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General Introduction 

 

 

The global human population is expected to grow from a current 6 billion 

people to 9 billion by the year 2050 (United Nations Population Division, 

2000). Presently, more than 10% of the world’s population is 

undernourished. While global production of cereals (the most important 

food crops) has increased greatly since the 1960s, per-capita production has 

declined unsteadily since 1984 (Food and Agriculture Organization, 2002). 

Lastly, limited land availability and ongoing degradation limit the area of 

land available for agricultural. From 1961 to 2001, global cereal production 

more than doubled, from 900 million Mg to more than 2 billions (Food and 

Agriculture Organization, 2002). The vast majority of this growth was a 

result of yield (production per unit area) growth, and yield growth is the 

most realistic option for increasing production in the future (Gregory and 

Ingram, 2000; Food and Agriculture Organization, 2002) in order to be able 

to produce enough food for the global population. 

Past yield increases have been achieved through genetic improvement in 

rice and wheat varieties and maize hybrids, and the modification of 

agricultural practices, such as the use of high levels of fertilizer, the use of 

pesticides, and irrigation (Borlaug, 1983; Feyerherm et al. 1988; Tollenaar, 

1989; Duvick and Cassman, 1999; Khush, 1999; Reynolds et al. 1999). 

Future yield growth are expected to come from similar sources (Hoisington 
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et al. 1999; Khush, 1999; Rajaram, 1999; Reynolds et al. 1999; Serageldin, 

1999; Borlaug, 2000). 

On a global scale, none of the three most important cereals showed a 

significant trend of slowing yield growth, rather, all in the last fifty years 

showed substantial growth at an average rate of 62, 55, and 43 kg ha
−1

 yr
−1 

for maize, rice, and wheat, respectively (Fig. 1).  

 

Figure 1: Global maize, wheat and rice yields from 1960 to 2001 (Hafner, 

2003) 

 

Currently maize represents the single most important cereal crop by total 

production; its worldwide production exceeded 875 million metric tons in 

2012 (FAOSTAT 2012). The increasing importance of that crop comes also 

from its multiple potential uses. In many developing countries, particularly 

in Eastern and Southern Africa and parts of Latin America, maize is a staple 
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food and represents the most important carbohydrate source in the human 

diet. In industrialized nations, on the other hand, it is primarily used as feed 

for livestock (in either grain or whole-plant silage form) or as industrial raw 

material. In recent years maize also gained importance as energy crop, 

particularly in the USA where it is mostly employed for the production of 

fuel ethanol from grain and in Europe where whole-plant biomass is used 

for biogas production.  

Several studies in maize were conducted in order to dissect the origin of the 

yield gain that happened in the last 70-80 years. Of particular relevance the 

studies and review done by Duvick in particular for the United States maize 

production (Duvick, 2005); these studies give useful data and information 

that are valid for all the countries were that yield increase happened after 

hybrid introduction. Duvick tested the most important hybrids belonging to 

different decades in the same environments and applying different 

agronomic managements: the results obtained showed that the genetic 

improvements have been responsible for about 50-60% of the on-farm 

gains, and changes in cultural practices are responsible for the remainder 

40-50%. These estimations have to take into account that, because breeding 

and management interact with each other, neither factor could have raised 

yields without concurrent and complementary changes in the other. 

Numerous estimates of genetic yield gain of maize hybrids have shown, 

without exception, that genetic yield gains during the past70 years have 

been positive and linear. 
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Maize grain yields in the U.S., the most important maize producer 

worldwide, started to rise in the late 1930s, concurrent with introduction of 

hybrids and improved cultural methods. On-farm yield gains averaged 115 

kg ha
-1

 yr
-1

 during the years 1934-2004 (Fig.2). 

 

 

Figure 2: Average U.S. maize yields, 1940-2004 (Duvick, 2005) 

 

One of the consequences of the hybrid introduction in order to benefit from 

the phenomenon of heterosis, was the development of heterotic pattern or 

heterotic groups: these groups were created by breeders as means of 

maximizing the amount of hybrid vigor and ultimately grain yield in a more 

predictable manner (Tracy, 2006); they were established empirically 

through testing and choice of lines to be recombined. Lee (1995) defines a 

Heterotic groups as a “collection of Germplasm which, when crossed to 
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Germplasm external to its group, tends to exhibit a higher degree of 

heterosis than when crossed to a member of its own group”. Modern hybrids 

are the result of crossing an inbred line from a given heterotic pattern with 

an inbred line from a different heterotic pattern. Classification of these 

patterns is generally based upon several criteria such as pedigree, molecular-

based associations and performance in hybrid combination (Smith, 1990). 

For the Germplasm in use in North America and Europe for the FA0 400-

700 maturities, typically two heterotic patterns are described (Fig.3) and 

used (Stiff Stalk Synthetic, SSS, and Not Stiff Stalk Synthetic, NSS) and the 

hybrids are made crossing two inbreds belonging to these two groups. The 

pedigree origin of the “Stiff Stalk” heterotic pattern traces back to a 16-line 

synthetic breeding population developed at Iowa State University in the 

1930’s by Sprague; as a group the 16 parental lines were 75% Reid Yellow 

Dent (Troyer, 2000). The Not Stiff Stalk heterotic pool is characterized by 

having a different origin from Stiff Stalk one and could be divided in three 

sub-groups: “Iodent”, that traces back to two OPVs canned Iodent and 

Minnesota 13, “Lancaster”, that origin from Lancaster OPV and 

“miscellaneous” where are included commercial hybrid derived and “maiz 

amargo” derived germplasms. 
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Figure 3: Northern corn belt heterotic patterns (Lee and Tollenar, 2007) 

 

Hybrid maize traces its roots back to experiments on heterosis and 

inbreeding conducted by Shull and East made nearly 100 years ago, and 

methodology outlined by Shull (1908) gave rise to the modern hybrid maize 

industry (Crow, 1998). Because of the hybrid nature of the crop, modern 

temperate maize breeding has evolved into two very distinct activities: 

inbred line development and hybrid commercialization (Duvick and 

Cassman, 1999; Fig. 4 ). Inbred line development is the stage of maize 

breeding where the greatest amount of new genetic variation is present, 

created through recombination giving rise to novel alleles and new allelic 

combinations. In hybrid commercialization the genetic variation is 

potentially less, but represented by a far more refined germplasm pool; one 

that has been through extensive evaluation. 

