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Abstract 14 

Introducing the time variable in groundwater vulnerability assessment is an innovative approach to study 15 

the evolution of contamination by non-point sources and to forecast future trends. This requires a 16 

determination of the relationship between temporal changes in groundwater contamination and in land 17 

use. Such effort will enable breakthrough advances in mapping hazardous areas, and in assessing the 18 

efficacy of land-use planning for groundwater protection. Through a Bayesian spatial statistical 19 

approach, time-dependent vulnerability maps are derived by using hydrogeological variables together 20 

with three different time-dependent datasets: population density, high-resolution urban survey, and 21 

satellite QuikSCAT (QSCAT) data processed with the innovative Dense Sampling Method (DSM). This 22 

approach is demonstrated extensively over the Po Plain in Lombardy region (northern Italy). Calibrated 23 

and validated maps show physically consistent relations between the hydrogeological variables and 24 

nitrate trends. The results indicate that changes of urban nitrate sources are strongly related to 25 
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groundwater deterioration. Among the different datasets, QSCAT-DSM is proven to be the most 26 

efficient dataset to represent urban nitrate sources of contamination, with major advantages: a worldwide 27 

coverage, a continuous decadal data collection, and an adequate resolution without spatial gaps. This 28 

study presents a successful approach that, for the first time, allows the inclusion of the time dimension 29 

in groundwater vulnerability assessment by using innovative satellite remote sensing data for 30 

quantitative statistical analyses of groundwater quality changes. 31 

 32 

 33 

1. Introduction 34 

Groundwater is among the most important freshwater resources. In Western Europe, it contributes 60 % 35 

of the drinking water supply (EuroGeoSurveys 2014). Increasing numbers of contamination sources in 36 

developed and developing countries critically threaten groundwater resources. Reactive remediation 37 

measures can be excessively expensive when groundwater becomes contaminated beyond the required 38 

quality standards for safe consumption. 39 

Groundwater vulnerability studies are crucial to understand the cause-effect relationship between 40 

groundwater quality and both natural and anthropogenic factors to develop effective groundwater 41 

protection plans. Mapping areas where groundwater is most vulnerable to contamination and identifying 42 

primary factors influencing the contamination level are imperative to manage and protect groundwater 43 

and thus human health. 44 

As groundwater resources have become more vulnerable in recent years, it is necessary to urgently close 45 

the gap between the information required for land use planning to efficiently safeguard groundwater 46 

quality and techniques required to accurately assess groundwater vulnerability. In fact, the European 47 

Union (EU) Groundwater Directive (2006/118/EC) requires the identification of areas where 48 

groundwater suffers increasing trends in contaminant concentration, highlighting the need to carefully 49 

manage such areas even if the concentration is below the regulatory limit. 50 

A current limitation in groundwater vulnerability studies is related to the lack of consideration of 51 

temporal trends (Stuart et al. 2007), and this emphasizes the need to consider the time dimension in 52 
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assessing groundwater vulnerability. Methods currently used to assess groundwater vulnerability at a 53 

regional scale (Focazio et al. 2002) can be subjective (i.e., knowledge-driven) or objective (i.e., data 54 

driven). Subjective methods include overlay and index methods (e.g., DRASTIC, Aller et al. 1987; 55 

GOD, Foster 1987; AVI, Van Stempvoort et al. 1993; and EPIK, Doerfliger and Zwahlen 1997) and 56 

their modifications (Sener and Davraz 2013). They are easy to implement and require a limited amount 57 

of data to derive a subjective categorization of groundwater vulnerability. On the other hand, objective 58 

methods are based on the use of statistical methods, ranging from descriptive statistics (e.g., Welch et 59 

al. 2000) to regression and conditional probability analyses (e.g., Eckardt and Stackelberg 1995; 60 

Tesoriero and Voss 1997; Nolan 2001; Alberti et al. 2001; Worrall and Besien 2005; Masetti et al. 2009), 61 

which allow an objective determination of relations between the predictor factors and the level of 62 

contamination in the study area. In this regard, only objective methods allow scientifically defensible 63 

end products (Focazio et al. 2002) and, most importantly, enable an explicit integration of the time 64 

dimension in the groundwater vulnerability assessment (Sorichetta 2011).  65 

Objective methods, however, face a major challenge that requires an extensive dataset, including a series 66 

of contaminant concentration measurements and natural and anthropogenic variables, to be consistent 67 

both in space and in time (Brunner et al. 2007). Addressing such a challenge demands a determination 68 

of the relationship between temporal changes in groundwater contamination and in land use across a 69 

vast spatial extent encompassing natural environments, agricultural regions, and urban areas. This effort 70 

will enable breakthrough advances to improve the mapping of hazardous areas with different levels of 71 

vulnerability, and to assess the efficacy of land use planning toward groundwater protection. 72 

In this context, this study focuses on advancing the use of statistical methods to assess groundwater 73 

vulnerability by explicitly introducing the time dimension in the analysis. The objectives are to address 74 

recent requirements from transnational policies and to close the critical information gap described 75 

earlier. 76 

In view of current and projected acceleration in global urbanization, urban areas are widely considered 77 

as one of the most important non-point sources of contamination impacting groundwater quality (Kuroda 78 

and Fukushi 2008). The Environmental European Agency in 2006 reported that the expansion of urban 79 

areas in many eastern and western European countries has increased by over three times the growth of 80 
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population between 1986 and 2006 (EEA 2006). Urban sprawl is one of the most important types of 81 

land-use changes impacting the regional environment, the social structure, and the economy in Europe. 82 

