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ABSTRACT

There  is  a  growing  interest  in  understanding  the  structure–dynamic  relationship  of  ecological 

networks.  Ecological  network changes  along primary successions are poorly known: to address 

such  topic,  gradient  of  primary  succession  on  glacier  forelands  is  an  ideal  model,  as  sites  of 

different age since deglaciation stand for different ecosystem developmental stages. We aimed to 

investigate  the  assembly  processes  of  plant-insect  networks  and  to  elucidate  its  functional 

implications for ecosystem stability along this time sequence succession. We collected data on the 

functional  role  of  anthophilous  insect  groups and performed network analysis  to  evaluate their 

relative importance in the structure of plant-insect interaction networks with increasing time since 
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deglaciation  along  the  primary  succession  of  a  debris-covered  glacier  foreland.  We  sampled 

anthophilous insects visiting the flowers of two models plant species, Leucanthemopsis alpina and 

Saxifraga  bryoides.  Insects  were  identified  and  trophic  roles  were  attributed  to  each  taxon 

(detritivores,  parasitoids,  phytophagous,  pollinators,  predators,  and  opportunists)  at  five  sites 

representing the primary succession gradient. Plant-insect interactions were visually represented by 

a bipartite network for each successional stage. For each plant species and insect group, centrality 

indices  were  computed  quantifying  their  community  importance.  For  the  whole  network, 

centralization  and  link  density  were  calculated. Pollinators  dominated  pioneer  communities  in 

recently  deglaciated  areas,  while  parasitoids,  predators  and  opportunists  characterised  late-

succession stages. Plant species centrality varied along the succession. Pollinators showed initially 

higher but then decreasing centrality, while the centrality of predators and parasitoids increased with 

time since deglaciation. Along the same gradient link density showed an increasing trend while 

network centralization tended to decrease. The present study provides new insight into the initial 

steps of plant–insect network assembly and sheds light on the relationship between  structure and 

dynamic in ecological networks. In particular, during the succession process, more links are formed 

and plant-anthophilous insect interactions change from a network dominated by pollinators to a 

functionally more diversified food web. We conclude that applying network theory to the study of 

primary succession provides a useful framework to investigate the relationship between community 

structure and ecosystem stability.

Keywords:  bipartite  network,  chronosequence,  community  assembly,  ecological  network, 

ecosystem stability
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1. Introduction

The  study  of  ecological  interaction  networks  is  becoming  a  key  approach  for  understanding 

ecological and evolutionary processes (Vázquez et al.  2009) as it  provides useful  depictions of 

biodiversity, species interactions, ecosystem structure and functioning (Dunne et al. 2002b). Despite 

the  growing  recognition  of  the  importance  in  analysing  the  whole-community  organization 

following an ecological network approach (Sridhar et al. 2013), there is still a lack of information 

on how ecological networks are assembled (Bascompte and Stouffer 2009) and the relationship 

between ecosystem dynamics and network structure is still poorly understood (Jordán 2009).

Recent  researches  on  network  ecology  provided  new  insight  into  structural  invariant  patterns 

underlying species interactions. The organization in connected modules (Olesen et al 2007) with a 

heterogeneous  distribution  of  the  number  of  interactions  per  species  (Dunne et  al.  2002a)  and 

asymmetric interaction strength among species (Bascompte 2009) has been related to ecological 

network robustness (Pocock et al. 2012) and stability (Thébault and Fontaine 2010). Little attention, 

however,  is  given to  the spatial  aspects and to the temporal dimension of ecological networks, 

despite their relevance for mechanisms of network formation (Bascompte and Stouffer 2009) and 

for network robustness to species extinction (Pascual and Dunne 2006).

Ecological succession (i.e. the change of species composition over time) provides temporal and 

spatial dimensions to analyse the change in the characteristics of populations, communities and 

ecosystems (Walker & del Moral 2003),  and may therefore be suitable to look at  the temporal 

dynamics of ecological networks. Glacier forelands represent such a gradient of primary succession, 

as  sites  of  different  age  since  deglaciation  stand  for  different  ecosystem developmental  stages 

(Matthews 1992).

The use of the chronosequence as a space-for-time substitution (Foster and Tilman 2000) along 

glacier foreland has provided significant insights into the patterns and mechanisms of plant (Walker 

et  al.  2010)  and arthropod (Kaufmann 2001) community assembly.  Vegetation cover,  plant  and 
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arthropod diversity increase throughout the succession (Hodkinson et al. 2001, Gobbi et al. 2010). 