 

https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-48
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-15
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-22
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-22
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#fig7
javascript: void(0);
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Figure 4: Overview of a modern maize breeding program (Lee and 

Tollenar, 2007) 

 

The modern maize breeding program can be viewed as an open reciprocal 

recurrent selection program (i.e., essentially treating each heterotic pattern 

as a recurrently selected population) (Duvick et al. 2004). Maize breeding 

methodologies and philosophies have not remained the same during the 

hybrid era but have evolved significantly, incorporating significant scientific 

advances in breeding and genetic theory such as early-generation testing, 

rapidly adopting improvements in agronomic management practices (i.e. 

increased plant population densities and modern herbicide chemistries) and 

recognizing how best to assess genetic potential of a genotype (i.e. 

improvements in experimental design and data analysis). The majority of 

inbred development activities in temperate corn involve the use of the 

pedigree method of breeding (Duvick et al. 2004; Mikel and Dudley, 2006) 

(Fig. 5 ). Breeding crosses tend to be made by crossing inbred lines within a 

heterotic pattern and inbred lines from the other heterotic patterns are used 

https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-23
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-23
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#ref-43
https://dl.sciencesocieties.org/publications/cs/articles/47/Supplement_3/S-202?highlight=&search-result=1#fig9
javascript: void(0);
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to improve the heterotic pattern represented by the breeding cross. The 

typical pedigree breeding scheme generally consists of a two-parent 

breeding cross within a heterotic pattern. Parent selection is based on proven 

commercial utility of the inbred lines. An F2 population is formed from the 

breeding cross. Inbreeding is performed for several generations (e.g., S2) 

using ear-to-row with each family tracing back to different F2 plants. 

During the inbreeding process, genotypes with obvious defects are 

eliminated. Early generation testing occurs around the S2 generation, which 

involves forming topcross hybrids between the S2 lines and an inbred line 

from each of the main heterotic patterns. The resulting hybrids are evaluated 

in a limited number of environments and selections based on agronomic 

performance are made. Only S2 lines that correspond to the selected 

topcross hybrids will be retained in the breeding program. The selected S2 

families are further inbred to the S5 generation where a second round of 

topcross hybrid evaluation is performed. Again an inbred line from each of 

the main heterotic patterns is used to form the topcross hybrids. The hybrids 

are evaluated in a limited number of environments and selections are based 

on agronomic performance compared to commercial hybrids. In general, all 

testing during inbred line development is done in hybrid combinations, 

involving relatively limited number of hybrid combinations, in relatively 

limited number of environments, and focused primarily on grain yield. At 

this stage any superior inbred lines are then considered for release to the 

hybrid commercialization side of the breeding activities. 
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Figure 5: Typical inbred line development scheme depicting a two-parent 

breeding cross involving two inbred lines from the Stiff Stalk heterotic 

pattern (Lee and Tollenar, 2007) 

 

Seitz identified as most important steps for modern maize breeding hybrid 

technology, the off-season nursery and the doubled haploid (DH) 

technology (Seitz 2005); in addition to that, starting from the mid-1980s, the 

development of abundant molecular markers, appropriate statistical 

procedures and user-friendly softwares, marker assisted selection became a 

tool available for the maize breeders (Bernardo, 2008). 

The DH technology, which reduces dramatically the time necessary to 

obtain fully homozygous inbred lines (Prigge and Melchinger 2012), and 

which enables the generation of a huge number of inbred lines every year, is 

javascript: void(0);
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meanwhile worldwide routinely applied in maize breeding programs. 

Typically, DH lines originate from distinct crosses between related or 

unrelated parents. In practical breeding programs, a parent is often crossed 

with several other parents in a connected design, which enables the 

evaluation of the influence of one parent in combination with several others, 

related or unrelated parents. On a chromosomal level, connected designs 

enable the evaluation of the contribution of similar or different linkage 

phases on chromosomal regions, which are contributed by the parents 

involved. 

Hybrid maize breeding involves (i) production of new candidates within 

each heterotic pool, (ii) evaluation of their line per se performance 

especially for characters related to hybrid seed production and (iii) 

evaluation of their testcross performance in combination with genotypes 

from the opposite heterotic pool (Hallauer 1990).  

The implementation of molecular markers in the maize breeding (Marker-

assisted selection - MAS) has been implemented widely in breeding for 

mono- or oligogenic resistance traits and has the potential to play an even 

more important role in the future. However, to date, the genetic 

improvement of many important polygenic resistance traits through MAS 

has posed significant challenges (Miedaner and Korzun 2012). Despite a 

large number of published quantitative trait loci (QTL) mapping studies 

focusing on quantitative resistance traits, very few reports demonstrate the 

successful application of QTL-based MAS in a practical breeding program 
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(St. Clair 2010). In fact, the long breeding history in cereals suggests that if 

any major QTL for grain yield were present to begin with, then the 

favorable alleles at these major QTLs would have been fixed during the 

domestication process or during previous selections, so currently much of 

the variation is controlled by many QTL with small effect (Bernardo, 2008). 

Typical populations used for QTL mapping include F2, backcross (BC) or 

recombinant inbred (RI) populations derived from only two parents (also 

referred as bi-parental population). The limitations of using such bi-parental 

populations are that only two alleles are analyzed and that genetic 

recombination in these populations is limited which limits the resolution for 

QTL detection. In recent year, to encompass this limitation, multi-parent 

cross designs are suggested in order to significantly increase mapping 

resolution and power. This approach is a bridge between bi-parental 

population and Association mapping on inbred panels approach. Multi-

parental populations are produced by crossing more than two inbred lines 

applying different schemes, as for example Multi-parent Advanced 

Generation Inter-Crosses (MAGIC) populations, Nested Association 

Mapping (NAM) panel, multi-parental populations (Dell’Acqua, 2015). 

Taking into account the current widespread adoption of the double haploid 

(DH) technology in major crops such as maize - that led to a tremendous 

increase in the number of new lines produced every year in the public and 

private sector during the past decade – and the development of very dense 

molecular marker coverage of the genome and more efficient software for 
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marker trait association software, highly effective selection schemes 

involving the use molecular markers should be developed to the most 

promising lines and hybrid combinations as early and as efficiently as 

possible (Technow et al. 2014). Taking into account the almost stable cost 

of phenotypic yield testing and the more and more cheaper cost of 

molecular markers analysis, a molecular marker based prediction of 

untested new DH lines is one of the most promising approach in that 

direction, if adequate levels of prediction accuracy are reached. 

Among the major trait of interest for the maize breeders, the yield and the 

harvest moisture represent two key performance traits and are well known 

as quantitative traits controlled by a very large number of genes, it looks 

interesting and not already explored in the literature a comparison of the 

main molecular marker based prediction methods: QTL mapping and 

Genome-Wide prediction. 