Urban sprawl generally follows periods of rapid urbanization associated with population growth and 83 

with the excessive migration of people from rural to urban areas. The Po Plain in northern Italy is one 84 

of the most populated regions in Europe with a similar pattern: an initial phase of urban area expansion 85 

from the 1950s to the 1970s followed by an urban sprawl in the subsequent decades. This pattern 86 

qualifies the Po Plain as a representative “pilot area” to identify the interplay of urbanization and 87 

environmental, social and economic impacts after the rapid urban increase. 88 

Nitrate is an abundant contaminant of groundwater. With a high mobility and multiple sources, nitrate 89 

is an effective indicator of groundwater contamination. A sufficient frequency for monitoring nitrate 90 

concentration in groundwater over the long term allows the use of nitrate in temporal analyses to 91 

determine the contamination trend. 92 

Recent studies (Masetti et al. 2008, 2009; Sorichetta et al. 2011) have shown that, in some areas of the 93 

Po Plain, nitrate occurrence in groundwater is strongly related to urban sources (using population density 94 

as a proxy) more than to agricultural activities; however, the problem has never been analyzed in the 95 

time dimension. It is unclear whether a relationship exists between recent changes in groundwater nitrate 96 

contamination and in land use. To analyze how urban development could affect groundwater quality in 97 

the 2000s, recent trends in groundwater nitrate concentration need to be correlated with the evolution of 98 

potential urban nitrate sources across this region.  99 

While satellite data have been typically used to qualitatively assess the availability of groundwater 100 

resources (Jha and Chowdary 2007; Tweed et al. 2007; Al Saud 2010; Jha et al. 2010; Jasmin and 101 

Mallikarjuna 2011; Frappart et al. 2011; Wang et al. 2014), only a limited number of studies used 102 

satellite data to quantitatively assess groundwater quality (Werz and Hötzl 2007). The use of an 103 

innovative dataset to delineate urban areas with satellite scatterometer data has been explored to identify 104 

zones where different rates of urban growth occurred across the entire study area, and in which an 105 

increase of potential urban sources may exist and consequently impact groundwater. Radar backscatter 106 

data acquired by the SeaWinds scatterometer aboard the QuikSCAT satellite together with the Dense 107 

Sampling Method (QSCAT-DSM; Nghiem et al. 2009) have been used to identify and map urban extent 108 
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and surface features at a posting scale of about 1 km². QSCAT-DSM results are to be compared with 109 

those obtained from two different sources of urban information: 1) changes of population density and 110 

2) changes in land use derived from high-resolution aerial images acquired in different years. 111 

In addition, to address the time dimension in groundwater vulnerability assessment, this study can be 112 

considered the first to use remote sensing data to obtain a quantitative assessment of groundwater quality 113 

changes through time. Moreover, it also represents one of the first applications of QuikSCAT data to 114 

environmental and hydrogeological problems with an optimal spatial scale enabled by DSM. 115 

In this study, a “zone vulnerable to nitrate contamination” can be defined as an area where the 116 

combination of natural (e.g., groundwater depth and velocity) and anthropogenic factors (e.g., growth 117 

of urban areas) involves a deterioration trend of groundwater quality. In a static system, a “zone 118 

vulnerable to nitrate contamination” can be defined as an area where the combination of the same factors 119 

involves a given absolute level of contamination in the aquifer. 120 

 121 

 122 

 123 

 124 

 125 

2. Study area 126 

The study area is located within the Po Plain area of Lombardy region, and covers an area of 13,400 127 

km², where urban, industrial, livestock and agricultural activities are extensively and heterogeneously 128 

present.  129 

This region is surrounded by important rivers influencing groundwater flow in the unconfined aquifer: 130 

Po River along the south; Ticino, Sesia and Po rivers along the west; and Mincio River along the east 131 

(Fig. 1). It is also constrained by mountain chains forming the boundary of the plain: Lombardy Prealps 132 

along the north and Appennines along the southwest.  133 

This area has a complex hydrogeological setting consisting of multiple aquifers with various properties 134 

and interactions. The Lombardy plain subsoil is characterized by Plio-Pleistocene sediments whose 135 

upper unit forms the shallow unconfined aquifers (Fig. 2). Sediments are mainly gravels and sands 136 
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although the presence of finer sediments increases from the north to the south where shallow aquifers 137 

are mainly constituted by fine sands and are partially confined. These aquifers have high transmissivity, 138 

ranging from 10-2 to 10-4 m²/s and medium-high hydraulic conductivity, ranging from 10-4 to 10-6 m/s, 139 

while its thickness ranges from 40 to 80 m (Regione Lombardia and ENI 2001). 140 

The groundwater flow is generally oriented north-south toward the base level defined by the Po River, 141 

with a deviation to east-south-east in the south-east area of Lombardy. The groundwater depth decreases 142 

from north to south, ranging from values higher than 70 m to less than 2 m. There are also some 143 

groundwater-fed streams, where the local groundwater depth reduces to zero. 144 

Nitrate (NO3
−) is the most common non-point-source contaminant found in groundwater in the Po Plain. 145 

Nitrate concentrations have been monitored by a network of about 500 wells covering the entire area 146 

with a nearly uniform spatial distribution, where data have been collected every six months from 2001 147 

to 2011 (Regional Environmental Agency – ARPA, unpublished data, 2012). From the network, only 148 

the 221 wells monitoring the shallow aquifer and having a minimum of eight measurements were 149 

selected for being used in the analysis. As an example (Fig. 1), two photographs taken during the PO 150 

PLain EXperiment (POPLEX) in May 2014 (Masetti et al. 2014; Nghiem et al. 2014a) show rural and 151 

urban areas, as two major contrastive types of land use where the monitoring wells are located. 152 
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 154 