Plant community structure changes due to different efficient resource-use among pioneer and late-

successional species (Caccianiga et al. 2006). In parallel, the turnover of arthropods is influenced by 

the stabilization of environmental conditions and vegetation structure (Gobbi et al. 2006). However, 

previous studies have focused on a single trophic level and very little is known about ecological 

network  assembly  during  primary  succession  (Albrecht  et  al.  2010).  The  only  plant-pollinator 

network examined along such a gradient showed an increase in interaction diversity and indicated 

an increase in pollinator diet breadth (Albrecht et al. 2010).

While the majority of ecological network studies examine one static network at a time, we aimed to  

analyse a network gradient, one of the important perspectives in ecological network analysis. Thus, 

we applied the network analysis by bipartite network and local to global importance indices analysis 

to describe the structure of plant-anthophilous insect network and we compared it among different 

successional  stage  of  a  glacier  foreland,  focusing  on insect  trophic  roles.  Thus,  we performed 

network  analysis  to  evaluate  the  structure  of  the  network  and  compared  it  among  different 

successional stages of a glacier foreland.  In particular we addressed the following questions: (i) 

Does the structural importance of plants and insects vary along the successional gradient? (ii) How 

does the network architecture change along the spatio-temporal gradient? Finally, by  integrating 

structure with dynamic of ecological networks we provide new insight into network assembly and 

arise empirical models for species coexistence and ecosystem stability.

2. Material and methods

Data sampling

The study was performed along the glacier foreland of Vedretta d'Amola glacier (Central Italian 

Alps, 46°13'16”N, 10°40'41”E), which is a debris-covered glacier of about 82.1 ha, with two thirds 
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covered by stony debris with variable depth, from few centimetres to approximately one meter. The 

glacier foreland is 1.23km long, covers an altitudinal range from 2425m to 2560m a.s.l.,  and is 

characterized by a big moraine system dating back to the Little Ice Age (1500-1850 A.D.). Field 

observations  and various  sources  including maps,  reports,  aerial  photographs,  iconography,  and 

records of length change made over the last 100 years allowed the reconstruction of the glacier 

tongue position during the largest extent reached: at the end of the Little Ice Age (c. 1850 A.D.), in 

1925 A.D., and in 1994 A.D (Fig.1). Following this deglaciation gradient five sampling sites were 

located to represent the main successional stages: glacier surface (stage 0), 1-20 years (stage I), 21-

90 years (stage II), 91-160 years (stage III), and more than 160 years (stage IV).

We selected the flowering plants  Leucanthemopsis alpina  (L.) Heyw. (Asteraceae) and  Saxifraga 

bryoides L. (Saxifragaceae) as model species because they were the only two entomophilous plant 

species that occurred throughout the whole primary succession gradient. At each successional stage, 

two 25 m² plots were established and  three L. alpina tufts and three  S. bryoides cushions were 

selected for each species and marked for further use over the course of the study. The number of 

flowers of each tuft or cushion was recorded in July 2012. Plant-anthophilous insect interactions 

were observed during the flowering seasons (between the end of July and the end of August) of the 

summers of 2012 and 2013. All anthophilous insects visiting the flowers were sampled with an 

entomological aspirator by observing the three plant species units together during three periods of 

40 minutes a day at 11am, 1pm and 3pm (90 samples in total per year). Anthophilous insects were 

identified at species level if possible, otherwise at genus or family level. Insects were classified into 

six ecological roles based on trophic habits (Fath and Killian 2007; Gobbi and Latella 2011) by 

literature survey (e.g. Mellini 1997; Gregor et al.  2002; Oosterbroek 2006; Jedlička et al. 2009): 

detritivores, parasitoids, phytophagous, pollinators, predators, and opportunists.

Data analysis
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We quantified structural changes  (Dunne et al.  2002a) of the plant-insect network at both local 

(node positions) and global (network architecture) levels along the primary succession gradient. The 

patterns  and frequency of  plant-insect  interactions  were represented and visualized  by bipartite 

networks (Jordano 1987, Memmott 1999, Dormann et al. 2009). A bipartite network consists of two 

sets of nodes (i.e. plant species and insect functional groups) linked by a set of edges in such a way 

that each edge links two species belonging to different node sets. In the adjacency matrix plants 

were represented in the rows (= lower level in the network) and insect functional groups were 

represented in the columns (= upper level in the network). Link weights showed the number of 

insect individuals that visited the corresponding plant species. In the resulted bipartite network, the 

size of rectangles representing plants and insects was proportional to the relative number of visits 

received and made within each successional stage, respectively (Dormann et al. 2009).

