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Abstract

Formal verification of dynamic, concurrent and real-time systems has been the focus of several

decades of software engineering research. Formal verification requires high-performance

data processing software for extracting knowledge from the unprecedented amount of data

containing all reachable states and all transitions that systems can make among those states,

for instance, the extraction of specific reachable states, traces, and more. One of the most

challenging task in this context is the development of tools able to cope with the complexity of

real-world models analysis. Many methods have been proposed to alleviate this problem. For

instance, advanced state space techniques aim at reducing the data needed to be constructed

in order to verify certain properties. Other directions are the efficient implementation of

such analysis techniques, and studying ways to parallelize the algorithms in order to exploit

multi-core and distributed architectures. Since cloud-based computing resources have became

easily accessible, there is an opportunity for verification techniques and tools to undergo a

deep technological transition to exploit the new available architectures. This has created an

increasing interest in parallelizing and distributing verification techniques. Cloud computing

is an emerging and evolving paradigm where challenges and opportunities allow for new

research directions and applications. There is an evidence that this trend will continue,

in fact several companies are putting remarkable efforts in delivering services able to offer

hundreds, or even thousands, commodity computers available to customers, thus enabling

users to run massively parallel jobs. This revolution is already started in different scientific

fields, achieving remarkable breakthroughs through new kinds of experiments that would

have been impossible only few years ago. Anyway, despite many years of work in the area of

multi-core and distributed model checking, still few works introduce algorithms that can
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scale effortlessly to the use of thousands of loosely connected computers in a network, so

existing technology does not yet allow us to take full advantage of the vast array of compute

power of a “cloud” environment. Moreover, despite model checking software tools are so

called “push-button”, managing a high-performance computing environment required by

distributed scientific applications, is far from being considered such, especially whenever one

wants to exploit general purpose cloud computing facilities.

The thesis focuses on two complementary approaches to deal with the state explosion

problem in formal verification. On the one hand we try to decrease the exploration space

by studying advanced state space methods for real-time systems modeled with Time Basic

Petri nets. In particular, we addressed and solved several different open problems for such

a modeling formalism. On the other hand, we try to increase the computational power by

introducing approaches, techniques and software tools that allow us to leverage the “big data”

trend to some extent. In particular, we provided frameworks and software tools that can be

easily specialized to deal with the construction and verification of very huge state spaces

of different kinds of formalisms by exploiting big data approaches and cloud computing

infrastructures.
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Chapter 1

Introduction

1.1 Formal Verification

Ensuring the correctness of software and hardware products is an extremely important issue,

because failures could be catastrophic, since today information systems are deployed in

safety-critical or life-critical settings. Furthermore, it is well-known that, even when the

systems are not safety-critical or life-critical, errors could still result in a substantial loss of

money or productivity. This has led to an increased interest in applying formal methods

and verification techniques in order to ensure the correctness of the developed systems. For

instance, model checking [43] is one of the most successful techniques that are widely used in

both research and industry. Broadly speaking, in order to check that a system satisfies a

certain property, we first create a model M (usually as a finite state transition system) that

describes how the system evolves, and we express the property as a formula φ in some logical

language apt to predicate on model entities (usually some temporal logic). This reduces

the initial problem to checking whether M satisfies φ. In addition to model checking, many

other state space methods were developed in order to support the computer-aided analysis

and verification of the behavior of systems.

Formal verification of dynamic 1, concurrent 2 and real-time systems 3 has been the

focus of several decades of software engineering research. One of the most challenging

1Systems characterized by their behavior over time [59].
2Different partially autonomous components which run in parallel and influence each other by interactions.
3System that must operate within the confines of certain temporal deadlines.

1
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tasks in this context is the development of tools able to cope with the complexity of real

world models’ analysis. In fact, the main obstacle that model checking, and more generally

formal verification techniques, faces is the state explosion problem [108]: the overall number

of states of a concurrent system with multiple processes can be enormous. It grows up

exponentially both in the number of processes and in the number of per-process components.

Moreover, taking into account real-time or time-critical systems, this condition is even more

complicated. In fact, for those systems, functionalities are defined with respect to time and

their correctness can only be assessed by taking time into consideration. Therefore, such

a systems reach an infinite or even uncountable number of states depending on the time

domain adopted during the modeling phase. Abstraction techniques aim at constructing

a finite contraction of the model M by removing some irrelevant details, which preserves

properties of interest.

The research for efficient ways to implement abstraction techniques and verification

algorithms started many years ago, in the late seventies and early eighties. Since then, the

computational power of desktop machines grew up impressively. Around every eighteen

months, speed and available memory doubled resulting directly into comparable increases

in the efficiency and power of the available formal verification software tools. These break-

throughs came along with the algorithmic improvements that could be made to verify

efficiently such as the use of partial order reduction and bitstate hashing techniques in

software model checkers [75], effective/implicit state-space representations and symbolic

model checking techniques in hardware model checkers [31], bounded model checking [90],

model checking modulo theories [68], advanced state space methods for real-time systems

[4, 20], and so forth. These breakthrough techniques enabled the development of tools that

can tackle problems of a fairly big size that were unimaginable before. It has made it possible

for us to continue to achieve further and further with the hope that our algorithms and

machines would be able to cope with the potentially very large computational complexity of

these problems.

Approximately fifteen years ago, though, manufacturers changed the trend of shrinking

transistors in order to pack more of them onto a chip. Thus the trend started to depart

from density driven approaches moving into parallelization: placing larger number of CPU

cores onto a single chip. Large numbers of independent threads of execution can now all

be executed in parallel, with mostly limited competition for shared resources. Instead of

continuing to double the raw speed of CPUs, the chip makers now plan to double the number

February 13, 2015
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of cores on a chip with each new generation. Curiously, although the raw speed of CPUs

has stalled at roughly 2002 levels, the size of RAM memory that is available on standard

desktop systems continues to follow Moore’s law [97]. Clearly, in multi-core systems the need

for memory increases at least linearly with the number of CPU cores used, so the trend is

understandable. But the growing divergence between memory size and the basic speed of a

single CPU has important consequences for our work.

Multi-core verification techniques have been an active area of research for at least a decade

(e.g., [103, 78, 9]). Verification techniques based on explicit representation of reachable states

gained much more advantages exploiting computational power of multi-core computers.

In fact, despite the impressive effectiveness of symbolic breakthrough techniques, which

enabled the analysis of systems with a fairly big number of states, there are still valid

reasons to use explicit approaches. It is widely accepted that explicit state model checking

is better for verifying software systems [50], due to the intrinsic complexity of the state

notion. Moreover symbolic approaches do not permit the computation of certain quantitative

properties (e.g., state probabilities in stochastic Petri nets models [13]). Parallel model

checking procedures, utilize all available processor cores to realize an exhaustive exploration

of different partitions of the systems behavior independently. Thus, obtaining, in some cases,

a speedup proportional to the number of cores. Although the exploitation of parallel threads

or processes, these algorithms do not always give predictable performance, and they do not

necessarily scale well to the use of very large numbers of CPUs (e.g., hundreds or thousands).

There are several issues to face making scalability difficult to achieve. A first issue consists of

the communication overhead that is needed in coordinating a search across multiple CPUs.

Sometimes significant amounts of data must be exchanged between computational units to

avoid overlapping work. This data exchange can be expensive, for instance in shared memory

machines, a high number of concurrent access, from different parallel processes, becomes

costly. Moreover, the presence of multiple threads in an application opens up potential issues

regarding safe access to resources from multiple threads of execution. Different threads

modifying the same resource might interfere with each other in unintended ways. Thus,

communication often needs synchronization among independent processes in order to reach

an agreement or commit a certain sequence of actions. Synchronization tools are often based

on the definition of mutual exclusion regions of executions, which definitely increase the

complexity of the application and often have a negative impact on performance.

February 13, 2015
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1.2 The Rise of Big Data

Likewise the recent change of chip manufacturers from the development of single-core to

multi-core CPUs, for desktop systems, a new trend came into sight applying Internet both as

a development environment and execution infrastructure. and more in general people lives.

A new technological trend is rising up: “Big data”. Big data approaches start with the fact

that there is a lot more information floating around nowadays than ever before. Streams of

data come from our everyday life: from phones, credit cards, televisions, computers, from the

infrastructure of cities, from sensor-equipped buildings or living beings, cars, factories and so

forth. In this Big Data World information is unbelievably large in scale, scope, distribution,

heterogeneity, and supporting technology. The exploding world of Big Data poses, more than

ever, two challenge classes: efficiently managing data at unimaginable scale; and meaningfully

combining information that is relevant to your concern. Industry analysis companies like to

point out there are challenges not just in Volume, but also in Variety, Velocity, and Veracity.

Variety refers to heterogeneity of data types, representation, and semantic interpretation.

Velocity denotes both the rate at which data arrive and the time frame in which they must

be processed. Veracity refers to the fact that data can be either uncertain, inaccurate or

spoiled. In fact, every analytic exercise, spend a large amount of time on removing duplicates,

fixing partial entries, eliminating null/blank entries, concatenating data, collapsing columns

or splitting columns, aggregating results, and more. In addition to these challenges, other

concerns, such as privacy and usability, still remain.

Different names have been used to describe this emerging trend. The term “Grid

computing” first appeared in the nineties [57]. More recent terms are: “Cloud computing” and

“Network centric” computing. Cloud computing is still an emerging and evolving paradigm

where challenges and opportunities allow for new research directions and applications.

Companies such as Amazon, Microsoft, and Google are all working on services that offer

hundred or even thousands commodity compute nodes available to customers, thus enabling

users to run massively parallel jobs. The evidence shows that this trend will continue. Once

reached maturity, it could dramatically change the way scientific computing tasks can be

performed. This revolution is already started in different scientific fields, achieving remarkable

breakthroughs [80] through new kinds of experiments that would have been impossible

only a decade ago. As many scientific application domains, different formal verification

approaches require high performance data processing tools for extracting knowledge from
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the unprecedented amount of information coming from analyzed systems. Many problems

in formal methods require the analysis of the state space, for instance, we may require the

extraction of reachable states or paths satisfying certain constraints or we may compute

specific structural properties and so forth. Since cloud based computing resources are

becoming more and more accessible, there is a great opportunity for verification techniques

and tools to undergo a deep technological transition in order to exploit the new available

architectures. Anyway, despite many years of work in the area of multi-core and distributed

model checking, there are few works introducing algorithms that can scale effortlessly to

the use of thousands of loosely connected computers in a network, so existing technology

does not yet allow us to take full advantage of the vast array of compute power of a “cloud”

environment.

In the context of explicit reachability analysis and explicit-state model checking, taking

advantage of a distributed environment is important to cope with real-world cases. The

idea is simple: increasing the computing power and storage availability, by using a cluster of

distributed computers. The use of networks of computers can provide the resources required

to verify complex systems’ models. Unfortunately, this approach requires several skills which

– while common in the “big data” community – are rather unusual in the “formal methods”

community. In a distributed setting, we should find an efficient distributed representation of

both data to be analyzed, in order to minimize communication among compute units, and

the solution for a problem, in a way that can it be easily retrieved and further analysis can be

performed. For instance, each node of a distributed state space can hold pointers to all/one

of its outgoing/incoming edges depending on the specific algorithm adopted for distributed

analysis. Moreover, the number of edges having the source state stored in a component and

the target in another component generally have a heavy impact on the overall number of

messages sent over the network during analysis. Other challenges of primary importance

are load balancing and fault tolerance. Since faults are much likely to occur in a distributed

environment, the latter issue is particularly severe in the context of formal verification that

must ensure a correct answer to a problem.

The connection between formal methods in software engineering and big data approaches

were recently studied in our recent works [18, 17, 33, 34, 35]. The analysis of complex

systems certainly falls in this context, although applying big data approaches to solve formal

verification problems has been so far poorly explored [72, 77]. We believe, however, that the

challenges to be tackled in formal verification can benefit a lot from the recent achievements
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in big data access and management. In fact formal approaches require several different skills:

An adequate background is required in order to manage specific formalisms and abstraction

techniques both in modeling and analysis interpretation. Moreover, these techniques should

be deployed into software tools able to analyze large amount of data very reliably and

efficiently, similarly to “big data” projects. Recent approaches have shown the convenience of

employing distributed memory and computation to manage generation/exploration of large

state-spaces. Unfortunately exploiting these frameworks requires further skills in developing

complex applications with knotty communication and synchronization issues. In particular,

tailoring applications so that they conveniently scale on available cloud computing facilities,

might be a daunting task without a proper knowledge of the subtleties of data-intensive and

distributed analysis.

1.3 Problem Statement and Research Goals

State space methods are among the most important approaches to computer-aided analysis

and verification of the behavior of dynamic, concurrent, or even real-time systems. Basically,

they consist of enumerating and analyzing the set of the reachable states of the system.

Unfortunately, the number of reachable states is often far greater than can be handled in a

realistic computer. This is a well known problem so called state explosion problem. Many

advanced state space methods alleviate the problem by using a subset or an abstraction of

the set of states that often restrict the set of problems that can be solved.

This statement leads to the definition of the following overall research goal: To alleviate

the state explosion problem by exploring advanced abstraction techniques and data-intensive

computational models in cloud computing infrastructures that allow us to deal with very

large state spaces by either reducing the exploration space or increasing the computational

power.

Thus, the overall research goal can be decomposed into two smaller research goals,

belonging to two different branches of formal methods in software engineering:

Advanced abstraction techniques We focused on the analysis of real-time systems, in

particular the reachability analysis of real time systems modeled with Time Basics (TB)

nets [66] is still recognized as an open problem [86]. Moreover there is a lack of software

tools supporting the analysis of TB nets. This calls for new advanced state space methods
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supported by software tools to overcame the major limitations of the currently available

analysis techniques.

Big data approaches to formal verification Despite many years of work in the area

of multicore and distributed formal verification, existing software tools do not yet allow us

to take full advantage of the vast array of compute power of a “cloud” environment. Thus,

there exists the opportunity to benefit from the recent achievements in big data access and

management in the area of formal verification. This calls for new frameworks and software

tools able to run massively parallel computations in the cloud to tackle the state explosion

in many formal verification problems. Such a frameworks should re-enable a “push-button”

mode into the distributed verification context even when these (complex on themselves)

computing resources are involved.

1.4 Contributions

The thesis contains contributions in two branches within the area of formal methods in

software engineering. These correspond to the two different parts of the thesis. Both contri-

butions aim at alleviating the state explosion problem, but using two different complementary

approaches. The first main contribution lies in the introduction of advanced state space

methods able to deal with infinite-states real-time systems. The second main contribution

focuses on the connection between formal methods in software engineering and big data

approaches. In particular we outline approaches that will allow verification techniques and

tools to undergo the recent technological transition in order to exploit the new available

architectures.

1.4.1 Real-time Systems Reachability Analysis

The reachability analysis of real time systems modeled with Time Basics (TB) nets [66] is still

recognized as an open problem [86]. Available analysis techniques and tools (e.g., [86, 65]) are

based on inspecting a finite portion of the potentially infinite reachability-tree generated by a

TB net. Thus, only time-bounded properties can be inferred from the state-space exploration

of TB nets by using this kind of analyzers. The technique described in this thesis overcomes

this major limitation. It relies on a symbolic reachability graph algorithm, which is in turn

based on a relative notion of time and a procedure verifying inclusion between symbolic
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states. A particular state normalization, able to recognize and eliminate timestamp symbols

actually not influencing the model evolution, permits in many cases the building of a sort of

time coverage finite graph. This abstraction gave us a means to develop also an algorithm

able to construct the coverability tree of a TB net model, which is a finite representation of

some over-approximation of the reachable markings. This allows to deal with topologically

unbounded TB nets models and decide different properties such as coverability, boundedness,

place-boundedness, semi-liveness.

1.4.2 Big Data Approaches to Formal Verification

We try to benefit from the recent achievements in big data access and management in the area

of formal verification. In particular we try to further bridge the gap between these different

areas of expertise by providing frameworks and software tools that can be easily specialized

to deal with the construction and verification of very huge state spaces of different kinds of

formalisms (e.g., different kinds of Petri Nets, Process Algebras etc.) by exploiting cloud

computing infrastructures. In particular we take advantage of the MapReduce programming

model [46] and its related implementation Hadoop MapReduce [106], simplifying the task

of dealing with a large number of reachable states by exploiting large clusters of machines.