This study focuses on the evolution of nitrate concentration in groundwater related to changes of urban 155 

areas. The change in nitrate concentration is quantified by the slope of the regression line from an 156 

interpolation of concentration data. The slope defines the rate of nitrate concentration change in mg/L 157 

per day. Positive slope values show increasing concentration trends representing water quality 158 

deterioration, while non-positive slope values indicate steady or decreasing concentration trend 159 

characterizing unaffected or improved groundwater quality. 160 
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Until the end of the considered monitoring period in 2011, about 28 % of wells show increasing 163 

concentration trends and concentrations exceeding the guideline value of 25 mg/L defined by the EU 164 

standard (91/676/EEC), while 35 % of wells show decreasing concentration trends and concentrations 165 

lower than the same guideline value. Only 3 % of wells show increasing concentration trends and 166 

concentrations exceeding the established threshold of 50 mg/L (91/676/EEC; 2006/118/EC) (Table 1). 167 

Wells with concentrations higher than the guideline value of 25 mg/L are located mainly in the northern 168 

sector, while those with concentrations lower than the guideline value are mostly located in the southern 169 

sector. 170 

 171 

Table 1 Nitrate concentration trends related to the last measured concentration (percentage of wells) 172 

 Increasing concentration trend Decreasing concentration trend 

Concentration ≥ 25 mg/L 

in 2011 
28 % 18 % 

Concentration < 25 mg/L 

in 2011 
19 % 35 % 

Concentration ≥ 50 mg/L 

in 2011 
3 % 6 % 

Concentration < 50 mg/L 

in 2011 
44 % 47 % 
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3. Method and Materials 175 

3.1. Method 176 

The Weights of Evidence (WofE) modeling technique combines different spatial datasets in a 177 

Geographical Information System (GIS) environment to analyze and describe their interactions and 178 

generate predictive patterns (Bonham-Carter 1994; Raines et al. 2000). WofE can be defined as a data-179 

driven Bayesian method in a log-linear form that uses known occurrences representing the response 180 

variable as training sites (training points). These data are used to obtain predictive probability maps 181 

(response themes; i.e., groundwater vulnerability maps) from multiple weighted evidences (i.e., 182 

evidential themes representing explanatory variables or factors that influence groundwater 183 

vulnerability), which determine the spatial distribution of the occurrences in the study area (Raines 184 

1999). 185 

Training points (TPs) are used in WofE to calculate the prior probability, the weights for each class 186 

representing a different range of values of each generalized evidential theme, and the posterior 187 

probability values in the response theme.  188 

Prior probability is based on prior knowledge of the TPs’ locations in the study area. Prior probability 189 

is simply defined by the ratio between the area containing occurrences (i.e., the number of pixels 190 

containing a training point D) and the total area (i.e., the total number of pixels). Thus, the prior 191 

probability represents the probability that a pixel within the study area contains an occurrence without 192 

considering any evidential themes, and it can be expressed as (Bonham-Carter 1994): 193 

 194 

𝑃{𝐷} =
𝑁D
𝑁T

 (1) 

 195 

where ND and NT are respectively the number of pixels containing a training point and the total number 196 

of pixels in the study area. 197 
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For each class of each evidential theme, a positive and a negative weight are computed based on the 198 

location of the TPs with respect to the study area. For a given class B, the positive weight W+ and the 199 

negative weight W- are, respectively, higher and lower than zero or lower and higher than zero. The 200 

resulting combination depends on whether B has more or fewer TPs than expected by chance. 201 

The weights can be expressed as (Bonham-Carter 1994): 202 

 203 

𝑊+ = loge
𝑃{𝐵|𝐷}

𝑃{𝐵|𝐷̅}
 (2) 

  

𝑊− = loge
𝑃{𝐵̅|𝐷}

𝑃{𝐵̅|𝐷̅}
 (3) 

 204 

where P{B|D} and P{B|D̅} are respectively the probability of a pixel of being in the class B when the 205 

same pixel contains or does not contain a training point, and P{B̅|D} and P{B̅|D̅} are respectively the 206 

probability of a pixel of not being in the class B when it contains or does not contain a training point. 207 

The contrast (positive weight minus negative weight) represents the overall degree of spatial association 208 

between each class of a given evidential theme and TPs. Thus, it is a measure of the usefulness of the 209 

considered class in predicting the location of TPs (Raines 1999). 210 

A confidence value for the ratio between the contrast and its standard deviation must be selected to 211 

provide a useful measure of the significance of the contrast (Raines 1999). For this study, a confidence 212 

value of 1.282, corresponding approximately to a 90 % level of significance, was chosen as the minimum 213 

acceptable value to consider an evidential theme class as statistically significant. 214 

The posterior probability represents the relative probability that a pixel contains an occurrence based on 215 

the evidences provided by the evidential themes (i.e., based on the calculated weights). The posterior 216 

probability can be expressed as (Bonham-Carter 1994): 217 

 218 

loge𝑂{𝐷|𝐵1
𝑘 ∩ 𝐵2

𝑘 ∩ 𝐵3
𝑘 …∩ 𝐵𝑛

𝑘} =∑𝑊𝑗
𝑘 + loge𝑂{𝐷}

𝑛

𝑗=1

 (4) 
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 219 

where n identifies each single class used to categorize each evidential theme, k is either + or - depending 220 

on whether the prediction spatial class, Bn, is either present or absent, and O{D} is the odd form of the 221 

probability that a pixel within the study area contains an occurrence.. 222 

The relative probability means that a pixel having a higher posterior probability is more likely to contain 223 

an occurrence than a pixel having a lower probability, and it represents a measure of the relative 224 

likelihood of occurrence of an event (Raines 1999). 225 

In this study, the WofE response themes were generated using the Spatial Data Modeler (Sawatzky et 226 

al. 2009) for ArcGIS 9.3 (ESRI 2008). 227 

 228 

3.2. Response variable 229 

For the purpose of this study, the response variable is represented by nitrate concentration trend in 230 

groundwater. The WofE modelling technique requires a binary formulation of the response variable.  231 

