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Absence of interaction corrections in the optical conductivity of graphene
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The exact vanishing of the interaction corrections to the zero temperature optical conductivity of undoped
graphene in the presence of weak short-range interactions is rigorously established. Our results are in agreement
with measurements of graphene’s ac conductivity in a range of frequencies between the temperature and the
bandwidth. Even if irrelevant in the renormalization group sense, lattice effects and nonlinear bands are essential
for the universality of the conductivity.
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I. INTRODUCTION

Understanding the low-temperature properties of inter-
acting many-body systems is one of the most challenging
problems in physics; even a weak interaction can radically
change the behavior of the noninteracting system and produce
a variety of different effects. In view of this fact, it is
particularly interesting that a very small class of observables,
among which is the Hall resistivity, appears to be completely
independent of the interaction and of other microscopic details
and that their values depend only upon fundamental constants.
Even if there is agreement on the symmetries underlying this
universal behavior (in the case of quantum Hall effect (QHE)
it is topological invariance1,2), there is no first-principles
derivation of this fact in any interacting many-body system.3

The advent of graphene,4 a two-dimensional (2D) crystal of
pure carbon, finally provides such a system. Universality is
not only observed in relatively accessible experiments but, as
our study shows, it can also be rigorously deduced from an
interacting lattice Hamiltonian.

Indeed, recent optical measurements in graphene5 show
that at half-filling and small temperatures, if the frequency
is in a range between the temperature and the bandwidth,
the conductivity is essentially constant and equal, up to a
few percent, to σ0 = e2

h
π
2 , a universal value depending only

on the fundamental von Klitzing constant h/e2 and not on
the material parameters, such as the Fermi velocity. Such
value coincides with the theoretical prediction in a system
of massless noninteracting Dirac particles,6 a widely used
effective model of half-filled graphene;7 remarkably, the
inclusion of lattice effects and nonlinear bands does not change
such a value (see Ref. 9). Of course, interaction effects could
produce modifications to this theoretical value, which was
obtained by neglecting interactions. However, in the case of
weak short-range interactions and at half-filling, we rigorously
establish that this is not the case. All the interaction corrections
to the zero temperature and zero frequency conductivity
of the half-filled Hubbard model on the honeycomb lattice
cancel out exactly as a consequence of exact lattice Ward
identities (WIs) and of suitable regularity properties of the
current-current response function. Note that we first perform
the zero temperature and then the zero frequency limit of the
conductivity, which means that we are looking at a range of
frequencies that are very small (as compared to the bandwidth)

but still larger than the temperature, which is precisely the
range of frequencies relevant for optical measurement of the
ac conductivity of undoped graphene.5

Besides an obvious interest for the physics of graphene, the
universality phenomenon proven here appears to be closely
related, as is manifest in our proof, to the universality in
the QHE10 and to the nonrenormalization of the anomalies in
quantum electrodynamics.11 Graphene provides a realization
of the analog of such phenomena in a much simpler context,
both from an experimental and theoretical point of view.

An important point of our analysis is that, even if irrelevant
in the renormalization group (RG) sense, the effects of the
underlying honeycomb lattice and the nonlinear bands are
essential for the universality of conductivity in the interacting
case. By using the Dirac effective description, which has been
successfully used to explain several properties of graphene
(see Ref. 12 for a review), one easily misses the exact
cancellations necessary for universality. The problem is that
the effective Dirac model has spurious ultraviolet divergences
(absent in the lattice model) which need to be cured via a
suitable regularization procedure, e.g., dimensional or mo-
mentum regularization. However, none of these regularization
procedures have a fundamental meaning, and while they
all give the same results as long as singular quantities are
concerned (e.g., in the computation of critical exponents), they
may fail to provide a unique answer in the computation of
finite quantities, such as the corrections to the conductivity,
which are sensitive to the regularization scheme. For example,
in the case of Coulombic interactions, frequency-dependent
corrections to the conductivity were computed in Refs. 13–15,
but different values (with the same sign) were found depending
on the regularization scheme; in this context, momentum
regularization appears to provide more accurate results than
dimensional regularization, as discussed in Ref. 15. On
the other hand, in the case of short-range interactions, the
momentum regularization, contrary to the dimensional one,
predicts nonvanishing corrections to the optical conductivity,
a fact that is believed to be a spurious effect due to the explicit
breaking of gauge invariance.14 In general, it is unclear which
one of the two regularization schemes gives more accurate
physical predictions.

