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Reviewers' comments: 

 

 

Reviewer #1: Looking how much effort and detail were put into the characterization of the 

commercial antioxidant products, I think the focus of the article should be shifted a bit towards 

that aspect. Meanwhile, the evaluation of the treated wines is an application of these products, 

and the authors tried to relate the findings in the wines back to the content of the additives. I 

think this subtle shift in focus could be reflected in the title, abstract and introduction. 

 

One issue that I have highlighted in the reviewed version of the text is the use of TP and TF for 

total phenolics as measured by the FC assay and total flavonoids (in fact phenolics) measured by 

absorbance. This issue has to be addressed by the authors, since it is misleading. 

The Folin-Ciocalteau reagent allows the determination of the total phenols index. The 

measurement of total flavonoidsby the method described by Di Stefano, Cravero, &Gentilini(1989) 

allows also the estimation of the non-flavonoids content. In this method, the direct reading at 280 

nm (total flavonoids, TF) is required and it can be subtracted by the absorbance value found for the 

proanthocyanidins corrected at 280 nm. 

The text was modified in order to clarify the two methods used obtaining a deepen indexes of the 

phenolic contents con the antioxidant formulas investigated. 

 

There are some comments on the style of the paper I would like to make: even though the 

language is good, the use of some English terms and phrases in the scientific context is a bit 

forced. The most often encountered is "added with" - which should be replaced, depending on the 

context, with "containing", "addition" and such (I have made some of these suggestions in the 

text).  

Some of the phrases are long. The use of the semicolon (;) is extensive in some parts of the text - I 

recommend to replace it with a full stop, since this is a scientific text. 

The table numbers don't always correspond to the table that presents the information discussed. 

 

As the reviewer suggested, the manuscript was entirely revised emphasizing the characterization of 

the polyphenols-based formulas in the title, abstract and introduction. The style of the paper was 

also modified. 

*Detailed Response to Reviewers
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Reviewer #2: Comments:  

This manuscript titled "Suitability of polyphenols-based formulas to replace sulfur dioxide for 

storage of sparkling white wine" studies the use of the three different antioxidant  formulas added 

to an Italian sparkling white wine (Champenoise method) while disgorging as potential substitutes 

of SO2. This manuscript displays a new and really interesting information. Furthermore, the 

manuscript is well built and written. 

 

However I have some comments/doubts so authors can see below a point by point: 

Line: 47 Please correct "(Guichard, Pham, &Etievant, 1999)" to "(Guichard, Pham, &Etievant, 

1993)" 

The reference was changes, as the review suggested  

 

Line: 60 provide a reference to support this statement (2-ketobutyric acid formation ) 

The reference was added (Pons, Lavigne, Landais, Darriet, &Dubourdieu(2010) Journal of 

Agricultural and Food Chemistry, 58, 7273-7279). 

 

Line: 220 Reactivity to sulfur dioxide: provide a reference a support 

The reference was added (Di Stefano, &Cravero, 1991). 

 

Lines: 270 Total phenols in sparkling wine: provide a reference a support. Why they were not 

determined the total polyphenols to FolinCiocalteu? 

The polyphenols index was determined in wine in accordance to Di Stefano, Cravero, &Gentilini, 

1989. This method provides a suitable determination of the phenols concentration in wine. 

 

Lines: 292, 294, 300, 310, 320 review in the text the references of the tables (table 2 to table 3 or 

4). 

The number of tables was modified in the text. 

 

Line: 326 Please correct "(1.51 g/100 g powder)" to "(1.50 g/100 g powder)". 

The quantification reported into the manuscript was corrected. 
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Lines: 329, 334 Please correct "table 3" to "table 4" 

Lines: 330, 335, 375, 393 Please correct "table 1" to "table 2" 

Lines: 332, 333, 338, 340, 341  Please correct "table 4" to "table 5" 

The number of tables was modified in the text. 

 

Lines: 401- 403 provide a reference a support 

The statements reported in these lines are not supported by the literature. As we mentioned “The 

rationale behind the increased GSH content is not clear.” The following statement is 

an“hypothesis” as we clarified since we found the “GRP decreased over the storage and lower 

concentration of this compound was found at 25°C in comparison to 15°C”.  

 

Line: 406 concentration of GSH (5.8 g/100 g)? or 5.8 mg/100 g 

The GSH concentration as 5.8 g/100 g is correct. 

 

Line: 546 Please correct "table 1" to "table 4" 

The number of table was modified in the figure caption. 

 

Lines: 548, 549 add in the Table 1 the standard deviation 

As the reviewer suggested, the standard deviation was added in table 1. 

 

Line: 551 Table 2: Please correct "SO2" to "SO2" 

This correction was carried out in table 2. 

 

Line: 561 Table 5: Please correct "Glutatione" to "Glutathion". Concentration of GSH (5.8 g/100 

g)?or 5.8 mg/100 g 

“Glutathione” was corrected in the table. 

 

Line: 567 Table 6 Please correct "Glutatione" to "Glutathion"  

“Glutathione” was corrected in the tablefootnote. 
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Abstract 13 

The sparkling wine protection against air is of interest for maintaining its sensorial profile and it is 14 

achieved through the use of antioxidants while disgorging. Sulfur dioxide (SO2) is commonly 15 

added, but its amount should be limited due to human health problems. The suitability of three 16 

polyphenols-based commercial formulas containing plant gallic and ellagic acids extracted from 17 

grape (Vitis vinifera L.) (AO1), plant ellagic acid and gum arabic (AO2), and plant gallic, ellagic 18 

acids and Saccharomyces cerevisiae cell-wall fractions (AO3) was evaluated after 7 months storage 19 

(at 15°C and 25°C) of disgorged sparkling white wine. The phenolic composition of these formulas 20 

was investigated through spectrophotometric measurements. andMoreover, the phenols were 21 

characterized and quantified by HPLC-MS analyses. The sotolon concentration and the absorbance 22 

values at 420 nm were determined in wines. The HPLC-MS analysis showed that Tthe formula 23 

AO1 mainly contained gallotannins, ellagic tannins and flavan-3-ols, while AO2 had high levels of 24 

flavan-3-ols and gallotannins. Flavan-3-ols were the only phenols found in AO3. The addition of 25 

these formulas increased the yellow hue. Sotolon was higher than the perception threshold in the 26 

samples added with AO2 and at trace amount in the samples with both AO1 and AO3 only stored at 27 

25°C. The tested antioxidant formulas seemed to be less effective of SO2 for the storage of 28 

sparkling white wine. However, the investigation of phenolics in antioxidant formulas could be 29 

helpful for the proper choice of a potential substitute of SO2 due to increase interest in sulfur-free 30 

wine production. 31 

Keywords: antioxidant formulas, phenols, sparkling white wine, storage, sulfur dioxide. 32 

33 
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1. Introduction 34 

Disgorging and corking are critical steps in sparkling wine production because the wine can be 35 

easily exposed to the air which leads to oxygen dissolution. Oxygen can worsen the sensorial 36 

properties of sparkling wine and shorten the shelf life because it can degrade some aromatic esters 37 

and terpenes (Roussis, Lambropoulos, & Tzimas, 2007) and it can speed up the formation of 38 

compounds with oxidized off-odor such as sotolon (4,5-dimethyl-3-hydroxy-2,5-dihydrofuran-2-39 

one) (Lavigne, Pons, Darriet, & Dubourdieu, 2008). 40 

Sotolon odor is perceived as a defect in young dry white wine since it decreases the intensity of the 41 

fruity and flowery notes as well as the expected freshness character (Silva Ferreira, Barbe, & 42 