A frequency histogram of nitrate concentration trend shows a nearly bimodal distribution with two main 232 

relative peaks at about -0.0008 and +0.00016 mg/L per day (Fig. 3). Another minor peak can also be 233 

identified at value 0. The intermediate values of -0.0004 and +0.0004 mg/L per day, which separate 234 

three populations, were considered to be appropriate values to be used as thresholds.  235 

Wells showing concentration trends higher than +0.0004 mg/L per day are considered as “increasing” 236 

wells (87), and those below -0.0004 mg/L per day as “decreasing” wells (86). Wells showing 237 

concentration trends included in the range -0.0004 and +0.0004 mg/L per day are considered as “neutral” 238 

wells (48). In these wells, the uncertainty in the slope coefficient value, which is close to zero, does not 239 

allow one to precisely categorize them as “increasing” or “decreasing” wells. 240 

The “increasing” wells, showing a clear increase in concentration trends, represent the training set, and 241 

they have been selected to be used in the analysis. While “decreasing” and “neutral” wells are grouped 242 

in a unique set, representing the control set.  243 
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 246 

3.3 Evidential themes 247 

Both natural and anthropogenic factors have been used as evidential themes in the analysis. Natural 248 

factors include geological and hydrogeological conditions of the study area and are considered static for 249 

the purpose of the study. Three different factors have been selected to represent changes of urban nitrate 250 

sources through time, i.e. land use change derived from 1) satellite data, 2) aerial photographs, and 3) 251 

data on population density changes. Details on each of the factors and on how they are used in the study 252 

are presented below. 253 

 254 

 3.3.1 Urban nitrate sources: anthropogenic factors 255 

Nitrogen loading derived from urban areas (presence of sewer leakage or septic tanks) cannot be easily 256 

or directly estimated quantitatively. For this reason, it is necessary to explore other variables that can be 257 

used as a proxy. 258 



13 

 

For this purpose, it is crucial to have a temporally and spatially consistent dataset delineating the urban 259 

area extent through time in order to investigate the potential relationships between its variation and the 260 

evolution of groundwater contamination. Even in the data-rich European and North American countries, 261 

such information is not collected consistently or during consistent periods of time and is often spatially 262 

and/or temporally limited. 263 

Population density has been used often as a proxy for urban nitrate sources in groundwater vulnerability 264 

assessments (Nolan 2001; Nolan et al. 2002; Masetti et al. 2009; Sorichetta et al. 2011). Population 265 

density is generally referred to administrative units at the specific time of the demographic census or 266 

survey. Official national censuses are usually done once every ten years. Consequently, analyses based 267 

on population census cover a period of ten years, missing changes in shorter periods. 268 

In this study, the population-density change is calculated as the difference between population densities 269 

in each district referred to two successive national censuses, in 2001 and 2011 (ISTAT 2001, 2011). 270 

Positive values indicate a growth of population, and negative values represent a reduction of population. 271 

Between 2001 and 2011, population density changed in the range from -402 to +845 people/km² across 272 

Lombardy (Fig. 4). 273 

 274 
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 276 

High-resolution aerial images in Lombardy have been periodically acquired by the Agency of Services 277 

of Agriculture and Forest (ERSAF), creating a database called DUSAF (ERSAF 2014), to identify and 278 

categorize the land cover in five main land use classes: urban areas, agricultural areas, woods and semi-279 

natural environments, wetlands and surface water areas. The technical maps are at a 1:10,000 scale. For 280 

the purpose of the study, vector maps have been transformed to raster format. DUSAF is updated at 281 

irregular intervals that can be different for different sectors of the region. This limitation does not allow 282 

the maps to represent the urban land use at the same time across the whole region.  283 

To observe changes in urban extent, the two relevant groups are: urban areas, and non-urban areas 284 

consisting of the remaining four classes in DUSAF. Urban-extent changes are calculated as the 285 

percentage change of urban areas in each 1 km² pixel, between two successive compilations, in 2000 286 

(DUSAF version 1.1) and in 2007/2009 (DUSAF versions 2.1 and 3.0), depending on the last available 287 

data in different sectors of the study area. Positive values indicate an expansion of urban areas, while 288 

negative values indicate a reduction of urban areas. According to DUSAF data, urban-area extent 289 

changed in the range from -6.7 % to +30.8 % (Fig. 5). 290 
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 293 

