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nteractions among dendritic cells, macrophages, and epithelial
ells in the gut: implications for immune tolerance
aria Rescigno1, Uri Lopatin2 and Marcello Chieppa1
The intestine is described as an immune privileged site where

immunoregulatory mechanisms simultaneously defend against

pathogens, yet preserve tissue homeostasis to avoid immune-

mediated pathology in response to environmental challenges.

Additionally, tolerance to ingested antigens promotes the

development of systemic unresponsiveness towards the same

antigens. It is increasingly clear that this tolerance is a complex

process that derives from the coordinated action of both

canonical immune and non-immune cells at mucosal sites,

including dendritic cells, macrophages and epithelial cells.

Recent evidence suggests that dysregulation in gut-induced

tolerance and commensal bacterial handling affects both local

and systemic compartments and contributes to autoimmune

disease. Understanding how tolerance is achieved at mucosal

sites may thus be exploited to re-establish tissue homeostasis.
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Introduction
The digestive apparatus is likely the first discrete organ

to develop. Nutrients are forced into a ‘lumen’ to favor

absorption. The luminal content is separated from the

epithelial cell membrane by a mucous layer [1]. How-

ever, this mucous barrier provides imperfect protection

against the diversity of bacteria residing in the same

luminal content. Thus rich arrays of immune cells are

scattered both between epithelial cells (ECs) and dee-

per in the lamina propria (LP). These cells participate in

the discrimination between food and pathogenic organ-

isms, in the induction of IgA response, and in the

inhibition of inflammatory responses to the continuous

challenge of intestinal bacteria. Furthermore, commen-

sal bacteria normally considered as safe may become
ww.sciencedirect.com
pathogenic and contribute malabsorption, inflammatory

bowel disease, and colorectal cancer [2]. How can the

intestinal immune system handle this load of infor-

mation is not completely understood, but it is becoming

clear that the interaction between luminal bacteria,

epithelial cells, and immune cells is crucial to preserve

intestinal homeostasis. In this review, we will focus on

three important cell types: epithelial cells, dendritic

cells, and macrophages that via a coordinated action

help keeping peace at mucosal surfaces but are ready to

fight, when needed.

Epithelial cells: not simply a barrier
Most pathogen recognition receptors, including Toll-like

receptors (TLRs), were thought to be exclusively

expressed either intracellularly or on the basolateral mem-

brane of epithelial cells, leaving the apical membrane

unable to interact with bacteria. Subsequently, several

findings suggested that this may not be the case. Rather

it has been shown that the binding of TLR ligands can

occur both at apical and at basolateral membranes, giving

different outcomes [3]. A typical example is TLR9, the

receptor for unmethylated CpG-containing bacterial

DNA. Unlike myeloid cells, TLR9 is expressed on the

cell surface of epithelial cells, both apically and basolat-

erally, in vitro and in vivo [4�]. TLR9 engagement on the

apical surface of epithelial cells induces partial activation of

NF-kB, a master regulator of the inflammatory response,

without stimulating the release of proinflammatory cyto-

kines (Figure 1). By contrast, basolateral engagement of

TLR9 leads to a robust inflammatory response, which can

be inhibited by preincubation with apical CpG [4�]. This

suggests that the apical engagement of TLRs is protective.

In agreement, mice lacking TLRs or TLR signaling are

more prone to develop experimental colitis [5–7]. These

experiments also indicate that partial NF-kB activation is

protective rather than inflammatory. In agreement, mice

with intestinal epithelial cell deletion of different subunits

of IKK, kinases required for NF-kB activation, display

severe chronic intestinal inflammation [8��] or are more

susceptible to infections [9��]. Finally, commensal bacteria

were found to interact with epithelial cells and induce

inhibitory signals in ECs [10–12]. Incubation of epithelial

cells with noninvasive strains of Salmonella enteriditis or

Bacteroides thetaiotaomicron leads to the reduction of NF-kB

activation and translocation to the nucleus [11,13] or pre-

mature egress of RelA subunit from the nucleus [10],

respectively. Interestingly, reactive oxygen species

(ROS) induced by commensals are responsible for the

inactivation of the catalytic cysteine residue of Ubc12
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Figure 1

Epithelial cells are not simply a barrier. Three different conditions of epithelial cell (EC) activation are depicted. Unlike myeloid cells, ECs express