In particular we studied and compared two different approaches, relying on distributed

and cloud frameworks, respectively, to explore symbolic state-spaces of TB net models.

Moreover, we introduced MaRDiGraS, a generic framework aimed at simplifying the

construction of very large state transition systems on large clusters and cloud computing

platforms. Finally, we enabled the verification of Computation Tree Logic (CTL) formulas

on very large state spaces by adopting computational models relying on cloud computing

facilities.

Our evaluations report that our approaches can be used effectively to build and analyze

state spaces of different orders of magnitude. In some cases we have shown a potential for a

super-linear speedup.

1.5 Dissemination

The research work carried out during my three years P.h.D. program has been disseminated

through different publications. This section lists them together with a brief explanation

about their contribution in this thesis.
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Conference and Workshop papers

• Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. 2012. Symbolic

State Space Exploration of RT Systems in the Cloud. In Proceedings of the 2012

14th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC ’12). IEEE Computer Society, Washington, DC, USA, 295-302.

DOI=10.1109/SYNASC.2012.18

http://dx.doi.org/10.1109/SYNASC.2012.18

• Matteo Camilli. 2012. Petri nets state space analysis in the cloud. In Proceedings of

the 34th International Conference on Software Engineering (ICSE ’12). IEEE Press,

Piscataway, NJ, USA, 1638-1640.

These two papers introduce a study and comparison between two different approaches,

relying on distributed and cloud frameworks, respectively. These approaches were

designed and implemented following the same computational schema, a sort of map

& fold. They are applied on symbolic state-space exploration of real-time systems

specified by TB Nets. The outcome of different tests performed on a benchmarking

specification are presented, thus showing the convenience of distributed approaches.

Section 4.3 introduces this work.

• Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. Mardi- gras:

Simplified building of reachability graphs on large clusters. In Parosh Aziz Abdulla

and Igor Potapov, editors, Reachability Problems, volume 8169 of LNCS, pages 8395.

Springer Berlin Heidelberg, 2013.

This paper introduces MaRDiGraS, a generic framework aimed at simplifying the

construction of very large state transition systems on large clusters and cloud computing

platforms. Through a simple programming interface, it can be easily customized

to different formalisms, for example Petri Nets, by either adapting legacy tools or

implementing brand new distributed reachability graph builders. This work is presented

in section 4.4.

• Matteo Camilli, Carlo Bellettini, Lorenzo Capra, and Mattia Monga. CTL Model

Checking in the Cloud using MapReduce. In Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 2014 16th International Symposium on, pages 333-340,

Los Alamitos, CA, USA, Sept 2014. IEEE CS Press. doi: 10.1109/SYNASC.2014.52.
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• Matteo Camilli. 2014. Formal verification problems in a big data world: towards a

mighty synergy. In Companion Proceedings of the 36th International Conference on

Software Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 638-641.

DOI=10.1145/2591062.2591088

http://doi.acm.org/10.1145/2591062.2591088

These two works are the basis of section 4.5. They introduces a distributed approach

which exploits techniques typically used by the “big data” community to enable

verification of Computation Tree Logic (CTL) formulas on very large state spaces. A

computational model relying on cloud computing facilities is used.

Technical Reports

The following two works are currently technical reports and they are presented in chapter 3.

• Matteo Camilli: Verification of Reachability Problems for Time Basic Petri Nets.

CoRR abs/1409.2778 (2014) http://arxiv.org/abs/1409.2778

This is an extended version of [14]. It introduces a technique that enables the verification

of reachability properties of RT systems modeled with TB nets. It relies on a finite

symbolic reachability graph construction algorithm, which is in turn based on a relative

notion of time and a procedure verifying inclusion between symbolic states. This

extended version is enriched with a more in depth section about the Time Anonymous

concept and some relevant new core definitions and heuristics.

• Matteo Camilli: Constructing Coverability Graphs for Time Basic Petri Nets. CoRR

abs/1409.6253 (2014) http://arxiv.org/abs/1409.6253

This latter work introduced a technique able to compute coverability graphs of real-time

of TB net models. This technique extends the previous one, further exploiting the time

anonymous concept in order to deal with topologically unbounded nets.

1.6 Organization

The thesis contains four main chapters.

The first one introduces a background needed to comprehend the following chapters.

In particular it provides information about different formalisms for modeling concurrent
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and real-time systems. Moreover, it supplies information about labeled state transition

systems which stands on the basis of the notion of state space and abstract state space. The

background concludes with a brief overview on the state explosion problem.

Chapter 3 introduces two different works: the first one introduces a technique for

reachability analysis of TB nets. The technique enables the building a finite symbolic

reachability graph relying on a sort of time coverage notion, and overcomes the limitations

of available analyzers for TB nets, based in turn on a time-bounded inspection of a (possibly

infinite) reachability-tree; The latter work of this chapter, introduces a technique able to cope

with topologically unbounded TB nets in order to determine different important properties

also for such a systems. The technique exploits the abstraction introduced in the previous

work, and builds upon it an algorithm able to compute coverability trees/graphs.

Chapter 4 focuses on the connection between formal methods in software engineering and

big data approaches. This part of the thesis tries to overcome the major limitation of the

software tools introduced in the previous chapter. In particular we outline approaches that

allow verification techniques and tools to undergo a technological transition in order to exploit

the new available architectures. After reasoning about the opportunity in parallelizing the

TB nets analysis techniques, we generalize such a discussion resulting in the realization of the

MaRDiGraS generic library. This framework is built on top of Hadoop MapReduce and

can be easily specialized to deal with the construction of very large state spaces of different

kinds of formalisms. Another work presented in this chapter outlines a distributed CTL

(Computation Tree Logic) model checker, which implements iterative MapReduce algorithms

based on the fixed-point characterization of the basic temporal operators of CTL.

Chapter 5, draws a conclusion and a brief overview on future works and research directions.

Appendix A describes all the benchmarking models used for experimentation. Appendix

B presents the proofs of correctness of the algorithms introduced in section 4.5.
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Chapter 2

Background

This chapter introduces an adequate background needed to comprehend the following chapters.

In particular it provides information about Petri Nets and Time Basic Petri Nets formalisms

to model concurrent and real-time systems, respectively. Moreover, it supplies information

about labeled state transition systems which stands on the basis of the notion of state space

and abstract state space. The background concludes with a brief overview on the state

explosion problem. It also introduces some notation which will be used in the current and

following chapters.

2.1 Petri Nets

Petri nets or Place/Transition (P/T) nets are a compact and elegant models of distributed and

asynchronous systems because such models support the notion of distributed state combined

with synchronization through shared transitions. For instance two generic concurrent

interacting processes can be modeled by the Petri net in Fig. 2.1. In the Petri net, the presence

of tokens (small black disks) in states (called places according to Petri net terminology)

indicates that the component process is currently in that state, and hence ready to perform

the action represented by the transition connected to the state (graphically represented by a

thick bar). When an action is shared (for example t1 and t2 transitions), it can be carried

out only if all participating processes are ready to execute it, that is, they are in the state

connected to the transition (by means of a directed arrow from the corresponding place to

the transition).

12
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P1 P2

P3 P4
P5

P6 P7

t1 t2

t3 t4

t5
t6

Figure 2.1: Simple Petri net modeling a Two-process Semaphore example.

More formally, a Petri net is a triple 〈P, T, F 〉, where P is a finite set of places, T a finite

set of transitions such that P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) a set of arcs (or flows)

connecting places to transitions and transitions to places. The graphic representation of a

Petri net represents places as circles, transitions as thick line segments, and arcs as directed

arrows. The preset •t of a transition t is the set of places directly connected to t by an arc.

The preset •p of a place p is the set of transitions directly connected to p by an arc.

•t = {p ∈ P : (p, t) ∈ F}; •p = {t ∈ T : (t, p) ∈ F}

The postsets of transitions and places are defined similarly.

t• = {p ∈ P : (t, p) ∈ F}; p• = {t ∈ T : (p, t) ∈ F}

The example in Fig. 2.1 shows a Petri net with six transitions, {t1, t2, . . . , t6} seven places

{P1, P2, . . . , P7}, and sixteen arcs. The postset of transition t3 is {P4, P6}. The preset of

place P6 is {t3}.

The behavior of a Petri net is defined by the location changes of tokens in the places,

occurring as a consequence of the firing of transitions. Places can store one or more

tokens; a place is marked when it contains at least one token. The number of tokens
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stored in each place defines the state of the net, also called marking. A marking m is a

function m : P → N that associates a number of tokens to each place. Given a finite set

of states P , a marking on P is an element of the set Mark(P ) = NP . Given a marking

m ∈ Mark(P ), we represent it either as 〈m(p1),m(p2), . . . ,m(p|P |) (vector notation), or

as {m(p1)p1,m(p2)p2, . . . ,m(pk)pk} (multiset notation). For instance, (1, 0, 0, 2) on P =

(p1, p2, p3, p4) is represented by the multiset {p1, 2p4}.

When all the places in the preset of a transition are marked, the transition is enabled.

An enabled transition can fire; the firing removes a token from each place in the transitions

preset and deposits one into each place in the transitions postset. If more than one transition

is enabled in a given marking, the choice of which transition will fire is nondeterministic.

Notice that a place p may be both in the preset and in the postset of the same transition

t. When a transition such as t fires, a token in p is consumed and replaced by a new one

immediately.

2.2 Time Basic Petri Nets

Time Basic nets belong to the category of Petri nets in which system time constraints are

expressed as numerical intervals associated to each transition, representing possible firing

instants computed since transition’s enabling. Tokens, atomically produced by the firing of

a transition, are thereby associated to time-stamps with values ranging over a determined

set. With respect to the well-known representative of this category, (i.e., Time Petri nets

[19]), interval bounds in TB nets are linear functions of timestamps in the enabling marking,

rather than simple numerical constants. TB nets thus represent a much more expressive

formal model for real-time systems than Time Petri nets.

TB nets are Petri nets where each token is associated with a time-stamp representing

the instant at which it has been created. The domain of timestamps is R+. The structure of

a Time Basic net extends the P/T net structure (P, T, F ). A (time-stamp) tuple of t ∈ T

is an association en : •t → R+. Each transition t is associated with a time function ft

which maps a tuple en of t to a (possibly empty) set of R+ values. A marking (state) is a

mapping m : P → Bag(R+), Bag(A) being the set of multiset over A. A tuple en of t is

said to be enabling in m, in accordance to a weak semantics (as explained next), if ∀p ∈ •t

en(p) ∈ m(p) and ft(en) 6= ∅. ft(en) represents the possible firing times for en. Letting en

be an enabling tuple of t in m, a pair (en, τ), τ ∈ ft(en), is said a firing instance of t (in m).
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The firing of (en, τ) produces the new marking m′, s.t. ∀p ∈ •t \ t• m′(p) = m(p)− en(p),

∀p ∈ t• \ •t m′(p) = m(p) + τ , ∀p ∈ t• ∩ •t m′(p) = m(p) − en(p) + τ ; for all remaining

places, m′(p) = m(p). This will be as usual denoted m[(en, τ) > m′.

Hereafter a time function ft is defined by a pair of linear functions [lbt, ubt], denoting

parametric interval bounds. lbt, ubt are in turn formally expressed in terms of (a non empty

set of) places in •t: lbt(en), ubt(en) are the numerical expressions obtained by replacing each

place occurrence p with en(p). Time-functions must be monotonic, i.e., ∀en lbt(en) ≥ enab

≡ max({en(p)}, p ∈ •t). We will keep such assumption implicit in their formal notations.

The set of firing times ft(en) can be interpreted in at least two different ways, leading to

different time semantics for each transition t. A first interpretation states that an enabling

tuple en of t can fire at any instant τ ∈ ft(en). Transitions with one such semantics are

referred to as weak. A second interpretation states that an enabling tuple must fire at an

instant τ ∈ ft(en), unless it is disabled by the firing of any conflicting enabling tuple at

an instant no greater than the latest firing time of t. Transitions with one such semantics

are referred to as strong. Thereby the enabling condition previously given must take into

account also the possible presence of other strong enabling tuples [66]. Notice that the only

possible semantics for Time Petri Nets [19] is strong.

In order to meet an intuitive notion of time, TB net firing sequences are restricted to the

set of firing sequences whose firing times are monotonically non decreasing with respect to

the firing occurrences. However, the time of a firing may be equal to the enabling time of the

tuple that belongs to the firing. Intuitively this means that an effect (the firing) can occur

with no delay after the cause (that enables it) is fulfilled. Therefore, it is possible to have

sequences of firings where the time does not change. In practice, it is useful to restrict the

attention to a subclass of TB nets, such that there exist no infinitely long firing sequences

which take a finite amount of time (non Zenonicity).

Consider the excerpt from the use case, depicted in Fig. 2.2. It relates to the Ignite Phase,

just after the ignition transformer has been started and the gas valve has been opened. In

this phase the controller must check if the flame has been lighted within a specific deadline,

otherwise a recovery procedure that brings the system to Idle has to be activated. All

transitions are strong, but FlameLightOff2. This permits us to express the possibility that

an event occurs within a given time interval.

The flame turns on if there are Ignition and Gas (transition FlameLigthOn), but it can

turn off if no gas is supplied (transition FlameLigthOff ) or due to a failure, caused e.g. by
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IGNITE_PHASE_S

BURN_PHASE_B

FlameOnGasOff2

Ignition

NoGas

Gas

Flame

NoFlame

FlameLightOn FlameLightOff FlameLightOff2
W

Initial marking IGNITE PHASE S{T0} Ignition{T0} Gas{T0} NoFlame{T0}
Initial constraint 0 ≤ T0 ≤ 10

FlameOn [IGNITE PHASE S + 0.01,max({Flame+ 0.1, IGNITE PHASE S + 0.01})]
FlameLightOn [enab+ 0.5, enab+ 0.5]
FlameLightOff [enab,NoGas+ 0.1]
FlameLightOff2 [enab, enab+ 100] with weak time semantic
GasOff2 [enab+ 2, enab+ 2]

Figure 2.2: TB net running example.

wind (transition FlameLigthOff2 ). The time function associated with transition FlameOn

(representing the system passing to burnstate after recognizing that the flame has turned

on) can be interpreted as follows: FlameOn cannot fire before 0.01 time units elapse since

the appearance of a token in place IGNITE PHASE S (the minimum permanence time in

ignitestate) and implicitly not before the timestamp in place Flame. The firing time cannot

exceed the maximum between the timestamp of the token in place IGNITE PHASE S

plus 0.01 time units and the time-stamp of the token in place Flame plus 0.1 (i.e., the system

recognizes the presence of a flame within this 0.1 units). Noticeably, this is an example of

constraint that cannot be directly expressed using Time Petri Nets formalism [19].

2.3 State Space and Abstract State Space

The behaviour of a discrete-event dynamic, concurrent or real-time system is formally given in

terms of a labeled state transition system: its state space (or concrete state space). (S,Λ,→)
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where S is the set of system’s states, Λ is a set of labels, and → ⊆ S × Λ× S: (s, λ, s′) ∈→

if and only if s′ is reachable from s through the occurrence of λ (s′ is said to be a successor

of s and it is written as s
λ→ s′).

The transition system associated to a Petri net model with initial marking s0 is such that

s0 ∈ S, and s
λ→ s′ if and only if λ is a transition instance enabled in s, whose firing leads to

s′. S = {s|σ0
*−−→ s} is the set of reachable states (

*−−→ is the reflexive and transitive closure

of the relation → defined above). This structure can be represented with a state-transition

graph 〈S,E, s0〉, where the set of edges E represents the relation → and the set of nodes S

represents the set of reachable states. The node s0 represents the initial state of the system.

Sometimes, especially in the case of time extensions of PNs, the set S may be infinite, or even

uncountable, for instance due to the dense nature of the time domain, we cannot enumerate

each reachable concrete state of a RT system. Thus, a common way to face the fact that in

general S may be infinite, or even uncountable, (like in some time PN extensions) consists

of building a finite contraction of the original (concrete) state transition system. Different

techniques are employed for that, depending on the formalisms. A non exhaustive survey

regarding high-level PNs may be found in [81].

