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ABSTRACT  

The choice of the motor donor nerve is a crucial point for free flap transfer algorithms. In case of 

unilateral facial paralysis, the contralateral healthy facial nerve can provide coordinated smile animation 

and spontaneous emotional expression, but with unpredictable axonal ingrowth into the recipient muscle. 

Otherwise, the masseteric nerve ipsilateral to the paralysis can provide a powerful neural input, without a 

spontaneous trigger of the smile. Harvesting a bulky muscular free-flap may enhance quantity of 

contraction but esthetic results are unpleasant. So, the logical solution to obtain high amplitude of smiling 

combined with the spontaneity of movement is to couple neural input: the contralateral facial nerve plus 

the ipsilateral masseteric nerve.  

Thirteen patients with unilateral dense facial paralysis underwent a one-stage facial reanimation with a 

gracilis flap powered by a double donor neural input, provided by both the ipsilateral masseteric nerve 

(coaptation by an end-to-end neurorrhaphy with the obturator nerve) and the contralateral facial nerve 

(coaptation through a cross-face nerve graft: end-to-end neurorrhapy on the healthy side and end-to-side 

neurorrhaphy on the obturator nerve, distal to the masseteric/obturator neurorrhaphy). Their facial 

movements were evaluated with an optoelectronic motion analyzer. 

Before surgery, on average the paretic side had a total three-dimensional mobility smaller than the healthy 

side, with a 52% activation ratio and more than 30% of asymmetry. After surgery, the differences 

significantly decreased (ANOVA, p<0.05), with an activation ratio between 75% (maximum smile) and 

91% (maximum smile with teeth clenching), and less than 20% of asymmetry. Similar modifications were 

seen for the performance of spontaneous smiles.  

The significant pre-surgical asymmetry of labial movements reduced after surgery. The use of a double 

donor neural input permitted both movements that were of force similar to that of the healthy side, and 

spontaneous movements elicited by emotional triggering. 
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INTRODUCTION  

Long standing facial paralyses are characterized by irreversible fibrosis and absence of fibrillations of the 

mimetic musculature at electromyographic investigation. Among those cases it is not worth to give a new 

neural input to the musculature, as that does not have the possibility to recover from its degeneration. 

Reanimation, particularly smile recovery, is rather accomplished by means of free muscle flap 

transposition. That represents the gold standard treatment for chronic paralysis with severely injured or 

extirpated facial nerve and no recovery over the course of 12 months, or for chronic paralysis of 

congenital or developmental origin.  

The gracilis free muscle transfer is a reliable means for smile reanimation and it is the most widely used 

flap in dynamic procedures, based on predictable pedicle anatomy, an acceptable donor site morbility, and 

favorable muscle microarchitectural features resulting in fast and robust excursion when activated1. 

Decision-making for the choice of the suitable motor donor is still a challenge in unilateral smile 

reanimation planning. If the ipsilateral masseteric nerve is compared to a tiny contralateral facial nerve 

branch, the first one seems to guarantee a major neural input to the free flap because of the reduced length 

and the higher axonal count. On the contrary, only the facial nerve gives certainties relatively to the 

spontaneity of the outcome2-4. Moreover, despite the transferred muscles enjoy relatively few vascular 

failures, adequate axonal ingrowth of the donor nerve into the recipient muscle is still unpredictable, 

particularly when driven by a cross-face nerve graft1. A further aspect is muscle mass: harvesting a bulky 

muscular free-flap may enhance quantity of contraction, but the resulting esthetic results are unpleasant.  

Since the recovery of emotional smile represents the cornerstone for the quality of life of the patients, 

substantial effort is being put forth by investigators to improve techniques for obtaining spontaneous and 

symmetrical activation of the flap. Watanabe et al.5 first reported a one-stage free latissimus dorsi 

transplantation powered by a double motor source, by neurotizing the hilum of the flap with a denuded 
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area of the underlying masseter muscle. We also sought an algorithm combining the reliability of the 

masseteric nerve as motor donor and the spontaneous triggering of the smile from the contralateral facial 

nerve6.  