Grain yield is the primary trait of interest for the maize breeders; testing for 

grain yield is always done in hybrid combinations and testing is done using 

the most common current agronomic practices. The specific trait that is 

assessed is typically the machine harvestable grain yield adjusted to 15.5% 

grain moisture; this is because that moisture level is considered the water 

content is compatible with good seed preservation during storage (Capelle et 

al. 2010). 

Grain moisture at harvest (%) is used by many breeders as the best 

assessment of the “maturity” of a given hybrid, that refers to whether a 
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hybrid is adapted to a particular environment. The “ideal” hybrid is one that 

maximizes the full growing season available reaching the physiological 

maturity (i.e. black layer formation) before the first killing frost and 

facilitate moisture loss from the kernel (i.e. dry down). 

If grain moisture increases, shelling efficiency and grain quality will be 

reduced and drying costs and shrink age penalties increase. Grain moisture 

content is also an important factor which impacts the fungal development of 

Ear rot species (Xiang, 2012). Ear rot is one of the most prevalent ear 

diseases of maize occurring worldwide and is mainly caused by Fusarium 

species and results in reduced grain yield but the main loss from Ear rot is 

due to the contamination of the grain with mycotoxins which are a threat to 

the safety of both humans and livestock (Pestka 2007; Voss et al. 2007). 

There is a strong positive linear relationship between grain moisture and 

grain yield: longer season hybrids are higher yielding and have higher grain 

moisture; farmers look to the best equilibrium between the two traits for 

their specific environmental and agronomic conditions. 

These two traits showed different levels of heritability, with grain yield 

among the lowest of all traits of interest for maize (<30%) and grain 

moisture with medium-high heritability level (between 50 and 70%) 

(Hallauer and Miranda, 1988).  

Both traits are well known as quantitative traits, with a very large number of 

genes determining it. In particular yield encompass all the genes that 

determine the fitness of the organism, because depends on all the alleles that 
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positively affect all the pathways and functions affecting seed production 

and also to all those that influence to resistance to the biotic and abiotic 

stresses that can result in stalk or root lodging or dropped ears.  

Recent advances in marker genotyping technologies, coupled with new and 

powerful statistical methods, allowed the development of MAS towards 

genome-wide selection (Meuwissen et al. 2001). This approach differs from 

traditional QTL-based MAS in its ability to exploit information provided by 

dense genome-wide single nucleotide polymorphism (SNP) markers, which 

are used to predict the total genetic value of genotypes (genome-wide 

prediction, GP). Statistical methods making use of information from all 

available SNP markers are able to cover a large number of small genetic 

effects and should be suitable for highly polygenic traits (de los Campos et 

al. 2013). In addition, GP has been shown to capture adequately large effect 

QTL and additionally cover the remaining genomewide effects in a single 

statistical model (Wimmer et al. 2013).  
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Abstract 

 

Grain Yield (GY) and Grain Moisture content at harvest (GM) are complex 

quantitative traits and by far the two performance traits of major interest for 

maize breeder. Prediction accuracy of the testcross performance of untested 

Double Haploid (DH) maize lines for these two traits is of tremendous 

importance in order to increase genetic gain. We analysed genomic and 

phenotypic data of testcross progenies of 1066 DH lines genotyped with 

3072 SNP markers and derived from three large half-sib populations 

phenotyped for GY and GM in eight locations and applied cross-validation 

method to compare the accuracy of whole genome prediction (GP) and QTL 

based prediction approaches. 

GP showed higher accuracy for both traits with mean predictive ability of 

0.58 and 0.73 for GY and GM respectively in comparison of 0.15 and 0.30 

as mean predictive ability obtained using the QTL-based approach. Both 

methods showed higher accuracy in predicting GM in comparison to GY. 

The lack of accuracy for QTL based prediction confirmed the major issues 

traditionally faced in playing with QTL for polygenic and complex traits. 

For GP the simultaneous use of the three half-sib population did not 

increase the accuracy prediction obtained working within the same parental 

population while the predictive ability dropped when predicting a 

population with a training set formed by other population (0.39 and 0.58 

versus 0.53 and 0.73 for GY and GM respectively) confirming the strong 
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influence of genetic relationship between estimation set and test set on the 

predictive ability. Our experimental results confirm that Whole Genome 

prediction accuracy is surpassing QTL prediction accuracy for the two 

maize-breeding target-traits and raised the concern on the way grain yield 

and grain moisture QTL had been implemented in breeding program so far. 

One could be interested in exploring possibility to combine relevant QTL 

and whole genome prediction together to advance towards performance 

prediction accuracy increase. 

 

 

Key words: Zea mays, grain yield, grain moisture, DH lines, QTL, genomic 

selection, multi-parental populations,. 
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Introduction 

 

Maize breeders work to deliver higher yielding germplasm; in addition to 

Grain Yield (GY) they typically use Grain Moisture content at harvest (GM) 

as key selection trait: the combination of the characteristics for these two 

traits is used as key parameter for making selections among the different 

genotypes in testing (Hallauer and Miranda 1988; Meuwissen et al. 2001; 

Bekavac et al. 2008; Sala et al. 2006; Sala et al. 2012). The importance of 

the GM trait is due to the fact that maize is intolerant to cold stress being a 

native of subtropical areas and for this reason is mainly cultivated in the 

temperate zones (from mid to short-season areas) where it is planted in the 

spring. Its capacity to reach the physiological maturity and low relative 

humidity at harvest before the bad weather of Autumn is very important, 

because it has an impact on GY, grain quality, in particular because the 

correlation between GM and ear rot diseases (Xiang et al. 2012) and on the 

profitability of the crop because of additional drying of grain prior 

utilization by using fossil fuels. 

Maize is currently widely diffused around the world and it is considered as a 

tradable commodity used for several purposes such as to feed animal, for the 

agroindustry, to produce energy and in direct human consumption. This 

success was due by hybrid breeding pioneered in maize by Shull in 1908 

and then used on several vegetable crops although genetic mechanisms 

involved in the hybrid vigour are still unknown (Duvick 1999; Silva Dias 
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2010; Lippman and Zamir 2006). This technology is based on the 

development of parental inbred lines that, when crossed among them, lead 

to hybrid performance; selection of the best combinations is the basis to 

produce commercial hybrids. A weakness of this approach is that the yield 

performance and selection of new inbred lines are poorly indicators of the 

performance of derived hybrids (Bekavac et al. 2008; Hallauer and Carena 

2009). Hence, in maize breeding programs the genetic value of new inbred 

lines is assessed by their testcross performance with testers from the 

opposite heterotic pool in replicated multi-environment yield trials. 