In general, (A,L,⇒) is an abstraction of (S,Λ,→) if each a ∈ A represents a set of

concrete states, A is a coverage of S, i.e.,
⋃
a∈A a ⊇ S, and, letting f be a morphism Λ→ L,

relation ⇒ ⊆ A× L×A satisfies condition EE (exists-exists)[23, 17]:

EE-(1) if a
l⇒ a′, then ∃s ∈ a, s′ ∈ a′, λ ∈ f−1(l) : s

λ→ s′

EE-(2) if s
λ→ s′, then ∀a ∈ A s.t. s ∈ a, ∃a′ ∈ A s.t. s′ ∈ a′ : a

f(λ)⇒ a′

The first part of condition EE avoids two abstract states from being connected if no corre-

sponding concrete states are. The second part ensures that each concrete path corresponds

to some abstract path.

Depending on the particular abstraction technique, and the properties one is interested

to check [17], it is possible/necessary to further refine condition EE, either locally or globally,

as informally shown in Fig. 2.3. For example, condition EA (exists-for all) imposes that any

abstract edge between states a, a′ must correspond to a set of concrete ones, between some

s ∈ a and each s′ ∈ a′. Any (abstract) state-transition system can thus be described by

annotating edges with additional information, indicating which kind of connectivity among

EE, EA, AE (for all-exists), and AA (for all-for all) is locally met. According to this convention,

a concrete state space can be represented using only edges labeled AA. Edges, as well as
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s s'
a a'EE

s
a EA a'

AA
a a'

s'
a AE a'

Figure 2.3: Edges types of an abstract state space.

nodes, usually carry other annotations that are specific to the particular formalism one is

using. Therefore we can describe the behavior of a PN model with a directed graph, where

both nodes and edges can be annotated with additional meta-data. As an example, in time

PN extensions, edges are labeled by (symbolic) transition firing time of the transition that

leads the system into another state [14, 23]. Nodes, instead, normally hold information on

tokens creation times (expressed by linear constraints) [14].

Independently of the formalism used in the modelling phase (PNs, in their several

extensions, process-algebras, etc.), we can reformulate most of the algorithms for building

(abstract) state-transition systems in terms of an elementary iterative schema, whose essential

points are outlined below:

(a) For each unexplored state a, we calculate the set of successors succ(a), identifying which

connectivity conditions are met. Then we mark a as explored.

(b) For each a′ ∈ succ(a), we try to identify equivalence/inclusion relationships between a′

and any state a′′.

• If a′ has been shown equivalent to/included in a′′, it is discarded and all existing

edges towards a′ are redirected to a′′ (in the inclusion case the edges of kind *A are

relabelled as *E).

• If a′ ⊃ a′′, a′′ and all its outgoing edges are discarded. All existing edges towards

a′′ are redirected to a′, and the outgoing edges from a′′ will be replaced by outgoing

edges from a′, since
⋃
s∈a′ succ(s) ⊇

⋃
s∈a′′succ(s).

Typically, such schema cycles until there are no unexplored states, using states coming from

the previous iteration as input to the next one. The operations which depend on the adopted

formalisms are the calculation of the successors of a state, the evaluation of relationships
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{P1,P2,P4}

{P2,P3} {P1,P5}{P2,P4,P6}
{P1,P4,P7}

{P5,P6} {P3,P7}

{P4,P6,P7}

t5

t1
t2

t6

t2

t6

t4

t5

t3

t1

t3 t4

Figure 2.4: State space of the Petri net example shown in Figure 2.1.

between states (often the more computationally expensive operation), and the identification

of connectivity conditions. The complexity of evaluating equivalence/inclusion relationships

between abstract states can be alleviated by identifying any syntactical feature which defines

a necessary condition for states’ overlapping, e.g., the merely numerical distribution of tokens

in a Coloured Petri net [81] marking. Examples of algorithms that could be rephrased

according to the schema above are presented in [14] for TB nets, in [19] for time Petri nets,

and in [39] for Well-Formed Coloured Petri nets. The construction of the reachability graph

for classic Place/transition nets trivially falls in this category. For instance, the example

shown in Fig. 2.1, from the initial marking m0 = {P1, P2, P4} can evolve into two different

states: either m1 = {P3} or m2 = {P5} respectively by firing transition t1 or t2. Neither m1

nor m2 are equal to m0, hence we compute the successors of both states, and so forth, until

the set of states to expand become empty. Fig. 2.4 shows the whole state space of the net.

Note that all the edges are of type AA because states are concrete and we do not have to

deal with inclusion relationships.

2.4 Petri Nets Coverability Graphs

The state space of a Petri net is potentially infinite. Nevertheless, many interesting verification

problems are decidable on Petri nets. Among these decidable problems are the coverability

problem (to which many safety verification problem can be reduced); the boundedness
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problem (is the number of reachable markings finite?); the place boundedness problem (is

the maximal reachable number of tokens bounded for some place p?); the semi-liveness

problem (is there a reachable marking in which some transition t is enabled?). In order to

decide the aforementioned problems, one can use the coverability set (CS), which is a finite

representation of some over-approximation of the reachable markings.

A marking M ′ covers a marking M , denoted by M ′ ≥M , if and only if M ′(p) ≥M(p)

foreach place p. The notation M ′ > M means that M ′ ≥M ∧M ′ 6= M . If M ′ ≥M and M1

is reachable from M by firing the transition t (M
t→M1), then there exists a marking M ′1

such that M ′
t→M ′1 ∧M ′1 ≥M1. Moreover M ′1 −M1 = M ′ −M , where Mx −My denotes

the function from places to integers such that ∀p, (Mx −My)(p) = Mx(p) −My(p). This

implies that if M0
t1→ . . .

tn→M1 and M1 ≥M0 then M1
t1→ . . .

tn→M2
t1→ . . .

tn→M3 . . . where

Mk = M0 + k(M1 −M0). Moreover, if p is a place such that M1(p) > M0(p), then the

number of tokens in p grows without limit and the sequence of reachable markings is infinite.

If a Petri net has a finite number of places and transitions but an infinite number of

reachable markings, then it can be proven that there exists an infinite execution with infinitely

many different markings. Such an execution reaches a marking M and later on a marking

M ′ shuck that M ′ > M .

Let us introduce the notion of ω-marking. An ω-marking is a function from the set of

places to the set (N ∪ {ω}) that associates a number of tokens to each place, where N is the

set of natural numbers including 0 and ω is a symbol that means “any natural number”.

The notion of coverage can be extended to ω-markings assuming that ω ≥ ω > c, ∀c ∈ N.

An ω-marking Mω denotes a set [[Mω]] of ordinary markings such that:

• ∀p ∈ P ∀M ∈ [[Mω]], if Mω(p) 6= ω, then M(p) = Mω(p).

• For every ordinary marking M such that M ≤Mω, [[Mω]] contains an ordinary marking

M ′ such that M ≤M ′.

The set of ordinary markings [[Mω]] is certainly infinite: there exist infinite markings M

such that M ≤Mω and for every M , ∃M ′ ∈ [[Mω]] : M ≤M ′. An enabled transition in an

ω-marking, and the result of its firing are defined likewise ordinary marking, except that

a place marked with ω always contains enough tokens, and is marked with ω also after

the transition occurrence. This implies that if Mω contains at least one ω symbol, then

Mω
t→M ′ω represents an infinite number of occurrences of t from a marking in [[Mω]] to a

marking in [[M ′ω]]. A very simple algorithm for constructing the cover ability graph works
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P1

P2

P3

t1

t3

t2

t4

{P1}

{P3}{P1,ωP2}

{ωP2,P3}

t1

t1

t2

t2

t3
{ }

t4

{ωP2}

t4

Figure 2.5: Petri net coverability graph example.

like the state space construction with the following exception: whenever a new reachable

ω-marking M ′ is constructed, if M ′ covers and is reachable from an older ω-marking M , then

M ′ is replaced with Mω such that Mω(p) = ω if M ′(p) > M(p), Mω(p) = M ′(p) otherwise.

In order to guarantee termination it is sufficient to compare each new ω-marking M ′ with all

ω-markings along which M ′ was found. Figure 2.5 shows a simple Petri net example along

with its cover ability graph.

Coverability graphs can be effectively used to detect unbounded places of a Petri net.

Anyway the set represented by an ω-marking is not unique, thus coverability graphs cannot

be used for checking the reachability of a marking. For example, regarding the model in

Figure 2.5, if the weight of the arc from t1 to P2 were changed to 2, then the coverability

graph would not change but the marking {P1, P2} would become unreachable. That means

there are simple properties that cannot be verified from coverability graphs. Anyway, they

can be used for checking reachability of states where a given transition is enabled, this is

sufficient for checking a large number of action-based safety properties. Another issue is that

coverability graphs discard important information for verifying liveness properties. Despite

those limitation such a technique represent an effective way to deal with infinite state spaces.

The classical algorithm to compute the coverability graphs is the “Karp&Miller” (K&M)

tree [83]. Unfortunately the K&M tree is often huge and cannot be constructed in reasonable
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time, even for small nets, making it often useless in practice. Moreover, the definition of

coverability graph makes it possible to obtain different version of this structure from the

same Petri net model. An improvement of this K&M algorithm is the Minimal Coverability

Tree (MCT) algorithm [54], which has been introduced twenty years ago, and implemented

since then in several tools such as Pep [70]. Unfortunately, it can be shown that the MCT

is not complete [62]: it might compute an under-approximation of the reachable markings.

The MP algorithm [101] overcame this problem. It can be viewed as the MCT algorithm

with a slightly more aggressive pruning strategy which ensures completeness. Experimental

results show that this algorithm is a strong improvement over the K&M algorithm as it

dramatically reduces the exploration tree.

2.5 The State Explosion Problem

State space methods aim at automatically analyzing the behavior of systems. Basically,

they are based on the construction of the entire structure containing all reachable states

and all transitions that the system can make among those states. The construction of the

state space can be fully automated. Moreover, many verification and analysis questions can

be answered by means of practical algorithms, given in input the state space of a system.

Unfortunately, state space methods are very expensive, so that the belief was that state

space methods would never work for the analysis of large-scale real world systems. In fact,

the number of states reachable from any system of interest is huge. As an example, let us

consider few rather simple systems:

• The system composed of n non-interacting processes, each with k possible local

configurations, reaches kn states.

• The classic dining philosophers systems with n philosophers, each with 4 states, reaches

3n − 1 states [108].

• The simple token ring protocol described in [69], reaches 9n2n−2 states, where n is the

number of stations [108].

These examples show a common trend: the number of states reachable by a system, increases

exponentially in the “size” of the system. The parameters that describe the system’s size

are: the number of processes (n in the above examples) and the number of per-process

variables. The base of the exponentiation depends on the number of local configurations of
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each process, the number of values a variable can store, and some kind of “tightness” among

different components. Such a “tightness” determines the ability of local states of components

to influence the local states of other components.

It is easy to imagine how fast grows this number for models describing real world

examples. It grows so fast that it seems to make state space methods unfeasible for analysis

and verification of systems in practice. Anyway, the great power and advantages of such a

methods motivated researchers to try to find ways of alleviating this problem. Many methods

have been proposed that aim at reducing the number of states needed to be constructed

in order to verify certain properties. The algorithms for constructing the reduced state

space takes advantage of some details of the property to be verified in order to avoid the

construction of the overall state space, if not needed. These advanced state space methods

increased substantially the size of analyzable systems, while preserving many advantages

of state space methods. Unfortunately, most state space reduction techniques disable some

advantages. In fact, most of those techniques are able to perform only certain kind of analysis

without losing the ability to reduce the number of states [108]. Because the information on

states and transitions is somehow implicit, in a reduced state space, it is sometimes hard

to extract knowledge and to answer verification questions. This leads to complicated and

slow algorithms for certain verification questions. Thus methods based on reduced state

spaces usually work well only for certain types of analysis questions, even if the reduction

contains full information. The symmetry method [52], the unfolding method [95], and BDDs

[30] are examples of reduced state space methods that preserve full information. Petri net

coverability graphs, as discussed above, preserve incomplete information, and allow the

verification of only a restricted class of properties. Anyway, the effectiveness of a reduced

state space that contains full information on the behavior of a system, relies on some kind of

regularity in such a behavior, otherwise the size of the reduction could be very similar to the

explicit representation. For instance, the symmetry method relies on the assumption that

the system is made up by several identical (or very similar) components [52].
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Chapter 3

Dealing With Infinite-states

Real-time Systems

This chapter introduces algorithms and related tools able to deal with infinite-states real-

time systems. In particular, section 3.2 addresses the problem of constructing a finite

representation of an infinite state space generated from Time-Basic (TB) Petri nets models.

TB nets [66] (introduced in section 2.2) belong to the category of Petri nets in which

system time constraints are expressed as numerical intervals associated to each transition,

representing possible firing instants, computed since transition’s enabling time. Tokens

atomically produced by the firing of a transition are thereby associated to time-stamps

with values ranging over a determined set. With respect to the well-known representative

of this category, i.e., Time Petri nets [19], interval bounds in TB nets are linear functions

of timestamps in the enabling marking, rather than simply numerical constants. TB nets

thus represent a much more expressive formal model for real-time systems. The technique

described in section 3.2 tries to overcome the major limitation of the existing analysis

techniques and tools able to verify only time-bounded properties by inspecting a finite

portion of the potentially infinite reachability-tree generated by a TB net model. Such

a technique relies on a symbolic reachability graph algorithm, which is in turn based on

a relative notion of time and a procedure verifying inclusion between symbolic states. A

particular state normalization, able to recognize and eliminate timestamp symbols actually

not influencing the model evolution (the time anonymous concept), permits in many cases

to build a sort of time coverage finite graph. The symbolic graph construction has been
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automated by a tool-set written in Java. The output is a structure enriched with information

on edges which might be exploited during property evaluation. The tool-set currently includes

a module for the automatic verification of properties expressed as conditions on markings.

As use case we will use the gas burner example (section A.1), that is widely used in literature

as a representative of a small real system. A complete and formal description can be found

in [100], and the corresponding TB net model was introduced in [15].

Section 3.3, introduces an algorithm (along with its implementation) able to compute

coverability trees of real-time systems modeled with TB nets. This technique extends

the previous one, further exploiting the time anonymous concept in order to deal with

topologically unbounded nets. Despite coverability trees preserve incomplete information

(section 2.5), such a technique gives us a means to decide several different important properties

also for this formalism such as boundedness, and place-boundedness properties. Our proposal

takes inspiration from the Monotone-Pruning (MP) algorithm introduced in [101], and

extends it in order to deal with dense-time information associated with reachable symbolic

states.

Different small TB net models will be used as running examples to explain in a rather

informal way the essential points of both the symbolic graph and the coverability tree

construction. Moreover, some relevant new core definitions are formally given.

3.1 State of the Art

Time dependent systems, i.e., systems whose behavior and correctness depends on time,

are important in the every day life. Formal verification of time dependent systems is an

active research area since very long time [59], because the frequent use of such systems for

critical applications increased the need of tools and techniques that guarantee high degree of

correctness and reliability of the final product. Time Petri nets are very common formal

models for the specification and the verification of systems where the explicit consideration

of time is crucial. One of the main extensions of Petri nets with time are time Petri nets

[96]. In this formalism, a transition can fire within a time interval and tokens, in the input

places of the corresponding transitions, are meant to spend that time. Several variants of

time Petri nets exist: time is either associated with places, with transitions or with arcs

[27, 102]. Verification of real-time systems is complicated by the dense time model (time

is considered in the domain R+). This raises the problem of handling an infinite number
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of states. In fact, the set of reachable states of time extension of Petri nets is generally

infinite due to the infinite number of time successors a given state could have. The two

main approaches, used to handle such a state space, are region graphs [4] and the state

class approach [20]. Other refinements and improvements of these basic approaches were

introduced in [19, 21, 61, 92, 24, 84]. The objective of these representations is to create a

state space partition that groups concrete states into sets of states with similar behavior

with respect to the properties to be verified. These sets of states must cover the entire state

space and must be finite in order to ensure the termination of the verification process.