Bertrand, 2003). Sotolon can arise from the aldol condensation of 2-ketobutyric acid and ethanal 43 

(Kobayashi 1989, König et al. 1999; Cutzach, Chatonnet, & Dubourdieu, 1999), as well as from the 44 

Maillard reaction (Pons, Lavigne, Landais, Darriet, & Dubourdieu, 2010) and the oxidative 45 

degradation of ascorbic acid in a hydro-alcoholic solution (König et al. 1999). These pathways are 46 

quantitatively favored as the concentrations of oxygen and reducing sugars increase (Cutzach et al. 47 

1999; Camara, Marques, Alves, & Silva Ferreira, 2004; Lavigne et al. 2008). Its perception 48 

threshold in white wine was reported to be 7-8 µg/l (Guichard, Pham, & Etievant, 19939) and 49 

sotolon might be adopted as a chemical marker of oxidative aging. 50 

In order to avoid oxidation of aromatic compounds and the formation of oxidized off-flavors, sulfur 51 

dioxide (SO2) is commonly added to sparkling white wine while disgorging since this compound is 52 

rapidly oxidized to sulfate by an oxidation/reduction cycle of hydroxycinnamoyl tartaric acids 53 

(Danilewicz, 2003). As a consequence, the dissolved oxygen can be consumed quicker in presence 54 

of this antioxidant (Danilewicz, 2011). Though SO2 is useful to limit the oxidative damage of white 55 

wine, its amount should be limited because of the detrimental effect on human health and the 56 

intolerance shown by a number of wine consumers, mainly asthmatics (Lester, 1995; Vally & 57 

Thompson, 2001; Pozo-Bayon, Monagas, Bartolomé, & Moreno-Arribas, 2012). Therefore, other 58 
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antioxidant compounds safer to human health should be considered and tested in wine making. 59 

Ascorbic acid could be effective to this aim (Marks & Morris, 1993) due to its low redox potential 60 

(Danilewicz 2003), but its oxidation gives rise to both hydrogen peroxide (Riberau-Gayon, Glories, 61 

Maujean, & Dubourdieu, 2006) and 2-ketobutyric acid (Pons et al., 2010). Glutathione (GSH) 62 

showed to be effective in decreasing sotolon formation in the oxidative aging of barreled white 63 

wine (Lavigne & Dubourdieu 2004). Nevertheless, high concentrations of GSH might need to be 64 

effective, but its average amounts in wine hardly exceed few milligrams per liter (Cassol & Adams, 65 

1995; du Toit, Lisjak, Stander, & Prevoo, 2007; Fracassetti & Tirelli 2015). Oxygen in wine can 66 

also be consumed by polyphenols due to their low redox potential. Polyphenols containing 67 

trihydroxyphenyl groups (i.e. galloylated phenols) have a lower redox potential than polyphenols 68 

containing dihydroxyphenyl groups and they can completely deplete oxygen from wine 69 

(Danilewicz, 2011; Danilewicz, 2012). White wine usually contains negligible amounts of 70 

trihydroxyl substituted phenyl compounds and the addition of mixtures containing phenols into the 71 

wine might limit the oxidative reactions in sparkling white wine during shelf life. Recently, the use 72 

of plant phenolics extract was shown to be effective as an alternative to SO2 in white wine aged in 73 

barrels (Gonzáles-Rompinelli et al., 2013). The addition of gallotannins showed to play a positive 74 

role in the maintenance of esters in white wine after 1 year storage (Sonni, Chinnici, Natali, & 75 

Riponi, 2011). However, it is known that astringency and bitterness are affected to high 76 

concentration of tannins, but their perception is strictly dependent to the phenols concentration 77 

(Robichaud & Noble, 1990). The effectiveness of polyphenols-based preparation needs to be 78 

elucidate since no data are available related to their phenolic content and the nature of the single 79 

phenols. The knowledge of the phenols composition can be helpful for better comprehend the effect 80 

of these antioxidant preparation in wine. composition and The investigation of the consequences on 81 

oxidative damage of sparkling white wine in comparison to SO2 is also required.  82 
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On this purpose, this study was aimed to investigate the addition of three different antioxidant 83 

formulas added to an Italian sparkling white wine (Champenoise method) while disgorging as 84 

potential substitutes of SO2. The phenolic composition of these antioxidant formulas was attentively 85 

characterized by spectrophotometric and HPLC-MS analysis. The latter allowed the identification 86 

and quantification of the single phenolic compuounds. and tThe levels of sotolon and GSH, and the 87 

changes of color were also evaluated. To the best of our knowledge, the phenolic composition of 88 

industrially-produced antioxidant formulas for oenological purpose has never been investigated as 89 

well as their effect throughout sparkling wine storage. 90 

 91 

2. Material and Methods 92 

 93 

2.1 Chemicals 94 

All the chemicals were of analytical grade. 3-Mercaptopropionic acid (3MPA) and p-benzoquinone 95 

(pBQ) were purchased from Fluka (Switzerland). Glutathione (GSH), cysteine (Cys), sotolon, 96 

ascorbic acid (AA), dehydroascorbic acid (DHA), 1,2-phenylenediamine dihydrochloride (OPDA), 97 

dichloromethane (DCM), FeSO4.7 H2O, sodium chloride (NaCl), anhydrous sodium sulphate and 98 

trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 99 

Polyvinylpolypirrolidone (PVPP) was purchased from Dal Cin (Sesto San Giovanni, Milan, Italy). 100 

Citric acid was purchased from J. T. Baker (Phillipsburg, NJ, US); HPLC grade methanol was from 101 

Panreac (Barcelona, Spain), and HPLC grade water was obtained by a Milli-Q system (Millipore 102 

Filter Corp., Bedford, MA, USA). The synthetic wine solution contained 5 g/l tartaric acid in 12% 103 

ethanol/water solution (v/v), adjusted to pH 3.5 with 12 M sodium hydroxide (Sigma-Aldrich). 104 

Three commercial powders containing phenolics as antioxidant purpose for the winemaking use 105 

were purchased on the market. These formulas were labeled as mixtures of plant gallic and ellagic 106 

acids extracted from grape (Vitis vinifera L.) (sample coded as AO1), plant ellagic acid and gum 107 
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arabic (sample coded as AO2), and plant gallic, ellagic acids and Saccharomyces cerevisiae cell-108 

wall fractions (samples coded as AO3).  109 

 110 

2.2 Sparkling wine samples 111 

The sparkling white wine was industrial-scale produced by a cellar located in the Franciacorta area 112 

(Lombardy, Italy) in the 2010 vintage from Chardonnay grape. The rational wine making 113 

procedures usually adopted in the winery for the manufacture of Champenoise sparkling wine were 114 

followed and no addition of SO2 was carried out. Base wine (10 hl) was bottled, the second 115 

fermentation was performed and the sparkling wine was maintained 12 months on the yeast lees 116 

before the disgorging. 117 

 118 

2.3 Experimental design 119 

Sulfur dioxide (50 mg/l) and the three antioxidant formulas (20 mg/l and 40 mg/l) were separately 120 

added to bottled sparkling white wine samples after à la glace disgorging. The bottles were 121 

manually filled with 10 ml of the same sparkling white wine containing the antioxidant in order to 122 

reach the final volume of 750 ml and they were closed with crown cap. Control samples were 123 

disgorged, filled with sparkling white wine antioxidant-free and capped. The chemical parameters 124 

of both base wines (control and test) are reported in Table 1 and only negligible differences were 125 

found. All the bottles were stored for 7 months in two different rooms at 15°C and 25°C in the dark. 126 

