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Abstract  Comparative studies of trait evolution require accounting for the shared evolutionary history. This is done by includ-

ing phylogenetic hypotheses into statistical analyses of species’ traits, for which birds often serve as excellent models. The online 

publication of the most complete molecular phylogeny of extant bird species (www.birdtree.org, BirdTree hereafter) now allows 

evolutionary biologists to rapidly obtain sets of equally plausible phylogenetic trees for any set of species to be incorporated as a 

phylogenetic hypothesis in comparative analyses. We discuss methods to use BirdTree tree sets for comparative studies, either by 

building a consensus tree that can be incorporated into standard comparative analyses, or by using tree sets to account for the ef-

fect of phylogenetic uncertainty. Methods accounting for phylogenetic uncertainty should be preferred whenever possible because 

they should provide more reliable parameter estimates and realistic confidence intervals around them. Based on a real compara-

tive dataset, we ran simulations to investigate the effect of variation in the size of the random tree sets downloaded from BirdTree 

on the variability of parameter estimates from a bivariate relationship between mass-specific productivity and body mass. Irre-

spective of the method of analysis, using at least 1,000 trees allows obtaining parameter estimates with very small (< 0.15%) co-

efficients of variation. We argue that BirdTree, due to the ease of use and the major advantages over previous ‘traditional’ meth-

ods to obtain phylogenetic hypotheses of bird species (e.g. supertrees or manual coding of published phylogenies), will become 

the standard reference in avian comparative studies for years to come [Current Zoology 61 (6): 959–965, 2015]. 
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1  Introduction 

The study of trait evolution, a landmark of evolu-
tionary biology, requires the reconstruction of ancestral 

character states and the mapping of character evolution 

on phylogenetic trees, and it requires the use of com-
parative methods (Harvey and Pagel, 1991). These me-

thods allow the comparison of traits from different popu-
lations or species varying in their evolutionary history, 

and they are powerful tools to distinguish patterns of 
phenotypic convergent evolution and adaptation from 

patterns caused by common phylogenetic descent (Har-

vey and Pagel, 1991). 
Various statistical methods have been devised to ac-

count for shared evolutionary history in comparative 
studies testing evolutionary hypotheses by analyzing 
current traits of species (e.g. Felsenstein, 1985; Grafen, 
1989; Møller and Birkhead, 1992; Pagel, 1999; Maddi-

son, 2000; Freckleton et al., 2002; Nunn, 2011; Paradis, 
2012; Garamszegi, 2014). Although the numerical com-
putations may differ depending on whether the traits of 
interest are discrete or continuous (Maddison, 1990; 
Harvey and Pagel, 1991), these statistical methods re-
quire a phylogenetic hypothesis as a basis for making 
inferences. The most commonly used techniques to 
overcome the problem of non-independence of closely 
related taxa has been the independent contrast method 
(Felsenstein, 1985), and more recently, the approach 
based on generalized least-squares (Grafen, 1989; Mar-
tins and Hansen, 1997). Irrespective of the specific me-
thod of analysis, a phylogenetic hypothesis in the form 
of tree topology and branch lengths is essential for mak-
ing robust statistical inferences about character (co) 
evolution. 

Phylogenetic hypotheses used in comparative studies 
are usually a combination of phylogenetic trees ob-
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tained from various literature sources, because complete 
phylogenetic trees including the entire set of species of 
interest for a given study are seldom available. Combi-
nations of phylogenetic trees are often made by hand 
using a qualitative evaluation of published phylogenies 
(e.g. Garamszegi and Gonzalez-Voyer, 2014) or via quan-
titative methods such as the ‘supertree’ approach (e.g. 
Thomas et al., 2004; Jønsson et al. 2006; Bininda-  
Emonds, 2014), which may be useful to obtain very large 
phylogenies for the set of species under scrutiny starting 
from a set of phylogenies from different subsets of spe-
cies, built using a variety of primary sources (e.g. DNA-  
DNA hybridization, molecular data, or morphology). 