Despite many years of work on time extension of Petri nets, still few analysis techniques

were proposed for Time Basic (TB) Petri nets [66]. With respect to the well-known time

Petri nets, interval bounds in TB nets are functions of timestamps in the enabling marking,

rather than simply numerical constants. Moreover, transitions can have either a weak or

strong time semantics. Therefore, TB nets represent a much more expressive formal model

for real-time systems. The reachability analysis of TB nets is still recognized as an open

problem [86]. Available analysis techniques and tools (e.g., [86, 65]) are based on inspecting

a finite portion of the potentially infinite reachability-tree generated by a TB net. Thus only

time-bounded properties can be inferred from TB nets state-space exploration by using this

kind of analyzers.

Another very useful, and well studied, advanced state space method for concurrent

systems, is coverability analysis. Concerning the coverability analysis of classic P/T nets,

Karp and Miller (K&M) introduced an algorithm for computing the minimal coverability set

(MCS) [83]. This algorithm builds a finite tree representation of the (potentially infinite)

reachability graph of the given unbounded P/T net. The K&M Algorithm has been also

extended to other classes of well-structured transition systems [55, 56]. Anyway, the K&M

Algorithm is not efficient in analyzing real-world examples and it often does not terminate

in reasonable time. The MCT algorithm [54] introduces clever optimizations, but it has

been proven that it is flawed [62]: it computes an incomplete forward reachability set (i.e.,

all the markings reachable from the initial markings). In [62], the CoverProc algorithm,

is proposed for the computation of the MCS of a Petri net. This algorithm follows a

different approach and is not based on the K&M Algorithm. In [101], the MP algorithm is

proposed. Experimental results show that the MP algorithm is a strong improvement over

both the K&M and the CoverProc algorithms. Anyway, coverability analysis techniques

for real-time systems remain rather unexplored. For time Petri nets, although the set of
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backward reachable states (i.e., all the markings from which a final marking is reachable) is

computable [1], the set of forward reachable states (i.e., all the markings reachable from

the initial markings) is in general not computable. Therefore any procedure for performing

forward reachability analysis on time Petri nets is incomplete. In [2], an abstraction of the

set of reachable markings of unbounded time Petri nets is proposed, but the termination of

the forward analysis by means of this abstraction is not guaranteed. Coverability analysis

techniques able to deal with TB nets unbounded models, have not been addressed, as far as

we know.

3.2 Verification of Reachability Properties for Time Ba-

sic Petri Nets

The analysis technique presented in this section extends the capability of the existing analyzer

for TB nets [16], which uniquely permits the verification of bounded invariance and response

properties, through the inspection of a time-bounded symbolic reachability tree generated

from a TB net.

The new technique aims at building a finite graph instead of an infinite tree for a wide

category of TB nets. A combination of three complementary ideas is exploited. First,

reachable symbolic states (i.e., infinite sets of ordinary reachable states) are compared to

check subset relationships. Identifying subset relations between generated symbolic states

is necessary for recognizing cyclic paths, but it is not enough in many situations. As time

progresses, periodic occurrences of equivalent conditions may be unrecognizable simply due

to their different offsets with respect to system’s time zero. This observation leads us dealing

with the second aspect. In the very common case a TB model contains no reference to

absolute times (i.e., not as offset respect to enabling timestamps) in transition time functions,

it is possible to remove any references to the “absolute zero” from symbolic states. This

permits a periodic equivalent behavior to be recognized. The cost is a lossy information

about state displacement along absolute time. We will discuss this aspects in section 3.2.5.

Let us only point out that this kind of information could be recovered, if necessary, in

a second step by retracing only the path(s) leading to the state of interest, or (at least

partially) by combining the information on edges. The third key feature of the technique

is the introduction of the time anonymous (TA) concept. This relates to the fact that in

a symbolic state there may exist tokens whose timestamp values can be forgotten, as not
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influencing the evolution of a model. Several heuristics have been implemented, based on a

mix of structural and state-dependent patterns, each characterizing one such situation. This

enhances the ability of merging states, and permits facing situations where the presence of

dead tokens could reintroduce a sort of symbolic absolute zero, nullifying the achievements

at the previous points. Again, the cost to pay is a minor loss of information, as discussed

later. There is some resemblance with the approach used in the construction of (topological)

coverage graphs: the missing information is the exact timestamp of tokens instead of their

exact number. TA recognition might be also exploited to introduce a topological notion of

coverage for TB nets (section 3.2.8).

3.2.1 Basic notions

In order to understand the rationale behind the symbolic reachability graph construction

technique for TB nets, we shall use once again the running example in Fig. 2.2. Let us

only introduce a few basic notions used in the sequel, referring to [67] (where the symbolic

reachability tree for TB nets is defined) for a full formalization.

Let TS = {Ti}, i ≥ 0, be the set of time-stamp symbols. A symbolic state S is a pair

〈M,C〉, where M : P → Bag(TS), C is a (satisfiable) constraint formed by linear inequalities

involving TS symbols occurring in M (so called symbolic marking).

Unless otherwise specified, we shall refer to a normal form: if k different TS symbols

occur in M , they are T0, . . . , Tk−1, such that ∀i : 0 . . . k − 2, C ⇒ Ti ≤ Ti+1.

An ordinary marking m is represented by S : 〈M,C〉 if and only if m is obtained from

M by a numerical replacement σ : TS → R+, σ being a solution of C. We say that S is

contained in S′ (S ⊆ S′) if and only if the corresponding represented ordinary markings are.

A mapping ens : •t → TS is said a symbolic tuple of t. The notation (ens, t) will be

sometimes used. The symbolic evaluation of a time function ft, denoted ft(ens), is obtained

by replacing each occurrence of p ∈ •t in the formal expressions lbt, ubt, with τ = ens(p).

According to a (monotonic) weak time semantics, (ens, t) is said a symbolic enabling in S

if ∀p ∈ •t ens(p) ∈M(p) and C ′: C ∧ lbt(ens) ≤ Tk ≤ ubt(ens)∧Tk−1 ≤ Tk is satisfiable, i.e.,

there exists at least one numerical substitution (tuple) en for ens that makes C satisfiable

and ft(en) non empty. As already said the symbolic enabling condition is a bit more complex

to take into account strong enablings: an example will be provided in Sect. 3.2.2.

The firing of a symbolic enabling (ens, t) produces the new symbolic state S′ : 〈M ′, C ′〉,

where M ′ is obtained from M by removing ens(p) from each place p ∈ •t, and putting the
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new symbol Tk in all places in t•, in full analogy with the ordinary firing rule. That is

denoted M [(ens, t) > M ′. S′ represents all the possible ordinary markings reachable from

any marking represented by S, by means of any firing instance corresponding to (ens, t).

3.2.2 Time-coverage graph construction

The time-coverage symbolic reachability graph (TRG) generated by the running example,

composed by 14 symbolic states, is presented in Fig. 3.1.1

S0

S1

FlameLightOn
0.5-0.5

S2
FlameLightOff2

0.0-0.1

S3

FlameOn
0.0-0.1

S4
FlameLightOn

0.5-0.5

S5

FlameLightOff2
0.0-100.0

FlameOn
0.0-0.1

S6
FlameLightOff2

0.0-0.1

FlameLightOn
0.5-0.5

S7
FlameLightOn

0.5-0.5

FlameOn
0.0-0.1

S8

FlameLightOff2
0.0-0.1

S9

FlameLightOn
0.5-0.5

S10

GasOff2
0.2-0.5

FlameOn
0.0-0.0

S11

FlameLightOff2
0.0-0.0

S12

GasOff2
0.0-0.0

FlameLightOn
0.0-0.3

S13

GasOff2
0.0-0.0

FlameLightOff2
0.0-100.0

FlameLightOn
0.5-0.5

Figure 3.1: Sample reachability graph.

The adopted notation for states is: a square for symbolic states, a double square for

symbolic states containing some deadlocks. Concerning edges (i.e., symbolic enablings), the

format of head and tail specifies the kind of relation between source and target.

The normal case is black head and tail, e.g., from S0 to S1: considering any marking

represented by S0 it is always possible to follow that edge and to reach all the markings

represented by S1.

1This picture has been automatically obtained by using GraphViz visualization software [71] on the output
generated from the tool-set.
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Let us consider the symbolic state S8, formally described as follows:

M8 : Gas{T1} IGNITE PHASE S{T0}

Ignition{TA} NoFlame{TA}

C8 : T1 ≥ T0 + 1.5 ∧ T1 ≤ T0 + 1.8

We can observe that, with respect to the original definition of symbolic state, a first extra

time-stamp symbol is present, TA (time anonymous). This new symbol can occur only on

the marking. Postponing an intuitive explanation of when and how symbol TA is introduced

in a symbolic state representation, we can think of it as a token carrying on an unspecified

time-stamp, which has been shown unessential for the computation of transition firing times.

The “candidates” for symbolic enabling in S8 are:

• (〈T0〉,GasOff2)

• (〈TA, T1,TA〉, F lameLightOn).

Firing times are computed by (symbolically) evaluating transition time functions, as explained

above. For GasOff2 the (only) inferred firing time is {T0 + 2}. Time function evaluation is

slightly different for FlameLightOn, due to the occurrence of TA in the pre-set tuple. This

symbol is erased during symbolic evaluation: enab = max({TA, T1,TA}) ≡ max({T1}) = T1.

The inferred firing time in this case is {T1 + 0.5}.

Since both transitions have a strong semantics, there are two additional constraints

specifying that the firing time of one cannot be greater than the (maximum) firing time of

the other. They are CGO2 : T0 + 2 <= T1 + 0.5 and CFLO : T1 + 0.5 <= T0 + 2, respectively.

Since both C8 ∧ CGO2 ∧ T2 = T0 + 2 and C8 ∧ CFLO ∧ T2 = T1 + 0.5 are satisfiable,

(〈T0〉,GasOff2) and (〈TA, T1,TA〉, F lameLightOn) are in fact symbolic enablings in S8. It

is important to note that C8⇒ CGO2 ∧ T2 = T0 + 2, i.e., all the markings represented by S8

enable the transition GasOff2. Instead C8 6⇒ CFLO ∧ T2 = T1 + 0.5, i.e., only a subset of the

markings expressed by S8 enable the transition FlameLightOn. This is highlighted in the

graph by the white tail of the edge from S8 to S9.

Consider now the firing of (〈T0〉,GasOff2): it only consumes tokens. In such cases the

symbolic firing rule slightly differs from the original one. A second special symbol, TL (Time

Last), is introduced. TL can occur only on the constraint of a symbolic state and has an
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intuitive meaning: it stands for the last firing time of the TB net and it permits a correct

interpretation of the model’s time semantics.2 The reached symbolic state S10 is:

M10 : Gas{T1} Ignition{TA} NoFlame{TA}

C10 : C8 ∧ T2 = T0 + 2 ∧ TL = T2

The normalization step eliminates symbols T2 (the symbolic firing time) and T0, as they occur

only in C10, instead it leaves symbol TL. That results in (after a timestamp renaming):

M10 : Gas{T0} Ignition{TA} NoFlame{TA}

C10 : TL ≥ T0 + 0.2 ∧ TL ≤ T0 + 0.5

Another circumstance that causes the introduction of TL symbol in a symbolic state

representation is when the maximum timestamp symbol Tk is replaced with TA. The

identification of a Time Anonymous in a given symbolic state is briefly introduced below

and deeply treated in the next section.

The graph in Fig. 3.1 contains two looping paths: between states S3 and S5, and between

S12 and S13 respectively. That happens because in the model represented by Fig. 2.2,

no expected actions are activated after the system exits the ignition phase (e.g., closing

the gas valve in the event of fail, or stopping ignition), so that an unbounded sequence of

FlameLightOff2 ;FlameLightOn is possible.

The white head of the edge from S5 to S3 means that at least one of the ordinary

markings represented by S3 is not reachable by following that edge. This happens when a

newly built symbolic state is recognized to be strictly contained in an existing one. What

permits recognizing inclusion between states in this specific case is the recognition of time

anonymous timestamps. S3 is formally defined as:

M3 : Gas{TA} BURN PHASE B{TA}

Ignition{T0} Flame{T1}

C3 : T1 ≥ T0 ∧ T1 ≤ T0 + 0.1

2In this paper, when TL is left implicit, it coincides with the “last” generated timestamp Tk.
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Without using TAs, its original definition (S3′) would be:

M3′ : Gas{T0} BURN PHASE B{T1}

Ignition{T0} Flame{T1}

C3′ : T1 ≥ T0 ∧ T1 ≤ T0 + 0.1

Let us figure out what would be the model evolution from S3′, without introducing TA. After

the firing sequence FlameLightOff2 ;FlameLightOn3 a state S3′′ would be reached, defined in

turn as:

M3′′ : Gas{T1} BURN PHASE B{T0}

Ignition{T1} Flame{T1}

C3′′ : T1 ≥ T0 + 0.5 ∧ T1 ≤ T0 + 100.5

Since S3′′ 6⊆ S3′ and S3′ 6⊆ S3′′, there is no possibility to merge them and in fact the analysis

tool would produce an infinite firing sequence.

Back to S3, we note it corresponds to S3′ but for holding TA symbols in places

BURN PHASE B andGas instead of T1 and T0, respectively. Token T1 inBURN PHASE B

however is not (and will never be) involved in any symbolic enabling becauseBURN PHASE B

has an empty postset (Heuristic 3.1.0 in the following section), so it is immediately marked as

TA. Token T0 in Gas instead is in the preset of transitions FlameLightOn and FlameLightOff2.

As for FlameLightOn, the tokens in place Ignition and in place Gas carry on the same

timestamp, so either of them is enough to correctly evaluate transition’s time function. As

for FlameLightOff2, the token in place Gas carries on redundant information due to the

simultaneous presence of T1 in Flame, that superseded it (Heuristic 3.2.1).

S3′′ seems really different from S3, but nearly the same heuristics permits us to replace

T0 : BURN PHASE B (Ti : p denotes the occurrence of a timestamp in a place) and

T1 : Gas with TAs. That eliminates all the occurrences of T0 from the marking. After

timestamp renaming, we obtain the normal form:

M3′′ : Gas{TA} BURN PHASE B{TA}

Ignition{T0} Flame{T0}

C3′′ : true

3We omit in this description symbolic enablings, the TB net being safe.
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However there is still a difference with respect to S3: places Ignition and Flame hold the same

timestamp, but this boils down to a condition already represented by S3 (T1 = T0 ⇒ C3),

so S3′′ is recognized as a state contained in S3.

Notice that the other cycle on the graph, between S12 and S13, is due to the adoption

of a relative notion of time, i.e., it does not depend on the introduced TA concept.

An important setting of the legacy tool [65] was the time limit, a positive interval time

that guaranteed the finiteness of the symbolic reachability tree of a TB net. Upon elimination

of absolute time references it has been substituted by a relative time limit. This positive

interval specifies the maximum admissible distance between different timestamps in a state,

and allows one to deal with possibly infinite reachability graph. The tool-set checks whether

a symbolic state includes any ordinary states for which the distance between TL and T0

(the oldest meaningful timestamp) exceeds the time limit, marking that state as not to be

expanded. The rationale behind is that reaching such a user defined limit might be a symptom

of the presence of unrecognized “dead tokens”, reintroducing absolute time references. If we

analyzed the running example disabling TA recognition, the resulting graph would be infinite,

unless a time limit is set. For example, setting this limit to 3 (time units), 25 symbolic states

would be generated: 13 already included in the presented graph, the others corresponding to

a partial unrolling of the loop between S3 and S5.

The output generated by the tool-set associates a couple of numerical values to edges of

the graph, corresponding to the minimum and maximum time distances from the source node

to the target node. This permits us to partially recover time relations between nodes that

were lost due to the removal of absolute times references from constraints. In the following

section we will show how to exploit them.

3.2.3 Time Anonymous

The notion of time anonymous relies on the fact that in a symbolic state there may exist

tokens whose timestamp values can be forgotten, as not influencing the evolution of the

model. The adopted symbol to denote a time anonymous timestamp is TA, and it represents

an undefined time value in the past chosen between the initial time and the time limit TL.