In this paper we provide a clear answer to this problem
in the simple case of a half-filled Hubbard model with weak
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local interactions, in the absence of disorder. As discussed
in more detail below, the exact vanishing of the interaction-
dependent contributions to the optical conductivity involves
cancellations between contributions with momenta close to
the Fermi points and those with momenta far from the cusp
singularities, where the Dirac approximation fails. The paper
is organized as follows: after having introduced the lattice
model and the notion of conductivity, we state our main
results; next we present the proof, first explaining the role
of lattice Ward identities, then describing the computation of
the optical conductivity (both in the noninteracting and in the
interacting case), and finally sketching our RG construction of
the interacting response functions.

II. THE HUBBARD MODEL ON
THE HONEYCOMB LATTICE

We fix units such that h̄ = 1 and the lattice spacing a = 1.
We introduce creation and annihilation fermionic operators
ψ±

�x,σ
= (a±

�x,σ
,b±

�x+�δ1,σ
) = L−2 ∑

�k∈B�
ψ±

�k,σ
e±i�k�x for electrons

with spin index σ =↑↓ sitting at the sites of the two triangular
sublattices �A and �B of a periodic honeycomb lattice of
side L. We assume that �A = � has basis vectors �l1,2 =
1
2 (3, ± √

3) and that �B = �A + �δj , with �δ1 = (1,0) and
�δ2,3 = 1

2 (−1, ± √
3) the nearest-neighbor vectors; B� = {�k =

n1 �G1/L + n2 �G2/L : 0 � ni < L} with �G1,2 = 2π
3 (1, ± √

3)
as the first Brillouin zone. [Note that in the thermodynamic
limit L−2 ∑

�k∈B�
→ |B|−1

∫
B d�k, with |B| = 8π2/(3

√
3)].

The grand-canonical Hamiltonian at half-filling is H� =
H 0

� + UV�, where H 0
� is the free Hamiltonian describing

nearest-neighbor hopping (t is the hopping parameter):

H 0
�(t) = −t

∑
�x∈�A

j=1,2,3

∑
σ=↑↓

(
a+

�x,σ
b−

�x+�δj ,σ
+ b+

�x+�δj ,σ
a−

�x,σ

)
,

and V� is the local Hubbard interaction:

V� =
∑
�x∈�A

∏
σ=↑↓

(
a+

�x,σ
a−

�x,σ
− 1

2

)

+
∑
�x∈�B

∏
σ=↑↓

(
b+

�x,σ
b−

�x,σ
− 1

2

)
.

The current is defined as usual via the Peierls substitution by
modifying the hopping parameter along the bond (�x,�x + �δj )

as t → t�x,j ( �A) = t eie
∫ 1

0
�A(�x+s�δj )·�δj ds , where the constant e

appearing at exponent is the electric charge and �A(�x) ∈ R2 is
a periodic field on S� = {�x = Lξ1�l1 + Lξ2�l2 : ξi ∈ [0,1]}. If
we denote by

H�( �A) = H 0
�({t�x,j ( �A)}) + UV�

the modified Hamiltonian with the new hopping parameters,
the lattice current is defined as �J (A)

�p = −|S�| ∂H�( �A)/∂ �A �p,

which gives, at first order in �A,

�J (A)
�p = �J �p + 1

|S�|
∑
�q∈D�

	̂ �p,�q �A�q,

where if η
j

�p = 1−e
−i �p�δj

i �p�δj

,

�J �p = iet
∑
�x∈�
σ,j

e−i �p�x �δjη
j

�p
(
a+

�x,σ
b−

�x+�δj ,σ
− b+

�x+�δj ,σ
a−

�x,σ

)

is the paramagnetic current and

[ 	̂ �p,�q]lm =
∑
�x∈�

j=1,2,3

e−i( �p+�q)�x(�δj )l(�δj )mη
j

�pη
j

�q	�x,j ,

with 	�x,j = −e2t
∑

σ (a+
�x,σ

b−
�x+�δj ,σ

+ b+
�x+�δj ,σ

a−
�x,σ

), is the

diamagnetic tensor. The two components of the paramagnetic
current �J �p will be seen as the spatial components of a
“space-time” three-component vector Ĵ �p,μ, μ = 0,1,2, with
Ĵ �p,0 = eρ̂ �p and ρ̂ �p the density operator:

ρ̂ �p =
∑
�x∈�A

σ=↑↓

e−i �p�xa+
�x,σ

a−
�x,σ

+
∑
�x∈�B

σ=↑↓

e−i �p�xb+
�x,σ

b−
�x,σ

. (1)

It is also convenient to introduce the reduced current �j �p, related
to the paramagnetic current by �J �p = v0 �j �p, where v0 = 3t

2 is the
free Fermi velocity. If Ox = ex0H�O�xe−x0H� , with x = (x0,�x),
we denote by 〈O(1)

x1 · · · O(n)
xn

〉β the thermodynamic limit of

�−1Tr{e−βH�T(O(1)
x1 · · · O(n)

xn
)}, where � = Tr{e−βH�}, and T

is the operator of fermionic time ordering. Moreover, we
denote by 〈O(1)

x1 ; · · · ; O(n)
xn

〉β the corresponding truncated ex-

pectations and by 〈O(1)
x1 ; · · · ; O(n)

xn
〉 their zero temperature limit.

The two-point, three-point, and current-current functions,
Ŝβ(k), Ĝ

β

2,1;μ(k,p), and K̂β
μν(p), are defined as the 2D Fourier

transforms of 〈ψ−
x,σ ψ+

y,σ 〉
β
, 〈Jz,μ; ψ−

x,σ ψ+
y,σ 〉

β
, and 〈Jx,μ; Jy,ν〉β ,

respectively. Finally, the conductivity is defined via the Kubo
formula as9 (here l,m = 1,2)

σ
β

lm(p0) = − 2

3
√

3

1

p0

[
K̂

β

lm(p0,�0) + 	
β

lm

]
,

where 	
β

lm = limL→∞ 1
L2

∑
�x∈�

j=1,2,3

(�δj )l(�δj )m〈	�x,j 〉β , and

3
√

3/2 is the area of the hexagonal cell of the honeycomb
lattice. In our notations, p = (p0, �p), with p0 ∈ 2π

β
(Z + 1

2 ) the
Matsubara frequency.

It is known that in general the interaction modifies the values
of the physical quantities. For instance, the Fermi velocity vF ,
the wave-function renormalization Z, and the vertex functions
are known to depend explicitly on the interaction16 and to
be analytic in U . Therefore, it is natural to expect that the
interacting conductivity remains close to its free value at weak
coupling; what is a priori unclear is whether its zero frequency
limit has corrections explicitly depending upon U , or whether
these cancel out exactly.

Theorem. There exists a constant U0 > 0 such that, for
|U | � U0 and any fixed p0, σβ

lm(p0) is analytic in U uniformly
in β as β → ∞. Moreover, for l,m = 1,2, restoring the
presence of the dimensional constant h̄ = h/2π in the result:

σlm = lim
p0→0+

lim
β→∞

σ
β

lm(p0) = e2

h

π

2
δlm. (2)
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Note that the definition of σlm involves a limiting procedure
in which first the temperature and then the frequency are
set to zero, i.e., close to the limit we have β−1 � p0 � t ,
which corresponds to the range of frequencies investigated
with optical techniques in Ref. 5. By taking the limits in
the opposite order, we would get information about the dc
conductivity that, in the presence of disorder, also appears to
have a universal value. (See Ref. 8 for details concerning the
noninteracting case in the Dirac approximation.) The rest of
the paper is devoted to the proof of the theorem; for some
technical aspects of the discussion, the reader is referred to
Ref. 17.

III. WARD IDENTITIES

It is important to note that the two-point, three-point, and
response functions are not independent. They are related to
each other by WIs following from the continuity equation:

−ie∂x0ρ(x0, �p) + i �p · �J(x0, �p) = 0. (3)

In particular, by defining p0 = −ip0, the two- and three-point
functions verify18 the WI:

pμĜ
β

2,1;μ(k,p) = −eŜβ (k + p)�0( �p) + e�0( �p)Ŝβ(k), (4)

where �0( �p) = ( 1 0

0 e−i �p�δ1 ). Equation (4) can be used to

infer identities between the interacting Fermi velocity, wave-
function renormalization, and vertex functions [see Eq. (13)
below]. Similarly, the response functions verify the WIs:
pμK̂

β

μ0(p) = 0 and

pμK̂β
μm(p) = − lim

L→∞
1

L2
[ �p · 〈	̂ �p,− �p〉

β,L
]m, (5)

where m = 1,2 and the term in the right-hand side is known as
the Schwinger term. Equation (5) can be used to conveniently
rewrite the conductivity, provided that the response function is
regular enough, as discussed below. The key factor is that the
large distance decay of the current-current correlation can be
estimated as

|〈Jx,μ; Jy,ν〉| � (const.)