For each treatment and temperature investigated, the content of GSH, sotolon, AA and DHA, and 127 

the absorbance values at 420 nm were evaluated. Each trial was performed in duplicate.  128 

 129 

2.4 Determination of sotolon 130 

Sotolon was measured in both sparkling wines and antioxidant formulas. The wine samples 131 

preparation was carried out as described by Gabrielli, Fracassetti and Tirelli (2014). Briefly, 3 g of 132 
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NaCl were dissolved in 30 ml wine in a 100 ml bottle then 40 ml of dichloromethane (DCM) were 133 

added. The bottle was hermetically closed and shaken for 10 min with a wrist action stirrer (Griffin 134 

Flask Shaker). The mixture was centrifuged 5 min at 5000 × g and the DCM was separated by a 135 

separatory funnel and recovered. This solvent extraction procedure was carried out for 3 times.; 136 

tThe organic solvent fractions were jointly collected and added with 2 g of anhydrous sodium 137 

sulfate were added. The DCM was evaporated under-vacuum and; the dry material was dissolved 138 

with 2 ml of methanol 5% which was purified by a PVPP 50 mg SPE cartridge and recovering the 139 

eluted solution was recovered. 140 

For the antioxidant formulas, 200 mg of powder were dissolved in 50 ml of the synthetic wine 141 

solution.; tThe liquid/liquid extraction of sotolon was carried out as reported as above for the 142 

sparkling wine samples. Each wine sample and formula was analysed in triplicate. 143 

 144 

2.5 Determination of glutathione and free and adsorbed cysteine 145 

Glutathione was evaluated in both sparkling wines and commercial formulas. For the sparkling 146 

wine samples, its content was determined as described by Fracassetti and Tirelli (2015). Briefly, the 147 

sparkling wine (2 ml) treated with PVPP and centrifuged was derivatised with pBQ followed by the 148 

addition of 3MPA. The reaction mix was filtered through 0.22 μm pore size PTFE membrane 149 

(Millipore, Billerica, MA, USA) and the HPLC analysis was performed. Glutathione in antioxidant 150 

formulas was measured as described by Tirelli, Fracassetti and De Noni (2010). Briefly, the 151 

powders were suspended in citrate buffer 75 mmol/l at pH 5 for GSH and Cys determination and in 152 

citrate buffer 75 mmol/l at pH 5 where Cys (5 mg/l) for adsorbed Cys, derivatised with pBQ and 153 

added with 3MPA was added. The reaction mix was filtered through a 0.22 μm pore size PTFE 154 

membrane (Millipore) and submitted to the HPLC separation. The GSH and Cys content in the 155 

antioxidant formulas was directly quantified by the HPLC analysis, while the Cys absorbed by the 156 

powders was determined by difference with the response (peak area) obtained injecting Cys 5 mg/l 157 
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dissolved in citrate buffer 75 mmol/l at pH 5. Each wine sample and powder was analysed in 158 

triplicate. 159 

 160 

2.6 Determination of ascorbic acid and dehydroascorbic acid 161 

Quantification of AA and DHA was carried out as previously described by Zapata and Dufour 162 

(1992) with some modifications. Thirty milliliters of wine and 100 mg of the antioxidant formula 163 

dissolved in 100 ml of synthetic wine solution added withcontaining EDTA (0.03%). The samples 164 

were filtered through a 0.45 µm PVDF filter and purified on a C18 Sep-Pak cartridge (Waters, Mil-165 

ford, MA, US). The HPLC analysis was carried out after derivatisation of DHA into the fluorophore 166 

3-(1,2-dihydroxyethyl) furol [3,4-b]quinoxaline-1-one (DFQ), with OPDA. Standard solutions of 167 

both AA and DHA ranged from 2 mg/l to 50 mg/l were prepared in synthetic wine solution. 168 

Reversed phase HPLC separation was performed with a Waters Alliance 2695 (Milford, MA, US) 169 

equipped with a photodiode array detector Waters 2996 and a C18 column (Nova-Pak 150 x 3.9 170 

mm, 4 μm, Waters). The chromatographic separation was carried out with an isocratic elution 171 

running acetate buffer 50 mmol/l, at pH 4.5/ added with 5% methanol 95/5 (v/v) for 15 min 172 

followed by column washing (100% methanol for 2 min) and column conditioning (4 min). The 173 

flow rate was 0.9 ml/min. Column temperature was 25°C and the injection volume was 20 µl. 174 

Chromatographic data were registered from 230 nm to 500 nm and processed at 261 nm and 348 175 

nm respectively for AA and DHA by Empower 2 software (Waters). Each formula was analysed in 176 

triplicate. 177 

 178 

2.7 Antioxidant capacity assays 179 

The antioxidant capacity of the antioxidant formulas was carried out both DPPH and ABTS assays. 180 

The free radical scavenging activity determined with DPPH assay followed the method of Brand-181 

Williams, Cuvelier and Berset (1995) with some modifications (Espín, Soler-Rivas, Wichers, & 182 
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García-Viguera, 2000; Llorach, Tomás-Barberán, & Ferreres, 2004). The DPPH solution was 183 

diluted with methanol to obtain 1.00 ±0.03 absorbance units at 515 nm. In a 96-wells micro plate 184 

(Nunc, Roskilde, Denmark), 250 µl of DPPH solution were placed in each well and 2 µl sample 185 

were added. The sample was dissolved in 70% methanol (20 g/l) and, after centrifugation, it was 186 

serially diluted. The ABTS method was performed as reported by Mena et al. (2011). The ABTS 187 

solution was diluted with water to obtain 1.00 ±0.03 absorbance units at 414 nm. In a 96-wells 188 

micro plate (Nunc, Roskilde), 250 µL of ABTS solution were put in each well and 2 µl sample were 189 

added. The sample was dissolved in water (20 g/l) and, after centrifugation, it was serially diluted. 190 

For both assays, the reaction kinetic was monitored for 50 min at 25°C by micro plate reader 191 

(Infinite® M200, Tecan, Grödig, Austria). A calibration curve was made by adding increasing 192 

concentration of Trolox ranged from 50 to 1000 µmol.; eEach concentration was assayed in 193 

quadruplicate, as well each sample. Results were expressed as mol Trolox per 100 g of powder. 194 

 195 

2.8 Determination of phenolic compounds in the antioxidant formulas 196 

2.8.1 Spectrophotometric analysis 197 

The total phenols (TP) level of the antioxidant formulas was estimated colorimetrically by Folin-198 

Ciocalteau method (Scalbert, Monties, & Janin, 1989). The formulas (1 g/l) were dissolved in 199 

methanol/water 50/50 (v/v) and diluted 2.5, 5 and 10 times in the same solvent. The Folin-200 

Ciocalteau reagent was diluted 10 times in water (v/v) and 2.5 ml was added to 0.5 ml of sample. 201 

Two milliliters of 75 g/l sodium carbonate solution were added and the tubes were kept one hour at 202 

room temperature in the dark. In the meanwhile, the calibration curve for gallic acid (5-100 mg/l) 203 

dissolved in methanol/water 50/50 (v/v) was achieved. The absorbance at 765 nm was measured 204 

and the results were expressed as g gallic acid/100 g powder. Each formula was analysed in 205 

triplicate. 206 
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In order to investigate deeply on the phenols in these formulas, Tthe total flavonoids (TF) and non-207 

flavonoids (NF) contents of the antioxidant formulas was were also determined in accordance with 208 