Compared to other taxa, birds are a favourite subject 
of comparative studies, mostly due to the huge variabi-
lity and thorough knowledge of their life-history traits 
and behaviour (see e.g. Bennett and Owens, 2002). In 
addition, their phylogenetic relationships are rather well 
known: in the early 1990’s, Sibley and Ahlquist (1991) 
published a so-called ‘tapestry’ (or ‘backbone’) phy-
logeny, based on DNA-DNA hybridization that has con-
stituted the foundation of most large-scale comparative 
analyses of this class carried out so far. Later, the Sibley 
and Ahlquist phylogeny has been supplemented (and 
often challenged) with extensive molecular studies by 
Barker et al. (2002), Ericson et al. (2006) and Hackett et 
al. (2008), the latter being perhaps the most complete 
study of the deep phylogenetic relationships among ex-
tant bird clades to date. While the deep phylogenetic 
relationships of bird species were touched upon by only 
a few major reference works, thanks to the advances 
and the ever-increasing availability of molecular biolo-
gy techniques, the past 20 years have seen a flourishing 
of small-scale studies addressing phylogenetic relation-
ships within avian genera, families, or orders, generally 
based on molecular analyses of a set of conserved genes. 
Recently, Jetz et al. (2012) assembled this huge amount 
of molecular information to investigate patterns of 
speciation in avian lineages through their evolutionary 
history. To do so, they assembled what is definitely the 
most complete molecular phylogeny of all 9,993 extant 
bird species. The paper was accompanied by a website 
(http://www.birdtree.org, BirdTree hereafter), which 
allows users to freely download the original data, either 
in the form of molecular sequences or phylogenetic 
trees. Remarkably, the authors also developed a tool to 
easily select a subset of any of the extant bird species 
and to download phylogenetic trees for that set of spe-
cies. Within a matter of minutes, researchers aiming at 
conducting comparative studies of birds can thus  

obtain complete and validated phylogenies from any set 
of extant species. This is a tremendous advance over 
previously available methods to obtain phylogenies for 
comparative analyses, such as supertree building, which 
necessitates considerable phylogenetic software as well 
as molecular biology knowledge, or manual coding of 
existing phylogenies from published studies, which is 
time-consuming and error-prone. As is already occur-
ring with a similar online tool providing primate as well 
as other mammal phylogenies, the 10kTrees project 
(Arnold et al., 2010; see http://10ktrees.fas.harvard.edu), 
we assume that phylogenetic trees downloaded from 
BirdTree will be used as a standard reference in avian 
comparative studies for years to come, and here we dis-
cuss methods that might be used to incorporate such 
trees in phylogenetic analyses of trait (co)evolution, 
such as phylogenetically-corrected multiple regression 
models (e.g. phylogenetic generalized least-squares 
(PGLS) models; Pagel, 1997; Freckleton et al., 2002). 
We then ran simulations, based on a real comparative 
dataset, to investigate the variability in parameter esti-
mates according to the number of trees downloaded 
from BirdTree, in order to provide guidance on the 
number of trees required to obtain robust statistical in-
ferences.  

2  How to Use Phylogenetic Trees 
Downloaded from BirdTree 

Jetz et al. (2012) built a complete tree of all extant 
species by combining time-calibrated trees of deep avian 
relationships with separately inferred trees of well-sup-
ported constituent clades, using genetic data from a total 
of 6,663 taxa. As a backbone for their phylogenetic re-
construction, Jetz et al. (2012) used the two major ref-
erence works by Hackett et al. (2008) and Ericson et al. 
(2006), which differ in their phylogenetic reconstruction 
of the Neoaves according to the exclusion or inclusion 
of the β-fibrinogen gene, whose usefulness in avian 
phylogenetic studies has been debated (Morgan-Rich-
ards et al., 2008). These two ‘backbone’ phylogenies 
were supplemented with additional topological con-
straints from well-resolved phylogenies of major avian 
clades (e.g. Barker et al., 2004). All existing species 
were assigned to one of the major clades (‘crown clades’) 
of the backbone phylogeny. Genetic data from multiple 
loci, retrieved from GenBank, were used to reconstruct 
the phylogeny of crown clades and to combine these 
with the backbone phylogenies in a Bayesian frame-
work, using a number of additional constraints and in-
formed priors [thoroughly described in the supplemen-
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tary material of Jetz et al. (2012)]. Using BEAST 
(Drummond and Rambaut, 2007), Jetz et al. (2012) ob-
tained two sets of ultrametric, fully resolved (bifurcat-
ing) Markov chain Monte Carlo (MCMC) trees of all 
bird species, either based on the Hackett et al. (2008) or 
the Ericson et al. (2006) backbone phylogeny, and made 
10,000 post-burn-in trees freely available to download 
from the BirdTree online platform. These tree sets are 
named ‘Hackett All Species’ and ‘Ericson All Species’ 
on the BirdTree website. Users are allowed to download 
random sets of trees (up to 9999 trees, in NEXUS mul-
tiple tree format) for any combination of all the extant 
bird species either based on the ‘Hackett’ or the ‘Eric-
son’ backbone phylogeny. BirdTree does not provide 
any consensus tree, as phylogenetic hypotheses are 
formed as sets of equally plausible (but variable) trees.  