Currently, three-dimensional (3D) motion analysis is well recognized as an objective, non-invasive and 

quantitative method to assess facial movements before and after surgical rehabilitation, and several 

investigators have developed instruments and software to the scope7-14. 

In our case series, 13 patients underwent a one-stage free gracilis transplantation powered by a double 

donor neural input for unilateral dense facial paralysis. The baseline situation before surgery, and the 

clinical outcomes after regaining facial mobility, were assessed by quantifying smile excursion by means 

of a 3D optoelectronic motion analyzer7,8. Even if all patients were submitted to surgical reanimation in 

other parts of the face, the current paper reports only data about smile function. 

 

 

MATERIALS AND METHODS 

Patients  

The research protocol was approved by the ethical committee of the University of Milan Medical School 

in accordance with the standards of the 1964 Declaration of Helsinki. 

Over a 40-month period, from October 2009 through January 2013, a total of 26 consecutive patients with 

unilateral dense facial paralysis underwent a one-stage facial reanimation with a gracilis flap powered by 

a double donor neural input. All patients included in the study were grade VI of House-Brackman 

classification (complete facial paralysis), confirmed by absence of any electromyographic signal. Thirteen 

out of 26 patients who were ready for the post-operative analysis in January 2013 were enrolled in the 

study. 
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The mean age of the patients at surgery was 41 years (SD 17 years; range, 9-75 years). Facial nerve injury 

was due to previous surgery in 12 patients (6 acoustic neurinomas, 3 cavernous hemangiomas, 2 total 

parotidectomies, 1 meningioma) and congenital palsy in 1 patient. 

 

Surgical procedure 

A facelift-type skin incision is made on the paralyzed hemiface, extended for 6-8 cm into a cervical 

crease, 2 cm below the inferior mandibular border6. An anterior skin flap is elevated into the deep 

subcutaneous tissue coming up medially 1 cm over the ideal position of the nasolabial fold. Four to six 2-

0 polyethylene stitches are positioned across the residual fibers of the orbicularis oris or deep 

subcutaneous tissue, if the muscle is no more available. Their exact position is one centimeter medial to 

the ideal nasolabial fold. Suture threads are pulled together intraoperatively to mime smiling in order to 

check their effect forming the fold. If that is not convincing, stitches position is changed. 

The masseteric nerve is identified into the muscle parenchyma. The muscle is approached 1 cm below the 

zygomatic arch and 1 cm medial to its posterior border. The nerve lies 1.5-2 cm deep to the muscle 

surface and is well visible by gently dissecting muscle fibers along their axis (almost vertical). A 2.5-3 cm 

length nerve trunk segment is released after cutting its small collateral branches, if necessary. The nerve 

is cut at this level and turned superficially in order to easily accomplish the neurorrhaphy. 

An 8 x 5 cm gracilis muscle flap is simultaneously harvested from the medial thigh in the standard 

manner. The flap is transferred into the face pocket and stabled only with the medial attachment defined 

by the previously inserted stitches. Vascular anastomosis are accomplished end-to-end between flap 

vessels and facial ones. Subsequently, the end-to-end coaptation between the anterior branch of the 

obturator nerve and the masseteric nerve is made. 
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On the healthy side of the face, a face-lift type of incision is carried on, traced posteriorly into the mastoid 

region. An anterior skin flap dissection allows identifying a middle branch of the facial nerve direct to the 

zygomatic major muscle. The branch is tested with the electrostimulator to verify its involvement into 

smiling movement. A 20-25 cm portion of the sural nerve is grafted at the same time by a second team. 

When ready, the nerve is cross-faced in a reverse manner. The distal end is connected end-to-end with the 

branch of the facial nerve previously identified. On the paralyzed side of the face, the proximal end of the 

sural nerve is connected end-to-side to the anterior obturator branch, between the hilum of the flap and 

the connection to the masseteric nerve. An epineural window is opened to allow the end-to-side 

connection. 