Di Stefano, Cravero, and Gentilini (1989).The formulas (1g/l) were dissolved in synthetic wine 209 

solution, diluted in chloridric-ethanol solution (ethanol/water/chloridric acid 70/30/1 v/v/v) and the 210 

absorbance at 280 nm was measured. The TF concentration was expressed as mg gallic acid/g 211 

powder obtained through a calibration curve of gallic acid dissolved in the chloridric-ethanol 212 

solution (50-200 mg/l). Each formula was analyzed in triplicate. The non-flavonoids (NF) 213 

concentration was estimated as reported by Di Stefano et al. (1989) by subtracting to the absorbance 214 

value from TF the absorbance value found for the proanthocyanidins (see below) corrected at 280 215 

nm. It was expressed as g gallic acid/100 g powder. 216 

 217 

2.8.2 Determination of proanthocyanidins   218 

Proanthocyanidins were assessed as described by Bate-Smith (1981). The antioxidant formulas (1 219 

g/l) were dissolved in the synthetic wine solution. In two separate test tubes (reaction tube and 220 

blank tube) 2 ml of sample, 10.5 ml of ethanol and 12.5 ml of hydrochloric acid 37% (v/v) 221 

containing 300 mg/l of FeSO4.7 H2O were added. The reaction tube was placed in a water bath at 222 

100 °C for 50 min, while the blank tube was left to stand in the dark in ice. After 50 min, the 223 

reaction tubes were cooled in ice for 10 min. The absorbance was measured at 550 nm. The 224 

concentration of proanthocyanidins was calculated multiplying the absorbance difference among the 225 

reaction tube and the blank tube by the factor 1162.5 and results were expressed as g cyanidin /100 226 

g powder (Di Stefano et al., 1989). The determination was carried out in triplicate. 227 

 228 

2.8.3 Reactivity to sulfur dioxide  229 

The reactivity to SO2 of powders was determined by spectrophotometric analysis in order to assess 230 

the oxidized phenols which higher concentrations lead to an increase of absorbance in presence of 231 
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SO2 (Di Stefano & Cravero, 1991). The formulas (1 g/l) were dissolved in the synthetic wine 232 

solution and the absorbance at 280 nm was measured before and after the addition of SO2 (0.3%). 233 

Water was used as blank. The difference of absorbance values between the readings carried out 234 

before and after the addition of SO2 was expressed as g gallic acid reactive to SO2 per 100 g of 235 

powder through a calibration curve of gallic acid dissolved in the synthetic wine solution (50-500 236 

mg/l). The determination was carried out in triplicate. 237 

 238 

2.8.4 Determination of o-dihydroxyl and o-trihydroxyl phenols 239 

The o-dihydroxyl and o-trihydroxyl phenols were spectrometrically determined, as described by 240 

Riberau-Gayon (1968). The method took into account the different absorbance response at 545 nm 241 

of o-dihydroxyl (pyrocathecol) and o-trihydroxyl phenols (pyrogallol) dissolved in reaction buffer 242 

(sodium and potassium tartrate 5 g/l, FeSO4 1 g/l) after addition of borate buffer (12.37 g/l boric 243 

acid, 14.91 g/l potassium chloride, pH 8.1-8.3 adjusted with NaOH 1 N) or acetate buffer (10% 244 

ammonium acetate, pH 8.1-8.3 adjusted with ammonium hydroxide 10%). The content of o-245 

dihydroxyl and o-trihydroxyl phenols was expressed as percentage. The determination was carried 246 

out in triplicate. 247 

 248 

2.8.5 LC-MS analysis 249 

The phenols characterization was carried out on the three antioxidant formulas added to the 250 

sparkling wine. The phenolic compounds were identified and quantified as reported by Fracassetti, 251 

Costa, Moulay, & Tomás-Barberán (2013). The extraction of phenolics was performed as follows: 1 252 

g of the formulas was added to 25 ml of methanol/water 50/50 acidified with 1% formic acid. The 253 

formulas were vortexed for 2 min, sonicated for 15 min (Sonicator Branson 5510, Emerson, 254 

Danbury, CT, US) and centrifuged at 5000 x g for 15 min at 4°C (Centrifuge 5804 R, Eppendorf, 255 

Hamburg, Germany). The supernatants were recovered, freeze-dried under vacuum, suspended in 2 256 
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ml of the corresponding extraction solvent, then filtered with a PVDF filter 0.22 µm (Millipore) and 257 

injected in LC-MS. The identification and quantification of phenols were performed using an 258 

Agilent 1100 Series equipment (Agilent, Santa Clara, CA, USA) equipped with G1312A binary 259 

pump, G1313A autosampler, G1315B photodiode array detector, and G1322A degasser controlled 260 

by the Agilent software v. A08.03. HPLC was coupled with a detector MSD Trap 1100 Series 261 

(Agilent) with an electrospray ionisation system (ESI), with the following conditions: the heated 262 

capillary was 350°C and 3–3.5 kV voltage, mass scan (MS) and MS/MS were measured from 100 263 

to 1500 m/z. Collision induced fragmentation experiments were performed in the ion trap using 264 

helium as the collision gas, and the collision energy was set at 75%. Mass spectrometry data were 265 

acquired in the negative ionisation mode. A column Pursuit XRs C18 250x40 mm from Varian 266 

(Agilent) was used and a flow rate of 0.8 ml/min. The used solvents were 1% formic acid in water 267 

(A) and acetonitrile (B) which was in the following separation gradient: 1% B in A at 0 min, 9% B 268 

at 10 min, 35% B at 48 min, and 95% B at 52 min, following by washing and conditioning steps. 269 

Data were registered from 250 nm to 700 nm and the phenolic compounds were quantified at 280 270 

mn, 360 mn, and 520 nm, depending on the type of phenolic compound. Integrations were 271 

performed by Agilent ChemStation for LC 3D, Rev. B.01.03 SR1. MS trap control was carried out 272 

Bruker Daltonic version 5.2. Quantification of gallic acid, ellagic acid, myricetin and their 273 

derivatives, and ellagitannins was carried out with the calibration curves obtained for gallic acid (1–274 

300 mg/l), ellagic acid (1–300 mg/l), rutin (1–300 mg/l), and vescalagin (0.1–100 mg/l), 275 

respectively, at the appropriate wavelengths. All the samples and standards were injected in 276 

triplicate. 277 

 278 

2.9 Total phenols in sparkling wine  279 

The total phenols concentration in sparkling wine samples was assessed through spectrophotometric 280 

analysis recording the absorbance at 280 nm (Di Stefano et al., 1989). The data were expressed as 281 
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mg gallic acid/L obtained through a calibration curve of gallic acid dissolved in synthetic wine 282 

solution (50-200 mg/l). The analyses were carried out in triplicate. 283 

 284 

2.10 Statistical analyses 285 

The one-way ANOVA was performed using STATISTICA 9 software (Statsoft Inc., Tulsa, OK, 286 

US). Significant differences were judged to using a 5% significance level (p < 0.05). The 287 

correlation coefficients between GSH, GRP, sotolon and the absorbance at 420 nm were computed 288 

through the Pearson correlation. 289 

 290 

3. Results and Discussion 291 

3.1. Characterization of the commercial antioxidant formulas 292 

The phenolics of the antioxidant formulas were characterized in order to achieve more detailed 293 

composition of them. The TP concentrations determined by the Folin-Ciocalteau reagent 294 

corresponded to 58% and 51% for the formulas AO1 and AO2, respectively (Table 2). Lower 295 

amount of TP was detected in AO3 (14.2%). The presence of polymeric (as proanthocyanidins) and 296 

monomeric phenols was evaluated. Flavan-3-ol polymers were most abundant in AO2 (19.0%) and 297 

not detectable in AO3. The formula AO1 showed highest amounts of both TF (39.5%) and non-298 

flavonoids (37.5%).  299 

In order to achieve a deeper knowledge of the antioxidant formulas employed for this research, the 300 

low-molecular weight phenols were characterized by LC-MS as shown in Table 23 and Figure 1. 301 