TLR9 on their cell surface (red cylinders) and respond to bacterial DNA (red circles). During steady state (left panel), ECs sense the presence of

commensal bacteria (light blue) and are ‘set’ to a noninflammatory mode. There is partial activation of NF-kB that does not result in nuclear

translocation. During infection (middle panel), invasive bacteria (red) reach the basolateral membrane. Here TLR9 triggering leads to full NF-kB

activation and the release of inflammatory mediators. As apical engagement of TLR9 inhibits full activation of NF-kB from basolateral TLR9

engagement, it is not clear whether ECs under steady state are inflammatory at all (right panel). We hypothesize that ECs located at the tip

of the villi are more exposed to bacteria resulting in tolerization, while those located closer to the crypts are in a more ‘sterile’ environment

because of the release of antimicrobial peptides by Paneth cells and retain their inflammatory potential. Invasive bacteria that reach the

deeper cells may initiate an inflammatory cascade. Alternatively, in vivo, invasive bacteria could transform the tolerogenic phenotype of ECs,

perhaps as a consequence of binding to basolaterally expressed TLRs. These possibilities remain to be explored.
resulting in impaired I-kB ubiquitination and NF-kB

activation [14�]. Altogether, these data suggest that epi-

thelial cells are not simply a barrier to intestinal bacteria

[15]. It is unclear though if bacteria contact EC surface

receptors somehow bypassing the large mucus layer cover-

ing the epithelial membrane, or if TLR ligands released

during bacterial degradation deliver anti-inflammatory sig-

nals. Nonetheless, it appears that as long as the bacteria

remain in the lumen they are sensed as innocuous and the

result is not ignorance, but induction of a protective

tolerogenic response.
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Epithelial cells during infection
In general, pathogenic bacteria are invasive and reach

intracellular compartments as well as the basolateral mem-

brane to initiate a proinflammatory signaling cascade [12].

These generate ‘alarm’ signals to underlying immune cells

and recruit circulating leukocytes. However, as mentioned

above, if epithelial cells are tolerized by the presence of

commensals or bacterial products at their apical surface,

how do they respond to invasive bacteria? One possibility is

that epithelial cells located at the tip of the villi are more

exposed to bacteria resulting in tolerization, while those
www.sciencedirect.com
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Figure 2

Specialized functions of gut DCs. Resident LP-DCs (left panel) have been shown to be impaired in their ability to release inflammatory cytokines

like IL-12, but produce more IL-10. DC precursors (CD11bloCD11clo) express TLRs but are not responsive to TLR ligation, while differentiated DCs

express only TLR5 and TLR9, and respond to flagellin. Depending on the analyzed subset, DCs can either induce Th2, Foxp3+ Tregs or Th17 T cell

development. The location and precise phenotype that distinguishes these different subsets remains to be understood. During inflammation (right

panel) it is not yet clear whether resident DCs lose their noninflammatory properties, or whether fresh nonconditioned DCs are recruited from blood as

differentiated cells or monocytic precursors. The immunostimulatory environment drives their full activation. DCs release IL-12 and drive the

development of Th1 T cells. It is not yet clear whether activated cells are better inducers of Th17 T cells.
located closer to the crypts are in a more ‘sterile’ environ-

ment because of the release of antimicrobial peptides by

Paneth cells and retain their inflammatory potential. Inva-

sive bacteria that reach the deeper cells may initiate an

inflammatory cascade. Alternatively, in vivo, invasive bac-

teria could transform the tolerogenic phenotype of ECs,

perhaps as a consequence of binding to basolaterally

expressed TLRs. These possibilities need to be explored,

but it has been shown that TLR3 ligation induces severe

mucosal injury, suggesting that some apically applied TLR

ligands may be inflammatory [16].

Immune cells in the gut
Peyer’s patches (PPs) that represent the major gut-associ-

ated lymphoid tissue, differ from other lymphoid organs.

They contain a higher proportion of B cells versus T cells

[17] and are rich in cytokines with IgA-inducing func-

tions, including transforming growth factor (TGF)-b [18].