We suggest ways by which tree sets downloaded 
from BirdTree can be implemented in comparative phy-
logenetic analyses. A basic approach would be to sum-
marize a tree set into a single consensus tree that can be 
incorporated as a phylogenetic hypothesis in statistical 
models, such as PGLS models, or independent contrast 
analyses. In Appendix 1 we provide a suggestion to ob-
tain an optimal consensus tree (the 50% majority-rule 
consensus tree, MRC tree; Holder et al., 2008; Suku-
maran and Holder, 2010) out of a set of trees down-
loaded from BirdTree. Using single trees and disre-
garding phylogenetic uncertainty has been the most po-
pular option in the vast majority of comparative studies 
carried out to date. For example, a scan of the compara-
tive studies on birds published over the past 10 years 
(2004–2013) in the Journal of Evolutionary Biology 
(search terms in ISI Web of ScienceTM: (comparat* 
AND (avian OR bird*))) yielded 28 relevant papers, all 
of which used a single tree as a phylogenetic hypothesis, 
obtained either by manually coding phylogenies (n = 
21), by adopting a supertree approach (n = 4) or by us-
ing a consensus tree out of a set of multiple trees (n = 3). 

However, the assumption of no phylogenetic uncer-
tainty is unwarranted: for instance, phylogenetic tree 
reconstruction using MCMC return trees (in proportion 
to their posterior probability) that vary somewhat, either 
in topology or branch length, as it is the case for Bird-
Tree phylogenetic trees. Therefore, methods that incor-
porate phylogenetic uncertainty in regression models (or 
in any statistical method relying on a phylogenetic tree) 
are expected to provide more reliable parameter esti-
mates and standard errors compared to methods ignor-
ing phylogenetic uncertainty, and should be preferred 
whenever possible (e.g. Grafen, 1989; Martins, 1996; 

Martins and Hansen, 1997; Huelsenbeck and Rannala, 
2003; de Villemereuil et al., 2012, Garamszegi and 
Mundry, 2014; see also the popular software Bayes-
Traits, http://www.evolution.rdg.ac.uk/BayesTraitsV2Beta. 
html). Particularly, incorporating uncertainties into the 
phylogenetic analyses puts an emphasis on the confi-
dence interval around parameter estimates, which de-
lineates how much a comparative result can be trusted. 

To account for phylogenetic uncertainty and to fully 
exploit the possibilities offered by downloading tree sets 
from BirdTree to obtain robust comparative inferences, 
we envisage several possibilities that rely on an entire 
set of phylogenetic trees instead of a single consensus 
tree. 

First, phylogenetic analyses of trait (co)evolution can 
be computed using an entire set of n trees, by re-running 
the analysis n times, each time using a different tree, 
and obtaining a distribution of n coefficients and/or as-
sociated statistics, allowing the estimation of the effect 
of phylogenetic uncertainty on the phylogenetic correla-
tion between the traits of interest (e.g. Martins, 1996; 
Liker et al., 2013). This approach does not consider 
potential differences between different models relying 
on different phylogenetic trees, implying that summary 
statistics are made by assigning equal weights to each 
observation. Another flexible and easy to implement 
method to incorporate phylogenetic uncertainty into 
statistical modelling applies Information Theoretic (IT) 
approaches to differentially weight particular models 
built using different trees (Garamszegi and Mundry, 
2014). This method assumes that accounting for phy-
logenetic uncertainty in comparative analyses is a clas-
sical model selection problem that can be solved by 
multi-model inference. Therefore, one can run a statis-
tical model (e.g. a PGLS regression model) testing one 
(or more) comparative hypotheses using an entire set of 
n equally likely trees, and then perform model-avera-
ging of parameter estimates from the set of n models, 
weighing each model based on its fit to the data using, 
for example, its Akaike weight (Burnham et al., 2011). 
The benefit of the weighted approach might be that, for 
parameter estimation, it gives less emphasis to particu-
lar models that offer a bad fit to the data. Both the un-
weighted and weighted forms of multimodel inference 
over an entire set of models conditioned to different 
trees provide a single average effect (such as is the case 
when using a consensus tree), but the output also in-
cludes a confidence or error range around this mean 
estimate as obtained from the variance of model para-
meters across different models. This interval can be 
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interpreted as a proxy of the uncertainty associated with 
the phylogenetic hypothesis, as the confidence range 
will essentially capture variations in parameter estima-
tes that the consideration of alternative phylogenetic 
hypotheses can cause (Garamszegi and Mundry, 2014). 
We emphasize that the performance of the above multi-   
model approaches in comparative analyses would de-
serve further evaluation by simulation studies as well as 
challenges by empirical data, which might be helpful to 
decide whether the weighted or unweighted modes of 
multimodel inference are more reliable. For illustrative 
purposes, in the subsequent simulation (see next sec-
tion), we relied on the approach that uses model aver-
aging.  