1 + |x − y|4 , (6)

which follows from the fact that the Hubbard interaction
does not change the asymptotic infrared properties of the
theory. This is straightforward to check at a perturbative level
(the interaction is irrelevant according to power counting),
and a nonperturbative proof can be found in Refs. 16 and
17. Equation (6) implies that K̂μν(p) = limβ→∞ K̂β

μν(p) is
continuous at p = 0; therefore, from the WI Eq. (5),

i
p0

p1
K̂0m(p0,p1,0)

=
[
K̂1m(p0,p1,0) + lim

β,L→∞
1

L2
〈[	̂(p1,0),(−p1,0)]1m〉

β,L

]
.

Taking first the limit p0 → 0 and then the limit p1 → 0, we see
that the left-hand side is vanishing in the limit. This implies,
using the continuity of K̂μν(p) at p = 0, limp→0 K̂1i(p) =
−	1i , with 	lm = limβ→∞ 	

β

lm; a similar argument shows
that limp→0 K̂lm(p) = −	lm for all l,m ∈ {1,2}. Therefore,

using again the continuity at p = 0 of the current-current
function and the definition of conductivity, we can rewrite

σlm = − 2

3
√

3
lim

p0→0+
lim

β→∞
1

p0
[K̂lm(p0,�0) − K̂lm(0)]. (7)

In addition, symmetry considerations immediately imply that
K̂lm(p0,�0) is even in p0. This, together with (7), shows that
there are strict relations between the regularity properties of the
Fourier transform of the current-current correlations K̂lm(p)
and the properties of the conductivity; in particular, it says that
contributions to K̂lm(p) that are differentiable in p give zero
contribution to the conductivity in the limit. This is not enough
to prove that all the interaction corrections to the conductivity
are vanishing in the limit, as in the perturbative expansion
of K̂lm(p) one can easily identify nondifferentiable terms;
however, as discussed in the following, there are dramatic
cancellations among such terms, which imply universality.

IV. CONDUCTIVITY IN THE NONINTERACTING CASE

Before discussing the computation of the conductivity in
the interacting case, it is instructive to perform the analysis
in the free gas approximation, in which case, restoring the
presence of the dimensional constant h̄ in the formulas,

σij |U=0 = 2

3
√

3

2e2v2
0

h̄
lim

p0→0+

∫
dk0

2π

∫
B

d�k
|B|

× Tr

{
S0(k + (p0,�0)) − S0(k)

p0
�i(�k,�0)S0(k)�j (�k,�0)

}
,

(8)

where

��(�k, �p) = 2

3

3∑
j=1

�δj

(
0 ie−i�k(�δj −�δ1)

−ie+i(�k+ �p)(�δj −�δ1) 0

)
,

S0(k) is the two-point function at U = 0,

S0(k) = 1

k2
0 + v2

0 |�(�k)|2

(
ik0 −v0�

∗(�k)

−v0�(�k) ik0

)
,

v0 = 3
2 t and �(�k) = 2

3

∑3
j=1 ei�k(�δj −�δ1). The complex disper-

sion relation �(�k) vanishes only at the two Fermi points
�p ±
F = ( 2π

3 , ± 2π

3
√

3
), and close to them it assumes the form of

a relativistic dispersion relation �( �p±
F + �k′) � ik′

1 ± k′
2. The

integral in Eq. (8) is not absolutely convergent, so the integral
and the limit p0 → 0+ cannot be exchanged. This is well
known (see Ref. 8, where a similar question is discussed in
the relativistic approximation). In order to explicitly compute
Eq. (8), we can proceed as follows. Let ε > 0 be a small
number, independent of p0, to be eventually sent to zero;
we distinguish between the regions where |�(�k)| � ε and
|�(�k)| � ε. The integral associated with the region |�(�k)| � ε

is nonsingular; therefore, we can exchange the integral with
the limit and check that the integral of the limit is zero
(simply because the resulting integrand is odd in k0). Next,
in the integral associated with the region |�(�k)| � ε, we
rewrite the propagator as the relativistic propagator plus a
correction (similarly, we rewrite �� as its value at the Fermi
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points plus a correction). The corrections are associated with
absolutely convergent integrals, uniformly in p0, and therefore,
their contribution after having taken ε → 0 is equal to zero.
Therefore, we are left with a cut-off integral involving the Dirac
propagators, in which the dependence upon v0 disappears (by
scaling). An explicit evaluation of the integral over k0 (by
residues) yields