With the advent of double-haploid (DH) technology in maize, fully 

homozygous inbreds lines can be generated rapidly, at low cost and in great 

numbers (Wedzony, 2009) and this leads to a vast expansions of potential 

hybrids that can be generated using the large number of DH lines entering 

each year a modern breeding program; because producing and testing all 

these hybrids is impossible, models of predictions of their performance is of 

tremendous importance (Bernardo, 1996).  

Until recently, prediction of testcross value of untested lines has not played 

an important role in plant breeding but now the availability of large 

genotypic information at progressively lower cost and the development of 

more sophisticated analysis software could allow reaching higher level of 

prediction accuracies. 

In addition to the classical marker-assisted selection (MAS), where only a 

subset of significant markers, linked to mostly large-effect QTL, is used for 
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selection, the Genomic Prediction (GP) approach, originally developed in 

animal breeding, where all available markers are considered without 

significance test in order to capture and used to predict the genotypic 

performance of a given genotype, is suggested as eligible to be incorporated 

into plant breeding programs (Meuwissen et al, 2001; Technow, 2014, 

Lehermeier, 2014).  

Because both GY and GM traits are well known as highly polygenic traits 

and controlled by several small effect genomic region, it has been validated 

through simulation that genomewide selection that exploits cheap and 

abundant molecular markers is superior to Marker Assisted Recurrent 

Selection (Bernardo et al. 2006). Use of molecular marker to support 

germplasm performance prediction also gain in popularity due to the 

continuously decreasing cost of genotypic data compared to phenotypic data 

(Jannink et al. 2010). 

The accuracy of marker based prediction is most often evaluated by 

applying cross-validations studies, where all genotypes are randomly 

divided into training and validation sets. The training set is used to train the 

prediction model and estimate the marker effect and the accuracy of the 

genomic prediction model is evaluated by comparing the predicted with the 

observed values in the validation set (Zhao, 2013). The composition of the 

training set is one of the key parameters affecting the GP accuracy (Abera 

Desta, 2014) and generally sample size and relatedness between Training 

Set and Validation Set has a positive effect on the accuracy. 
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In our study we addressed the above-mentioned questions in a comparative 

study of the QTL-based prediction and Genomic Prediction approaches on a 

real dataset coming from breeding program.  

We investigated the efficiency of QTL based and GP approaches for two 

traits of major interest for maize breeders (GY and GM) in an elite multi-

parental DH maize population sharing one common parent, using a cross 

validation method. Our population represent the typical situation in a maize 

breeding program where one pillar inbred is crossed with several others in 

order to get improved and develop better new cycle inbred lines. The 

specific objectives were to use real data from breeding population to (i) 

compare the level of prediction accuracy of the QTL-based in comparison to 

the GP prediction, (ii) asses the GP predictive ability gain coming from 

combining the half-sib population together in comparison to the prediction 

within the same bi-parental population and (iii) asses how the GP predictive 

ability for a given population is affected by the presence or the absence of 

its progenies in the training set.  
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Materials and methods 

 

Plant material 

 

Four FAO 6-700 elite inbreds originating from Non Stiff Stalk heterotic 

pool were used as parents of three large DH populations following this 

scheme: 3 inbreds (L1, L2, L3) were crossed to the same inbred line (L4) 

for the development of 3 connected populations sharing L4 as common 

parent (half-sib populations): Pop1 (L1 x L4), Pop2 (L2 x L4), Pop3 (L3 x 

L4) comprising 421, 388 and 257 DHs respectively for a total population 

dimension of 1066 DH lines. This multiparental scenario represents the 

typical situation in a maize breeding program where one pillar inbred is 

crossed with several others in order to get improved and develop better new 

cycle inbred lines.  

DH lines were developed using in vivo haploid induction technology (Röber 

et al. 2005). As expected the success of DH line production varied for the 

three populations so leading to differences in population size despite the 

same number of kernels per breeding starts sent to the DH process. In the 

2013/2014 winter season testcrosses were produced in winter nursery by 

crossing each DH line with one inbred used as common tester (L5) 

belonging to the opposite heterotic pool (Stiff Stalk Synthetic) in order to 

produce hybrid seeds to be tested in field trials in the next summer season. 

The L5 was used as seed parent in hybrid seed production because 
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belonging to the heterotic pool that typically has this role in commercial 

seed production and in order to produce higher quality and more uniform 

hybrid seed. Seeds from the testcrosses were used in field trials. All genetic 

material was proprietary and supplied by Syngenta Italia Spa, Casalmorano, 

Italy. 

 

Field experiments and traits measured 

 

Field trials were conducted in eight locations located in key South Europe 

corn growing areas (six in Italy-Po valley and two in Spain). In all the 

locations the best agronomic practices were applied as done by local famers 

(including full irrigation and complete control of weeds). For each 

population a separate experiment was created using Randomized Complete 

Block as experimental design, with one replication by location. Hybrids 

were machine planted in a 2 rows plot 6m length and machine harvested; 

Grain Yield, GY, (q ha
-1

 at standard 15.5% moisture) and Grain moisture, 

GM, (%) were collected at harvest time using an experimental combine. 

Current best commercial hybrids sold in that areas were included as check 

reference and planted in several replications in each locations to asses field 

spatial variation: one commercial hybrid has been repeated 312 times; other 

commercial hybrids have been repeated 120, 64 and 32 times across the 

experiments. The coefficient of variation (cv) for GY was measured for the 

repeated checks planted in each location. 
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Marker analysis and linkage maps  

 

DH populations (N = 1066) and their parents were genotyped with 3,072 

single nucleotide polymorphism (SNP) markers, distributed evenly across 

the genome, using two custom Illumina GoldenGate SNP arrays (Illumina 

Inc., San Diego California, USA).  

The SNPs represented a mixture of a subsample of the Illumina 

MaizeSNP50 BeadChip (Ganal et al. 2011) and internal Syngenta SNP chip. 