Second, Bayesian methods may offer additional solu-
tions: for instance, de Villemereuil et al. (2012) devised 
computationally efficient and rather flexible MCMC 
methods to incorporate multiple trees in phylogenetic 
regression models in order to account for phylogenetic 
uncertainty. Although we will not deal in detail with 
Bayesian methods here, we advise researchers that are 
familiar with Bayesian statistics to explore this possibi-
lity. From their simulations, de Villemereuil et al. (2012) 
suggest that Bayesian models incorporating multiple 
trees may outperform (in terms of lower uncertainty of 
parameter estimates and anti-conservative error esti-
mates) ‘traditional’ consensus-tree-based PGLS models. 
However, they compared the performance of Bayesian 
models with that of PGLS models using a ‘strict-con-
sensus tree’, which might not be the optimal way to 
summarize a set of MCMC trees (see Appendix 1). 
Moreover, Bayesian methods, such as the one proposed 
by de Villemereuil et al. (2012), have yet to be tested 
extensively in a variety of real dataset conditions, in-
cluding multiple regression settings, and may become 
computationally problematic when the number of spe-
cies is very large (> 200) (de Villemereuil et al., 2012). 
Finally, Bayesian approaches may introduce unneces-
sary variance in posterior estimates whenever no infor-
mative priors are provided (i.e. in most cases). There-
fore, albeit Bayesian approaches also provide mean pa-
rameter estimates and confidence intervals (in this case 
they are called credible intervals), the latter variance 
will reflect the effect of both the variance across the 
considered phylogenetic trees and the use of uninforma-
tive priors (Garamszegi and Mundry, 2014). 

3  How Many Trees?  

The reliability of phylogenetically-corrected analyses 
may vary according to the number and specific sets of 

species (taxonomic bias, Arnold and Nunn, 2010) and 
intra-specific variance in traits (Garamszegi and Møller, 
2010). Morevover, it may vary according to the number 
of phylogenetic trees used to draw inferences, since 
fitting models using a variable number of trees that dif-
fer to some extent between each other in their phyloge-
netic relationships among species (either in terms of 
topology or branch lengths) will result in variation of 
estimated model parameters.  

Here we addressed two of these issues by evaluating 
the effect of variation in the number of species and in 
the number of phylogenetic trees on the precision of 
parameter estimates from PGLS models based on a real 
comparative dataset. An effect of the number of trees on 
the precision of parameter estimates may emerge both if 
a consensus or a multiple tree approach is adopted. Al-
though we aimed at devising a ‘rule-of-thumb’ to assist 
researchers when deciding the number of trees that 
should be downloaded from BirdTree and incorporated 
in subsequent comparative analyses, we emphasize that 
the issue regarding the effect of the number of trees on 
the precision of parameter estimates is a general one, 
and applies to any case when multiple equally likely 
phylogenetic trees are available for comparative analy-
ses. In the following simulation, to contrast two radi-
cally different methods, we focused on the precision of 
parameter estimates from PGLS models obtained with 
the MRC tree-based method and with the model aver-
aging approach. 