All the compounds were characterized by their UV spectra and their molecular ion and fragments 302 

obtained with an ESI-MS/MS detector (Table 23) and comparison, wherever possible, was carried 303 

out with standard compounds. Flavonols, ellagic acid conjugates, ellagitannins and 304 

proanthocyanidins were the most represented polyphenols. Quercetin (3,5,7,3’,4’-305 

pentahydroxyflavone) (56) and its 3-O-glycoside (53) were detected, the latter in AO3 only. They 306 
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showed the characteristic UV spectra of flavonols with a free hydroxyl group at position 3 for 307 

quercitin (UV band I maximum at 370 nm), as well as its glycosylated form at position 3 (UV band 308 

I maximum at 356 nm) (Table 23). The pseudomolecular ions recorded with the HPLC-ESI MS and 309 

the fragments obtained confirmed these structures with the characteristic losses of a glycosyl 310 

residue respectively leading to the quercetin aglycone fragment at m/z 301. Kaempferol (3,4′,5,7-311 

tetrahydroxyflavone) (57) and its 3-O-glycosyl derivative (54) were revealed, the latter only in 312 

AO3. This compound showed m/z 755 and it is probably a hexoxyl-rhamnosyl-hexoside derivative 313 

of kaempferol. In addition, myricetin (3,5,7,3’,4’,5’-hexahydroxyflavone) (55) was detected in AO3 314 

only. The isomeric ellagitannin C-glucosides vescalagin (2) and castalagin (4) were characterized 315 

by both the pseudomolecular ion at m/z 933 and the characteristic fragments that did not include the 316 

ellagic acid fragment at m/z 301 as they were C-glycosides. These two phenols were confirmed by 317 

chromatographic comparisons with their respective standards. Ellagic acid (33) and ellagitannins 318 

hexahydroxy-diphenoyl-galloyl-glucose isomers (5, 6) were detected (Table 23) only in AO1 as 319 

they showed the characteristic UV spectrum of ellagic acid and ellagitannins. Among the latter two 320 

phenols, the main one was free ellagic acid that showed a pseudomolecular ion at m/z 301 and it 321 

overlapped chromatographically with an authentic standard of this phenol. Several hydrolysable 322 

tannins, mainly gallotannins, were particularly abundant in AO1, some of these compounds were 323 

also revealed in AO2, while none of them was found in AO3. Most of the hydrolysable tannins 324 

were recognized as galloyl derivatives of quinic acid through the comparison of the molecular 325 

weight with both parent and daughter ions and UV spectra (Clifford, Stoupi, & Kuhnert, 2007). 326 

Gallic acid (1) was also detected and it was confirmed by the chromatographic analysis of the 327 

standard compound. Flavan-3-ols were also present in these antioxidant formulas with some 328 

differences among them (Table 23). Gallocatechin (3) a dimer of catechin (11) and gallocatechin 329 

gallate (17) were revealed only in AO3. A dimer of catechin gallate (35) was found in AO1, AO2 330 
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and AO3. A dimer of gallocatechin (8) was detected in AO2 and AO3. The three antioxidant 331 

formulas contained a dimer of catechin (10) and a dimer of gallocatechin gallate (14). 332 

The antioxidant formula AO1 contained the highest level of low molecular weight phenols (15.8 333 

g/100 g powder) and the gallotannins were the most abundant compounds (70%) (Table 34). Ellagic 334 

acid and ellagitannins were detected only in such formula (1.510 g/100 g powder). Gallic acid (1.15 335 

g/100 g powder) and proanthocyanidins (2.11 g/100 g powder) were also found as well as flavonols 336 

(0.04 g/100 g powder), namely quercitin and kaempferol. The data obtained by LC-MS confirm the 337 

high level of hydrolyzable tannins in AO1 mainly represented by trihydroxyl phenols (Table 34) as 338 

found also spectrophotometrically (Table 12). The high concentration of phenolic compounds in 339 

AO1 could ease an effective consumption of oxygen (Danilewicz, 2011). The antioxidant activity 340 

values of the formulas tested (Table 45) seemed to confirm this hypothesis and were proportional 341 

with the TP levels. The ratio value DPPH/TP (Table 45) showed a poor antioxidant ability of AO2 342 

polyphenols, in spite of the gallotannins presence (Table 34), when it was compared to same value 343 

of AO3 formula which did not contain gallotannins (Table 14). This could indicate the presence of 344 

oxidized phenols in AO2 as also suggested by the spectrophotometric analysis showing a higher 345 

level of phenols reactive to SO2 in comparison to AO1 and AO3 (Table 2). The presence of o-346 

quinones could be indicated by the presence of absorbed Cys revealed in AO2 (Table 45) since 347 

these compounds have a strong reactivity with the thiols (Riberau-Gayon et al. 2006). Cys was 348 

absorbed even by AO3 (Table 45) and the ability of binding the Cys could partly explain the low 349 

ratio values DPPH index/TP and ABTS/TP found for both AO2 and AO3 (Table 54). The levels of 350 

GSH and AA were evaluated in order to assess the presence of non-phenolic antioxidants. No 351 

antioxidant formula contained AA, whereas GSH was detected only in AO3 (5.8 g/100 g powder). 352 

This is in accordance with the presence of yeast cell-wall fractions (Tirelli et al. 2010) as declared 353 

by the supplier.  354 

 355 
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3.2. Influence of antioxidant formulas on sparkling white wines  356 

The addition of antioxidant formulas potentially replacing SO2 was evaluated in sparkling white 357 

wine. The use of SO2 should be minimized owing to its problems for human health (Pozo-Bayón et 358 

al., 2012). This compound should be replaced in wine with suitable antioxidant mixtures. The 359 

proper amount of the polyphenols-based antioxidant formulas in sparkling white wine was chosen 360 

taking into account both technological and sensory factors since AO3 can be responsible for wine 361 

haze due to the yeast cell-wall fractions it contained. Antioxidant formulas AO1 and AO2 were 362 

mainly constituted with polyphenols which could confer astringency if added in high concentrations 363 

(Robichaud & Noble, 1990). Moreover, tannins could react with the wine proteins which lead to 364 

haziness and worsen the foaming properties (Coelho, Rocha, & Coimbra, 2011; Martínez-Lapuente, 365 

Guadalupe, Ayestarán, & Pérez-Magariño, 2015). Therefore, additions up to 20 mg/l and 40 mg/l of 366 

each tested antioxidant formula were carried outthe sparkling white wines were added with 20 mg/l 367 

and 40 mg/l of each antioxidant formula tested, as also suggested by the supplier. These additions 368 

did not affect the wine astringency since the highest concentration of phenols added was about 23.2 369 

mg/l which was lower than the amount of tannin causing its perception (Robichaud & Noble, 1990; 370 

Bertand et al., 2000). The total phenols content ranged from 118.5 mg/l to 147.4 mg/l in wine 371 

samples.; sSignificant differences were found due to the addition of both AO1 and AO2 in 372 

comparison to control wine samples and added with those samples where SO2 and AO3 were added 373 

(Table 6). This could be due to the own high concentration of total phenols of these formulas (Table 374 