σij |U=0 = 8δij

e2

h
lim
ε→0

lim
p0→0+

p0

16

∫ ε

0
dk

1

k2 + p2
0/4

= δij

e2

h
lim
ε→0

lim
p0→0+

arctan(2ε/p0) = δij

e2

h

π

2
,

which is the desired result. This simple analysis explains why
the free conductivity is universal: the integral is not absolutely
convergent and only the region close to the singularity, where
the Dirac approximation is valid, contributes to the result.

V. CONDUCTIVITY IN THE INTERACTING CASE

The interaction produces nontrivial renormalization of the
Fermi velocity, the wave function, and the vertex function,
and the universality stated in Eq. (2) appears as a delicate
compensation between them, which cannot be seen in naive
perturbation theory in U . By the exact RG analysis explained
in Ref. 16, it follows that for small U , if |k − pω

F | � 1, the
two-point function is

S(k) = 1

Z

(
−ik0 −vF �∗(�k)

−vF �(�k) −ik0

)−1

[1 + O(|k − pω
F |θ )], (9)

where Z = Z(U ) = 1 + O(U 2) and vF = vF (U ) = 3t
2 +

O(U 2) are analytic functions of U and 0 < θ < 1. Therefore,
the effect of the interaction is simply to modify the value of
the wave-function renormalization and of the Fermi velocity
up to a correction O(|k − pω

F |θ ) due to the irrelevant terms in
the RG sense. Moreover, if 0 < |p| � |k − pω

F | � 1,

Ĝ2,1;μ(k,p) = eZμS(k + p)�μ( �p±
F ,�0)S(k)

×[
1 + O

(∣∣k − pω
F

∣∣θ)], (10)

where �0(�k, �p) = ( 1 0
0 e−i �p�δ1

), Zμ = Zμ(U ) are analytic in U ,

and 0 < θ < 1. That is, the three-point function is identical
to the free one, up to a renormalization of the vertex and to
corrections O(|k − pω

F |θ ) with better infrared properties.
The RG analysis of Ref. 16 can be repeated for the current

and density correlations and one gets (see following section
and Ref. 17 for details)

K̂lm(p) = ZlZm

Z2
〈ĵp,l ; ĵ−p,m〉0,vF

+ R̂lm(p), (11)

where 〈·〉0,vF
is the average associated with a noninteracting

system with Fermi velocity vF (U ), �jp is the reduced current de-
fined after Eq. (1), and R̂lm(p) takes into account contributions
from the irrelevant terms in the RG sense. This implies (see the
following section and Ref. 17) that its real space counterpart
has better decay properties than the bound Eq. (6), namely,

|Rlm(x,y)| � C

1 + |x − y|4+θ
(12)

with 0 < θ < 1, so that R̂lm(p0,�0) is continuous and differen-
tiable at p0 = 0 (and even in p0, by symmetry).

By Eqs. (9) and (10) and the WI Eq. (4), the vertex renormal-
izations Zμ are related to the wave-function renormalization
Z and to the Fermi velocity vF by simple identities18:

Z0 = Z , Z1 = Z2 = vF Z. (13)

Therefore,

K̂lm(p) = v2
F 〈ĵp,l ; ĵ−p,m〉0,vF

+ R̂lm(p).

Plugging this into Eq. (7) we get

σlm = − 2

3
√

3
lim

p0→0+

1

p0

[
[R̂lm(p0,�0) − R̂lm(0)]

+(
v2

F 〈ĵ(p0,�0),l ; ĵ(−p0,�0),m〉
0,vF

− v2
F 〈ĵ0,l ; ĵ0,m〉0,vF

)]
.