Finally the lateral side of the flap is anchored to the periosteum overlaying the zygomatic arch and lateral 

zygomatic bone. Care must be taken in order to reach a correct tension of the flap.  

 

Data collection 

Both clinical evaluation and optoelectronic motion analysis were performed prior to and at least 11 

months after surgery (up to 20 months; mean 17 months, SD 3). The 13 patients (10 women, 3 men) out 

of 26 who were ready for the post-operative analysis in January 2013 were enrolled in the study. Among 

the original case series of 26 patients, 2 (7.69%) did not recover any function: this negative datum is 

doubled because both patients are included in the sample of 13 complete cases analyzed in the study; the 

final percentage of failures is brought up to 15.38%. This high rate of failures may be due to axonal 

ingrowth disturbance or microvascular impairments. 

In all 13 patients, examinations were performed at least five months after facial mimicry had clinically 

recovered (on average, 10 months, SD 3; maximum interval 16 months). This interval was used because 
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five months is considered to be a time lap sufficient to obtain significant consolidation of muscle 

function, though it is well know that final reinnervation may last for several years.  

The data collection protocol has been previously described7,8,15,16. Briefly, facial motion was captured by 

means of an optoelectronic 3D motion analyzer sampling at a 60 Hz rate (SMART System, BTS, Milano, 

Italy). Participants sat on a stool inside a working volume (44 x 44 x 44 cm3, width x height x depth) 

defined by nine high-resolution infrared sensitive video cameras. Prior to each acquisition, metric 

calibration and optic/electronic distortion correction are performed, with a resulting mean dynamic 

accuracy of 0.121 mm (SD 0.086), corresponding to 0.0158% of the diagonal of the working volume15. 

Patients performed five repetitions of three standardized facial expressions: maximum smile without 

clenching (before and after surgery), maximum smile with clenching on their posterior teeth (only after 

surgery), spontaneous smile (recorded in both sessions during the airing of a funny video, the participants 

being unaware of the purpose of that acquisition phase). The voluntary smile animations were explained 

and shown to the patients, who practiced to perform them before data acquisition; in contrast, no 

instructions were given for spontaneous smiles.  

During the execution of the animations, for each camera a software identified the two-dimensional (2D) 

coordinates of 11 passive markers taped epicutaneously on facial landmarks (Fig. 1). All coordinates were 

then converted into metric data, and a set of 3D coordinates was gathered for each marker, in each frame, 

for every performed movement7,8,15,16.  

Round reflective 2-mm adhesive markers were taped on the skin of: n, nasion; right and left: ft, 

frontotemporale; ng, naso-genian; cph, crista philtri; ch, cheilion; li, lower lip midpoints. Markers’ 

positions do not interfere with facial movements16.  

Within- and between-session repeatability of the protocol was previously assessed in healthy subjects; 

within session, single landmarks technical error of the measurement was, on average, 0.5-3.38 mm, 
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showing a sufficient reproducibility. Between sessions, all facial movements had standard deviations 

lower than 1 mm15. For commissurae landmarks, the average error during free and maximum smile was 

16%. The method could detect and quantify total and local facial motion; in patients with facial nerve 

palsy, collected data (amount of motion in single landmarks, synkinesis and movement asymmetries) 

were in good accord with House-Brackman classification13. 

  

Data analysis 

The method has been previously described7,8,15. To mathematically eliminate head and neck movements 

during the animations, all data were referred to a head reference system defined by nasion and 

frontotemporale landmarks. The analysis was therefore restricted to the movements occurring in the face 

(activity of mimetic muscles), but no actual limitations or physical restrictions were given to the 

patients8,16.  