2). The oxidation of phenols to quinones due to air entrance in the bottle could be expected 375 

especially in the sparkling wine samples added with containing the formulas containing which 376 

showed lower concentration of o-trihydroxyl phenols (Danilewicz, 2011).  377 

The addition of SO2 was the most effective in protecting wine against the oxidation since sotolon 378 

was not found and the lowest absorbance values at 420 nm were observed (Table 56). Higher 379 

absorbance values were revealed in the sparkling wine samples added withwhere the three 380 
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antioxidant formulas were added, particularly those supplemented with AO2. Sotolon in 381 

concentration close to (6.41 g/l) or higher than (13.37 g/l) the perception threshold was detected 382 

in the wine samples added withwhere 40 mg/l of AO2 were added and they were stored at 15°C and 383 

25°C, respectively. This finding was not expected since the sparkling white wine samples 384 

containing lower amount of polyphenols-based formulas were supposed to consume oxygen at 385 

lower rate leading to a lower sotolon concentration. However, AO2 showed the highest level of 386 

dihydroxyl phenols (Table 21) which are responsible for a lower rate of oxygen consumption in 387 

comparison to trihydroxyl phenols (Danilewicz, 2011). This suggests that oxygen could participate 388 

to other oxidative phenomena. Trace amount of sotolon was detected in the wine samples added 389 

withcontaining 20 mg/l of AO2 as well as in the wine samples containing supplemented with AO1 390 

and AO3 only stored at 25°C. This finding was in accordance to the research carried out by 391 

Cutzach, Chatonnet, and Dubourdieu (2000) who reported that high storage temperature (up to 392 

33°C) can promote the formation of sotolon in Vins doux Naturels. High storage temperatures can 393 

also promote the Maillard reaction which is included among the pathways affecting the sotolon 394 

formation (Hoffman, & Schieberle, 1996; Pons et al. 2010). The phenols content did not seem to 395 

affect since trace level of sotolon was found in wine samples added withwhere both AO1 and AO3 396 

were added. However, qualitative difference in the phenolics could favor the sotolon formation and 397 

further investigations could elucidate the compound(s) majorly affecting the sotolon increase during 398 

the storage. The storage temperature seems to play a strong role since significant differences were 399 

found in the absorbance values (p=0.0080), GSH (p=0.0002) and GRP (p=0.0003). It also appeared 400 

that oxidative phenomena took place in the wine samples added withtreated with the antioxidant 401 

formulas which seemed to have a negative impact on wine in comparison to SO2, in terms of off-402 

flavour formation. In fact, minor differences in the absorbance values at 420 nm were noticed in the 403 

control wine sample and in the wine samples added withcontaining AO3 whose phenols 404 

concentration was about 4 folds lower than that of AO1 and AO2 (Table 12).  405 
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Besides the formation of brown polymers, a decreased content of GSH was also expected (Salgues, 406 

Cheynier, Gunata, & Wylde, 1986). Slight differences were found in the GSH content among the 407 

sparkling white wine samples (Table 56). The addition of both SO2 and the antioxidant formulas did 408 

not affect the GSH content in wine. The GSH concentration in wine samples showed an unexpected 409 

trend since higher levels were detected in the samples stored at 25°C. Moreover, the GSH content 410 

was higher in the samples where higher amounts of antioxidant formulas were added, including 411 

those supplemented with AO1 and AO2 which did not contain GSH, in comparison to the 412 

antioxidants-free wine samples. The rationale behind the increased GSH content is not clear. As 413 

hypothesis, GlutathioneGSH could arise from the glutahionyl-phenols adducts since GRP decreased 414 

over the storage and lower concentration of this compound was found at 25°C in comparison to 415 

15°C (Table 56). A positive correlation was found between increased GSH content and decreased 416 

GRP content for the different temperatures of storage (p=0.46 at 15°C; p=0.40 at 25°C). The 417 

antioxidant formula AO3 containing GSH (5.8 g/100 g) did not lead to a higher concentration of 418 

GSH in in the wine samples where it was added in comparison to the samples supplemented with 419 

AO1 and AO2. 420 

 421 

4. Conclusions 422 

 423 

Our results highlight that the knowledge of the phenolic composition of antioxidant formulas can be 424 

helpful for the choice of an appropriate antioxidant mixture in sparkling white wine production. 425 

However, the tested polyphenols-based antioxidants were unsuitable to avoid the use of SO2 as 426 

antioxidant in sparkling wine.; theyThese formulas seemed to have a detrimental role into the 427 

oxidative decay of sparkling white wine whose shelf-life was shorten if compared to sparkling 428 

white wine without antioxidant. Our data are not enough to support a correlation between the 429 

phenols amount and the oxidative damage though the appearance of the atypical aging was detected 430 
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into the wine added withcontaining the formulas tested. Further investigations will need to find an 431 

effective antioxidant formula substituting SO2 while disgorging the sparkling wine allowing the 432 

production of sulfur-free wine which has been assuming increasing interest. 433 
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Figure’ captions 559 

Figure 1: HPLC analyses of phenolic compounds from AO1 at 280 nm (A) and AO3 at 360 nm (B) 560 

and at 280 nm (C). For compounds characterization see Table 31. 561 

562 
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 563 

Parameter Wine control  Wine test  

Ethanol (%) 12.4±0.6  12.3±0.4  

Sugar (g/l) < 2  < 2  

pH 3.3±0.1  3.2±0.1  

Total acidity (g tartaric acid/l ) 6.6±0.3  7.1±0.5  

Volatile acidity (g acetic acid/l) 0.43±0.04  0.45±0.02  

Free sulfur dioxide (mg/l) < 5  < 5  

Total sulfur dioxide (mg/l) 30±4  20±3  

Table 1: Chemical composition of the base wines produced in triplicate fermentation. 564 

565 
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 566 

Table 2: Content of the phenolic fractions spectrophotometrically determined in the antioxidant 567 

formulas. Data are reported as mean values (n=3) ±standard deviation; n.d.: not detected. 568 

569 

Formula 

Total phenols 

index 
Total flavonoids Non-flavonoids 

Phenols 

reactive to SO2 
Proanthocyanidins 

O-dihydroxyl 

phenols 

O-

trihydroxyl 

phenols 

g gallic acid/100 

g powder 

g gallic acid/100 

g powder 

g gallic acid/100 

g powder 

g gallic acid/100 

g powder 

g cyanidin/100 g 

powder 
% % 

AO1 57.8±3.2 39.48±0.11 37.54±0.11 2.53±0.31 7.84±0.01 9 91 

AO2 50.9±9.5 23.10±0.60 17.69±0.59 3.59±0.55 19.00±3.97 51.2 48.8 

AO3 14.2±3.3 4.86±0.08 4.86±0.08 2.29±0.31 n.d. 0 100 



29 

 

 570 

Number Compound 
Retention Time 

(min) 
[M-H]- λ max (nm) MS fragments 

Flavonols     

53 Quercetin 3-O-glucoside  32.2 463 256, 356 301, 151 
54 Kaempferol 3-O-hexosyl-rhamnosyl-hexoside 32.4 755 264, 350 284 
55 Myricetin 38.1 317 256, 374 179, 151 
56 Quercetin 45.5 301 256, 370 301, 179, 151 
57 Kaempferol 52.4 285 254, 370 285, 151 

Ellagitannins and ellagic acid     

2 Vescalagin 11.6 933 242 915, 631 
4 Castalagin 14 933 242 915, 631 
5 Hexahydroxy-diphenoyl-galloyl-glucose 14.5 633 254, 376 301 