Out of the 3,072 original SNP markers, a subset of high-quality SNPs, 

polymorphic in at least one of the populations, was selected according to the 

following criteria: (i) a call rate higher than 0.90, (ii) a minor allele 

frequency higher than 0.05 and (iii) less than 20 % missing values. After 

these quality checking steps, 1,164 SNPs were available across the three 

populations for further analysis. DH lines with more than 20 % missing data 

in these 1,164 SNPs were discarded, thereby leaving a total of N = 941 DH 

lines for further analysis, with 352, 357 and 232 DH lines for Pop-1, Pop-2 

and Pop-3 respectively. For each marker and population, deviations from 

the expected segregation ratio were tested with a Chi-square test using the 

sequentially rejective Holm–Bonferroni method (Holm 1979). The marker-

based genetic distance between the four parental lines was calculated using 

the Modified Roger distance (Rogers 1972). Linkage maps were constructed 

individually for each population by using a maximum likelihood mapping 
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approach and Haldane’s mapping function (Haldane 1919). The consensus 

map was then calculated using the 1,164 SNPs that were polymorphic in at 

least one of the three populations. All linkage maps were constructed with 

JoinMap version 4.1 software (Van Ooijen, 2006). 

 

Statistical analyses of phenotypic data 

 

Location coefficient of variation (cv) for grain yield has been calculated for 

the repeated checks planted in each location in order to evaluate the field 

uniformity. 

Analyses of variance across environments were performed using R version 

3.2.0 software (R Core Team, 2013). Fixed linear models have been used to 

estimate variance components and significance of estimated effects: 

𝑌𝑖𝑗𝑘 =  𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝜀𝑖𝑗  

With: 

𝑌𝑖𝑗 the phenotypic observation genotype 𝑖 on location 𝑗,  

𝜇 the overall mean, 

𝛼𝑖 the fixed effect of genotype 𝑖, 

𝛽𝑗 the fixed effect of location 𝑗, 

𝛼𝛽𝑖𝑗 the fixed interaction of genotype 𝑖 on location 𝑗  

and 𝜀𝑖𝑗𝑘 the random residual error. 
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The genotypic-mean heritabilities have been computed from Expected Mean 

Square estimated from the fixed effect linear model, according to Hallauer, 

Carena & Miranda Filho formula (2010): 

 

 

With: 

𝑟 the number of repetition 

𝑒 the number of locations 

𝜎̂𝑔
2 the estimated genotypic variance 

𝜎̂𝑔𝑒
2  the estimated genotype*location interaction variance 

𝜎̂𝑒
2 the estimated residual variance. 

 

A Mixed Linear Model, using lme4 package, has been used to extract the 

Best Linear Unbiased Estimator of genotypes that has been later used in 

both QTL detection and Genomic Selection analysis. 

We used the following model: 

𝑌𝑖𝑗𝑘 =  𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑏𝑘𝑗 + 𝛼𝛽𝑖𝑗 + 𝜀𝑖𝑗  

With: 

𝑌𝑖𝑗 the phenotypic observation genotype 𝑖 on location 𝑗,  

𝜇 the overall mean, 𝛼𝑖 the fixed effect of genotype 𝑖, 

𝛽𝑗 the effect of location 𝑗, 

ℎ 2 =
𝜎̂𝑔

2

𝜎̂𝑒
2

𝑟𝑒 +
𝜎̂𝑔𝑒

2

𝑒 + 𝜎̂𝑔
2
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𝑏𝑘𝑗 the random effect of experiment 𝑘 within location 𝑗, 

𝛼𝛽𝑖𝑗 the random interaction of genotype 𝑖 on location 𝑗  

and 𝜀𝑖𝑗𝑘 the random residual error.  

 

QTL mapping 

 

QTL analyses were based on the genetic consensus map and were 

performed combined across all three populations (hereafter referred to as 

joint-population QTL analyses), using the MCQTL V5.5.6 software package 

(Jourjon et al. 2005) to encompass the limitations in terms of QTL detection 

coming from using only bi-parental populations. We used forward stepwise 

regression along with the iQTLm method (Charcosset et al. 2001). For each 

trait and populations empirical LOD thresholds at the 0.05 genome-wide 

significance level were assessed from 1,000 permutations, according to 

Churchill and Doerge (1994). LOD support intervals of QTL positions were 

defined as the map distance in cM spanning a LOD drop of one unit on each 

side of the LOD peak. QTL were defined as colocalizing if their respective 

peaks where 5 cM apart. A connected additive QTL model was 

implemented and in our specific case, the connected model estimated four 

allelic effects at each QTL (the effects of L1, L2, L3 and L4 parental alleles) 

in which the effect of the common parent L4 was assumed to be the same in 

all three populations. The total proportion of variance explained by the 
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model (R
2
) and the proportion of variance explained by individual QTL 

were calculated according to Mangin et al. (2010). 

 

Genome-wide prediction 

 

Genomic prediction framework provided by the Synbreed R package 

(Wimmer et al. 2012) was used for all genome-wide analysis.  

All polymorphic SNP markers meeting quality criteria (N = 1,164) were 

used in the genome-wide prediction of Grain yield at standard moisture 

(GY) and Grain Moisture at harvest (GM). Marker genotypes were coded A 

or B, A being alleles of L4 (the common parent between the three 

populations) and B the alleles of other parent of the populations. Missing 

marker genotypes were imputed using the “family” procedure from the 

Synbreed R package. A genomic best linear unbiased prediction (GBLUP) 

model was used to predict the genetic values of DH lines. The realized 

relationship matrix between the DH lines of the three populations was 

computed based on marker data according to the method proposed by 

Habier et al. (2007).  

 

Cross-validation for QTL and genome-wide prediction models 

 

The prediction performances of QTL-based and GP models were compared 

in a joint-population framework, taking into account all the three 
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populations simultaneously. For both QTL and GP analyses, we performed 

twofold CV: the data set was split into 2 subsets, one subset comprising 

50 % of the DH lines built the estimation set (ES) and was used for model 

training, whereas the remaining subset (50 % of the DH lines) constituted 

the test set (TS). This is the typical situation in maize breeding programs 

where a part of the available DH lines created, used as ES, are genotyped 

and phenotyped and the remaining ones are only genotyped and used as TS 

and their value for the traits of interest is predicted using available marker 

data. The process was replicated five times with varying allocations of DH 

lines to the two CV subsets. Each ES and each TS comprised DH lines from 

all three populations. For each of the five CV subsets, the predictive 

performance of the QTL-based and GP models were evaluated. 

For the QTL model, predictions of DH lines in the TS were based on the 

sum of additive effects of all significant QTL detected in the ES, whereas 

GBLUP predictions were based on the effects of all polymorphic SNP 

markers estimated in the ES. The cvMCQTL R package (Wimmer, 2012) 

was used to make the CV process, by running a CV loop on the QTL 

mapping routine of MCQTL. 

