack of support
by the tools that instead immediately expose the students to
the whole language. This work proposes an assisted teaching
model that permits to expose the students to few programming
concepts at a time with the support of an incremental devel-
opment framework. We experimented this teaching model by
teaching how to program with Javascript. The experience is
just at the beginning but the results look promising.

REFERENCES

[1] L. E. Winslow, “Programming Pedagogy—A Psychological Overview,”
ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17–22, Sep. 1996.

[2] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching
Programming: A Review and Discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, Mar. 2003.

[3] Y. Hofuku, S. Cho, T. Nishida, and S. Kanemune, “Why Is Programming
Difficult? Proposal for Learning Programming in “Small Steps” and
a Prototype Tool for Detecting “Gaps”,” in Proceedings of the 6th
International Conference on Informatics in Schools: Situation, Evolution
and Perspectives (ISSEP’13), Oldenburg, Germany, Feb.-Mar. 2013, pp.
13–24.

[4] I. Milne and G. Rowe, “Difficulties in Learning and Teaching
Programming—Views of Students and Tutors,” Journal of Education
and Information Technology, vol. 7, no. 1, pp. 55–66, Mar. 2002.

[5] P. Charters, M. J. Lee, A. J. Ko, and D. Loksa, “Challenging Sterotypes
and Changing Attitudes: The Effect of a Brief Programming Encounter
on Adults’ Attitudes toward Programming,” in Proceedings of the
45th ACM Symposium on Computer Science Education (SIGCSE’14),
J. Dougherty and K. Nagel, Eds. Atlanta, GA, USA: ACM, Mar. 2014,
pp. 653–658.

[6] R. F. Paige, F. A. C. Polack, D. S. Kolovos, L. M. Rose, N. Matragkas,
and J. R. Williams, “Bad Modelling Teaching Practices,” in Proceedings
of the ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’14), Valencia, Spain,
Oct. 2014, Keynote.

[7] G. M. Schneider, “The Introductory Programming Course in Computer
Science: Ten Principles,” in Proceedings of the SIGCSE/CSA Technical
Symposium on Computer Science Education (SIGCSE’78), K. Williams,
Ed., vol. 10, no. 1. ACM, Feb. 1978, pp. 107–114.

[8] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A Survey of Literature on the Teaching
of Introductory Programming,” in Proceedings of the 12th Annual Con-
ference on Innovation and Technology in Computer Science Education
(ITiCSE’07), J. Carter and J. Amillo, Eds. Dundee, Scotland: ACM,
Jun. 2007, pp. 204–223.

[9] S. Wiedenbeck and V. Ramalingam, “Novice Comprehension of Small
Programs Written in the Procedural and Object-Oriented Styles,” Inter-
national Journal of Human-Computer Studies, vol. 51, no. 1, pp. 71–87,
Jul. 1999.

[10] K. Malan and K. Halland, “Examples that Can Do Harm in Learning
Programming,” in Proceedings of the 19th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’04), J. M. Vlissides and D. C. Schmidt, Eds., Vancouver,
BC, Canada, Oct. 2004, pp. 83–87.

[11] K. E. Gray and M. Flatt, “ProfessorJ: A Gradual Introduction to
Java through Language Levels,” in Proceedings of the 18th Annual
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’03), G. Steele, Jr and R. P. Gabriel, Eds. Ana-
heim, CA, USA: ACM Press, Oct. 2003, pp. 170–177.

[12] C. Bruce, L. Buckingham, J. hynd, C. McMahon, M. Roggenkamp, and
I. Stoodley, “Ways of Experiencing the Act of Learning to Program:
A Phenomenographic Study of Introductory Programming Students at
University,” Journal of Information Technology Education, vol. 3, no. 1,
pp. 143–160, 2004.

[13] B. Victor, “Learnable Programming,” Sep. 2012, available at http:
//worrydream.com/LearnableProgramming.

[14] J. Rogalski and R. Samurçay, “Acquisition of Programming Knowledge
and Skills,” in Psychology of Programming, J.-M. Hoc, T. R. G. Green,
R. Samurçay, and D. J. Gilmore, Eds. Academic Press Limited, 1990,
ch. 2.4, pp. 157–174.

[15] M. Petre, “A Paradigm, Please—and Heavy on the Culture,” in User-
Centred Requirements for Software Engineering Environments, ser.
Lecture Notes in Computer Science 123, D. J. Gilmore, R. L. Winder,
and F. Détienne, Eds. Springer, 1994, pp. 273–284.