6 Hexahydroxy-diphenoyl-galloyl-glucose 16.6 633 254, 376 301 

33 Ellagic acid 31.5 301 254, 374 301 

Gallotannins     

7 Digalloyl quinic acid 17.8 495 236,274 343, 269, 169 
9 Digalloyl quinic dimer 18.8 991 236, 276 495, 343, 169, 125 

12 Trigalloyl quinic acid 23.1 647 238, 276 495, 343, 169 
13 Trigalloyl quinic acid 23.9 647 238, 276 495, 343, 169 
15 Trigalloyl quinic acid 24.6 647 238, 276 495, 343, 169 
16 Trigalloyl quinic acid 25.2 647 238, 276 495, 343, 169 
18 Digalloyl quinic acid 25.9 495 236, 274 343, 269, 169 
19 Tetragalloyl quinic acid 27.1 799 236, 274 647, 495 
20 Tetragalloyl quinic acid 27.8 799 236, 274 647, 495 
21 Trigalloyl quinic acid 27.9 647 238, 276 495, 343, 169 
22 Tetragalloyl quinic acid 28.1 799 236, 274 647, 495 
23 Tetragalloyl quinic acid 28.5 799 236, 274 647, 495 
24 Trigalloyl quinic acid 28.6 647 238, 276 495, 343, 169 
25 Tetragalloyl quinic acid 29.0 799 236, 274 647, 495 
26 Tetragalloyl quinic acid 29.1 799 236, 274 647, 495 
27 Trigalloyl-mono(digalloyl) quinic acid 29.2 951 236, 274 799, 647, 495 
28 Tetragalloyl quinic acid 29.6 799 236, 274 647, 495 
29 Trigalloyl quinic acid 29.8 647 238, 276 495, 343, 169 
30 Tetragalloyl quinic acid 30.0 799 236, 274 647, 495 
31 Tetragalloyl quinic acid 30.1 799 236, 274 647, 495 
32 Trigalloyl quinic acid 30.1 647 238, 276 495, 343, 169 
34 Tetragalloyl quinic acid 30.7 799 236, 274 647, 495 
36 Trigalloyl-mono(digalloyl) quinic acid 31.2 951 236, 274 799, 647, 495 
37 Trigalloyl-mono(digalloyl) quinic acid 31.5 951 236, 274 799, 647, 495 
38 Trigalloyl-mono(digalloyl) quinic acid 32.1 951 236, 274 799, 647, 495 
39 Trigalloyl-mono(digalloyl) quinic acid 32.5 951 236, 274 799, 647, 495 
40 Trigalloyl-mono(digalloyl) quinic acid 32.7 951 236, 274 799, 647, 495 
41 Trigalloyl-mono(digalloyl) quinic acid 33.0 951 236, 274 799, 647, 495 
42 Digalloyl-di(digalloyl) quinic acid 33.4 1103 238, 274 951, 799, 647 
43 Digalloyl-di(digalloyl) quinic acid 33.7 1103 238, 274 951, 799, 647 
44 Digalloyl-di(digalloyl) quinic acid 33.9 1103 238, 274 951, 799, 647 
45 Digalloyl-di(digalloyl) quinic acid 34.1 1103 238, 274 951, 799, 647 
46 Digalloyl-di(digalloyl) quinic acid 35.0 1103 238, 274 951, 799, 647 
47 Digalloyl-di(digalloyl) quinic acid 35.1 1103 238, 274 951, 799, 647 
48 Digalloyl-di(digalloyl) quinic acid 35.5 1103 238, 274 951, 799, 647 
49 Digalloyl-di(digalloyl) quinic acid 35.7 1103 238, 274 951, 799, 647 
50 Digalloyl-di(digalloyl) quinic acid 36.1 1103 238, 274 951, 799, 647 
51 Galloyl-tri(digalloyl) quinic acid 37.1 1255 256, 279 1103, 951, 799, 647 
52 Galloyl-tri(digalloyl) quinic acid 37.4 1255 256, 279 1103, 951, 799, 647 

     

Gallic acid derivatives     

1 Gallic acid 9.1 169 272 169, 125 
      

Proanthocyanidins     

3 Gallocatechin 13.7 305 268 261, 219, 179, 125 
8 Gallocatechin-dimer 18.2 611 240, 272 547, 305, 219 

10 Catechin-dimer 20.7 577 238, 274 559, 451, 425, 289, 245 
11 Catechin-dimer 21.6 577 238, 274 559, 451, 425, 289, 245 
14 Gallocatechin-gallate-dimer 23.9 915 240, 274 457, 305 
17 Gallocatechin-gallate 25.8 457 238, 276 331, 305, 169 
35 Catechin-gallate-dimer 30.8 883 238, 278 441, 289 
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Table 3. Low molecular weight phenols detected by HPLC-DAD-ESI-MS-MS in the antioxidant 571 

formulas. 572 

Number Compound 
AO1 AO2 

(mg/100g powder) 

AO3 

Flavonols    

53 Quercetin 3-O-glucoside  n.d. n.d. 12.55 ± 0.96 

54 Kaempferol 3-O-hexosyl-rhamnosil-hexose n.d. n.d. 2.70 ± 0.20 

55 Myricetin n.d. n.d. 16.77 ± 0.40 

56 Quercetin 29.09 ± 0.64 9.77 ± 0.75 98.81 ± 0.18 

57 Kaempferol 10.91 ± 0.92 0.22 ± 0.12 49.47 ± 1.06 

 Total 40.00 ± 1.56 9.99 ± 0.89 180.30 ± 2.92 
     

   

Ellagitannins and ellagic acid    

2 Vescalagin 689.45 ± 2.87 n.d. n.d. 

4 Castalagin 636.23 ± 4.1 n.d. n.d. 
5 Hexahydroxy-diphenoyl-galloyl-glucose 42.72 ± 1.52 n.d. n.d. 

6 Hexahydroxy-diphenoyl-galloyl-glucose 40.44 ± 1.28 n.d. n.d. 

33 Ellagic acid 95.22 ± 1.91 n.d. n.d. 

 Total 1504.06 ± 11.93 -- -- 
     

Gallotannins    

7 Digalloyl quinic acid 283.73 ± 17.76 n.d. n.d. 

9 Digalloyl quinic dimer 827.95 ± 10.28 176.34 ± 8.51 n.d. 
12 Trigalloyl quinic acid 773.02 ± 17.16 134.71 ± 1.45 n.d. 

13 Trigalloyl quinic acid 1893.72 ± 68.63 326.79 ± 2.71 n.d. 

15 Trigalloyl quinic acid 1032.30 ± 13.85 167.58 ± 1.78 n.d. 

16 Trigalloyl quinic acid n.d. 67.18 ± 2.31 n.d. 

18 Digalloyl quinic acid 456.95 ± 1.84 78.88 ± 1.60 n.d. 
19 Tetragalloyl quinic acid 382.10 ± 18.13 n.d. n.d. 
20 Tetragalloyl quinic acid n.d. 52.72 ± 0.83 n.d. 