(14)

This means the conductivity can be decomposed in two class
of terms, one [the first line of Eq. (14)] expressed by absolutely
convergent integrals and another [the second line of Eq. (14)]
by nonabsolutely convergent integrals. The first class of terms
gives zero contribution to σlm, simply because R̂lm(p0,�0) is
continuous with continuous derivative at p0 = 0 and even
in p0. The second class of terms gives a contribution that
is exactly equal to the free conductivity of a system with
Fermi velocity vF (U ) [thanks to the WI Eq. (13)]. Since the
free conductivity is independent of the Fermi velocity, this
concludes the proof of Eq. (7). In the following section we
explain how Eqs. (11) and (12) are derived, referring to the
main technical details (in particular, the symmetries and the
nonperturbative bounds) in Refs. 16 and 17.

In any case, at this point it should be clear why the univer-
sality of the conductivity is easily missed in the continuum
Dirac approximation. In fact, while the free conductivity
is expressed by a nonabsolutely convergent integral, whose
value is dictated by the infrared singularity of the Green’s
function (which is the same as the Dirac propagator), in the
computation of the interacting conductivity one has to distin-
guish between the nonabsolutely and absolutely convergent
contributions. The nonabsolutely convergent integrals can be
resummed and, exploiting cancellations from exact WIs, one
proves universality for such terms (they sum up to the free
conductivity of a system with different Fermi velocity). On
the other hand, the absolutely convergent terms are associated
with momenta in the whole Brillouin zone. Their cancellation
requires a compensation of the contributions coming from
a neighborhood of the Fermi points with those far away
from them, where the Dirac approximation fails. Therefore,
the Dirac approximation is intrinsically unable to predict
cancellation of these convergent contributions; lattice effects
and nonlinear bands, even if irrelevant in the RG sense, are
essential for establishing universality of the conductivity.

VI. THE RENORMALIZATION GROUP ANALYSIS

It remains to explain how Eqs. (11) and (12) are derived;
here we only sketch their proof and we refer to Refs. 16 and
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17 for the technical details. The generating functional of the
correlations can be written in terms of a Grassmann integral,

eW (A,λ) =
∫

P (dψ)eV(ψ)+(ψ,λ)+B(A,ψ), (15)

where P (dψ) is the fermionic Gaussian integration for ψ±
k,σ

with inverse propagator

g−1(k) = −Z0

(
ik0 v0�

∗(�k)
v0�(�k) ik0

)
. (16)

B(A,ψ) is the source term describing the coupling of the
Grassmann field with the external U (1) gauge field A, and
(ψ,λ) = ∫ β

0 dx0
∑

�x∈�[ψ+
x λ−

x + λ+
x ψ−

x ]. The response func-
tion K̂μν(p) can be obtained by deriving twice with respect to
the gauge field A:

K̂β
μν(p) = δ2

δAμ(p)δAν(−p)
W (A,0)|A=0. (17)

Similarly, the two-point function can be obtained by deriving
the generating functional twice with respect to the external
field λ, and the three-point function by deriving twice with
respect to λ and once with respect to A. The perturbation
theory for these correlation functions is (apparently) affected
by infrared divergences related to the divergence of the free
propagator Eq. (16) at the Fermi points. In order to exploit
cancellations in the perturbation series, it is convenient to
perform the integral Eq. (15) in a multiscale fashion. We
decompose the field ψ as a sum of independent Grassmann
fields ψ (h), living on momentum scales |k − p±

F | � 2h, with
h � 0 a scale label. The scaling dimension of the local operator
∂m

x ψ
nψ

x AnA
x turns out to be16,17

D = 3 − nψ − nA − m.

Therefore, the only marginal terms in the RG sense are those
with nψ = 2, nA = 0, m = 1, or nψ = 2, nA = 1, m = 0 (the
terms with nψ = 2, nA = 0, m = 0 corresponding to a possible
shift of the Fermi momentum are vanishing by symmetry). All
the other terms are irrelevant, in particular, the terms with
four or more fermionic fields, corresponding to the effective
multiparticle scattering terms.

After the integration of the fields with scales � h, we rewrite
Eq. (15) (setting, for simplicity, λ± = 0) as

e−βL2Fβ,L

∫ ∏
ω=±

P
(
dψ (�h)

ω

)
eV

(h)(ψ (�h))+B(h)(A,ψ (�h)) , (18)

where ψ±
k′,ω is the quasiparticle field at the Fermi point pω

F

(with quasimomentum k′ relative to the Fermi point pω
F ) and

P�h(ψω) is a fermionic Gaussian integration with propagator

g(�h)
ω (k′) = −χh(k′)

Zh

(
ik0 vh�

∗(�k)
vh�(�k) ik0

)−1

(1 + O(|k′|θ ).