The TA replacement (formally defined in the next section) allow us to build, in many cases,

a finite reachability graph. In fact, the presence of “dead” tokens (i.e., those tokens that

cannot be consumed) during the evolution of a model. by firing transitions, reintroduce a

February 13, 2015



3.2. Verification of Reachability Properties for Time Basic Petri Nets 34

sort of absolute time that would prevent the identification of equality/inclusion relationships

among states.

P0

P2

P1

t0

t1

Figure 3.2: Simple TB net example generating a “dead” token.

Initial marking P0{T0}
Initial constraint 0 ≤ T0 ≤ 1

t0 [enab+ 0.2, enab+ 0.3]
t1 [enab+ 0.5, enab+ 0.7]

As a simple example, let us consider the model described in Fig. 3.2. Transition t0 is

enabled in the time lapse [T0 + 0.2, T0 + 0.3]. Its firing produces two new tokens, respectively

into P1 and P2 with a timestamp T1 representing a value chosen in such a time interval.

This new configuration enables t1 which can fire infinitely many times, by consuming and

immediately after creating a token in P2, each time with a new timestamp. Although the

erasure of absolute times, the presence of a “dead” token in P2, creates a sort of time marker

which would make the reachability graph infinite, as we can see in Fig. 3.3a.

Figure 3.3: Infinite (a) and finite (b) representations of the reachability graphs extracted
from the model shown in Fig. 3.2.

(a) Reachability graph without TA replacement.

S0 S1 S2

t0
0.2 - 1.3

t1
0.5 - 0.7

S3

t1
0.5 - 0.7

 . . .

(b) Reachability graph with TA replacement.

S0 S1

t0
0.2 - 1.3

t1
0.5 - 0.7

After the initial state S0, reachable states are all equal in terms of symbolic marking:

P1{T0}P2{T1} but they have different constraints:
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• CS1
= 0.2 ≤ T0 ≤ 1.3 ∧ T0 + 0.5 ≤ T1 ≤ T0 + 0.7

• CS2
= 0.2 ≤ T0 ≤ 1.3 ∧ T0 + 1.0 ≤ T1 ≤ T0 + 1.4

• CS3 = 0.2 ≤ T0 ≤ 1.3 ∧ T0 + 1.5 ≤ T1 ≤ T0 + 2.1

and so forth, departing T1 from T0 further and further. Anyway, it is worth noting that T0

does not influence the evolution of the model, thus we can forget about this value replacing

it with an anonymous timestamp TA. The TA replacement cause the erasure of T0 from

constraints enabling the identification of equality relationships among states. In fact, a TA

timestamp does not have any relationships with other symbolic values because it represents

any time value in the past. Therefore, all the states after the initial one, would have the

same constraint: CS1 = TRUE. The finite reachability graph, resulting from the analysis of

Fig. 3.2, using TA replacements, is shown in Fig. 3.3b.

We identified three different typologies of tokens disclosing a negligible symbolic time:

• The first category is composed of “dead” tokens. A token tk is dead if belongs to a

place with an empty postset. Therefore such a token will be never consumed by firing

transitions. It is possible to statically identify places that may contain dead tokens.

• The second category contains all tokens tk such that tk belongs to a place p with a non

empty postset, and tk cannot be consumed by firing transitions. I.e. foreach t ∈ p•,

any symbolic tuple (ens, t), such that ens(p) = tk is not an symbolic enabling. It is

not possible to statically evaluate places containing such a tokens.

• This latter category regards all tokens tk such that tk can be consumed by a firing

transition, but its firing time is not evaluated in terms of the timestamp associated

with tk. As the previous category, we must search for such a tokens dynamically, during

the graph construction.

It is worth noting that, a symbolic enabling (ens, t) such that lbt(ens) = TA makes the

lower bound lbt(ens) equals to TL, in fact a TA lower bound means that TL exceeds the

minimum enabling time. Anyway, in case the preset of a transition t contains only “TA

tokens”, t cannot fire because both the lower bound and the upper bound of tf would be

any time value in the past, thus we cannot determine whether it represents an empty set.

The reason of a TA replacement of all tokens belonging to •t could be that foreach symbolic

tuple (ens, t), TL > ubt(ens). Thus, if such a tokens does not contribute to the evaluation

of possible firing times of other transitions, we can forget about all their symbolic times.
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The next section introduces a formal definition of a “TA replacement” and all the adopted

heuristics in order to find time anonymous timestamps during the graph building.

3.2.4 Formal Definitions

Let us formalize some core concepts previously outlined, focusing in particular on TA and

state inclusion. For the sake of readability, definitions involving transitions refer to the weak

semantics.

Definition 3.2.1 (symbolic state) A symbolic state S is a pair 〈M,C〉, where M is

a function P → Bag(TS ∪ {TA}), and C is a (satisfiable) linear constraint defined on

TSM ∪ {TL}, TSM ⊂ TS being the finite set of symbols Ti occurring on M , such that

∀Ti ∈ TSM, C ⇒ TL ≥ Ti.

Definition 3.2.2 (well-defined erasure) Let gt be the formal expression of a linear func-

tion. The erasure of a set of symbols E ⊂ •t from gt, denoted gt[¬E], is well-defined if it

doesn’t violate the ariety of any operators occurring in gt.

Consider for instance t, s.t. •t = {p1, p2}, and ft : [max({p1, p2}), p2 + 0.5], where, max :

2R
+ \ ∅ → R+, + : R+,R+ → R+. Then, the erasure ft[¬{p1}] is well-defined and results in

[p2, p2 + 0.5], instead ft[¬{p2}] is not well-defined.

A symbolic instance of t is a mapping ens : •t→ TS ∪ {TA}.

Let en−1s (τ) = {p}, en(p) = τ .

Definition 3.2.3 (symbolic enabling) (ens, t) is said a symbolic enabling in

S = 〈M,C〉 if and only if:

i ∀p ∈ •t, ens(p) ∈M(p)

ii ft[¬en−1
s (TA)] is well-defined

iii C ∧ lbt[¬en−1
s (TA)](ens) ≤ ubt[¬en−1

s (TA)](ens) is satisfiable

Let C \X denotes the constraint obtained by eliminating variable X from C, in such a

way that the solutions of C \X are “projections” of the solutions of C.

Definition 3.2.4 (symbolic firing) Let (ens, t) be a symbolic enabling in S = 〈M,C〉,

k = |TSM|. The firing of (ens, t) produces the new symbolic state S′ : 〈M ′, C ′〉, where
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• ∀p ∈ •t \ t•, M ′(p) = M(p)− ens(p)

• ∀p ∈ t• \ •t, M ′(p) = M(p) + Tk

• ∀p ∈ t• ∩ •t, M ′(p) = M(p)− ens(p) + Tk

• for all remaining places, M ′(p) = M(p)

• C ′ = C\TL∧lbt[¬en−1
s (TA)](ens) ≤ Tk∧Tk ≤ ubt[¬en−1

s (TA)](ens)∧Tk ≥ Tk−1∧TL = Tk

C ′ may contain some symbols Ti that have been withdrawn from M ′. After eliminating

redundant variables, and (possibly) renaming left symbols, the reached state meets definition

3.2.1 and is in normal form.

Let R(S) be the set of symbolic states reachable from S

Definition 3.2.5 (valid TA-replacement) Given a state S, a timestamp occurrence Ti : p

is replaceable with TA : p if and only if for each S′ = 〈M ′, C ′〉 ∈ R(S) in which token

Ti : p is left (modulo timestamp renaming), for each symbolic enabling (ens, t) in S′ s.t.

ens(p) = Ti, ft[¬{p}] is a well-defined erasure and

C ′ ∧max({TL, lbt(ens)}) ≤ ubt(ens)⇔ C ′ ∧max({TL, lbt[¬{p}](ens)}) ≤ ubt[¬{p}](ens)

The new semantics of a symbolic state is provided by the following coverage notion.

Definition 3.2.6 (symbolic state inclusion) Let S = 〈M,C〉 be a symbolic state. An

ordinary marking m is included in S if and only if it corresponds to a numerical substitution

σ of symbols occurring in M , s.t. σ satisfies C and for each ordinary enabling en of t in m,

for each symbolic tuple (ens, t) in S s.t. en is a numerical substitution of ens,

• lbt[¬en−1
s (TA)], ubt[¬en−1

s (TA)] are well defined

• lbt[¬en−1
s (TA)](en) = lbt(en) ∧ ubt[¬en−1

s (TA)](en) = ubt(en)

The next lemma sets the relationship between ordinary and symbolic instances (state

transitions).

Lemma 3.2.7 Let m be included in S. If m[(en, τ) > m′, then there exists a symbolic

enabling ens, s.t. en is a numerical substitution of ens, S[(ens, t) > S′ and m′ is included in

S′
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Let us finally report all the heuristics used by the algorithm to identify the TA replacements

commented in the previous sections. The idea behind the eleven heuristics is to find situations

during the evolution of the model, where timestamp associated with tokens can be forgotten

because they do not contribute to the evaluation of any possible firing time of any firing

transition. They identify, precisely speaking, a valid replacement of a timestamp occurrence

Ti : p with TA : p, in S = 〈M,C〉, according to definition 3.2.5. At least one of the following

heuristic, must be verified foreach t ∈ p•. Note that if p• = ∅ (Heuristic 3.1.0), this condition

is trivially true.

P0

P1

P2
t0

Figure 3.4: Simple excerpt of a TB net model used for TA heuristics examples.

Heuristic 3.2.1 ∀p′ ∈ •t, M(p′) 6= ∅

∧ ft is in the form [enab+ c, enab+ c′]

∧ ∃p′ ∈ •t (∀Tj ∈M(p′) C ⇒ Tj ≥ Ti)

All places belonging to •t are marked, ft is in the form [enab+ c, enab+ c′], but there exist

another place containing only newer tokens. Thus tokens belonging to p won’t be used to

compute the enabling time.

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[enab+ 1.0, enab+ 2.0], the symbolic marking M = P0{T0, T0}P1{T1, T2} and

the symbolic constraint C = T2 > T1∧ T1 > T0. The enabling time of t0 is computed using

either T1 or T2 because they are both greater than T0. Thus all the tokens in place P0 are

recognized as TAs.

Heuristic 3.2.2 ∀p′ ∈ •t, M(p′) 6= ∅

∧ ft does not contain p

∧ ft does not contain enab
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All places belonging to •t are marked, but p will not be used to compute possible firing times

of f because ft does not contain both the variable p and enab.

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[P2 + 1.0, P2 + 3.0], the symbolic marking M = P0{T0}P1{T1} and the symbolic

constraint C = T1 ≥ T0. The enabling time interval of t0 is [T1 + 1.0, T1 + 3.0], thus the

token in place P0 are recognized as TAs.

Heuristic 3.2.3 ∀p′ ∈ •t, M(p′) 6= ∅

∧ ft is in the form [max(. . .) + c,max(. . .) + c′]

∧ ∀(ens, t) symbolic enabling, lbt[¬{p}](ens) = lbt(ens) ∧ ubt[¬{p}](ens) = ubt(ens)

All places belonging to •t are marked, ft is in the form [max(. . .) + c,max(. . .) + c′], but

foreach enabling tuple ens, ft(ens) equals ft[¬{p}](ens) (well defined erasure). Thus neither

lbt(ens) nor ubt(ens) refers to Ti.

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[max(P0 + 1.5, P1 + 1.0),max(P0 + 2.5, P1 + 2.0)], the symbolic marking M =

P0{T0, T0}P1{T1} and the symbolic constraint C = T1 > T0 + 1.0. According to C, the

minimum firing time is dominated by T1 + 1.0, while the maximum firing time is dominated

by T1 + 2.0, thus all the tokens in place P0 are recognized as TAs. In fact, the evaluation of

neither lbt nor ubt refers to T0.

Heuristic 3.2.4 ∀p′ ∈ •t, M(p′) 6= ∅

∧ ∀(ens, t) symbolic enabling, C ⇒ (TL > ubt(ens) ∧ TL ≥ lbt(ens))

All places belonging to •t are marked, but t is not enabled (TL > ubt(ens)) and tokens in

p won’t be used to compute the lower bound of ft even if t would be re-enabled by other

tokens (TL ≥ lbt(ens))).

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[P0 + 1.0, P1 + 2.0], the symbolic marking M = P0{T0}P1{T1} and the symbolic

constraint C = T1 > T0 + 2.0 ∧ TL = T1 + 2.5. According to C, transition t0 is disabled,

because the variable TL is greater than the maximum firing time. Moreover, in case of a

new enabling, T0 won’t be used to compute lbt because it is lesser than TL. Thus T0 is

recognized as TA.
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Heuristic 3.2.5 ∀p′ ∈ •t, M(p′) 6= ∅

∧ ∀(ens, t) symbolic enabling, C ⇒ (lbt(ens) > ubt(ens)∧ (TL ≥ lbt(ens)∨ lbt[¬p](ens) =

lbt(ens)))

All places belonging to •t are marked, but t is not enabled (lbt(ens) > ubt(ens)) and tokens

in p won’t be used to compute the lower bound of ft even if t would be re-enabled by other

tokens, in fact TL ≥ lbt(ens)) or p does not contribute to the evaluation of lbt(ens).

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[enab, P0 + 1.0], the symbolic marking M = P0{T0}P1{T1} and the symbolic

constraint C = T1 > T0 + 1 ∧ TL = T1 + 2.0. According to C, transition t0 is disabled,

because the maximum firing time is greater than the minimum firing time. Moreover, in

case of a new enabling, T0 won’t be used to compute lbt, thus T0 is recognized as TA.

Heuristic 3.2.6 ∃p′ ∈ •t : M(p′) = ∅

∧ ft does not contain p

t is disabled in S and p does not contribute to the evaluation of ft foreach possible future

symbolic enabling.

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[enab + 1.0, enab + 1.5], the symbolic marking M = P0{T0} and the symbolic

constraint C = TL = T0. According to M , transition t0 is disabled and in case of a new

enabling, T0 won’t be used to compute both lbt and ubt, because all new tokens in the

enabling would have a timestamp greater than T0. Thus it is recognized as TA.

Heuristic 3.2.7 ∃p′ ∈ •t : M(p′) = ∅

∧ lbt contains p

∧ ubt does not contain p

∧ ∀Tx ≥ TL ∀en ∈ Bag(TS) s.t. Tx ∈ en if (en, t) is a symbolic enabling then (C ∧Tx ≥

TL)⇒ TL ≥ lbt(en)

t is disabled in S, ubt does not contain the variable p, and foreach possible future symbolic

enabling (en, t), the lower bound lbt(en) will be lesser or equal to TL.

As an example, consider the model depicted by Fig. 3.4 having the following temporal function

t0[P1, enab], the symbolic marking M = P1{T0} and the symbolic constraint C = TL = T0.
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According to M , transition t0 is disabled and in case of a new enabling, T0 won’t be used to

compute lbt, because TL would be greater than lbt. Thus T0 is recognized as TA.

Heuristic 3.2.8 ∃p′ ∈ •t : M(p′) = ∅

∧ ft is in the form [max(. . .) + c,max(. . .) + c′]

∧ ∀Tx ≥ TL ∀en ∈ Bag(TS) s.t. Tx ∈ en if (en, t) is a symbolic enabling then lbt[¬{p}](en) =

lbt(en) ∧ ubt[¬{p}](en) = ubt(en)

As an example, consider the model depicted by Fig. 3.4 having the following temporal function

t0[max(P0 + 1.0, P1 + 1.5),max(P0 + 2.0, P1 + 2.5)], the symbolic marking M = P0{T0} and

the symbolic constraint C = TL = T0. According to M , transition t0 is disabled and in case

of a new enabling, T0 won’t be used to compute both lbt and ubt, because any of the new

tokens would have a timestamp greater than T0. Since both lbt and ubt would be dominated

by the second part containing the place P1, T0 is recognized as TA.