21 Trigalloyl quinic acid 180.00 ± 8.71 n.d. n.d. 

22 Tetragalloyl quinic acid 618.35 ± 5.82 n.d. n.d. 

23 Tetragalloyl quinic acid n.d. 92.16 ± 2.41 n.d. 

24 Trigalloyl quinic acid 797.50 ± 21.63 n.d. n.d. 

25 Tetragalloyl quinic acid 548.06 ± 10.70 n.d. n.d. 

26 Tetragalloyl quinic acid n.d. 173.94 ± 1.84 n.d. 

27 Trigalloyl-mono(digalloyl) quinic acid 472.76 ± 3.50 n.d. n.d. 

28 Tetragalloyl quinic acid n.d. 20.14 ± 0.73 n.d. 

29 Trigalloyl quinic acid 562.67 ± 20.21 n.d. n.d. 

30 Tetragalloyl quinic acid 269.70 ± 7.31 n.d. n.d. 

31 Tetragalloyl quinic acid n.d. 26.30 ± 0.80 n.d. 

32 Trigalloyl quinic acid 139.49 ± 4.72 n.d. n.d. 

37 Trigalloyl-mono(digalloyl) quinic acid 247.36 ± 12.66 26.96 ± 2.05 n.d. 

38 Trigalloyl-mono(digalloyl) quinic acid 246.99 ± 3.30 23.02 ± 0.47 n.d. 

39 Trigalloyl-mono(digalloyl) quinic acid 521.57 ± 5.5 59.33 ± 2.15 n.d. 

40 Trigalloyl-mono(digalloyl) quinic acid 129.19 ± 9.77 n.d. n.d. 
41 Trigalloyl-mono(digalloyl) quinic acid 26.13 ± 1.41 n.d. n.d. 

42 Digalloyl-di(digalloyl) quinic acid 62.52 ± 1.48 n.d. n.d. 

43 Digalloyl-di(digalloyl) quinic acid 54.74 ± 1.24 n.d. n.d. 
44 Digalloyl-di(digalloyl) quinic acid 45.87 ± 0.84 n.d. n.d. 

45 Digalloyl-di(digalloyl) quinic acid 42.02 ± 2.89 n.d. n.d. 
46 Digalloyl-di(digalloyl) quinic acid 114.07 ± 6.48 n.d. n.d. 
47 Digalloyl-di(digalloyl) quinic acid 61.43 ± 5.39 n.d. n.d. 

48 Digalloyl-di(digalloyl) quinic acid 52.93 ± 2.53 n.d. n.d. 

49 Digalloyl-di(digalloyl) quinic acid 34.01 ± 4.11 n.d. n.d. 

50 Digalloyl-di(digalloyl) quinic acid 20.73 ± 2.8 n.d. n.d. 

51 Galloyl-tri(digalloyl) quinic acid 72.71 ± 3.53 n.d. n.d. 

52 Galloyl-tri(digalloyl) quinic acid 35.61 ± 1.17 n.d. n.d. 

 Total 11006.18 ± 184.09 1426.05 ± 14.18 -- 
    

Gallic acid derivatives    

1 Gallic acid 1147.05 ± 14.87 727.47 ± 2.68 2121.62 ± 21.08 

     

Proanthocyanidins    

3 Gallocatechin n.d. n.d. 49.53 ± 5.4 
8 Gallocatechin-dimer n.d. 55.88 ± 2.03 190.34 ± 1.40 
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10 Catechin-dimer 128.29 ± 3.43 155.87 ± 2.30 582.06 ± 10.11 

11 Catechin-dimer n.d. n.d. 121.68 ± 5.92 
14 Gallocatechin-gallate-dimer 1255.60 ± 72.97 1714.41 ± 7.96 4570.72 ± 77.15 
17 Gallocatechin-gallate n.d. n.d. 328.62 ± 4.95 

35 Catechin-gallate-dimer 721.53 ± 17.24 499.97 ± 1.56 1918.53 ± 61.34 

 Total 2105.42 ± 52.3 2426.13 ± 9.25 7761.48 ± 20.08 

 Total phenols 15802.51 ± 378.73 4589.64 ± 30.17 10063.4 ± 23.12 

Table 4. Content of low molecular weight phenols in the antioxidant formulas. Data are reported as 573 

mean values (n=2) ±standard deviation; n.d.: not detected. 574 

575 
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 576 

Formula 

Sotolon Glutathione 
Cysteine Ascorbic 

acid 

Dehydroascorbic 

acid 

Antioxidant capacity 

DPPH/TP 

ratio 

ABTS/TP 

ratio 
Free Absorbed DPPH ABTS 

µg/100 g 

powder 

g /100 g 

powder 
mg /100 g powder M Trolox/100 g powder 

AO1 n.d. n.d. n.d. n.d. n.d. n.d. 8776±650 1660±109 151.8 28.7 

AO2 n.d. n.d. n.d. 9.0±0.28 n.d. n.d. 5990±443 1338±98 117.7 26.3 

AO3 n.d. 5.77±0.18 n.d. 64.5±2.0 n.d. n.d. 1768±131 133±10 124.5 9.4 

Table 5: Content of sotolon, glutathione, free and adsorbed cysteine, ascorbic acid, dehydroascorbic 577 

acid and antioxidant capacity of the antioxidant formulas. Data are reported as mean values (n=3) 578 

±standard deviation; n.d.: not detected. 579 

580 
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 581 

Antioxidant 

added 

Dosage 

(mg/l) 

Storage 

temperature 

(°C) 

Total phenols 

(mg gallic acid/l) 

Absorbance 

420 nm 

Glutathione 

(mg/l) 

2-S-glutathionyl 

caftaric acid 

(mg/l) 

Sotolon 

(μg/l) 

No addition -- 15 118.5±9.5a 0.142±0.001a 1.33±0.040a 0.57±0.018a n.d. 
No addition -- 25 124.5±10.0a 0.150±0.001a 2.66±0.082a 0.41±0.013a n.d. 

SO2 50 15 119.7±9.6a 0.099±0.001a 0.93±0.029a 0.50±0.016a n.d. 
SO2 50 25 122.8±9.8a 0.122±0.002a 2.25±0.068a 0.47±0,015a n.d. 
AO1 20 15 131.4±10.5b 0.154±0.001b 1.80±0.054a 0.54±0.017a n.d. 
AO1 20 25 136.1±10.8b 0.158±0.000b 3.58±0.11a 0.41±0.013a < 2 
AO1 40 15 143.1±11.4b 0.156±0.000b 2.13±0.066a 0.70±0.021a n.d. 
AO1 40 25 147.4±11.8b 0.160±0.000b 3.38±0.10a 0.61±0.020a < 2 
AO2 20 15 131.4±10.5b 0.157±0.000b 1.31±0.041a 0.72±0.022a < 2 
AO2 20 25 132.5±10.6b 0.172±0.000b 2.37±0.073a 0.53±0.017a < 2 
AO2 40 15 133.9±10.6b 0.170±0.001b 1.39±0.043a 0.57±0.017a 6.41±0.11 
AO2 40 25 145.8±11.2b 0.181±0.002b 4.26±0.076a 0.35±0.011a 13.37±0.22 
AO3 20 15 119.2±9.5a 0.147±0.001a 1.57±0.049a 0.56±0.016a n.d. 
AO3 20 25 121.2±9.7a 0.147±0.000a 2.51±0.079a 0.45±0.014a < 2 
AO3 40 15 127.2±9.9a 0.141±0.000a 1.58±0.049a 0.58±0.017a n.d. 
AO3 40 25 125.1±10.0a 0.155±0.000a 3.78±0.12a 0.45±0.014a < 2 

Table 6: Concentration of glutathione, 2-S-glutathionyl caftaric acid and sotolon, and absorbance 582 

values in sparkling white wine samples stored under different conditions. Data are reported as mean 583 

values (n=3) ±standard deviation; n.d.: not detected. Different letters mean significant difference (p 584 

< 0.05). 585 
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Highlights 

 

 Addition of polyphenols formulas was investigated in sparkling white wine after 

disgorging. 

 Certain markers of oxidation were evaluated in comparison to sulfur dioxide.  

 The formulas seemed less protective against the oxidation than sulfur dioxide. 

 The knowledge of the phenolics in the formulas allows their proper use in 

winemaking.  
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