In order to quantify the change in network structure along the successional gradient, we computed 

local indices describing nodes and global indicators of network architecture. Information about the 

changes in topological properties along the succession provides useful information to understand 

the  relative  importance  of  various  functional  groups  and  may shine  a  light  on  the  dynamical 

consequence of network assembly.

Local (node level) indices

Weighted degree (wDi)

In a directed and weighted network, it is the sum of weights of the links connected directly to a 

node. This is the most local measure and often provides a fast and simple evaluation (Jordán 2009).

Weighted topological importance index (WIi
n)

We assume a network with undirected links where trophic effects can spread in many directions 
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without bias. Indirect effects can spread in both bottom-up and top-down directions and, as a result, 

horizontally, too (i.e. from plant to plant and from insect to insect). We use WIi
n as the topological 

importance of species  i for plant-insect network with weighted links when effects “up to” n steps 

are considered as

which is the sum of effects originated from species i up tp n steps averaged over by the maximum 

number of steps considered (n). By this index, it is possible to quantify the internal interactions 

structure of the network (Jordán 2009).

Both  wD and  WIn were  calculated  according  to  Valentini  and  Jordán  (2010). These  structural 

importance  indices  assume  that  well-connected  nodes  are  more  important  in  the  network  in  a 

structural  and  possibly also  in  a  dynamical  sense  (Jordán et  al.  2007,  Jordán et  al.  2008).  As 

pollinators, predators and parasitoids were the consistently most abundant groups, the indices were 

calculated only for these.

Global (network level) indices 

Density

The density of a network is the number of links divided by the maximal number of potential links. 

In the case of weighted networks, Wasserman and Faust (1994) suggests to use the sum of link 

weights instead of the number of links. Also, in the case of bipartite networks, the denominator 

should be NM, where N and M are the number of nodes in the first (plants) and in the second set 

(insects) of nodes, respectively. Thus, we used the following formula for our weighted and bipartite 
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networks:

where L is the number of links, Wi is the weight on the ith link, N is the number of plant species and 

M is the number of insect functional groups.

Centralization (NCID)

We calculated the degree–based network centrality index (NCID), where degree (D) is the number of 

neighbours of a graph node (Wasserman and Faust 1994). Note that network centrality, expressed in 

percentages, is maximal (100%) if a central node is directly connected to all other nodes and there is 

no other link in the network (i.e. a perfect star-shape), and it is minimal (0%) if the positions of all  

nodes are topologically equal (i.e. a lattice). 

3. Results

A total of 911 insects specimens belonging to 40 families and 6 functional groups were sampled. 

The L. alpina anthophilous insect community was dominated by pollinators (84%), predators (9%) 

and opportunists  (5%);  phytophagous and detritivores  both  accounted for  1%. The S.  bryoides  

insect community was composed of pollinators (59%), followed by parasitoids (15%), opportunists 

(14%), predators (8%); phytophagous and detritivores made up 3% and 1%, respectively.

Plant-anthophilous insect bipartite network

Pollinators dominated the insect community of the debris-covered glacier (stage 0) as well as of 
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stages I and II (Fig. 2). In stage III,  the insect community was more diverse and structured, as  

opportunists, parasitoids and predators increased particularly on S. bryoides flowers. On the oldest 

terrain in stage IV, the insect community on L. alpina was still mainly represented by pollinators, 

while  S.  bryoides  showed a  more  functionally diverse  insect  community (Fig.  2).  In  this  late-

successional stage, S. bryoides interacted mainly with parasitoids, while opportunists and predators 

increased their frequency and pollinators became relatively less abundant (Fig. 2).

Network indices

L. alpina had higher wD in stage 0, and among all other stages no evident trend coherent with the 

successional gradient emerged (Fig. 3a). The WI2 of L. alpina generally increased from stage 0 to 

IV, with a major change between stage II and stage III (Fig. 3b). The wD of S. bryoides increased 

from stage 0 to II, where it reached the maximum and later decreased to stage IV (Fig. 3c). The WI2 

of S. bryoides increased from stage 0 to III, then weakly decreased in stage IV (Fig. 3d).

The  wD of pollinators tended to decrease along the primary succession gradient towards earlier 

deglaciation (Fig. 4a), whereas WI2 of pollinators increased with later successional stages (Fig. 4b). 