Moreover, χh(k′) is a cut-off function supported in |k′| � 2h,
0 < θ < 1, while Zh and vh are, respectively, the effective
wave-function renormalization and Fermi velocity on scale h.

The effective potential V (�h)(ψ (�h)) is a sum of monomials
in ψ (�h) of arbitrary order, characterized at order n by
kernels W

(h)
n,0(x1, . . . ,xn) that are analytic in U and decay

superpolynomially in the relative distances |xi − xj | on scale
2−h. Moreover, the effective source is given by

B(h)(A,ψ) =
2∑

μ=0

Zμ,h

∫
dp

(2π )3
Aμ(p)jμ(p) + B̄(h), (19)

where jμ(p) = −ie
∑

σ

∫
dk

(2π)|B|ψ
+
k+p,σ�μ(�k, �p)ψ−

k,σ , and B̄(h)

is a sum of monomials in (A,ψ) of arbitrary order,
characterized at order n in ψ and m in A by kernels
W (h)

n,m(x1, . . . ,xn; y1, . . . ,ym) that are analytic in U and decay
superpolynomially in the relative distances on scale 2−h. In
particular, for all 0 < θ < 1, they satisfy the bounds∫ ∣∣W (h)

n,m

∣∣ � (const.)n+m|e|m2(3−n−m)h|U |2θh, (20)

which are nonperturbative, i.e., they are based on the con-
vergence of the expansion for the kernels W (h). They are
obtained by exploiting the anticommutativity properties of the
Grassmann variables via a determinant expansion and the use
of the Gram-Hadamard inequality for determinants Refs. 16
and 17. The factor 2(3−n−m)h corresponds to the bare scaling
dimension, and the extra factor 2θh is a dimensional gain due
to the irrelevance of the effective electron-electron interac-
tion. Every contribution in perturbation theory involving an
effective scattering in the infrared is suppressed thanks to the
irrelevance of the four-legged kernel. This dimensional gain is
analogous to the one found in super-renormalizable theories
such as φ4

2 or φ4
3 , thanks to the (exponentially fast) vanishing

of the effective scattering term.
The running coupling constants Zh,vh,Zμ,h satisfy recur-

sive equations (β-function equations) that, thanks to the bound
equation (20), lead to bounded and controlled flows. The
limiting values

Z(U ) = lim
h→−∞

Zh, Zμ(U ) = lim
h→−∞

Zμ,h, vF (U ) = lim
h→−∞

vh

are analytic functions of U , analytically close to their un-
perturbed values Z0 = Z0,0 = 1 and Z1,0 = Z2,0 = v0 = 3

2 t ;
moreover, the limit is reached exponentially fast.

The A-dependent part of the generating function W (A,λ)
is given by the h → −∞ limit of the effective source Eq. (19).
Therefore, the derivatives with respect to A appearing in
Eq. (17) can either act on the (limit of the) first or on the
(limit of the) second term in Eq. (19). In the former case we
get a contribution to the first term in Eq. (11) (with Zh,vh,Zμ,h

replaced by their limiting value); in the latter, we get contribu-
tions to the remainder term R̂lm(p), which satisfies improved
dimensional estimates [and correspondingly improved decay
properties like Eq. (12)], thanks to the extra dimensional factor
2θh in Eq. (20). This concludes the (sketch of the) proof of
Eqs. (11) and (12). For more technical details, concerning, in
particular, the convergence of the expansion for the effective
potentials and the effective sources, see Ref. 17.

VII. CONCLUSIONS

In conclusion, we rigorously proved the nonexistence of
corrections to the zero temperature and zero frequency limit
of undoped half-filled graphene optical conductivity due to
weak short-range interactions. This solves a debated problem
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about the role of interactions in graphene and, remarkably, it
is one of the very few examples of universality in condensed
matter that can be established on firm mathematical grounds.
The novelty of our approach is the use of constructive RG
methods combined with exact lattice Ward identities. These
are believed to play a crucial role also in the understanding
of other universal phenomena, such as the QHE, which are
still not accessible to a first-principles analysis.3,10 Our proof
shows the crucial role played by the lattice and by the nonlinear
bands in the emergence of universality and strongly suggests

that these will play an important role in the understanding
of the effects of disorder or long-range interactions on the
conductivity of graphene.
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