As phylogenetic information, we used random draws 
of either 250, 500, 1,000 or 2,500 trees (tree-size classes 
hereafter) [we choose 2,500 as the higher limit because 
downloading tree sets > 2,000 tress from BirdTree can 
be problematic, as download often fails (D. Rubolini 
pers. obs.)]. Our simple simulation was based on the 
large-scale comparative analysis of the relationship be-
tween mass-specific productivity and life-history traits 
of 980 bird species carried out by Sibly et al. (2012). 
We assessed variation in parameter estimates of the 
(negative) relationship between mass-specific produc-
tivity and body mass (both log10-transformed; see Sibly 
et al., 2012) in two random samples of 50 and 100 spe-
cies (a typical sample size in most comparative analyses 
of bird species) from the original 980 species set (50 
and 100 species test datasets hereafter). For each test 
dataset, we downloaded from BirdTree (‘Hackett All 
Species’) 250, 500, 1,000 and 2,500 randomly sampled 
trees. We repeated downloading 10 times for each tree 
size class, thus obtaining 10 random replicate tree sets 
for each tree size class. For each replicate set of trees, 



 RUBOLINI D et al.: BirdTree.org and comparative studies 963 

 

we built a MRC tree. We then ran a PGLS model for 
each test dataset and each replicate tree-size using as 
phylogenetic information either the MRC tree (MRC 
models) or all the trees in each replicate tree set using 
the model-averaging method (MA models). PGLS mod-
els were ran with the caper R package (Orme et al., 
2012), with λ estimated from the data by maximum 
likelihood, using R (2.15.2) (R Core Team, 2013). For 
each run, we noted the estimated slope and standard 
error of MRC models, and the model-averaged slope 
and standard error from the MA models. We obtained a 
total of 80 slopes and standard errors for each method 
(10 replicates × 2 test datasets × 4 tree-size classes). 
From each pair of slope and standard error, we calcu-
lated a z-value as the ratio between the two (absolute 
value; this was done also for model-averaged slopes and 
standard errors). 

To evaluate precision of model parameters, we cal-
culated the coefficient of variation (CV out of the 10 
replicate analyses) of each model parameter (slope, 
standard error, z) for each of the four tree-size classes 
and method of analysis. The variability of CVs of 
z-values according to the test dataset, tree size class and 
method of analysis is illustrated in Fig. 1. CVs were 
below 0.40% even for analyses based on 250 trees, and 
were consistently lower for the 100 than for the 50 spe-
cies test dataset, especially for estimates obtained with 
the MA method. CVs of z-values dropped to values 
varying between 0.05% and 0.12% for models based on 
at least 1,000 trees (Fig. 1). A pairwise comparison of 
z-values for each tree set revealed that the MA method 
returned consistently smaller z-values than the MRC 
method for the 50 species test dataset (4.61 ± 0.01 SE vs. 
4.65 ± 0.01 SE, t39 = 23.1, P < 0.001), while the oppo-
site was the case for the 100 species test dataset (11.56 
± 0.01 SE vs. 11.51 ± 0.01 SE, t39 = 27.2, P < 0.001). 
Trends of CVs of other model parameters according to 
tree size-class were similar as those shown in Fig. 1 and 
were of the same magnitude as those of z-values (min-  
max, slope: 0.01%–0.32%; standard error: 0.04%–  
0.17%) (details not shown). Although there is no gener-
ally recommended threshold for precision estimates, we 
are confident that CVs of parameter estimates < 0.5% 
will not strongly affect the conclusions of phylogeneti-
cally corrected analyses. However, downloading from 
BirdTree and including in the analyses at least 1,000 
trees should result in very precise model parameters, 
regardless of the method of analysis. Clearly, our simu-
lations on a real dataset suggest that inclusion in PGLS 
models of > 1,000 trees does not improve the precision  

of parameter estimates. Moreover, we suggest to run the 

analyses either using trees based on the ‘Hackett’ and 
‘Ericson’ backbones, to check for consistency of results, 

although it is likely that for most comparative datasets 

the ‘Hackett’ and ‘Ericson’ backbones will give consis-
tent results. Indeed, as it is also clear from our simula-

tions, comparative regression models appear relatively 
robust to some degree of misspecifications in the un-

derlying trees, either in terms of branch lengths or to-

pology (Purvis et al., 2004; Stone, 2011), although the 
extent to which such misspecifications add bias to the 

analysis deserves further investigation.  
Although simulations with Bayesian methods indi-

cate that even a small sample of trees (100 trees) can be 

sufficient to obtain reliable parameter and error esti-

mates, in real studies de Villemereuil et al. (2012) ad-

vise that a large number of trees is used because using 

more trees is expected to better represent their true 

probability distribution, also considering that computa-

tion time and memory usage in MCMC methods seem 

little affected by the number of trees (see de Villeme-

reuil et al., 2012). 