Heuristic 3.2.9 ∃p′ ∈ •t : M(p′) = ∅

∧ ∀Tx ≥ TL ∀en ∈ Bag(TS) s.t. Tx ∈ en if (en, t) is a symbolic enabling then (C ∧Tx ≥

TL)⇒ (TL > ubt(en) ∧ TL ≥ lbt(en))

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[P1+1.0, P1+2.0], the symbolic marking M = P1{T0} and the symbolic constraint

C = TL > T0 + 2.0. According to M , transition t0 is disabled and in case of a new enabling

involving T0, TL would be greater than both lbt and ubt. Therefore, T0 is recognized as TA.

Heuristic 3.2.10 ∃p′ ∈ •t : M(p′) = ∅

∧ ∀Tx ≥ TL ∀en ∈ Bag(TS) s.t. Tx ∈ en if (en, t) is a symbolic enabling then (C ∧Tx ≥

TL)⇒ (lbt(en) > ubt(en) ∧ TL ≥ lbt(en))

As an example, consider the model depicted by Fig. 3.4 having the following temporal

function t0[P0 + 1.0, enab], the symbolic marking M = P0{T0} and the symbolic constraint

C = TL > T0 + 2.0. According to M , transition t0 is disabled and in case of a new enabling

involving T0, ubt would be greater than lbt. Therefore, T0 is recognized as TA.

Heuristics 3.2.7, 3.2.8, 3.2.9 are respectively conceptually similar to 3.2.3, 3.2.4, 3.2.5

except they refer to future symbolic enablings, being t disabled within S.
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Heuristic 3.2.11 Given a place p′ and a symbolic tuple ens, let φTA(ens, p
′) be a new

symbolic tuple such that:

φTA(ens, p
′)(p) =

 ens(p) if p = p′

TA otherwise

∀(ens, t) symbolic enabling,

C ⇒ (TL > ubt(φTA(ens, p)) ∧ TL ≥ lbt(φTA(ens, p
′)))

This heuristic assesses whether the symbolic time Ti influences the evaluation ft(ens). To

this end, we consider Ti as the last produced token by replacing each timestamp of ens,

except Ti, with a TA. If Ti does not contribute to evaluate ft(ens), even if this condition

holds, we can replace it with a TA timestamp.

3.2.5 Property Evaluation

The symbolic (time coverage) reachability graph contains several exploitable information.

The tool recognizes deadlocks even if they are topologically hidden by the presence of

outgoing edges. In fact if all the outgoing edges have a white tail, it is still possible that a

proper subset of the corresponding symbolic state is composed by deadlock marking. In the

running example however no deadlock marking is reachable.

Disregarding time specification (i.e., considering only the number of tokens distributed

over places), the graph nodes exactly identify all the reachable (topological) markings: if a

marking matches a symbolic node then there exists at least one path from the initial state

to such a marking, conversely if a marking matches no symbolic nodes, it is not reachable.

It is thereby possible to verify P-invariants from a specified marking. In case of finite graph,

it is possible to answer questions about maximum (minimum) number of tokens in some

(combinations) of places.

In general, due to TA introduction, the set of ordinary markings included (Definition 3.2.6)

by the states of the symbolic graph built from a TB net is a superset of the reachable ordinary

markings of the TB net. Given a symbolic state S = 〈M,C〉 , each numerical substitution of

{Ti} symbols occurring in M and satisfying C corresponds to the projection of reachable

ordinary states. If we are interested in checking timing relations between token’s timestamps

on the states of the graph we can get three different answers upon graph inspection: a

positive one (e.g., there exists a node that satisfies the condition), a negative one (e.g.,
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no nodes satisfy the condition), or a possibly positive. For example, if we are looking

for a state where a token in place Flame carries on a timestamp greater than the one in

place IGNITION PHASE S, state S9 provides us with a positive answer. Instead, if we are

checking whether places Gas and Ignition can ever hold the same timestamp the answer is

may be (the presence of TA in either places covers that condition).

As for timing relations between token’s timestamps in different markings, or between

firing times in a transition firing sequence, the symbolic graph permits identifying critical

paths by combining the information on edges. In particular, conservative bounds can be

established. In the case they are not enough to exclude incorrect timing behaviors, it is

possible to carry out a more accurate analysis by rebuilding a portion of the graph, retracing

some critical paths and reintroducing absolute time references. For example, looking at the

time information on edges, it is possible to establish that state S10 is not reachable from

S0 in less than 1.7 time units. We cannot directly infer that S10 is reachable in exactly 1.7

time units.

Figure 3.5: Critical case for path feasibility.

Concerning feasibility of firing sequences (Lemma 3.2.7), the symbolic graph expresses

all the possibilities (an ordinary firing sequence is matched by any firing sequence on the

graph). A possible critical situation is a white-arrow edge (meaning that we reach only a

subset of the target state) is followed by a white-tail edge as shown in Fig. 3.5 (meaning that

the transition is enabled only in a subset of the ordinary states represented by the node).

In this case there is still the possibility that this path actually is not feasible. Also such

critical paths could be retraced. Let us stress (back to the reachability problem) that by

construction, for every node on the graph there exists a path from the initial state to such a

node formed exclusively by black-arrow edges.

The available tool’s evaluation component is still very simple, its integration with some

existing model checking engines is currently under investigation. However it already permits

examining the input graph looking for interesting properties on topological definition of

markings:
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• existence of a state with a marking satisfying a constraint (i.e., a boolean combination

of condition on the number of tokens in places)

• maximum (minimum) value of an expression involving the number of tokens in places

(possibly restricting the evaluation to markings satisfying a given constraint)

3.2.6 Tool Architecture

Figure 3.6: Reference architecture.

The analysis technique described in this paper has been implemented as a command line

tool written in Java called Graphgen. The tool architecture depicted in Fig. 3.6 presents

the various components that communicate by means of files. The tgraphgen module receives

as input a Time Basic Petri net (either in the legacy file format used by the Cabernet

tool, or in a PNML format generated, for example, by a customized version of PIPE2

open source tool[48]. It generates as outputs the graph in binary format (used by the

property verification module tgrapheval), and in an annotated DOT text format (used by

the GraphViz tool). The tool is also integrated as an analysis module in the customized

PIPE2 open source tool. That will permit accessing all the functions by means of menu,

and exploiting in an integrated environment consolidated structural analysis algorithms for

the verification of the untimed part of TB nets (e.g., P/T nets invariant analysis). Both

the command line tool and the customized version of PIPE2 are available for download

at http://camilli.di.unimi.it/graphgen, together with a brief user guide and some

running examples.
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3.2.7 Use Case and Comparison with other tools

In order to make a comparison with the available analysis techniques and tools for TB nets,

we consider now the complete gas burner example analyzed in [15], also reported in Fig. A.4)

for completeness.

The main critical parameter of the system was identified in the concentration value of

unburned gas. With the old analyzers it was only possible to do an approximate analysis,

by verifying the safety requirement within a fixed time threshold [15], or by empirically

guiding the construction of a portion of the reachability tree looking for a state invalidating

the property [32]. These techniques were only able to verify the unsatisfiability of the

time bounded safety property by ending the construction of the tree after reaching a state

with a concentration exceeding a critical value (i.e., according the specification, one second

of unburned gas). A significant improvement is that our technique computes the graph

representing the complete behavior of the system, and thus for example permits calculating

the actual concentration upper bound.
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Figure 3.7: State creation advancement.

Table 3.1 reports the outcomes of the analysis on the use case. In particular the

considered parameter has been measured with three versions of the net. They differ in the

time granularity used for the unburned gas process, i.e., the time function of the transition
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Inc Conc. The first thing to note is however that the analysis result is coherent in the

various situations, identifying the maximum amount of unburned gas as corresponding to a

leaking period of two seconds.

The test has been performed on a Toshiba Notebook with 2.4Ghz Intel Core 2 Duo

processor and 4GB of memory. The operating system is Ubuntu 10.10 and the Java Virtual

Machine is OpenJDK IcedTea6 1.9.5.

On the table we report also the number of states of the final reduced graph against the

overall number of states generated by the algorithm, and the execution times.

In Fig. 3.7 some profiling data – relating the 0.1 time granularity version of the model

– are presented. On the x axis there is the execution time expressed in minutes, on the y

axis there are the number of built nodes, of reduced (final) nodes, and of nodes ready to be

processed, respectively. This picture is important for two reasons: first it shows that the

performance degradation of state construction process is very small (the number of states

created is pretty much constant in time after an initial burst); second, it supports the idea

that a parallel (distributed) version of the graph builder, introduced in [17, 33, 18] should

substantially improve the performances, in fact, the front of expansion remaining consistently

wide.

Table 3.1: Use case analysis results.

Inc Conc gran. max(Conc) # [final/built] states exec. time

0.5 4 865/1217 ≈ 75secs
0.25 8 2233/2983 ≈ 400secs
0.1 20 14563/23635 ≈ 7.5hrs

3.2.8 Summary

The analysis technique presented in this section overtakes the existing available analysis

technique for Time Basic Nets (a very expressive timed version of Petri nets) because

it permits the building of a sort of (symbolic) time-coverage reachability graph keeping

interesting timing properties of the nets. In particular the introduction of the concept of

time anonymous timestamps, enables a major factorization of symbolic states and allows,

in many cases, to building a finite representation of the underling infinite state space. An

extension of the technique that further exploits the time anonymous concept in order to deal
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with topologically unbounded nets exploits the concept of a coverage of TA tokens, i.e., a

sort of ω anonymous timestamps. The next section addresses this latter topic.

3.3 Constructing Coverability Graphs for Time Basic

Nets

When analyzing a Petri net, a very common question is whether or not the net is bounded.

If it is bounded, the net is theoretically analyzable, and its state space is finite. However

the net may be unbounded and classic state space methods generates an infinite number of

reachable states from these kind of models. TB net models, as classic Place/Transition nets,

may be topologically unbounded. The unboundedness happens whenever there exists a place

in the net, that accumulates an infinite number of tokens during the execution. Coverability

graph algorithms overcome this issue and allow us to decide several important problems:

the boundedness problem (BP), the place-boundedness problem (PBP), the semi-liveness

problem (SLP) and the regularity problem (RP) [83, 107]. Anyway, for TB nets, this task is

complicated by the time domain. In fact, tokens come along with temporal information and,

in general, it is not possible to cluster them into an ω symbol without loosing important

information about the system’s behavior. However, the time anonymous concept, introduced

in the previous section (sec. 3.2), allow us to overcome this issue. In fact, time anonymous

timestamps do not carry, by definition, any temporal information. Therefore, an infinite

number of TA tokens can be clustered together into a TAω symbol without loss of information.

The technique introduced in the current section, gives us a means to deal with topologically

unbounded TB net models, where the unboundedness refers to places having an infinite

number of TA tokens. Such a limitation is actually reasonable, in practice. In fact, this

restricts the analyzable models to systems which do not exhibit Zeno behavior and do not

express actions depending on “infinite” past events.

As a simple example, consider the model described in Figure 3.8. The behavior of the

system is very simple: from the initial state, the transition t0 must fire in the time interval

[T0, T0 + 2.0]. Its firing consumes T0 and produces two new tokens in places P1 and P2,

respectively. In this new state, t1 is the only enabled transition, and its firing brings the

system in the initial topological marking. It is worth noting that every time T0 fires, a new

token is placed into P2 which cannot be consumed by any firing transition. Therefore, the

abstraction technique introduced in section 3.2 applied to this example, generates an infinite
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P0
T0

P1

P2t0t1

Initial marking P0{T0}
Initial constraint T0 ≥ 0

t0 [enab+ 1.0, enab+ 2.0]
t1 [enab+ 1.0, enab+ 2.0]

Figure 3.8: Simple example showing an unbounded TB net model.

number of reachable symbolic states because the number of tokens in place P2 grows without

limit. Figure 3.9 shows a portion of the infinite reachability tree.

P0{T0}
T0 ≥ 0

S0

P1{T0} P2{TA}
T0 = TL

S1

P0{T0} P2{TA}
T0 = TL

S2

P1{T0} P2{TA;TA}
T0 = TL

S3t0
1.0 - 2.0

t1
1.0 - 2.0

t0
1.0 - 2.0

...

Figure 3.9: Portion of the infinite reachability tree associated to the TB net model
presented in Figure 3.8.

As we can see, the number of TA tokens in place P2 grows indefinitely, thus the execution

of the software tool Graphgen (introduced in section 3.2), on such a input, does not

terminate. The current section, introduces an extension of the previous analysis technique

able to build the coverability graph of unbounded TB nets, exploiting the concept of TA

coverage tokens. Our proposal takes inspiration from the Monotone-Pruning (MP) algorithm

introduced in [101], for P/T nets, and extends it to deal with TB net models, thus supplying

a means, also for real-time systems, to solve the above mentioned problems.

3.3.1 Preliminaries

A quasi order ≥ on a set S is a reflexive and transitive relation on S. Given a quasi order ≥

on S, a state s ∈ S and a subset X of S, we write s ≥ X iff there exists an element s′ ∈ X

such that s ≥ s′.
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Given a finite set of places P , the marking M (section 3.2) on P is a function P →

Bag(TS ∪ {TA}) which supplies foreach place, timestamps associated with tokens. The

symbolic ω-marking Mω on P is a function P → Bag(TS ∪ {TA, TAω}). The TAω symbol

represents, in this case, any number of TA symbols (∞ included). Given the set U(P ) = N|P |,

an u-marking ū, is an element of U(P ) which associates foreach place, the number of non-TA

tokens. Given the set V (P ) = (N ∪ {ω})|P |, an v-marking v̄, is an element of V (P ) which

associates foreach place, the number of TA tokens. Given a symbolic state S, we denote

with ū(S), and v̄(S) the u-marking and the v-marking associated with S, respectively.

Given an element ū ∈ U(P ), v̄ ∈ V (P ), and a place p, we denote with ūp the number

of non-TA tokens in place p, and with v̄p the number of TA tokens in place p. Since the

ω symbol represents an infinite number of TA tokens, the component v̄p = ω if and only if

TAω ∈Mω(p).

For instance, if P = {p1, p2, p3, p4} and the symbolic ω-marking is {p1{T0, TA}, p3{T0, T1, TAω}},

the corresponding u-marking, and v-marking are {1, 0, 2, 0}, and {1, 0, ω, 0}, respectively.

The set V (P ) is equipped with a partial order ≥ naturally extended by letting n <

ω,∀n ∈ N and ω ≥ ω.

In the current section, when referring to symbolic states, we consider an extended version

of the definition 3.2.1, where the marking is represented by the function Mω rather than M .

Definition 3.3.1 (TA erasure) Given a symbolic state S = 〈Mω, C〉, S[¬TA] is a symbolic

state composed of 〈Mω ′, C〉, where Mω ′ is a symbolic ω-marking obtained from the erasure

of all TA symbols from Mω.

Definition 3.3.2 (state coverage) Given two symbolic states S = 〈Mω, C〉 and S′ =

〈Mω ′, C ′〉, the u- and v- markings of S ū, v̄, and the u- and v- markings of S′ ū′, v̄′, S covers

S′ (S ≥ S′) iff ū = ū′ ∧ v̄ ≥ v̄′ ∧ C ≡ C ′.

That means that S differs from S′ only in the number of TA tokens in places. In

particular, the number of TA tokens foreach place in S is greater or equal to those ones

foreach place in S′. Formally, ∀p ∈ P, v̄p ≥ v̄′p. Whenever S ≥ S′ and v̄ 6= v̄′ we say that S

properly covers S′, and we denote it with S > S′.

Definition 3.3.3 (Coverability Tree) Given a TB net R = 〈P, T, F 〉, a coverability tree

is a tuple T = 〈N,n0, E〉, where N is a set of symbolic states, n0 ∈ N is the root state,

E ⊆ N × T ×N is the set of edges labeled with firing transitions. Where:
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1. foreach reachable symbolic state S in TRG(R) (section 3.2), there exists S′ ∈ N s.t.

either S′ ⊇ S′ or S′ ≥ S.

2. foreach symbolic state S = 〈Mω, C〉 ∈ N , having u-marking ū and v-marking v̄, there

exists either a reachable state s of R s.t. s ∈ S, or a an infinite sequence of reachable

symbolic states in TRG(R), (Sn)n∈N s.t. ∀n,Cn ≡ C and ∀n, ū(Sn) = ū and the

sequence (v̄(Sn))n∈N is strictly increasing converging to v̄.