During each facial animation, the 3D movements of the eight labial markers (naso-genian, crista philtri, 

cheilion, lower lip) were computed, and their 3D maximum displacement from rest was calculated (Fig. 2 

and 3). For each side (paretic and healthy), total labial mobility was obtained from the sum of the 

displacements of the landmarks. To quantify the side differences, two indices were obtained: the ratio of 

paretic to healthy side8-10, and the asymmetry index (percentage ratio between the difference and the sum 

of the healthy/ paretic displacements; –100%, complete paretic side prevalence during the movement; 

+100% complete healthy side prevalence)7,15. A 2D analysis was also performed, and the latero-lateral 

(right-left direction) component of the maximum displacement of the crista philtri, cheilion and lower lip 

landmarks was also computed11. 

 

Statistical calculations 
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For each patient, the five repetitions of facial movements were averaged. Mean and standard deviation 

were obtained for the total displacement of the healthy and paretic sides (3D analysis), the lateral 

displacement (2D analysis), the ratios and the asymmetry indices. Calculations were performed separately 

for the each kind of smile, before and after surgical facial reanimation. Two quantitative exclusion criteria 

were arbitrarily set to remove from statistical calculations those animations too small to be worth 

consideration: the healthy side had to present a total 3D mobility greater than 10 mm and the lateral 

displacement of its commissura larger than 1 mm. 

Comparisons between maximum smiles performed before surgery, and maximum smiles performed after 

surgery either without (facial nerve stimulus) or with teeth clenching (masseter nerve stimulus) were 

made by 1-way ANOVA for repeated measurements. For significant values, post hoc test were made by 

paired Student’s t test.  

Comparisons between spontaneous smiles (before vs. after surgery) were made by Wilcoxon rank tests. 

For all analyses, the alpha level was set at 5% (p < 0.05), with a Bonferroni correction for post hoc tests 

(p < 0.017). 

 

RESULTS 

All patients performed the requested maximum smile animations correctly, but only nine of them (six 

women and three men, 69.23% of the patients) performed spontaneous smiles that on average, and in both 

sessions, were wide enough to be further considered according to the established criteria. In the maximum 

smiles recorded during the first data collection session (pre-operatively), the average total 3D mobility of 

the paretic side was lower than that of the healthy side, with a 52% activation ratio and more than 30% of 

asymmetry (Table 1). In the second, post-operative data collection session, differences significantly 

decreased, with an activity ratio between 75% (maximum smile) and 91% (maximum smile with teeth 
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clenching) and less than 20% of asymmetry. For both the activity ratio and the asymmetry index, post hoc 

tests showed that the difference was significant between pre-surgical and post-surgical values with teeth 

clenching. The effect was due to both a reduction of the healthy side motion (significant difference among 

the three smile animations, ANOVA, p = 0.036), and an increment of the paretic side motion due to the 

masseteric motor source (ANOVA, p = 0.012, significant post hoc difference between post-surgical 

maximum smiles with and without teeth clenching). 

Similar modifications were seen for the performance of spontaneous smiles (Table 2), with a significant 

reduction of healthy side motion, and a trend toward increased activity ratios and reduced asymmetry. 

Before surgery, during the maximum smile animation all labial landmarks moved toward the healthy side 

(2D, right-left direction, Fig. 4); after surgery, the movement was more symmetrical, with significant 

differences (ANOVA) for almost all landmarks: paretic side ch and cph, p < 0.001 (post hoc comparisons: 

before surgery vs. after surgery with/out teeth clenching, p = 0.001), li, p < 0.001 (post hoc comparisons: 

before surgery vs. after surgery with/out teeth clenching, p = 0.002); healthy side: cph, p = 0.001 (post 

hoc comparisons: before surgery vs. after surgery with/out teeth clenching, p = 0.002), li, p = 0.002 (post 

hoc comparisons: before surgery vs. after surgery with/out teeth clenching, p = 0.006). In particular, the 

labial commissura of the rehabilitated side moved toward the corrected side of the face, while the 

philtrum followed it only in about half of the patients (SD bars extending in both sides).  

Surgical treatment also modified the execution of the spontaneous smiles, with more symmetrical 

movements of the rehabilitated side landmarks, and reduced motion of the healthy side ones (Fig. 5). The 

largest effects were seen for the labial commissurae (Wilcoxon test, p = 0.012) and lower lip (p = 0.02) of 

the paretic side, and for the lower lip of the healthy side (p = 0.05).  