Radar satellite remote sensing data can be used to identify and delineate urban areas. In fact, satellite 294 

radar backscatter is dependent on the number, density, size and material of buildings (e.g., higher 295 

backscatter for more buildings, for larger and taller buildings, and for stronger materials like steel rather 296 

than wood). Crucially, the satellite global coverage with regular data acquisitions in time spanning over 297 

a decadal period allows continuous monitoring of urban changes, and thus enables the trend analysis 298 

together with changes in nitrate sources, capturing more detailed variability in annual, interannual, and 299 

decadal time scales. Such a satellite dataset has been collected by the SeaWinds scatterometer aboard 300 

the QuikSCAT satellite (QSCAT) in the decade of the 2000’s. QSCAT backscatter measurement is 301 

accurate to 0.2 dB (3-σ) (Nghiem et al. 2004), which is equivalent to approximately 1.57% in root-mean-302 

square error, enabling QSCAT to detect not only large and rapid changes as well as small and slow 303 

variations. Applied on the original QSCAT backscatter data, the Dense Sampling Method (DSM), based 304 

on a newly invented mathematical transform called Rosette Transform (Nghiem et al. 2009), is a 305 

breakthrough enabling quantitative measurements of urban parameters (i.e., location, shape, extent, and 306 
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typology) to map land cover features at a posting pixel scale of 1 km², and to calculate the rate of urban 307 

change in the decadal period of 2000–2009 in every pixel across the world. 308 

In DSM, backscatter signature of an area is characterized by the composition of a spatially-dependent 309 

mean part and a fluctuation part that is a function of location, azimuth angle (buildings are different on 310 

different sides; roads have preferential directions; hilly surfaces in a city, etc.), and any changes in time 311 

(vehicles and people move in a city; there can be rain, snow, hail, etc. at different times in different 312 

sections of a city). Thereby, DSM allows azimuthal and temporal changes to occur, and high-resolution 313 

results from DSM include information from both the mean value and the variability of backscatter at 314 

each location where the Rosette Transform is applied on an ensemble of backscatter data whose 315 

centroids are collocated in each unit area. At the expense of the daily temporal resolution, DSM is a 316 

breakthrough method to increase the spatial resolution in urban areas, where the inherent azimuth and 317 

motion changes invalidate the use of the traditional deconvolution method to enhance the resolution of 318 

satellite remote sensing data.  319 

Moreover, advantages of QSCAT-DSM (Nghiem et al. 2009) include the delineation of urban and 320 

suburban contours both in metropolitan and rural areas, and the identification of urban development 321 

both fast and expansive or slow and restrained. Some limitations are due to complex mountainous 322 

topography, persistent snow cover on cold land at high latitudes (e.g., tundra and taiga), or extensive 323 

water surfaces, which affect backscatter signatures, but such factors are ineffective in the study area. 324 

The pointing accuracy of DSM was verified precisely with an accurate overlay of the Príncipe Island 325 

(Gulf of Guinea) on its true geographic location (Nghiem et al. 2009). DSM was validated and used to 326 

accurately delineate urban extent for a number of cities in different countries such as Dallas-Fort Worth 327 

and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou and Beijing 328 

in China, and Quito in Ecuador (Nghiem et al. 2009; Nghiem et al. 2014b). 329 

The rate of land cover change, including both urban and rural areas, is determined by the slope of the 330 

linear regression with QSCAT-DSM data obtained for each year in 2000–2009, expressed in decibel per 331 

year (dB/year). Positive slope values represent increasing or growth of urban areas, while non-positive 332 

and shallow slope values indicate steady rural areas or natural environments. QSCAT-DSM slope varies 333 

within the range of −0.0699 to +0.1268 dB/year, or equivalently −16.0 to +29.6 %/decade (Fig. 6), as 334 
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the slope in dB/year can be converted to the 10-year percentage change given by 10 times of 335 

100×(10dB/year/10 −1). 336 

 337 

 338 

In this study’s approach to assess impacts on groundwater contamination, the focal method is adapted 339 

particularly for applications to QSCAT-DSM and hydrogeological data, and to DUSAF as well. The 340 

algorithm in the focal method considers both the value of each cell and the values of the surrounding 341 

cells with a deterministic mathematic function. It can account for groundwater flow direction: among 342 
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the surrounding cells of each cell, only the cells located upstream are considered in the calculation. The 343 

extent of the area of calculation is 9 km² for a 3×3 window above each pixel of 1 km². 344 

 345 

3.3.2 Urban nitrate sources: natural factors 346 

Natural factors, characterizing geological and hydrogeological conditions of the study area, are 347 

considered to be static in this study. While groundwater depth has a seasonal variability, it has not 348 

significantly changed over the Po Plain in the decade 2000–2009. 349 

Soil protective capacity is obtained from existing data (Fig. 7a). It was produced by the Agency of 350 

Services of Agriculture and Forest. This soil variable has been mapped at a 1:250,000 scale to assign 351 

soil in three protective capacity classes: high, moderate and low. The variable describes soil capacity to 352 

reduce water-soluble polluting substances leaching from the surface. It is related to filtering and 353 

buffering capacity because of both mechanical and biological/microbiological activities contributing to 354 

degradation (Masetti et al. 2007). 355 

The other three hydrogeological variables, characterizing the shallow unconfined aquifer, were obtained 356 

for this study.  357 

Groundwater depth was derived from the difference between the topographic level and groundwater 358 

piezometric levels (regional survey in 2003; Fig. 7b). The groundwater depth decreases from north to 359 

south, ranging from values higher than 70 m to less than 2 m. At some local areas, there are groundwater-360 

fed streams where groundwater depth is reduced to zero. 361 

Groundwater velocity was estimated from 1263 wells where pumping tests were available to determine 362 

hydraulic conductivity (Fig. 7c). These values were used together with the local hydraulic gradient to 363 

obtain groundwater velocity. Field data were interpolated through the kriging methodology to obtain a 364 

map of the distribution of groundwater velocity. In the study area, groundwater velocity ranges from 365 

4.7×10-8 to 7.3×10-5 m/s. Higher values are located in the northern sector and in some areas of the 366 

southwestern sector, while lower values are mainly found in the southeastern sector. 367 

Hydraulic conductivity of the vadose zone was determined from 1597 well stratigraphy records (Fig. 368 