Given a symbolic state S ∈ N , we denote by AncestorT (S) the set of ancestors of S in T

(S included). If S is not the root of T , we denote by parentT (S) its first ancestor in T .

Finally, given two symbolic states S and S′ such that S ∈ AncestorT (S′), we denote by

pathT (S, S′) ∈ E∗ the sequence of edges leading from S to S′ in T .

3.3.2 Coverability Tree Algorithm

This section presents the algorithm able to construct coverability trees of TB nets. We call it

TBCT (Algorithm 1) and it is inspired by the Monotonic pruning (MP) algorithm introduced

in [101], able to build minimal coverability sets for classic P/T nets. Our proposal involves

the acceleration function Acc, first introduced in the Karp and Miller algorithm [83]. Such a

function aims at computing the limit of repeating any number of times some sequences of

transitions that strictly increase the number of tokens in certain places. However, in our

context, it is defined and also applied in a slightly different manner. It actually modifies the

symbolic ω-marking Mω of a symbolic state by inserting proper TAω symbols, accordingly

to the following:

Acc : 2N ×N → N,Acc(W,S)(p) = S′ s.t.

∀p ∈ P, v̄(S′)p =

 ω if ∃S′′ ∈W : S′′ < S ∧ v̄(S′′)p < v̄(S)p ∧ S′′ � S

v̄(S′)p otherwise
(3.3.1)

Where S′′ � S iff there exists σ =pathT (S′′, S), such that σ is feasible from S. Such a

condition holds whenever, either:

1. CS′′ =⇒ CS , meaning that, S′′[¬TA] ⊆ S[¬TA]. In this case, all the paths starting

from S′′ are feasible from S.

2. CS =⇒ CS′′ and the first component of σ is of type A* (section 2.3). In this case

S[¬TA] ⊆ S′′[¬TA], therefore not all paths starting from S′′ are feasible from S, but

since σ starts from all ordinary states of S′′, σ is feasible also from S.
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For instance, considering the example in Figure 3.9, the evaluation of the Acc function

on S2 and its ancestors: Acc({S0, S1}, S2), causes the insertion of the TAω symbol into P2

because S2 > S0, v̄(S2)P2
> v̄(S0)P2

and the path from S0 to S2 is feasible from S2. This

way, we recognize that TA tokens into place P2 can grow without limit.

Algorithm 1 TBCT Algorithm.

Require: A TB net R = 〈P, T, F 〉
Ensure: A coverability tree T = 〈N,n0, E〉, N = Act ∪ Inact

1: function TBCT(R)
2: n0 = BuildRoot(R)
3: N = {n0}; Act = N ; Wait = N ; E = ∅;
4: while Wait 6= ∅ do
5: s = Pop(Wait);
6: if s ∈ Act then
7: for t ∈ EnabledTransitions(s,R) do
8: m = Successor(s, t);
9: n = Acc(AncestorsT (m) ∩Act,m);

10: N+ = {n}; E+ = {〈s, t, n〉};
11: if @a ∈ Act : a ⊇ n then
12: if ∃a ∈ Act : a ⊂ n then
13: Act− = {x : a ∈ AncestorsT (x)};
14: end if
15: if @a ∈ Act : a ≥ n then
16: Act− = {x : ∃y ∈ AncestorsT (x) s.t y ≤ n
17: ∧ (y ∈ Act ∨ y ∈ AncestorsT (n))};
18: Act+ = {n}; Wait+ = {n}
19: end if
20: end if
21: end for
22: end if
23: end while
24: end function

Likewise both the Karp and Miller and the MP Algorithms, the TBCT algorithm builds

a coverability tree, but nodes, in the current context, are symbolic states containing symbolic

ω-markings and edges are labeled by transitions of the analyzed TB net. Therefore it proceeds

by exploring the reachability tree of the net, as shown in section 3.2, and accelerating along

branches to reach “limit” symbolic ω-markings (containing proper TAω symbols). In addition,

during the exploration, it can prune branches that are covered by nodes on other branches.

Therefore, nodes of the tree are partitioned in two subsets: active nodes, and inactive ones.

Intuitively, active nodes will form the coverability set of the TB net, while inactive ones are

not part of the final coverability set, because they are dominated by other active nodes.
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The Algorithm 1 proceeds in the following steps to decide how to change the structure T

according to new computed reachable symbolic states:

1. The symbolic state s, popped from Wait should be active (test of Line 6).

2. The algorithm iterates through all the enabled transitions and computes one by one

all the successor symbolic states: m = Successor(s, t); (Line 8).

3. The state m is accelerated w.r.t. its active ancestors. A new symbolic state n is created

by this operation: n = Acc(AncestorsT (m) ∩Act,m); (Line 9).

4. If the new symbolic state n is not included or equal to one of the existing active nodes,

then it is candidate to be active (test of Line 11).

5. If the new symbolic state n includes an existing active node a, then the sub-tree with

root a is deactivated (Lines 12-13).

6. The new symbolic state n is declared as active iff it is not covered by any existing

active nodes (test of Line 15 and Line 18).

7. If n is not covered, some symbolic states are deactivated (Line 17).

The update of the set Act, complies with the following rules. Intuitively, nodes (and their

descendants) are deactivated if they are included or covered by other nodes. This would

lead to deactivate a node x iff it owns an ancestor y dominated by n, i.e. such that either

y ⊂ n (Lines 12- 13 ) or y ≤ n (15-17). Concerning the latter case, whenever a new node n

(obtained from Wait) covers a node y (y ≤ n), then y can be used to deactivate nodes in

two ways:

• if y /∈ AncestorsT (n), then no matter whether y is active or not, all its descendants

are deactivated (Figure 3.10a).

• if y ∈ AncestorsT (n), then y must be active (y ∈ Act), and in that case all its

descendants are deactivated, except node n itself as it is added to Act (Line 18).

We require y ∈ Act to avoid useless operations. In fact, descendants of n dominates

descendants of y (Figure 3.10b).

For example, considering the example in Figure 3.9, the insertion of S2 accelerated causes

the deactivation of both S0 and S1 because of the execution of line 17. In particular, such a
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ys

n

root

x
(a) y /∈ AncestorsT (n)

y ∈ Act

s

n

root

x

(b) y ∈ AncestorsT (n)

Figure 3.10: Deactivations of symbolic states in the TBCT Algorithm

P1{T0} P2{TA}
TL = T0

P0{T0} P2{TAω} 
TL = T0

P1{T0} P2{TAω} 
TL = T0

P0{T0} P2{TAω}
TL = T0

t0
0.0 - 2.0

t1
0.0 - 1.0

t0
0.0 - 2.0

t1
0.0 - 1.0

S0 S1 S2 S3 S4

P0{T0}
TL = T0

Figure 3.11: Coverability tree constructed from the TB net example presented in Figure 3.8.

situation corresponds to Figure 3.10b, because S2 ≥ S0 and S0 (active node) belongs to

AncestorsT (S2).

Figure 3.11 depicts the coverability tree constructed from the TB net example presented

in Figure 3.8. Elliptic symbolic states form the final coverability set (active nodes), while the

squared ones are symbolic states deactivated during the analysis. As we can see, the TBCT

algorithm builds a finite tree structure from an unbounded TB net model. In particular, as

shown before, the algorithm is able to identify that the number of TA tokens in place P2

can grow without limit.

As we can see in Figure 3.11, edges carry information about their type (either AA, EE, AE

or EA, introduced in section 2.3), and about the local minimum-maximum firing time, as

introduced in the previous section 3.2. In the following, given an edge e, we refer to these

information with type(e) and time(e), respectively. In particular we refer to the source type

with type(e)src and to the target type with type(e)trgt.

It is also possible to construct a coverability graph G rather than a tree. This task,

starting from the tree structure T = 〈N,n0, E〉, executes the following steps:
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1. All inactive nodes are erased from N .

2. ∀a ∈ Act,∀〈a, t, b〉 ∈ E, if b is inactive, we search for a′ ∈ Act so that a′ ⊇ b or a′ ≥ b,

thus we remove 〈a, t, b〉 from E and we insert 〈a, t, a′〉.

3. All covered edges (Definition 3.3.4) are removed from E.

Definition 3.3.4 (edge coverage) Given a coverability tree T = 〈N,n0, E〉 and two edges

e = 〈a, t, b〉, e′ = 〈a′, t′, b′〉 ∈ E, e covers (≥) e′ iff:

i a = a′ ∧ t = t′ ∧ b = b′

ii time(e) ⊇ time(e′)

iii type(e)src ≥ type(e’)src∧ type(e)trgt ≥ type(e’)trgt, being A > E

P1{T0} P2{TAω}
TL = T0

P0{T0} P2{TAω} 
TL = T0

S2

S3

t1
0.0 - 1.0

t0
0.0 - 2.0

Figure 3.12: Coverability graph constructed from the coverability tree presented in Figure
3.11.

Figure 3.12 shows the coverability graph resulting from the coverbility tree presented

in figure 3.11. Such a structure contains only active symbolic states and gives us a more

intuitive overview on the system’s behavior. For instance, by observing Figure 3.12, it’s easy

to figure out that the system alternates two symbolic states where P0 and P1 are marked

with a single token, while place P2 can accumulate TA tokens without limit.

The rest of this section reports some simple examples of unbounded TB net models

analyzed by the software tool implementing the TBCT algorithm. All the coverability

trees/graphs have been automatically obtained by using GraphViz visualization software

[71] on the output generated from the tool-set. The TW notation used into symbolic

ω-markings, stands for TAω.
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Example A Figure 3.13 depicts an unbounded TB net model with two places (P0, P1)

and two transitions (T0, T1). It represents a simple synchronous system, where an operation

occurs at each time unit (e.g. production/consumption). Produced units are stored into a

infinite buffer. After the first consumption the system stops.

P0

P1

T0

T1

Initial marking P0{T0}
Initial constraint T0 ≥ 0

T0 [enab+ 1.0, enab+ 1.0]
T1 [enab+ 1.0, enab+ 1.0]

Figure 3.13: Unbounded TB net model A.

Figure 3.14a shows the coverability tree of A. As we can see, the introduction of S1

causes the deactivation of S0 (S1 ≥ S0). From S1 the system can evolve either into S2

which is inactive (S2 = S1), or S3 which is a final state. Such a behavior is also shown by

the coverability graph (Figure 3.14b): the system loops into S1, by the firing of T0 transition,

until the firing of T1 which leads into the final state S3.

Example B This model (Figure 3.15) is analogue to model A, except for an additional

arc and a different initial marking. It represents two synchronous tasks, where each task

can either produce or consume. An infinite buffer stores produced units. Figure 3.16a and

3.16b show its coverability tree and coverability graph, respectively. It is worth noting that

the firing of T0 from S1 produces an additional token into place P1 and because of the

recognition of both tokens of P1 as TA, the acceleration of S2 recognizes the TAω into P1.

Therefore, S2 deactivates both S0 and S1. Successors of both S3 and S4 are identified equal

to S2.

Example C This model (Figure 3.17) represents an unbounded TB net with four places

(P0, P1, P2, P3), two strong transitions (T0, T2) and a weak transition (T3). Transition

T0 acts as a sort of timer, in fact, whenever enabled, it must fire in 10 time units from its

previous firing time. Figure 3.18a and 3.18b show its coverability tree and coverability graph,

respectively.
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(b) Coverability graph of A

Figure 3.14: Coverability tree/graph of example A.

P0

P1

T0

T1

Initial marking P0{T0, T0}
Initial constraint T0 ≥ 0

T0 [enab+ 1.0, enab+ 1.0]
T1 [enab+ 1.0, enab+ 1.0]

Figure 3.15: Unbounded TB net model B.

Concerning the current example, it is worth noting that before the introduction of S4,

all the symbolic states were active. The acceleration of S4 leads to the recognition of a

TAω into place P3, and thus the identification of the coverage S4 ≥ S1. This causes the

deactivation of both S1 and its descendants S2 and S3. The successors of S4 are S5 and S6.

In this case, since S5 ⊂ S6, S5 is deactivated. Finally, S7 is recognized to be equal to S4.

3.3.3 Related Work

As introduced in section 3.1, Karp and Miller (K&M) introduced an algorithm for computing

the minimal coverability set (MCS) in [83]. It uses acceleration techniques to collapse

branches of the tree and ensure termination. Anyway, the K&M Algorithm is not efficient in

February 13, 2015



3.3. Constructing Coverability Graphs for Time Basic Nets 57

��������������������
������������������������

��

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

�����������������
������������������������

��

��
�������

�����������������
��������

��

��
�������

�����������������
��������

��

��
�������

����������
��������

��

�����������������
������������������������

��

��
�������

��
�������

(a) Coverability tree of B

�����������������
�	
������

���
��
������

��

�����������������
�	
�����

��

��
���
���

��
���
���

��������������������
�	
������

���
��
������

��

��
���
���

��
���
���

��
���
���

��
���
���

(b) Coverability graph of B

Figure 3.16: Coverability tree/graph of example B.

analyzing real-world examples and it often does not terminate in reasonable time. One reason

is that in many cases it will compute several times a same subtree. The MCT algorithm [54]

introduces clever optimizations: a new node is added to the tree only if its marking is not

smaller than the marking of an existing node. Then, the tree is pruned: each node labelled

with a marking that is smaller than the marking of the new node is removed together with

all its successors. The idea is that a node that is not added or that is removed from the tree

should be covered by the new node or one of its successors. However, the MCT algorithm is

flawed [62]: it computes an incomplete forward reachability set. The CoverProc algorithm,

is proposed for the computation of the MCS of a Petri net. This algorithm follows a different

approach and is not based on the K&M Algorithm. In [101], the MP algorithm is proposed.

This algorithm can be viewed as the MCT algorithm with a slightly more aggressive pruning

strategy. Experimental results show that the MP algorithm is a strong improvement over

both the K&M and the CoverProc algorithms. The TBCT algorithm, introduced in

the current section, is somehow inspired by the MP algorithm, and is able to construct

coverability graphs of real-time systems modeled with TB nets.

For timed Petri nets (TPNs), although the set of backward reachable states is computable

[1], the set of forward reachable states is in general not computable. Therefore any procedure

for performing forward reachability analysis on TPNs is incomplete. In [2], an abstraction of

the set of reachable markings of TPNs is proposed. It introduces a symbolic representation
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W

P0

P1

P2

P3T0 T1 T2

Initial marking P0{T0}P1{T0}
Initial constraint T0 ≥ 0

T0 [enab, P0 + 10.0]
T1 [enab+ 2.0, enab+ 3.0]
T2 [enab+ 1.0, enab+ 4.0]

Figure 3.17: Unbounded TB net model C.

for downward closed sets, so called region generators (i.e. the union of an infinite number of

regions [3]). Anyway, the termination of the forward analysis by means of this abstraction is

not guaranteed.

In the current section, we addressed unbounded TB nets, which represent a much more

expressive formalism for real-time systems than TPNs (interval bounds in TB nets are linear

functions of timestamps in the enabling marking, rather than simple numerical constants).

Other coverability analysis techniques for such a formalism, have not been proposed yet, as

far as we know.

3.3.4 Summary

The current section introduces a coverability analysis technique able to construct a coverability

tree/graph for unbounded TB net models. The termination of the TBCT algorithm is

guaranteed as long as, within the input model, tokens growing without limit, can be

anonymized. This means that we are able to manage models that do not exhibit Zeno

behavior and do not express temporal functions depending on “infinite” past events. This is

actually a reasonable limitation because, in general, real-world examples do not exhibit such

a behavior.
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(b) Coverability graph of C

Figure 3.18: Coverability tree/graph of example C.
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Chapter 4

Big Data Approaches to Formal

Verification

This chapter focuses on the connection between formal methods in software engineering and

big data approaches. This part of the thesis tries to overcome the major limitation of the

software tools introduced in the previous chapter. In particular we outline approaches that

will allow verification techniques and tools to undergo a technological transition in order to

exploit the new available architectures. The idea is simple: increasing the computational

power and storage availability, by using a cluster of distributed computers. The use of

networks of computers can provide the resources required to verify complex systems’ models.