4  Conclusions 

To date, most comparative analyses of birds have 

been carried out by combining available trees using a  
 

 
 

Fig. 1  Coefficient of variation (CV, %) of z-values (ratio 
of slope to standard error) of the bivariate relationship 
between productivity and body mass (both log10- trans-
formed, see Sibly et al. 2012) in the two test datasets (50 
and 100 species; see main text) in relation to the number of 
random trees (downloaded from BirdTree) 
CVs were calculated based on 10 replicate z-values from 10 PGLS 

models. MRC = z-values obtained from PGLS models ran using the 

50% majority-rule consensus tree. MA = z-values calculated as the 

ratio of the model-averaged slope and standard errors from PGLS 

models averaged across an entire tree set. 
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variety of approaches, often obtained using incompara-
ble genetic methods (e.g. DNA-DNA hybridization and 
gene-based phylogenies). To our knowledge, the Bird-
Tree project constitutes the first attempt to produce a 
complete phylogenetic tree of avian taxa based on a  
robust Bayesian phylogenetic framework. We believe 
that, if ad hoc phylogenetic analyses based on novel, 
original molecular data are not available (as is the case 
with the vast majority of evolutionary comparative stu-
dies of birds carried out to date), phylogenetic trees ob-
tained from BirdTree will provide evolutionary ecolo-
gists with a unique opportunity to standardize the pres-
entation of their phylogenetically-corrected statistical 
analyses using a robust and validated phylogenetic 
background. Since it is unlikely that more comprehen-
sive (and user-friendly) data will become available in 
the coming years, incorporation of BirdTree phylogen-
ies into comparative studies, either using a multiple tree 
modelling approach (either using an IT or Bayesian 
framework) or a more traditional phylogenetic regres-
sion modelling approach using consensus trees, could 
become a standard in comparative studies of avian spe-
cies for many years to come. 
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Appendix 1 Suggested procedure for summarizing BirdTree tree sets into an 
optimal consensus tree 

We suggest that researchers aiming at summarizing BirdTree tree sets into a single consensus tree adopt a 50% ma-
jority-rule consensus tree (MRC tree hereafter). According to Holder et al. (2008), the MRC trees can be viewed as an 
optimal summary of the posterior distribution of MCMC trees. However, Holder et al. (2008) clearly point out that 
when phylogenetic trees are to be used as ‘nuisance parameters’ (as it is the case in comparative analyses), the entire 
sample of trees from the posterior distribution can be used to characterize phylogenetic uncertainty. In a MRC tree, a 
branching event is considered as supported if it occurs in >50% of the MCMC trees (Holder et al. 2008). In cases 
when support for a given branch is below 50%, a polytomy is formed. From a set of ultrametric MCMC trees, such as 
those downloaded from BirdTree, an MRC tree can be obtained by using the SumTrees program (http://pythonhosted. 
org/DendroPy/scripts/sumtrees.html). SumTrees is part of DendroPy, a Python library for phylogenetic computing 
(Sukumaran and Holder 2010). In SumTrees, the mean branch lengths of the MRC tree derived from a set of ultrame-
tric trees are adjusted such that the ages of the subtended nodes correspond to the median age of the corresponding 
nodes of the input trees (see details on the SumTrees website).  

We have tested the current SumTrees official release version (in DendroPy 3.12.0) with several BirdTree tree sets, 
and noted that the downloaded trees, although they are ultrametric by definition, were not recognized as such by Sum-
Trees, probably because of very minor inconsistencies in edge lenghts of the tree subsets. The authors of SumTrees 
have already added a useful option to cope with this, that allows skipping ultrametricity checks, which unfortunately is 
not yet included in the official release, but can be found in the active development source code repository at 
https://github. com/jeetsukumaran/DendroPy. This minor adjustment allows SumTrees to readily accept and correctly 
process BirdTree tree sets as ultrametric trees.  

A basic SumTree script to process a BirdTree NEXUS tree set to obtain an MRC tree, run on the development 
source code with the ‘ultrametricity-precision’ option set to an arbitrarily very high value (i.e. skipping ultrametricity 
checks), is thus as follows: 

 

sumtrees.py --rooted --ultrametric -- ultrametricity-precision 10000000 YOUR_ 
INPUT_TREES.tre > YOUR_OUTPUT_TREE.tre 

 

The MRC tree is a standard NEXUS tree that can be included in any statistical analysis, including PGLS models or 
independent-contrast analyses. 
  

 