Predictive abilities of the different models were calculated as Pearson’s 

correlation coefficients between predicted and observed trait values in each 

TS. An overall mean predictive ability with standard deviation was 

calculated according to Luan et al. (2009). 

http://rd.springer.com/article/10.1007/s00122-015-2477-1/fulltext.html#CR27
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GP was evaluated also in additional CV scenarios: (i) prediction across 

biparental populations (hereafter referred to as across-population 

prediction) and (ii) prediction within biparental populations (hereafter 

referred to as within-population prediction). In across-population 

prediction, the ES comprised a merged data set of two populations, whereas 

the remaining population(s) represented the TS; in within-population 

prediction the ES comprised a data set of a single population, and the 

remaining part of that population represented the TS. 

 

Results 

 

Phenotypic analysis 

 

Using the repeated checks data, the Coefficient of Variation for yield was 

calculated and it ranged from 7% (in Loc-1 and Loc-5) to 12% in Loc-7, 

indicating a good field uniformity conditions in all the testing locations 

(Supplementary 1). Because of good phenotypic data quality, no any spatial 

correction was applied. 

Grain yield ranged from 50.8 to 192.2 q ha
-1

. Pop-1 and Pop-3 had the 

highest and the lowest average with respectively 134.8 and 130.8 q ha
-1

. For 

GM the data ranged from 9.6 to 32.5%. Pop-1 and Pop-2 had the highest 

and lowest values with respectively 18.9 and 18.1% (Table 1). 
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Boxplots for the two traits across locations are presented in Figure 1. For 

GY the variation across locations was smaller than for GM. For GY the 

highest yield location was Loc-2 with 145.1 q ha
-1

 on average and the 

lowest one was Loc-3 with 117.3 q ha
-1

. The average grain yield in 7 out of 

the 8 locations was comprised between 135 and 145 q ha
-1

. For GM trait, 

Loc-7 and Loc-8, that were the two locations planted in Spain, showed 

significantly lower harvest moisture level (12.1 and 11.3% respectively) 

than the remaining ones; the harvest moisture of all the locations planted in 

Italy (Loc-1 to Loc-6) was comprised between 16.1 and 26.7% . 

For both Grain Yield and Grain Moisture, the overall ANOVA showed 

highly significant genotype effect (p-value < 2.2e
-16

), location effect (p-

value < 2.2e
-16

) and genotype*location (p-value = 2.93e
-10

 and 1.94e
-12

, 

respectively for GY and GM) (Supplementary 2). 

Heritabilities (h
2
) were calculated from results of ANOVA table and were 

equal to 0.75 and 0.89 respectively for GY and GM, confirming the good 

quality of phenotypic data collected (Supplementary 3). 

BLUEs calculated data are showed in supplementary 4. 

 

Marker analysis and genetic maps 

 

The overall number of polymorphic SNP markers across populations was 

1164, and 586 of these SNPs were polymorphic in all three populations. The 

three populations showed similar number of segregating SNPs (1,146, 1,062 
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and 1049 respectively for Pop1, Pop2 and Pop3); this is in accordance with 

the similar level of genetic distance of the L1, L2 and L3 parents in 

comparison with L4 common parent (ranging from 0.59 to 0.61) 

(Supplementary 5). The consensus map across all three populations included 

1164 informative SNPs and displayed a total length of 1631cM over the ten 

chromosomes (Figure 2).  

The relationship matrix shows high level of intra-population relatedness 

and still some consistent inter-population genomic covariance (Figure 

3). This dataset really represent breeding population where several 

populations shared a common elite parent with sometimes a low level of 

genetic variance between populations. 

 

QTL mapping 

 

The results of the joint-population QTL analysis are presented in Table 2. 

Nine and Fourteen QTL were identified for traits GY and GM traits 

respectively. R
2
 values for individual QTL varied between 1.91 and 11.50 

for GM and between 1.91 and 14.10 for GY, Two QTL for GY (1 on 

chromosome 3 and one on chromosome 5) co-localized with QTL for GM. 

All other QTL for GM trait did not co-localize with GY ones. Additive 

allelic effects contributed by parents L1, L2, L3 and L4, estimated from a 

connected QTL model, are indicated in the Table 2. As expected, there is no 
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one predominant parent consistently contributing to lower or higher trait but 

all four contributed in both directions depending on QTL and trait.  

 

Predictive abilities of QTL-based and genome-wide prediction models 

 

The prediction performance of QTL-based and GBLUP models was 

compared using twofold CV. Table 3 presents mean predictive abilities of 

the two approaches from joint-population prediction scenarios. Mean 

predictive abilities of GBLUP were consistently higher than the 

corresponding mean predictive abilities of the QTL-based model, 0.59 

versus 0.15 and 0.73 vs 0.28 respectively for GY and GM. The higher 

heritability of GM when compared to GY resulted in higher predictive 

abilities of both the GBLUP and QTL models. This can be explained by a 

simpler genetic determinism with less causative genetic elements explaining 

trait variance for GM compared to GY. 

 

GP within and across-population prediction 

 

For the traits GY and GM, results from GP across-population and within-

population prediction scenarios are summarized in Table 4. Mean predictive 

abilities were very similar for both traits and ranged between 0.39 and 0.58 

for the two different sampling methods. The within-population prediction 

means were in general significantly higher than these measured for across-
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population predictions, as expected taking into account the positive 

correlation of genetic similarity between TS and ES and the accuracy of the 

prediction. Although, higher predictive abilities could be expected because 

of strong relationship between parents and connection of the populations 

with a common parent. For both sampling method, the prediction means for 

GY were significantly lower than those for GM, in accordance with the 

different heritability measured for the two traits.  

 

Discussion 

 

Grain Yield and Grain Moisture are the two main traits driving decision 

making during maize breeding hybrid promotion and advancement. Those 

traits are mainly assessed during harvest using experimental combines: this 

implies a lot of resources for field trialing and this is particularly true if high 

quality experimentation is targeted (number of locations, repeated 

experimental design, number of testers). This also implies short timeline for 

decision making between harvests and planning of winter nursery 

experiments for seed increase and testcross on different testers for next year 

field testing. 

Marker Assisted Breeding has been surveyed for many years now to 

decrease timeline for material creation but also to increase precision of 

information that is manipulated (Moreau et al. 1998). Genetic Gain is 

expected to drastically increase with molecular information management 
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because impacting both accuracy of material performance and timeline 

(Heffner et al. 2009). Genomic Selection (GS), now, afford huge expected 

impact as it was observed on dairy cattle were adoption of GS can save up 

to 92 % of breeding cost (Hayes et al. 2009). 

Our study aimed at comparing the expected efficiency of both QTL or 

whole genome based prediction of unobserved genotypes for the two most 

important traits targeted in maize breeding program.  

 

QTL detection of joint populations. 