7d). For each well, the hydraulic conductivity was calculated with the equivalent vertical permeability 369 

method (Anderson and Woessner 1992), considering the thickness of the layers in the vadose zone in 370 
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the calculation of the hydraulic conductivity. Data were then interpolated through kriging methodology 371 

to obtain the map of the distribution of hydraulic conductivity of the vadose zone in the study area. 372 

Hydraulic conductivity of the vadose zone ranges from 4.1×10-8 to 4.0×10-2 m/s. Higher values are 373 

located in the northern sector, especially along the belt of the heads of groundwater-fed streams and 374 

along the main rivers (Ticino and Adda rivers). 375 

 376 

 377 

4. Results and discussion 378 

4.1.  Impacts observed from the independent variables  379 

The contrasts of statistically significant evidential themes enable an assessment of the influence of the 380 

variables under consideration on groundwater contamination. Contrast values, both for anthropogenic 381 

and natural factors, are presented in Fig. 8. 382 

All three variables, representing urban nitrate sources and their evolution, show a positive correlation 383 

between the increase of urban areas or population growth and the occurrence of increasing nitrate 384 

concentration trends in groundwater. 385 

Threshold values, corresponding to the transition from negative to positive contrasts, are +44 386 

people/km², +0.0260 dB/year and +1.81 % over the study period, respectively for population density 387 
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change, QSCAT-DSM slope and DUSAF urban extent change. Observed from these variables, classes 388 

with positive contrasts are clustered in the northern sector, while classes with negative contrasts are 389 

mainly in the southern sector. 390 

Soil protective capacity is not statistically significant. Also, it does not show a discernable correlation, 391 

with negative contrasts for low and high classes and a positive contrast for moderate class. 392 

Groundwater depth reveals that large values of water table depth are positively related to increasing 393 

concentration trends, while low values (close to surface or less than 13 m) are negatively associated.  394 

Groundwater velocity and hydraulic conductivity of the vadose zone show positive correlations and the 395 

threshold values are about 1.5×10-6 m/s and 4.7×10-6 m/s, respectively. 396 

 397 



21 

 

 398 

 399 

4.2. Response themes and vulnerability maps 400 

In order to evaluate the reliability of each variable as a proxy of urban nitrate sources, three response 401 

themes were obtained and compared (Fig. 9). Each response theme considers one of the three urban 402 

variables, and the three statistically significant evidential themes represent the associated natural factors 403 

(Table 2). 404 

Each response theme was categorized so that each vulnerability class in the corresponding map contains 405 

approximately the same number of different posterior probability values according to the geometric 406 

interval method (Sorichetta et al. 2011). Five classes were identified with the degree of groundwater 407 

vulnerability increasing from 1 to 5. This number was selected based on the general criteria used to 408 

identify vulnerability classes (Sorichetta et al. 2011) and on visual analytic techniques (Cowan 2001). 409 

It is important to note that these response themes are time dependent. This means that groundwater 410 

vulnerability classes reflect the tendency toward a deterioration of the quality of the aquifer rather than 411 

the absolute severity of the aquifer contamination in a static condition. 412 

 413 

4.3. Reliability and validation of the maps  414 

The general quality of each response theme (i.e., post probability map) can be evaluated with the Area-415 

Under-the-Curve (AUC) value. AUC is a direct measure of the performance of the statistical approach, 416 

and is given by the area under the curve (integral) for cumulated area/cumulated training points 417 

expressed in percentage. The calculated AUC values are presented in Table 2 showing the consistent 418 

quality of the different maps. 419 

 420 

 421 

 422 

 423 

 424 
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 425 

Table 2 Combination of evidential themes used to obtained response themes and AUC values (pop = 426 

population density change, gwd = groundwater depth, gvw = groundwater velocity, hcv = hydraulic 427 

conductivity of the vadose zone, QSCAT-DSM = land use changes derived from satellite data, DUSAF 428 

= land use changes derived from aerial photographs) 429 

Response theme Combination of evidential themes AUC value 

W1 pop, gwd, gwv, hcv 74.4 % 

W2 QSCAT-DSM, gwd, gwv, hcv 74.3 % 

W3 DUSAF, gwd, gwv, hcv 73.7 % 

 430 

 431 

 432 

Then, the reliability of each classified map was evaluated again by considering its overall performance 433 

in classifying the occurrences. Two statistical validation procedures were used: (1) frequency of training 434 

set, and (2) average nitrate concentration trend of all wells in each vulnerability class. 435 

The evaluation of the frequency, F, is expressed by the ratio: 436 
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 437 

𝐹 = (𝑁W𝑗/𝑇W𝑗) (5) 

 438 

where NWj is the number of “increasing” wells in a vulnerability class j and TWj is the total number of 439 

wells in the same class j. This technique adds new information to the validation process because it 440 

includes also the wells not used in the modeling. Frequency is expected to increase monotonically as the 441 

degree of vulnerability increase. The expected trend is verified. In fact, for all the three vulnerability 442 

maps, there are no “increasing” wells in the lowest vulnerability class and the highest frequency of 443 

“increasing” wells is in the highest vulnerability class (Fig. 10). 444 

The evaluation of the average nitrate concentration trend of all wells, CAVG, is expressed as: 445 

 446 

𝐶AVG =
∑ 𝐶𝑖𝑗
𝑇W𝑗

𝑖=1
𝑇W𝑗
⁄  (6) 