Therefore, PPs are considered a site conducive to anti-

gen-specific IgA induction, as in response to Salmonella
[19]. By contrast, PPs are dispensable for the generation

of T-cell-independent IgA responses that seem to occur

directly in the LP [20]. Dendritic cells (DCs) are pro-

fessional antigen-presenting cells characterized by the

ability to migrate to mesenteric lymph nodes (MLNs)

both during the steady state and during infection [21,22].

In the PPs, DCs are located in the subepithelial dome,

just below the follicle-associated epithelium, and migrate

to T and B cell areas after stimulation.

The vast majority of LP is colonized by immune cells.

The LP is home to a large number of T regulatory cells,
www.sciencedirect.com
invariant T cells, natural killer cells and noncanonical

CD8aa intraepithelial T cells [23,24]. All these cells

seem to play a role in protecting against commensal-

driven inflammation. This allows a dynamic control of

the immune response depending on the external environ-

ment. DCs are not only deeply infiltrated into villi but are

also in close contact with the intestinal epithelium

[25,26]. Epithelial TLR engagement provokes DCs to

extend processes into the intestinal lumen for direct

bacterial uptake [27�].

Gut dendritic cells
It is becoming clear that there is neither systemic immu-

nity nor tolerance to commensals [28]. Commensal-laden

DCs are retained in MLNs and do not reach the spleen,

thus impeding the induction of commensal-specific

systemic IgG responses [29]. As anticipated, a key

requirement of the intestinal immune system is to gen-

erate oral tolerance to food antigen, while preserving

immunity to pathogens. A major site for this process is

MLN [30]. Within the MLN, DCs are potent mediators

of tolerogenic and inflammatory phenomena. A popu-

lation of DCs characterized by the expression of

CD103 has been described to have the ability to induce

the de novo differentiation of naı̈ve T cells into

CD4+CD25+Foxp3+ T cells, via a TGF-b and retinoic

acid (RA)-dependent mechanism [31��]. This population

is presumably coming from the LP [32��,33].

Also DCs from other gut district display specialized

functions [34,35] (Figure 2). LP-DCs express only

TLR5 and TLR9 and induce IgA class switching and
Current Opinion in Immunology 2008, 20:669–675
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Figure 3

Specialized functions of gut macrophages. Macrophages isolated from the gut are impaired in the release of proinflammatory mediators in response to

bacteria, but retain their bactericidal activity. Intestinal macrophages also have reduced CD14 surface expression and selective TLR expression.

Macrophages can also release TGF-b and retinoic acid and drive the development of Foxp3+ Tregs. Recently, a population of cells with intermediate

phenotype between macrophages and DCs has also been described.
Th17 cells when challenged, however the clinical con-

sequence of this response is unclear [36�,37]. A subpopu-

lation of LP-DCs (CD11bloCD11clo) although expressing

high levels of TLRs fails to produce proinflammatory

cytokines when challenged [38�]. This explains why the

capacity of DCs to extend dendrites across the intestinal

lumen depends on TLR engagement on epithelial cells

and not on DCs [27�].

Finally, PP-DCs can impart gut-homing properties to T

cells, B cells, and Tregs via a RA-dependent mechanism

[33,39,40,41�,42]. PP-DCs can also drive IgA class switch-

ing via a RA-dependent mechanism [41�,43].

Macrophages
Macrophages display specialized functions in the gut in a

fashion similar to DCs (Figure 3). Macrophages also dis-

play selective expression of TLRs, and are unresponsive

to TLR ligation in terms of proinflammatory cytokine

production, but retain fully competent bactericidal

activity [44]. Recently, a new function for intestinal

macrophages has been proposed. Like CD103+ DCs,

they have been shown to support the induction of

CD4+CD25+Foxp3+ Treg cells [45�]. The function of

tolerogenic macrophages is not clear, as it is not known

whether they can migrate to MLN. However, cell

migration to MLN has been shown to be required for
Current Opinion in Immunology 2008, 20:669–675
the induction of oral tolerance [30]. One hypothesis is that

macrophages support locally the maintenance of a Treg

phenotype in an environment continuously exposed to

bacteria and bacterial products. Macrophages have also

been described to tune DC function by inhibiting their

potential to drive Th17 T cells [45�]. A unique CD14+

inflammatory cell with intermediate phenotype between

DCs and macrophages has also been recently described in

the human gut [46]. This cell type could represent a

recently recruited monocyte that is undergoing a tran-

sition to either macrophages or DCs.