Figures 6 to 9 show one of the analyzed patients before and after surgical treatment, whose dynamic 

movements while smiling can be seen in the supplementary videos (Movies 1-3). 
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DISCUSSION 

In the present study, we assessed three kinds of smiles, two voluntary made by the patient, and one 

spontaneous; according to the activity ratios and asymmetry indices, the best results were obtained when 

patients elicited the contraction of their mimetic muscles by clenching on their posterior teeth. Indeed, the 

surgical technique used part of the ipsilateral masseteric nerve to provide new motor fibers to the facial 

nerve6, and they were instructed to clench insofar they wanted to contract their labial elevator 

muscles10,17. At the same time, the patients also regained spontaneous activity of their paretic side 

mimetic muscles via the cross-face cable graft6. The surgical technique, therefore, tried to combine the 

best results from both donor nerves: force by the masseteric nerve, and spontaneous triggering from the 

facial nerve. Moreover, if one of the two motor inputs failed to provide re-innervation, at least the other 

one should fulfill it. At the same time, 15% of failures of the sample suggests that this mechanism is 

theoretical, unless we justify all of them by vascular impairments of the free flaps. On the contrary, there 

is no reason to hypothesize that double innervation is implied into worsening the rate of failures. 

Nonetheless, this high percentage of failures corresponds to two patients only, and larger numbers of 

cases are necessary to fully appreciate the true success rate of the technique. 

Voluntary maximum smiles performed without teeth clenching were also recorded: the relevant labial 

landmark movements clearly show that patients modified their smile after surgery. Overall, they 

“controlled” their smiles, with voluntary reductions of healthy side labial movement. As a result, the 

pulling effect on the paretic side towards the healthy side decreased, and this contributed to the increased 

labial symmetry and activity ratio10. Reductions of healthy side labial movement are due only to the 

teaching of a dedicated physiotherapist and not to any loss of power loss related to the sacrifice of healthy 

facial nerve branches.  

Previous investigations using quantitative assessment of surgical techniques did not rehabilitate the 
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patients with the current double innervation, and our data can only be partially compared with literature 

data, even if similar measurement instruments and methods were used. Frey et al.11 measured a group of 

patients who received a free gracilis muscle transplant powered by a facial nerve cross face graft. On 

average, in their patient series the labial commissure of the paretic side had a significant reduction of 

dynamic asymmetry, with values that became approximately one third of those recorded before surgery. 

The mean difference in motion was nearly 1 cm.  

Hontanilla et al.10 studied two groups of patients, who received either a cross-face facial nerve graft or an 

ipsilateral masseteric nerve innervation. Two years after surgery, on average the patients rehabilitated 

with the contralateral facial nerve had a difference between the healthy and paretic labial commissurae of 

3.3 mm, while those rehabilitated with the masseteric nerve had a difference of 1.4 mm (in both cases, the 

larger movement was on the healthy side). Both values are very similar to those obtained in the current 

group of patients: average differences between the lateral displacement of landmarks ch: 2.4 mm for 

smile with teeth clenching (that is, use of masseter nerve neural input), and 3.1 mm for smile without 

teeth clenching (that is, contralateral facial nerve activation). In the masseteric nerve group, Hountanilla 

et al. report ratio of paretic to healthy side movement identical to the current one obtained with teeth 

clenching (91%), while in the facial nerve group it was smaller than the current one recorded for 

voluntary smile without teeth clenching (61% vs. 75%)10.  

These data show that our surgical protocol can enable better percentage of recovery than single nerve 

techniques using a one-stage technique that has limited adjunctive donor site morbidity6. Indeed, 

Hontanilla et al.10 remarked that surgery using a cross-face facial nerve graft should be performed in two 

stages to avoid leaving the transplanted muscle without innervation for several months: the surgical 

approach used in the current group of patients well responds to this critical approach. In fact neurotization 

by the masseteric nerve is surely quicker than cross-face one as the axonal ingrowth must travel a shorter 
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distance to reach the gracilis muscle flap. 