[16] R. Mason and G. Cooper, “Why the Bottom 10% Just Can’t Do It—
Mental Effort Measures and Implication for Introductory Programming
Courses,” in Proceedings of the 14th Australasian Computing Education
Conference (ACE’12), M. de Raadt and A. Carbone, Eds., vol. 123,
Melbourne, Australia, 2012, pp. 187–196.

[17] J. Bennedsen and M. Caspersen, “Model-Driven Programming,” in
Reflections on the Teaching of Programming, ser. Lecture Notes in
Computer Science 4821, J. Bennedsen, M. E. Caspersen, and M. Kölling,
Eds. Springer, 2008, pp. 116–129.

[18] A. L. Olsen, “Using Pseudocode to Teach Problem Solving,” Journal
of Computing Sciences in Colleges, vol. 21, no. 2, pp. 231–236, Dec.
2005.

[19] P. A. Kirschner, J. Sweller, and R. E. Clark, “Why Minimal Guidance
During Instruction Does Not Work: An Analysis of the Failure of
Constructivist, Discovery, Problem-Based, Experimental, and Inquiry-
Based Teaching,” Educational, Psychologist, vol. 41, no. 2, pp. 75–86,
2006.

[20] M. Mernik and V. Z̆umer, “Incremental Programming Language Devel-
opment,” Computer Languages, Systems and Structures, vol. 31, no. 1,
pp. 1–16, Apr. 2005.

[21] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: an Exten-
sible Attribute Grammar System,” Science of Computer Programming,
vol. 75, no. 1-2, pp. 39–54, Jan. 2010.

[22] L. C. L. Kats and E. Visser, “The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs,” in Proceedings
of the ACM International Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA’10), M. Rinard, K. J.
Sullivan, and D. H. Steinberg, Eds. Reno, Nevada, USA: ACM, Oct.
2010, pp. 444–463.

[23] W. Cazzola, “Domain-Specific Languages in Few Steps: The Neverlang
Approach,” in Proceedings of the 11th International Conference on
Software Composition (SC’12), ser. Lecture Notes in Computer Science

http://worrydream.com/LearnableProgramming
http://worrydream.com/LearnableProgramming

12

7306, T. Gschwind, F. De Paoli, V. Gruhn, and M. Book, Eds. Prague,
Czech Republic: Springer, Jun. 2012, pp. 162–177.

[24] W. Cazzola and E. Vacchi, “Neverlang 2: Componentised Language
Development for the JVM,” in Proceedings of the 12th International
Conference on Software Composition (SC’13), ser. Lecture Notes in
Computer Science 8088, W. Binder, E. Bodden, and W. Löwe, Eds.
Budapest, Hungary: Springer, Jun. 2013, pp. 17–32.

[25] E. Vacchi and W. Cazzola, “Neverlang: A Framework for Feature-
Oriented Language Development,” Computer Languages, Systems &
Structures, 2015.

[26] S. Apel, C. Kästner, and C. Lengauer, “Language-Independent, Auto-
mated Software Composition,” in Proceedings of the 31st International
Conference on Software Engineering (ICSE’09). Vancouver, BC,
Canada: IEEE, May 2009, pp. 221–231.

[27] J. Liebig, R. Daniel, and S. Apel, “Feature-Oriented Language Families:
A Case Study,” in Proceedings of the 7th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS’13),
P. Collet and K. Schmid, Eds. Pisa, Italy: ACM, Jan. 2013.

[28] E. Vacchi, W. Cazzola, S. Pillay, and B. Combemale, “Variability
Support in Domain-Specific Language Development,” in Proceedings
of 6th International Conference on Software Language Engineering
(SLE’13), ser. Lecture Notes on Computer Science 8225, M. Erwig,
R. F. Paige, and E. Van Wyk, Eds. Indianapolis, USA: Springer, Oct.
2013, pp. 76–95.

[29] E. Vacchi, W. Cazzola, B. Combemale, and M. Acher, “Automating
Variability Model Inference for Component-Based Language Implemen-
tations,” in Proceedings of the 18th International Software Product Line
Conference (SPLC’14), P. Heymans and J. Rubin, Eds. Florence, Italy:
ACM, Sep. 2014, pp. 167–176.