 447 

where Cij is the nitrate concentration trend of well i in the vulnerability class j, and TWj is the total number 448 

of wells in the same class j. This analysis was carried out using all wells stored in the database. The 449 

concentration should monotonically increase as the degree of vulnerability increases and the central 450 

vulnerability class should give a value close to the overall mean value. Despite some anomalies, all three 451 

histograms show a direct correlation between average nitrate concentration trend and the degree of 452 

vulnerability (Fig. 10). 453 

With these two techniques, the quality of each vulnerability map was evaluated based on the slope 454 

coefficient of the regression line and the regression coefficient, so that a map should be deemed reliable 455 

if it passes these tests. 456 
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 458 

 459 

4.4. Spatial agreement between maps 460 

A spatial agreement is quantitatively evaluated through a pixel-by-pixel analysis representing the 461 

difference, expressed as percentage, in the unit-cell classification for the three vulnerability maps (Fig. 462 

11). Results from this analysis show a high level of agreement between the maps in the paired map-to-463 

map comparison: almost 61–67 % of the study area is classified with the same degree of vulnerability, 464 

33–38 % is classified within a difference of one degree of vulnerability, while only 0.3–0.8 % within a 465 

difference of two degrees of vulnerability. 466 
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 467 

 468 

Another method to evaluate the reliability of each vulnerability map is overlaying each map with the 469 

classes of its urban change variable with positive contrast values to examine their consistency (Fig. 12). 470 

Map W2, obtained using QSCAT-DSM slope, is the only one where the highest vulnerability classes 471 

are consistently overlain by the classes of urban extent change variable with positive contrast values. 472 

Instead, in the other two cases there are anomalous mismatches. In Map W1, obtained using population 473 

density changes, some cities (like Monza or Brescia) show negative contrast values, meaning that their 474 

population density change is lower than +44 people/km². In Map W3, obtained using DUSAF maps, 475 

some areas in the northern sector show negative contrast values (like Milan), while agricultural areas of 476 

the southern sector are characterized by positive contrast values (e.g., Provinces of Cremona and 477 

Mantua). The first anomaly could be explained by the urban sprawl phenomenon, with residential 478 

citizens moving from the largest cities to the smallest cities, while the rate of urbanization is increasing 479 

almost everywhere. The second anomaly could be caused by the focal application applied to the binary 480 

land-use categorization in the DUSAF maps: small changes in urban extent cannot be accurately 481 

detected in large urban areas.  482 
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 484 

4.5 Discussion 485 

The direct correlation for all of the three anthropogenic evidential themes means that increasing nitrate 486 

concentration is related to areas of urban development or population increase, in agreement with 487 

Stevenazzi et al. (2014). 488 

The three urban variables consistently identify that the most important changes are clustered around the 489 

biggest cities or in the northern sector where cities and industries in the Lombardy region are mostly 490 

located, while the southern sector primarily consists of agricultural fields. There are anomalies in 491 

population density changes because some sectors in large cities have decreasing trends while small 492 

towns show significantly increasing trends. These changes indicate a tendency that people like to move 493 

away from over-crowded urban areas and sprawl to more open suburban areas with natural or 494 

agricultural surroundings (EEA 2006).  495 

The direct relationship between groundwater depth and increasing concentration trends is consistent 496 

with earlier static observations for shallow aquifer in USA (Nolan 2001; Nolan et al. 2002) and in the 497 



27 

 

Province of Milan (Sorichetta et al. 2013). The explanation can be found in bio-geochemical conditions 498 

of the vadose zone. In fact, very shallow water table leads to waterlogged conditions conducive to 499 

denitrification processes, in which denitrification rates tend to decrease as water table depth increases. 500 

The result in this study supports this hypothesis and indicates that nitrate concentration changes are 501 

related to bio-geochemical activities in the vadose zone. 502 

Groundwater velocity and hydraulic conductivity of the vadose zone are two hydrogeological variables 503 

that influence the movements of contaminants from surface to aquifers and within aquifers. The first 504 

controls transport and dilution of contaminants within aquifers, and the latter controls the rate at which 505 

a contaminant can reach groundwater. In terms of increasing concentration trends in the study area, 506 

positive correlations mean that the transport process is generally prevalent over the dilution one, both in 507 

groundwater and in the vadose zone. Static analyses (Sorichetta et al. 2013) have found that these 508 

variables have positive correlations with the occurrence of high nitrate concentrations. From this study, 509 

increasing concentration trends are shown to relate to increasing groundwater velocity or increasing 510 

hydraulic conductivity in the vadose zone. Thus, both static and time-dependent analyses confirm the 511 

impacts of these hydrogeological factors on the distribution of contaminants, which are necessary to 512 

include in groundwater vulnerability assessment. 513 

Vulnerability maps are calibrated and validated. The similarity in calculated high AUC values for Maps 514 

W1, W2 and W3 asserts the consistent quality of the maps. Histograms of frequency are excellent for 515 

all the maps, with a monotonic increase corresponding to higher vulnerability. Nevertheless, according 516 

to the criteria used in evaluating the frequency histograms, Map W2 can be considered the one that 517 

performs best. In fact, it has the highest regression coefficients and the one with the highest frequency 518 

of impacted wells in the highest vulnerability class. 519 

Histograms of average nitrate concentration trends show a general positive trend, although with low 520 

values. Maps W1 and W3 have the highest angular and regression coefficients, but only Map W2 shows 521 

the mean positive value in the higher vulnerability class. No map presents the mean or median value of 522 

the whole distribution as average concentration trend in the central vulnerability class.  523 
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In summary, QSCAT-DSM can be successfully used as a proxy for nitrate contamination from urban 524 

sources and, among the three obtained vulnerability maps, the map that uses QSCAT-DSM slope to 525 

characterize the evolution of urban nitrate sources (Map W2) appears to be the best. 526 