 

The QTL detection done through a joint-population method allowed 

detection of important QTLs for both Grain Yield and Grain Moisture. 

Some of those QTLs showed strong LOD values with important related 

effects. The joint-population algorithm implemented in MCQTL software 

allows estimating each parental effect for any QTL due to the connected 

model (Mangin et al. 2010). The parents carrying the favourable alleles 

change according to the QTL even if we can identify a consistent ranking of 

parents when summing the different QTL additive effect values. For 

example, L4 has the main overall additive effect for Grain Yield QTLs 

which is consistent with its optimal breeding value (Table 2). The number of 

overall QTLs for GM was greater compared to GY which is not expected 

looking at heritability of traits but overall R² fit with heritabilities values. 

The adjusted mean across locations used for QTL location can explain the 
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limited number of QTLs for Grain Yield because phenotypic variance 

specific to single location is lost. The QTLs could be directly implemented 

on Marker Assisted Recurrent Selection (Charmet et al. 1999) with aim to 

combine alleles from different parents into a single ideotype. QTLs that 

explain main part of phenotypic variance could be also isolated in Near 

Isogenic Lines to validate their effects. Definitely, the QTL based predictive 

ability could be improved by integrating QTL*Environment interaction into 

an integrative crop model to predict adaptation of allelic combination into 

different scenarios (Tardieu and Tuberosa, 2010, Cooper et al. 2009),  

 

QTL based prediction of unobserved genotypes. 

 

The predictive ability assessed through cross validation of QTL detection on 

the joint populations was possible using cvMCQTL package (Wimmer 

2012). The two-fold cross validation has been preferred compared to five-

fold proposed by Foiada et al. (2015) to better represent the size of 

populations used internally for QTL detection. The different values of 

predictive abilities were, in average, higher for GM compared to GY (Table 

3). This is expected since heritability and QTL R² was higher for the former 

trait. The values of QTL based predictive ability found in this study were 

lower compared to the one reported by Foiada et al. (2015) even if we 

manipulated traits with higher heritabilities in our case. This could be 

explained by the difference of k in the k-fold cross validation between both 
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studies and the fact that we did not divided our TS by population. A future 

improvement could be to adopt the same analytical design as explained in 

the cited publication where authors focused on predictive ability into single 

populations. 

QTL detected in cross validation has been compared to QTL initially 

detected on the overall three populations and the QTL detection suffered 

some inconsistencies (data not shown). This can be associated with size of 

population used for QTL detection where all recombination are not sampled 

in the ES. Same results have been already observed by Melchinger et al. 

(1998) where only limited number of QTL have been commonly detected 

from two different samples of progenies from a same pedigree. The authors 

concluded that, QTL effects estimated from an independent sample can 

deviate when compared with effect estimated on another sample. This 

results inevitably in an overly optimistic assessment of the efficiency of 

MAS. 

 

Whole Genome based prediction of unobserved genotypes. 

 

The cross validation of GBLUP estimated breeding values showed higher 

consistency compared to QTL based estimated breeding values. This 

deviation can be explained by a non-consistent QTL effect estimation when 

QTLs have been detected on an independent set of progenies. The whole 

genome marker information held by the GBLUP model can also explain a 
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greater part of the variance captured by the prediction model. The values 

obtained by the joint population model are in accordance with heritabilities 

of the traits (higher predictive ability for GM compared to GY). The 

predictive ability we found are consistent or slightly higher compared to the 

one found in other independent studies (Lian et al. 2014; Zhao et al. 2012). 

The cross validation showed reliable prediction accuracy across the different 

iterations of cross-validation. The joint-population and the within population 

scenarios of genomic selection showed the same predictive ability values 

(Table 4).  

The structure of the breeding population does not impact the predictive 

accuracy. The main difference was observed when the joint-population 

scenario was compared with the across population scenario. The predictive 

ability dropped when predicting a population with a training set formed by 

other populations even if sharing a common parent (from 0.58 to 0.39 for 

GY and from 0.73 to 0.53 for GM). The close relationship between 

estimation set and test set has been already documented as potential threat to 

increase predictive ability (Windhausen et al. 2013). For the across 

population scenario, we just get an averaged predictive ability across the 

three populations and next step could define if the three populations behave 

the same way. Lehermeier et al. (2014) showed that predictive abilities 

similar to or higher than those within biparental families could be achieved 

by combining several half-sib families in the estimation set. In the same 
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study, authors showed a large variance for predictive ability using the across 

population scenario, according to the population used as test set. 

 

 

Conclusion 

 

We demonstrated in this experiment the difference for predictive ability 

between whole genome prediction and QTL based prediction for two major 

traits for maize breeding. The lack of accuracy for QTL based prediction 

translated major issues that have been faced since many years now to 

efficiently play with QTL determinant of polygenic and complex trait. There 

is no predictive ability gain in combining several populations together in the 

training set compare to within biparental prediction only. In parallel, we 

showed the drop in predictive ability when predicting progenies from a 

single population without any representative in the training set, even if 

population were connected with a common parental line. This also calls the 

projection of genetic information from one population to another into 

question. Our results are important for defining future experimental design 

in whole genome prediction as they provide guidance to define the best 

genetic structure to be used for model training. 
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Figure legends  

 

 

Figure 1. Box plots of Grain Yield (GY) and Grain Moisture (GM) data 

in the eight testing locations for the whole data set comprising the three 

populations in testing 

 

Figure 2. Consensus map built using the 1164 SNPs segregating in at least 

one population description: Chromosome dimension, number of markers 

mapped in each chromosome and density of markers detected across the 

genome 

 

Figure 3. Realized genetic relationship matrix between the DH lines of the 

three populations in testing 
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Supplemental material legends 

 

Supplemental material 1. Coefficient of variation (cv) for Grain Yield 

for the eight yield testing locations. Data of the commercial hybrids used 

as reference checks and repeated several times in each location were 

used to calculate the cv value 

 

Supplemental material 2. ANOVA table for Grain Yield and grain 

Moisture in the data set used. The full data set of the three populations 

in testing was used to make the calculation 

 

Supplemental material 3. Heritability (h
2
) for Grain Yield and grain 

Moisture in the data set used. The full data set of the three populations 

in testing was used to make the calculation 

 

Supplemental material 4. Box plots of Grain Yield (GY) and Grain 

Moisture (GM) BLUEs data for each of the three populations in testing 

 

Supplemental material 5. Roger genetic similarity between the four 

lines (L1, L2, L3 and L4) used as parents for the multi-parental DH 

population in testing and the line used as tester in testcross production 

L5. 
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Table 1. Phenotypic data description for each of the three populations in testing for the two 

collected traits (Grain Yield and Grain Moisture) 