The wD and WI2 of predators increased from stage 0 to IV (Fig. 4c), with a major change between 

stage III and IV (Fig. 4d). The wD and WI2 of parasitoids remained low during the early and mid 

successional  stages,  then increased mainly from stage III  to  IV (Fig.  4e-f).  Pollinators had,  on 

average, higher wD and WI2 compared to predators and parasitoids.

Regarding  the  network-level  properties,  link  density  (d)  increased  (Fig.  5a)  while  network 

centralisation (NCID) decreased with increasing successional stage (Fig. 5b). This means that the 

various  species and functional  groups in  the community developed more and more interactions 

among themselves and became more and more connected, while their relative importance became 

less heterogeneous with more equally distributed importance among them.
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4. Discussion

Our study represents one of the first applications of bipartite network centrality analysis to the study 

of ecological succession. The key finding of our work is that, during succession, the importance of 

different  insect  ecological  groups and the  global  network structure  changed.  Plant-anthophilous 

insect  interactions  changed  from  a  network  dominated  by  pollinators  to  a  functionally  more 

diversified  food  web,  where  the  density  of  interactions  increased  while  the  network  became 

decentralized and homogeneous. We hypothesize that such process may increase the robustness of 

the  network  against  the local  extinction of  species, providing new insight  into the relationship 

between structure and dynamic in ecological networks.

Plant-anthophilous insect bipartite network

L. alpina interacted mainly with pollinators, which were the dominant insect group along the entire 

successional  gradient  studied  here.  In  contrast,  S.  bryoides  interacted  with a  wider  ecological 

spectrum where pollinators were not the dominant group along the whole successional gradient. 

Difference in the ecological role of anthophilous insects between plant species may be due to the 

presence  of  floral  nectaries  in  S.  bryoides  but  not  in  L.  alpina,  suggesting  that  more  insect 

ecological roles may benefit from this sugar resource. In the  S. bryoides  community pollinators 

remained the dominant group during the early and mid successional stages, whereas in the late 

successional  stage  parasitoids,  predators  and  opportunists  strongly  increased  and  pollinators 

decreased.

Albeit our study does not allow the inference of direct trophic relationship among insects, it may be 

possible that the relative decrease of pollinators is linked to the increase in predators  (Raso et al. 

2014) and parasitoids with the succession proceeding. Indeed, a mature ecosystem, found at the late 

successional stages showing high plant productivity and community diversity (Gobbi et al. 2010), 
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may boost more parasitoids and predators that will interact with pollinators. By meaning of bipartite 

networks dynamically linked we showed for the first time how different insect ecological groups are 

assembled and differentially interact with plants along an ecological succession gradient.

Local (node) structural changes

Weighted centrality indices of  L. alpina showed contrasting trends.  Although no clear variation 

emerged in wD, the increase in WI2 indicates that, even if the number of direct links may not vary, 

indirect effects became more important with later successional stages. Highest values of the two 

topological indices at the successional stages II and III for S. bryoides indicated a more important 

structural  position  (rich  interaction  structure)  at  the  intermediate  successional  stages.  This 

corresponds  with  the  abundance  distribution  of  this  species  along  the  successional  gradient, 

suggesting a relationship between the species environmental requirement (i.e. the species niche) and 

its importance in structuring the network.

With  succession  proceeding,  pollinator  wD decreased  and  that of  predators and  parasitoids 

increased:  these  opposite  trends  indicate  a  change  in  positional  importance  from a  local  to  a 

mesoscale view (Jordán 2009). Due to different roles of species in the network (Jordán 2009), 

changes in their relative importance along the successional gradient causes structural changes in the 

network architecture.  This local change may influence the global dynamic of plant-anthophilous 

insect interaction network, which is varying from a pollination-driven system to a more complex 

ecological  network.  In  other  words,  the plant-anthophilous  insect  interactions  change along the 

successional gradient from predominantly mutualistic interactions to a diverse set of interactions 

including mutualism, parasitism and predation.

Indirect effects play an important role in governing ecosystem dynamics (Jordán et al. 2008). The 

consistent increase in WI2 indices  for all  insect  ecological roles makes them more functionally 

important along the primary succession gradient. The importance of nodes is therefore likely to be 
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determined by the interaction between insect functional role type and community features along the 

primary succession gradient, the later mainly represented by the increase in plant species diversity 

and ecosystem productivity (Gobbi et al. 2010).