The spontaneous smile was assessed because of its different neural pathways: the emotional contraction 

of the mimetic muscles is centrally controlled with excitatory stimuli on the facial nerve nucleus in the 

brainstem10,17. The recording of emotional smiles is more challenging than that of voluntary ones. Indeed, 

the recording apparatus and experimental set up may impair the patients, and the use of minimally 

disturbing systems is mandatory12,18. We included the vision of a funny spot, that participants can enjoy 

while sitting inside the working volume and wearing the facial landmarks8. Comparing the before and 

after surgery spontaneous smiles, we observed a reduction in the total healthy side movements, and a 

modifications in the movement of the paretic side labial commissura. A recent study17 determined the 

presence of spontaneous smiles after surgical rehabilitation by clinical observation only, but did not report 

quantitative data. Indeed, we report quantitative data for this movement in nine patients only, since four 

patients performed intangible spontaneous smiles in either or both the sessions, according to the exclusion 

criteria introduced to prevent from considering indices too sensitive to limited movements of the healthy, 

reference side. Therefore, the current results should be taken with caution until a larger sample would be 

measured and cannot be directly compared to those obtained by clinical observation only. 

As previously suggested11, we analyzed in detail the lateral displacement of the labial landmarks. Before 

rehabilitation, all six analyzed labial landmarks (paretic and healthy side cph, ch, li) had considerable 

lateral movements, all in the healthy side direction (Fig. 4, 5). After treatment, smiles were performed 

with more correct lateral displacements. The best pre-post surgery result was obtained by the labial 

commissurae (Fig. 10). When smiling with teeth clenching (ipsilateral masseteric nerve stimulus), the 

healthy side reduced its lateral mobility of 1 mm on average, while the paretic (rehabilitated) side 

regained 5.3 mm in the correct direction. The other two labial landmarks (cph and li) had less satisfactory 

results; for instance, for crista philtri about half of the patients did not have a correct movement, and the 
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result was even worse for the lower lip midpoint. A good result was also obtained when smiling without 

teeth clenching (contralateral facial nerve stimulus plus cerebral adaptation of the masseteric stimulus). 

In conclusion, the quantitative method used in the present study permitted to detect both the alterations in 

3D facial movements in patients with long standing unilateral palsy, and their rehabilitation after surgical 

treatment. We focused our analysis to the perioral region and to smile animations, those most commonly 

used to assess surgical results10,18. Indeed, all patients received other treatments to reanimate other parts 

of the face, but in the current study we concentrated our measurements on smile function. The significant 

asymmetry in the magnitude of labial movements that characterized the patients analyzed before surgery 

reduced after surgery, at least in those facial areas interested by the gracilis muscle free flap. The use of a 

double donor neural input enabled both movements that were of force similar to those of the healthy side, 

and spontaneous movements elicited by emotional triggering, maintaining a correct dimension of the 

muscular free flaps, tailored according to the specific anatomy of the patients.  
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FIGURE LEGENDS 

Figure 1. Soft tissue landmarks: n, nasion; ft, right and left frontotemporale; ng, right and left naso-

genian; cph, right and left crista philtri; ch, right and left cheilion; li, right and left lower lip midpoints.  

Figure 2. Reference frames for the assessment of labial mobility in a pre-surgery example (A, rest 

condition; B, maximum smile). In B, the black arrows represent the labial marker displacements 

(where tangible) of both facial sides (right, paretic; left, healthy), used for the calculation of the paretic 

to healthy side movement ratio and the asymmetry index. 

Figure 3. Reference frames for the assessment of labial mobility in a post-surgery example (A, rest 

condition; B, maximum smile with teeth clenching). In B, the black arrows represent the labial marker 

displacements of both facial sides (right, paretic; left, healthy), used for the calculation of the paretic to 

healthy side movement ratio and the asymmetry index. 