Grain yield (q ha
-1

) 

Population Minimun 

1st 

Quartile 

Median Mean 3rd Quartile Maximum 

Pop-1 50.8 125.0 135.4 134.8 145.6 189.5 

Pop-2 63.0 122.8 134.5 133.2 144.7 184.0 

Pop-3 57.2 119.3 131.7 130.8 142.6 192.2 

Grain moisture (%) 

Population Minimun 

1st 

Quartile 

Median Mean 3rd Quartile Maximum 

Pop-1 9.6 14.9 19.0 18.9 22.6 32.5 

Pop-2 10.0 13.3 17.9 18.1 22.2 28.2 

Pop-3 10.0 13.2 18.3 18.2 22.1 29.7 
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Table 2. Chromosome (Chr.) position (Pos.), LOD score at the QTL position, 

proportion of variance explained (R
2
) and additive effects of QTL alleles derived 

from parents L1, L2, L3 and L4 detected in the joint analysis across the three 

populations evaluated as testcross in 2014 for the traits Grain Yield at standard 

moisture (GY) and Grain Moisture at harvest (GM) traits. In bold is indicated the 

total R
2
 for QTL detected simoultaneously 

Chromosome 

QTL position 

(cM) 

LOD R² 

Additive Effect 

L1 L2 L3 L4 

Grain Moisture (GM)                                   0.41 

0.37 
1 0 3.21 0.02 -0.09 0.07 -0.03 0.05 

1 140 6.56 0.04 0.03 0.11 -0.06 -0.07 

1 221 10.61 0.06 -0.16 0.04 0.03 0.09 

2 63 11.34 0.06 -0.03 0.06 0.1 -0.13 

2 144 6.32 0.04 0.01 -0.04 0.12 -0.09 

3 70 20.38 0.10 0 0.19 0.01 0.18 

4 69 16.02 0.08 0.09 0.06 0.2 0.17 

4 103 22.85 0.12 0.07 -0.2 -0.06 0.19 

5 35 11.64 0.06 -0.09 0.02 0.24 -0.16 

5 95 14.43 0.08 0.07 0.07 0 -0.14 

6 53 7.52 0.04 -0.11 -0.02 0.05 0.08 

7 67 8.03 0.04 0.05 0.06 -0.01 -0.1 

8 105 9.54 0.05 0.03 0.1 0.04 0.11 

9 85 4.62 0.03 0.02 0.01 0.09 0.08 

Sum of additive effects -0.11 0.53 0.72 0.26 

Grain Yield (GY)                                           0.37 

1 174 29.12 0.14 -0.51 -0.21 -1.22 1.93 

2 20 7.17 0.04 0.26 -0.08 0.77 -0.95 

3 71 7.10 0.04 0.2 -0.26 1.01 -0.94 

3 178 6.17 0.03 0.43 -1 -0.13 0.69 

5 12 10.37 0.05 -1.03 0.53 -0.53 1.02 

5 94 5.36 0.03 0.06 -0.26 -0.61 0.8 

6 80 4.31 0.02 0.04 -0.7 0.01 0.65 

8 88 8.64 0.05 0.54 -1.54 0.41 0.6 

10 93 3.26 0.02 0.35 -0.74 0.66 0.43 

Sum of additive effects 0.34 -4.26 0.37 4.23 
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Table 3. Mean predictive abilities obtained from cross-validation 

of the QTL-based and GBLUP models for joint-

population prediction for the GY and GM traits  

Prediction Model GY GM 

QTL 0.15 ± 0.07 0.30 ±0.12 

GBLUP 0.5800 ± 0.0062 0.7335 ± 0.0024 
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Table 4 GBLUP predictive abilities from within and across-population 

prediction   

Analysis type GY GM 

Within-Population GBLUP 0.5759 ± 0.0055 0.7318 ± 0.0038 

Across.Population GBLUP 0.3881 ± 0.0031 0.5306 ± 0.0181 
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Figure 1. Box plots of Grain Yield (GY) and Grain Moisture (GM) data 

in the eight testing locations for the whole data set comprising the three 

populations in testing 
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Figure 2. Consensus map built using the 1164 SNPs segregating in at least 

one population description: Chromosome dimension, number of markers 

mapped in each chromosome and density of markers detected across the 

genome   
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Figure 3. Realized genetic relationship matrix between the DH lines of the 

three populations in testing 
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Supplemental material 1. Coefficient of variation (cv) for Grain Yield for 

the eight yield testing locations. Data of the commercial hybrids used as 

reference checks and repeated several times in each location were used 

to calculate the cv value 

Location cv (%) 

Loc-1 7% 

Loc-2 9% 

Loc-3 9% 

Loc-4 11% 

Loc-5 7% 

Loc-6 9% 

Loc-7 12% 

Loc-8 10% 
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Supplemental material 2. ANOVA table for Grain Yield and grain Moisture 

in the data set used. The full data set of the three populations in testing was 

used to make the calculation. 

 

  
  Df Sum Sq 

Mean 

Sq 

F value Pr(>F) Significance 

GY 

Genotype 949 456079 481 4.07 < 2.2e
-16

 *** 

location 7 520038 74291 629.35 < 2.2e
-16

 *** 

Genotype x 

Location 

6605 1164901 176 1.4941 2.93E
-10

 *** 

Residuals 582 68701 118 

   

 
       

GM 

Genotype 949 7664 8.1 8.83 < 2.2e
-16

 *** 

location 7 182212 26030.3 28488.94 < 2.2e
-16

 *** 

Genotype x 

Location 

6605 9493 1.4 1.57 1.94e
-12

 *** 

Residuals 582 532 0.9 
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Supplemental material 3. Heritability (h
2
) for Grain 

Yield and grain Moisture in the data set used. The full 

data set of the three populations in testing was used to 

make the calculation 

Trait Heritability (h
2
) 

Grain Yield (GY) 0.64 

Grain Moisture (GM) 0.82 
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Supplemental material 4. Box plots of Grain Yield (GY) and Grain 

Moisture (GM) BLUEs data for each of the three populations in testing 
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Supplemental material 5. Roger genetic similarity between the four lines 

(L1, L2, L3 and L4) used as parents for the multi-parental DH population 

in testing and the line used as tester in testcross production L5. 

Inbred L2 L3 L4 L5 

L1 0.72 0.82 0.59 0.57 

L2 

 

0.77 0.61 0.56 

L3 

  

0.60 0.59 

L4 

   

0.53 

 

 

 

 

 

 