Epithelial cell–dendritic cell–macrophage
interactions
The previous observations indicate that intestinal epi-

thelial cells, DCs, and macrophages are profoundly non-

inflammatory. This state is characterized by the inability

of these cell types to initiate inflammatory responses to

intestinal bacteria. However, these intestinal immune

cells are not paralyzed and bacteria are not ignored.

For instance, commensal reactive IgAs are found in mice

reared under specific pathogen-free conditions [47].

These IgAs could be either specific or polyreactive and

serve as anchors, which may either prevent internalization

or promote a controlled entrance of bacteria via M cells

[48]. Gut DCs also have the peculiar capacity to induce

Treg cell development; however, there is no systemic
www.sciencedirect.com
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Figure 4

Epithelial cell–dendritic cell-macrophage interactions. What drives the development of the specialized functions of gut DCs? Human intestinal epithelial

cells release TSLP, TGF-b, and RA that drive the development of tolerogenic DCs able to induce Th2 and Foxp3+ Tregs. TSLP is also shown to favor

the release of BAFF and APRIL by conditioned DCs and supports IgA class switching of B cells directly in the LP or the generation of protease-resistant

IgA2 after sequential class switching from IgA1. Additionally, macrophages appear to tune the inflammatory potential of DCs, but the factors

involved are not yet known. On the other hand, macrophages are shaped by stromal cell derived TGF-b and induce Foxp3+ Tregs in a fashion

similar to DCs. DCs and macrophages derive from circulating monocytes that could undergo ‘mucosal’ conditioning during their terminal differentiation

into the tissue. In agreement, Tregs can steer the differentiation of monocytes into regulatory macrophages. Hence, the concerted action of immune

cells, stromal cells, and epithelial cells is required to keep peace at intestinal surfaces.
tolerance to commensal bacteria. One might argue that

these Tregs are retained within the gut without spreading

to systemic districts, as would be hypothesized by the

expression of gut-homing receptors [42]. Alternatively,

Tregs specific for commensal bacteria are not generated.

These issues remain to be elucidated (Figure 4).

What drives the development of the specialized functions

of gut DCs? We hypothesize that the local microenviron-

ment, and in particular intestinal epithelial cells, plays a

role in shaping DC function. The simple incubation of

human monocyte derived DCs with epithelial cell super-

natant is sufficient to induce a ‘mucosal’ phenotype to
www.sciencedirect.com
DCs [49]. Epithelial cell conditioned DCs are unable to

release inflammatory cytokines and to drive Th1 T cells.

In humans, thymic stromal lymphopoietin (TSLP) was

identified as one of the conditioning factors released by

epithelial cells [49]. Interestingly, TSLP is also shown to

favor the release of BAFF and APRIL by conditioned

DCs and supports IgA class switching of B cells directly in

the LP [50], or the generation of protease-resistant IgA2

after sequential class switching from IgA1 [51��]. TSLP is

not the only factor released by epithelial cells that confers

mucosal DC properties. Both mouse and human epithelial

cells also release RA and TGF-b. These factors are

required to drive the development of CD103+ tolerogenic
Current Opinion in Immunology 2008, 20:669–675
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DCs (Iliev et al., unpublished). Epithelial cells are not the

only cells able to modulate DC function. As mentioned

above, macrophages also appear to tune the inflammatory

potential of DCs [45�]. Further, macrophages are shaped

by stromal cell-derived TGF-b [44] and by Tregs that direct

their differentiation from monocytes into anti-inflamma-

tory cells [52]. Altogether these findings suggest that the

reciprocal action of immune cells, stromal cells, and epi-

thelial cells is required to keep peace at intestinal surfaces.

Conclusions
In conclusion, intestinal resident immune cells have been

shown to display specialized functions aimed at main-

taining immune homeostasis. These cells interact and

control the reciprocal function of the others. Epithelial

cells, in particular, both at steady state and during in-

fection sense the external world and relay this infor-

mation to underlying immune cells. These interactions

can lead either to tolerogenic or to inflammatory immune

responses depending on the local status of the intestine.

As our knowledge of these players expands, we may

understand the contribution of other components like

intraepithelial lymphocytes, mast cells, stromal cells, and

glial cells in the overall immune homeostasis.
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