Figure 4. Maximum smile animation: lateral displacement (right-left direction, mm) of labial landmarks 

before and after surgery without and with teeth clenching (mean ± 1 SD). Positive displacements: 

healthy side direction; negative displacements: paretic side direction. Before vs after comparisons: 1-

way ANOVA: all significant (p < 0.01) except ch landmark of the healthy side. 

Figure 5. Spontaneous smile animation: lateral displacement (right-left direction, mm) of labial landmarks 

before and after surgery (mean ± 1 SD). Positive displacements: healthy side direction; negative 

displacements: paretic side direction. Significant differences before vs. after (Wilcoxon test) ch paretic 

side, p = 0.012; li paretic side, p = 0.02; li healthy side, p = 0.05). 

Figure 6. Patient affected by a long standing right side facial paralysis with a high degree of soft tissues 

ptosis. 
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Figure 7. Worsening of the asymmetry while smiling associated by contralateral deviation of right side 

facial soft tissues. 

Figure 8. Twelve month post-surgical reconstruction via a double powered free gracilis muscle transfer: 

good correction of facial asymmetry at rest. 

Figure 9. High grade of symmetry during smiling 12 months post- surgical reconstruction. 

Figure 10. Smile with/ without teeth clenching animation: schematic illustration of mean lateral 

displacements (right-left direction, mm) of cheilion landmarks before and after surgery.  
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SUPPLEMENTAL DIGITAL CONTENT 

All videos were recorded by FB; written consent was obtained from the patient. 

Movie 1: Preoperative evidence of complete right side face paralysis (duration:11 s; 1075 Kb) 

Movie 2: Good degree of intentional smiling 18 months postoperatively (duration: 9 s; 899Kb) 

Movie 3: 18 months post-operatively: evidence of emotional smiling while watching a funny movie 

(duration: 15 s; 1519 Kb). 
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Table 1. Total three-dimensional labial mobility during smile movements before (A) and after 

surgery (B: without teeth clenching; C: with teeth clenching) in 13 patients. 

Examination 

 Max smile  

before 

surgery (A) 

Max smile  

after 

surgery 

(B) 

Max 

clenching  

smile after 

surgery (C) 

ANOVA  Post hoc comparisons 

 
P value 

A vs 

B 
A vs C B vs C 

Healthy side (mm) Mean 41.7 32.4 35.9 0.036 
   

 
SD 9.7 8.8 11.3 

    

Paretic side (mm) Mean 21.9 23.1 29.9 0.012 
  

0.001 

 
SD 7.3 7.9 9.6 

    

Ratio (%) Mean 52.18 74.95 91.18 0.002 
 

0.006 
 

 
SD 10.69 30.72 41.41 

    

Asymmetry index 

(%) 

Mean 32.27 17.15 8.48 0.001 
 

0.003 
 

SD 8.74 18.22 22.13 
    

 
 
Comparisons are made by 1-way ANOVA for repeated measurements; post hoc test are made by 

paired Student’s test; significant values for ANOVA, p < 0.05; significant values for post hoc 

test, p < 0.017). 

Ratio: paretic/healthy side % 

Asymmetry index: percentage ratio between the difference and the sum of the healthy/ paretic 

displacements 
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Table 2. Total three-dimensional labial mobility during spontaneous smile movements before 

and after surgery in nine out of 13 patients. 

 

 Spontaneous  

smile before  

Spontaneous 

smile after 

Wilcoxon 

 
P value 

Healthy side (mm) Mean 46.5 32.7 0.05 

 
SD 14.7 11.0 

 

Paretic side (mm) Mean 28.8 21.0 NS 

 
SD 10.2 10.4 

 

Ratio (%) Mean 62.28 74.25 NS 

 
SD 12.75 6.180 

 

Asymmetry index (%) 

Mean 23.52 21.43 NS 

SD 8.74 26.65 
 

 
 
Comparisons are made by Wilcoxon test; NS: not significant, p > 0.05. 
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