Thus, the use of centrality indices highlights the link in the assembly process of plant and related 

anthophilous insect communities and the functioning of this interaction system. Our study showed 

that the local importance of insect ecological roles changed within as well as among the groups 

along the succession gradient, suggesting a role in the dynamic of global network properties.

Global (network) structural changes

Our results show that with succession proceeding more and more links among plants and insects are 

formed. This may be due to the effect of time: directly, by increasing the interaction probability 

among the  species  pool,  and indirectly,  as  a  consequence of  a  more  structured and diversified 

network that lastly enhances trait matching and complementarity (Vázquez et al.  2009) between 

plants  and  anthophilous  insects.  Furthermore,  link  density  is  affected  by  network  dimension 

(Dormann et al. 2009), the latter being a consequence, in our study system, of the increase in insect  

abundance and plant community maturity. The increase in link density with proceeding succession 

is in accordance with Albrecht et al. (2010) who found an increase in the unweighted number of 

links  per  species  along  the  Morteratsch  glacier  foreland  (Switzerland).  As  link  density  is  an 

indicator  of  complexity  (May  1973),  the  increase  of  network  complexity  along  the  primary 

succession gradient confers stability and robustness against potential local species losses (Montoya 

et al. 2006) because highly connected networks will tend to be more robust to stochastic removal of 

nodes (Dunne et al. 2002b). Conversely, a very densely connected network is more vulnerable to 

species invasion as a perturbation is more likely to spread rapidly (Scheffer et al. 2012).

Patchy pioneer communities in early successional stages are highly centralised,  with few nodes 

playing  a  key  role  while  most  nodes  occupy  peripheral  positions.  Throughout  the  primary 
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succession the network became de-centralised, as all nodes are connected with a similar number of 

links. This highlights a gradient towards a more homogeneous structural organisation: the network 

architecture shifts from a star-like network, where few central nodes have many connections, to a 

lattice-like network with no central nodes but a balanced number of edges per node (Wassermann & 

Faust  1994).  The  network  de-centralisation  may emerge  from the  decrease  in  direct  structural 

importance  of  pollinators  and  the  parallel  increase  in  importance  of  parasitoids  and  predators 

towards  later  successional  stages. As  reported  in  others  studies  on  pollination  and  mutualistic 

networks (Olesen et al. 2007, Bascompte and Stouffer 2009, Pocock et al. 2012), low interaction 

richness makes a network less cohesive, thus making the network more vulnerable to the removal of 

nodes. Thus, we could hypothesise that the observed network de-centralisation may increase the 

local extinction risk of species, especially in a global warming context causing glacier retreat.

In  summary,  considering  simultaneously  all  the  global  network  properties,  the  network  shows 

increasing  link  density  and  increasing  de-centralisation  during  primary  succession.  These  two 

assembly processes appear to confer two contrasting properties: the former may lead to network 

robustness  against  local  species  extinctions  whereas  the latter  may confer  the  opposite  feature. 

Indeed, as some simulation studies suggested (Bascompte & Stouffer 2009, Pocock et al. 2012), a 

cohesive organization make the network more robust and stable. In our study system, probably the 

outcome is a balance between these two functions (i.e. increase in link density and decrease in 

centralisation) and the importance of species getting extinct (i.e. the species ecological group and 

their  structural  role  within  the  network).  More  studies  are  require  to  understand  the  dynamic 

consequence  of  network  structural  evolution  along  primary  succession  gradients;  however,  our 

application of local and global centrality indices has proved to give important insights into these 

processes and their consequences.

Conclusion
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We shed light on dynamically linked ecological networks in a natural time-sequence succession. 

Although in our study we analysed the anthophilous insect network of two ubiquitous plant species, 

we believe that the emerged trends may also be extended to a wider community-level pattern. New 

insight was provided into the initial steps of plant–insect network assembly and new light was shed 

on  the  relationship  between  structure  and  dynamic  in  network  ecology.  In  conclusion,  our 

framework highlighted the relevance of combining ecological trait and network theory to increase 

the link between community structure, network assembly and ecosystem functioning. Indeed, by 

applying network theory we will move away from pairwise comparisons and start searching for the 

existence of network-wide patterns of species dependence (Ings et al. 2009). We emphasize that, in 

the present context of climate and environmental changes, network analysis of primary succession 

gradients by meaning of bipartite networks and centrality indices may provide a useful framework 

also for the management of endangered habitat and species.
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