[30] T. Kühn, W. Cazzola, and D. M. Olivares, “Choosy and Picky: Config-
uration of Language Product Lines,” in Proceedings of the 19th Inter-
national Software Product Line Conference (SPLC’15), G. Botterweck
and J. White, Eds. Nashiville, TN, USA: ACM, Jul. 2015.

[31] W. Cazzola and D. Poletti, “DSL Evolution through Composition,” in
Proceedings of the 7th ECOOP Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’10). Maribor, Slovenia: ACM,
Jun. 2010.

[32] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and
P. Miller, “Mini-Languages: A Way to Learn Programming Principles,”
Journal of Education and Information Technologies, vol. 2, no. 1, pp.
65–83, 1997.

[33] E. Vacchi, D. M. Olivares, A. Shaqiri, and W. Cazzola, “Neverlang 2:
A Framework for Modular Language Implementation,” in Proceedings
of the 13th International Conference on Modularity (Modularity’14).
Lugano, Switzerland: ACM, Apr. 2014, pp. 23–26.

[34] R. Ward and S. Martin, “JavaScript as a First Programming Lan-
guage for Multimedia Students,” in Proceedings of the 6th Annual
Conference on the Teaching of Computing (ITiCSE’98), G. Davies and
M. Ó’Higeartaigh, Eds., Dublin, Ireland, Aug. 1998, pp. 249–253.

[35] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, Technical
Report CMU/SEI-90-TR-21, Nov. 1990.

[36] H. F. Ledgard, “Ten Mini-Languages: A Study of Topical Issues in
Programming Languages,” ACM Computing Surveys, vol. 3, no. 3, pp.
115–146, Sep. 1971.

[37] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and C. Solomon, “Pro-
gramming Languages as a Conceptual Framework for Teaching Mathe-
matics,” ACM SIGCUE Outlook, vol. 4, no. 2, pp. 13–17, Apr. 1970.

[38] I. Fister, Jr, T. Kosar, I. Fister, and M. Mernik, “EasyTime++: A
Case Study of Incremental Domain-Specific Language Development,”
Information Technology and Control, vol. 42, no. 1, pp. 77–85, 2013.

[39] R. C. Holt, D. B. Wortman, D. T. Barnard, and J. R. Cordy, “SP/k: A
System for Teaching Computer Programming,” Communications of the
ACM, vol. 20, no. 5, pp. 301–309, Apr. 1977.

[40] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and M. Felleisen,
“DrScheme: A Pedagogic Programming Environment for Scheme,”
in Proceedings of the 9th International Symposium on Programming
Languages: Implementations, Logics, and Programs (PLILP’97), ser.
Lecture Notes in Computer Science 1292. Southampton, UK: Springer,
Sep. 1997, pp. 369–388.

Walter Cazzola is currently an Associate Professor
at the Department of Computer Science of the Uni-
versità degli Studi di Milano, Italy and the Chair of
the ADAPT laboratory.

He is the designer of the mChaRM framework, of
the @Java, [a]C#, Blueprint programming languages
and he is currently involved in the designing and
development of the Neverlang general purpose com-
piler generator. He has written over 100 scientific pa-
pers. His research interests include reflection, aspect-
oriented programming, programming methodologies

and languages. He served on the program committees or editorial boards of
the most important conferences and journals about his research topics.

Dr. Cazzola has taught several courses about programming either in the
undergraduate, graduate and Ph.D. course of studies, in the last twenty years.

Diego Mathias Olivares is currently pursuing the
Ph.D. degree with the Department of Computer
Science, Università degli Studi di Milano. He is a
teaching assistant with the Università degli Studi
di Milano. He is also a member of the ADAPT
laboratory.

He is one of the contributors to the Neverlang
framework; in particular, he developed the AiDE tool
and the Neverlang implementation of Javascript. His
research interests are about the teaching of program-
ming and development of programming languages.

	I Introduction
	II Gradual Learning of Programming
	II-A Gradual learning: The idea.
	II-B Gradual learning: the model.
	II-C Modularity as a learning asset
	II-D Course/language partitioning

	III Gradual learning: An Experimental Set-up
	III-A Neverlang language environment & AiDE
	III-B Gradual learning experiment
	III-C Experimental evaluation

	IV Related work
	V Conclusions
	References
	Biographies
	Walter Cazzola
	Diego Mathias Olivares