 527 

 528 

5. Conclusions 529 

Introducing the time variable to monitor trends in groundwater vulnerability assessment is an innovative 530 

approach to study the evolution of non-point-source pollution in an area and to forecast future changes. 531 

With the application of a Bayesian spatial statistical approach, it is found that: 532 

– Natural factors, such as groundwater depth, groundwater velocity and hydraulic conductivity of the 533 

vadose zone, influence groundwater vulnerability, confirming results from previous studies on 534 

nitrate contamination (Nolan 2001; Sorichetta et al. 2013); 535 

– The innovative use of QSCAT-DSM satellite data (Nghiem et al. 2009) in the analysis enables the 536 

production of a time-dependent vulnerability map, which is compared with two other vulnerability 537 

maps obtained using different time-dependent factors related to urban changes (i.e., population 538 

density from census and changes in land use derived from the DUSAF database);  539 

– All of the time-dependent factors indicate that increasing nitrate concentration occurs in areas 540 

related to urban development or population increase; 541 

– The calibration and validation procedures affirm all of the three vulnerability maps have a high 542 

reliability, while the one obtained with QSCAT-DSM is the better one.  543 

The latter result is remarkable for those areas where there are insufficient or inaccurate data for 544 

population or land use and their changes, and thus satellite observations of urban change become 545 

particularly useful. Moreover, QSCAT-DSM data have the advantages of a worldwide coverage, a 546 

continuous data collection and an adequate resolution without spatial gaps. 547 

In conclusion, the approach developed in this study for the first time allows the inclusion of the time 548 

variable in groundwater vulnerability assessment with the use of innovative remote sensing data to carry 549 

out a quantitative statistical analysis of groundwater quality changes. 550 
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New approaches to combine groundwater vulnerability maps obtained by explicitly accounting for the 551 

time variable with traditional vulnerability maps should be advanced for better intervention strategies 552 

and for more efficient policy measures. Indeed, their combined use would allow one to not only identify 553 

already highly contaminated areas where expensive reactive remediation measures need to be 554 

implemented, but also to detect areas where pro-active interventions need to be planned. 555 

With the method demonstrated in this study, existing and future satellite scatterometer data can be used 556 

to make and update maps of groundwater vulnerability as urbanization accelerates across the world. 557 

 558 
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FIGURE CAPTIONS: 706 

 707 

Fig. 1 (a) Location of the study area; (b) well-monitoring network; (c) examples of well locations in 708 

urban (1) and rural (2) environments as marked by 1 and 2 next to the square boxes on the map in panel 709 

(b) where the photographs were taken during the POPLEX field campaign in May 2014. Coordinates 710 

refer to WGS 1984 – UTM Zone 32N projection 711 

 712 

Fig. 2 Hydrogeological scheme along the N-S section marked by the grey line on the map in Fig. 1b 713 

(modified from Regione Lombardia and ENI 2001) 714 

 715 

Fig. 3 Frequency histogram of nitrate concentration trend 716 

 717 

Fig. 4 Population density maps, at municipality level, in (a) 2011 and (b) 2001, and (c) the final map 718 

obtained as the difference between the two maps (a) and (b). Coordinates refer to WGS 1984 – UTM 719 

Zone 32N projection 720 

 721 

Fig. 5 DUSAF urban area extent maps in (a) 2007/09 and (b) 2000, and (c) the final map obtained by 722 

calculating the percentage change of urban areas between the two maps (a) and (b) at a resolution of 1 723 

km². Coordinates refer to WGS 1984 – UTM Zone 32N projection 724 

 725 

Fig. 6 QSCAT-DSM backscatter maps, at a posting of 1 km², from 2000 to 2009, and the final map of 726 

the linear regression slope. Coordinates refer to WGS 1984 – UTM Zone 32N projection 727 

 728 

 729 

 730 
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Fig. 7 Natural factors maps: (a) soil protective capacity; (b) groundwater depth; (c) groundwater 731 

velocity; (d) hydraulic conductivity of the vadose zone. Dots in panels (c) and (d) represent the locations 732 

of pumping test sites and well stratigraphies used to map the spatial distribution of groundwater velocity 733 

and hydraulic conductivity of the vadose zone, respectively. Coordinates refer to WGS 1984 – UTM 734 

Zone 32N projection 735 

 736 

Fig. 8 Contrasts and error bars of the statistically significant classes of each evidential theme used to 737 

generate the maps in Fig. 9 738 

 739 

Fig. 9 Vulnerability maps obtained using static variables, representing natural factors, with (a) 740 

population density change, (b) QSCAT-DSM slope, and (c) DUSAF-based urban extent change as time-741 

dependent variables. Coordinates refer to WGS 1984 – UTM Zone 32N projection 742 

 743 

Fig. 10 Histograms of the frequency of the “increasing” wells (left) and of the average nitrate 744 

concentration trend (right) in each vulnerability classes of the maps in Fig. 9. The degree of vulnerability 745 

increases from class 1 to class 5 746 

 747 

Fig. 11 Variation of vulnerability from map-to-map: (a) map W1 on map W2; (b) map W2 on map W3; 748 

(c) map W1 on map W3. The variation is expressed as the agreement in percentage between the 749 

vulnerability depicted in the first map with respect to the one depicted in the second map. Coordinates 750 

refer to WGS 1984 – UTM Zone 32N projection 751 

 752 

Fig. 12 Vulnerability maps obtained using (a) population density change, (b) QSCAT-DSM slope and 753 

(c) DUSAF urban extent change as time-dependent variables, overlain by the corresponding evidential 754 

theme classes with positive contrast values. Coordinates refer to WGS 1984 – UTM Zone 32N projection 755 

 756 