Unfortunately, this approach requires several skills which—while common in the “big data”

community—are rather unusual in the “formal methods” community. Our recent works

focused on the connection between formal methods in software engineering and big data

approaches [18, 17, 33]. The analysis of complex systems certainly falls in this context,

although formal verification has been so far poorly explored by big data scientists [72].

We believe, however, that the challenges to be tackled in formal verification can benefit

a lot from the recent achievements in big data access and management. In fact formal

approaches require several different skills: on one hand, an adequate background is required

in order to manage specific formalisms and abstraction techniques both in modelling and

analysis interpretation; on the other hand, these techniques should be supported by tools

able to analyse large amount of data very reliably and efficiently, similarly to “big data”

projects. Recent approaches have shown the convenience of employing distributed memory
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and computation to manage generation/exploration of large state-spaces. Unfortunately

exploiting these frameworks requires further skills in developing complex applications with

knotty communication and synchronization issues. In particular, tailoring applications so

that they conveniently scale on available cloud computing facilities, might be a daunting

task without a proper knowledge of the subtleties of data-intensive and distributed analysis.

This chapter is composed of three sections that aim at further bridging the gap between

these different areas of expertise by providing different techniques, frameworks and tools,

built on top of Hadoop MapReduce [106], which is based in turn on the MapReduce

programming model [46] (described in section 4.2). This programming model, which has

become the de facto standard for large scale data-intensive applications, has provided

researchers with a powerful tool for tackling big-data problems in different areas [94, 18,

104]. We firmly believe that explicit state model checking could benefit from a distributed

MapReduce based approach, but this topic has not yet been sufficiently investigated as far

as we know.

Section 4.3 discusses about the parallelization of the TB nets analysis techniques intro-

duced in section 3.2. In particular, we study and compare two different approaches, relying on

distributed and cloud frameworks, respectively. Section 4.4 starts from the results obtained

from the study carried out parallelizing the TB nets state space building, and introduced a

generic framework, formalism independent so called MaRDiGraS. This framework can be

easily specialized to deal with the construction of very large state spaces of different kinds of

formalisms (e.g., different kinds of Petri Nets, Process Algebras etc.). Section 4.5 outlines

a distributed CTL (Computation Tree Logic) model checker, which implements iterative

MapReduce algorithms based on the fixed-point characterization of the basic temporal oper-

ators of CTL. It can be easily specialized to deal with verification of CTL formulas on huge

state spaces generated from different formalisms, for example by means of MaRDiGraS

based tools.

4.1 State of the Art

Approximately fifteen years ago, the trend of multi-core and distributed computing brought

to multi-core and distributed verification algorithms. This has made it possible, in many

cases, to achieve better performance although the potentially very large computational

complexity of these problems. In fact, for real world models, the state space size may easily
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exceed the memory capacity of a single computer, hence sequential formal verification tools

could be very slow or even crash as soon as memory is exhausted. Therefore, the use of

parallel/distributed processing platforms to tackle state space explosion in explicit-state

verification techniques gained a growing interest in recent years. Among other works, we may

cite [36, 41, 42, 88, 25]. However, most of these works are related to a specific formalism, and

they do not consider new emerging distributed solutions like Big data approaches. Works

presented in [93, 51] describe large-scale graph processing application reformulated in terms

of MapReduce programming model, but unfortunately, this large class of graph algorithms

doesn’t fit well with the state explosion problem in large-scale graph building, which remains

rather unexplored. Works presented in [91, 28, 8] discuss parallel/distributed verification

of Linear Temporal Logic (LTL) formulas. They aim at increasing memory availability

and reducing the overall computation time by employing distributed search techniques of

accepting cycles in Büchi automata. Distributed and parallel approaches to CTL model

checking have been proposed in [29, 13, 25] These message-passing based algorithms work by

splitting the model state space into a number of “partial state spaces”. Each node involved

in the computation owns a partial state space and performs a (partial) model checking on

this incomplete structure. This is in truth the main idea that most of existing distributed

approaches for both LTL and CTL model checking rely upon. The differences stay in the

way the state space is partitioned (through a partition function), which is a crucial issue. In

order for a parallel/distributed model checking to be effective, a good load balancing among

machines must be achieved. Ideally each computation unit should manage nearly the same

number of states. The performances of distributed approaches also depend on the number of

cross-border transitions of the partitioned state space (i.e., transitions having the source

state stored in a component and the target in another component). This number should

be kept as small as possible, since it heavily impacts on the overall number of messages

sent over the network during analysis [26]. As for LTL model checking, some probabilistic

partitioning techniques have been defined, e.g., [91, 103]. A different approach based on the

structural properties of the formula to be verified has been proposed in [10].

Anyway the effectiveness of big data approaches in formal verification, has been poorly

addressed as far as we know. In fact, despite many years of work in the area of multi-

core and distributed model checking, still few works introduce algorithms that can scale

effortlessly to the use of thousands of loosely connected computers in a network, so existing

technology does not yet allow us to take full advantage of the vast array of compute power of a
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“cloud” environment. This revolution is already started in different scientific fields, achieving

remarkable breakthroughs through new kinds of experiments that would have been impossible

only few years ago. The use of big data approaches in the context of formal methods is

a new emerging trend, and to our knowledge, a few other techniques and tools have been

introduced: [22] presents a MapReduce approach to check specifications expressed in a metric

temporal logic over large execution traces, with aggregation modalities; [77] attempts (in a

quite different context, i.e., Swarm Verification) to exploit massively parallel jobs running

test randomization techniques to verify the correctness of mission critical software; in the

context of run-time verification, [11] introduces an algorithm for the automated verification

of LTL formulas on event traces by processing multiple, arbitrary fragments of the trace in

parallel, and compute its final result through a cycle of runs of MapReduce instances; while

[12] proposes a MapReduce based approach to monitoring systems offline, where system

actions are logged in a distributed file system and subsequently checked for compliance

against policies formulated in an expressive temporal logic.

4.2 The MapReduce Programming Model

MapReduce is a programming model and an associated implementation for processing and

generating very large data sets. Users specify a map function that processes a key/value

pair to generate a set of intermediate key/value pairs, and a reduce function that merges

all intermediate values associated with the same intermediate key. Many real world tasks

are expressible in this model, as shown in [46]. Programs written in this functional style are

automatically parallelized and executed on a large cluster of commodity machines. This

allows programmers with little experience with parallel and distributed systems to easily

utilize the resources of a large distributed system . MapReduce is designed to run on a large

cluster of commodity machines and is highly scalable. It relies on the observation that many

information processing activities have the same basic design: a same operation is applied

over a large number of records (e.g., database records, or vertices of a graph) to generate

partial results, which are then aggregated to compute the final output. The MapReduce

model consists of two functions: The “map” function turns each input element into zero or

more key-value pairs.

map(k1, v1)→ list(k2, v2)
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A “key” is not unique, in fact many pairs with a given key could be generated from the

Map function: the “reduce” function is applied to the list of values associated to the same

key. The result is a set of key-value pairs consisting of whatever is produced by the Reduce

function applied to the list of values.

reduce(k2, list(v2))→ list(k3, v3)

Between these two main phases, the system sorts the key-value pairs by key, and groups

together values with the same key. This two-step processing structure is presented in

Figure 4.1. Users create their own applications through a “map” function which specifies

per-record computations, and a “reduce” function which specifies the aggregation of map

computations: both operate in parallel on key-value pairs which represent the input of the

problem. The mapper is applied to every input key-value pair to generate an arbitrary

number of intermediate key-value pairs. The reducer is then applied to all values associated

with the same intermediate key to generate an arbitrary number of final key-value pairs as

output.

As an example of the MapReduce programming model, consider the problem of counting

the number of occurrences of each word in a large collection of documents (several Gigabytes

or even Terabytes of data). The user would write code like the following pseudocode

(Algorithm 2):

Algorithm 2 WordCount Procedure

1: function Map(String key, String value)
2: // key : document name
3: // value: document contents
4: for word ∈ value do
5: EmitIntermediate(word, 1)
6: end for
7: end function

8: function Reduce(String key, Iterator values)
9: // values: a list of counts

10: int result = 0
11: for v ∈ values do
12: result+ = v
13: end for
14: Emit(result)
15: end function
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The map function emits each word plus an associated count of occurrences (just 1 in this

simple example). The reduce function sums together all counts emitted for a particular word.

Other few simple examples of interesting programs that can be easily expressed as

MapReduce computations are for instance:

• Distributed Grep. The map function takes as input lines of text and emits a line

whether it matches a supplied pattern. The reduce phase is just an identity function:

the reducers just copy the supplied intermediate text lines to the output.

• Count of URL Access Frequency. A mappers takes as input a set of logs of web page

requests and outputs 〈URL, 1〉 foreach processed URL. The reduce function adds

together all values for the same URL and emits the pair 〈URL, totalcount〉.

• Reverse Web-Link Graph. The map function parses a web page source and outputs a

〈target, source〉 pair for each link to a target URL. The reduce function concatenates

the list of all source URLs associated with a given target URL and emits the pair:

〈target, list(source)〉.

• Inverted Index. The map function emits a set of 〈word, documentID〉 pairs, found

in a document. The reduce function takes as input all pairs for a given word, sorts

the corresponding document IDs and emits the pair 〈word, list(documentID)〉. The

set of all output pairs forms a simple inverted index. It is also possible to modify a

little this computation to keep track of word positions. For instance the map function

could emit 〈word, (documentID, offset)〉, and the reduce function can thus emit the

pair 〈word, list(documentID, offset)〉.

The Map invocations are distributed across multiple machines by automatically parti-

tioning the input data. into a set of M splits. The input splits can be processed in parallel

by different machines. Reduce invocations are distributed by partitioning the intermediate

key space into R pieces using a partitioning function:

hash(key) mod R

The number of partitions (R) and the partitioning function are specified by the user. Figure

4.2 shows the overall flow of a MapReduce job in its original implementation, as introduced

in [46]. When the user program launches a MapReduce job, the sequence of actions reported
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<1,a> <2, b> <3, c> <4, d> <5, e>

mapper mapper mapper

<F, f> <F, g> <H, h> <F, i> <H, l> <F, j>

partitioner partitioner partitioner

Aggregate intermediate value by key

reducer reducer

<F, list(f, g, i, j)> <H, list(h, l)>

<L, h><I, g> <I, i>

Figure 4.1: The MapReduce model: the keys are in bold.

below, take place (the numbered labels in Figure 4.2 correspond to numbers in the following

list):

1. The user program uses the MapReduce library to split the input files into M pieces of

typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via

optional parameters). Later on, it starts up different copies of the program among the

machines of the cluster.

2. Among those copies of the program, one is special and it is called “master”. Other

copies are workers that receive and perform tasks assigned assigned by the master.

There are M map tasks and R reduce tasks to assign. The master assigns them to idle

workers.

3. After a map task is assigned, a worker reads the contents of the corresponding input

split. It parses key/value pairs from the input data and foreach pair, invokes the

user-defined Map function. The intermediate key/value pairs produced by the Map

function are buffered in memory.

4. Intermediate key/value pairs are periodically written into local disks, partitioned into

R regions by means of the user-defined partitioning function. At the end of the Map

phase, the mappers communicates the locations of these buffered pairs to the master,

which is responsible for forwarding these locations to reducers.
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User program

Master node

worker node

worker node

worker node

worker node

worker node

split 0

split 1

split 2

split 3

split 4

output
file 0

output
file 1

(1) fork (1) fork
(1) fork

(2) assign
map (2) assign

reduce

(3) read (4) local write
(5) remote read

(6) write

Input files Map phase Intermediate files
(on local disks)

Reduce phase output files

Figure 4.2: MapReduce execution overview. Adapted from [46].

5. Notified reduce workers, use remote procedure calls to read the buffered data from the

local disks of the map workers. When all the intermediate data has been read by a

reduce worker, it is sorted it by the intermediate keys so that all values having the

same key are grouped together. The sorting phase is needed because typically many

different keys map to the same reduce task.

6. The reduce worker iterates over the sorted intermediate data and for each unique

intermediate key, it calls the user-defined Reduce function passing as input the key

and the corresponding set of intermediate values. The output of the Reduce function

is written into a final output file for this reduce task.

7. After the end of all map tasks and reduce tasks, the master terminates its its job, by

waking up the user program. Thus, the execution flow comes back to the user code.

After successful completion, the output of the MapReduce execution is available in the R

output files (one per reduce task, with file names as specified by the user). Typically, users

do not need to combine these R output files into one file – they often pass these files as input
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to another MapReduce call, or use them from another distributed application that is able to

deal with input that is partitioned into multiple files.

Under the MapReduce programming model, a developer needs to provide implementations

of the mapper and reducer. On top of a distributed file system [64], The execution framework

handles transparently all non-functional aspects of execution on big clusters. It is responsible,

among other things, for scheduling (moving code to data), handling faults, and the large

distributed sorting and shuffling needed between the map and reduce phases since intermediate

key-value pairs must be grouped by key.

The “partitioner” is responsible for dividing up the intermediate key space and assigning

intermediate key-value pairs to reducers. The users specify the number of reducers/output

files that they desire (R). Data gets partitioned across these tasks using a partitioning

function on the intermediate key. The default partitioner computes a hash function on the

value of the key modulo the number of reducers (i.e. hash(key) mod R). This does not

guarantee good load balance because the distribution of values associated with the same key

may be highly skewed. In some cases, it might be useful to partition data by some other

function of the key. For example, sometimes the output keys are URLs, and we want all

entries for a single host to end up in the same output file. To support situations like this,

the user of the MapReduce library can provide a special partitioning function. For example,

using hash(Hostname(UrlKey)) mod R as the partitioning function causes all URLs from

the same host to end up in the same output file. Another example is graph construction:

sometimes we may want to group together intermediate values (graph nodes) ensuring that

nodes potentially related belong to the same partition, in order to merge equal nodes. Thus

we can use hash(getFeatures(NodeKey)) mod R, where getFeatures computes specific

features such that the equality of the evaluation of such a features is a necessary condition

for equality relationship among graph nodes.

As an optimization, MapReduce supports the use of “combiners”, which are similar to

reducers except that they operate on the output of single mappers. Combiners operate in

isolation on each node in the cluster after a mapper and cannot use partial results from other

nodes. They allow a programmer to aggregate partial results (i.e., intermediate key-value

pairs), thus reducing network traffic. In cases where an operation is both associative and

commutative, reducers can directly serve as combiners, although in general they are not

interchangeable. A good example of this is the WordCount previously introduced (Algorithm

2). Since word frequencies tend to follow a Zipf distribution [110], each map task will produce
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hundreds or thousands of records of the form 〈the, 1〉, 〈be, 1〉, 〈and, 1〉 and so forth. All of

these counts will be sorted and then sent over the network to a single reduce task which adds

together the values by the user defined reduce function to produce one number. A Combiner

function allows partial merging of this data before it is sent over the network. The Combiner

function is executed on each machine that performs a map task. Typically the same code is

used to implement both the combiner and the reduce functions. The only difference between

a reduce function and a combiner function is how the MapReduce library handles the output

of the function. The output of a reduce function is written to the final output file. The

output of a combiner function is written to an intermediate file that will be sent to a reduce

task. Partial combining significantly speeds up certain classes of MapReduce operations [46].

Input data can be supplied in several different formats, in fact the framework provides

different extendable readers. A very common input format is “text”. Text input reader

splits each line as a key/value pair: the key is the offset (in Bytes) in the file and the value is

the contents of the line. Another common supported format is “Sequence” input, for reading

particular binary file formats. Each input type implementation defines how to split files into

meaningful pieces for processing, for example, splitting in text mode ensures that input splits

occur only at line boundaries. Users can add support for a new input type by providing an

implementation of the reader interface, A reader can also provide data from different sources.

For example, it could be defined a reader that reads records from a database, or from data

structures mapped in memory. In a similar fashion, MapReduce supports a set of output

types for producing data in different formats by means of writers, and users can extend the

code to add support for new output types.

4.3 Symbolic State Space Exploration of RT Systems in

the Cloud

The growing availability of distributed and cloud computing frameworks makes it possible to

face complex computational problems in a more effective and convenient way. A notable

example is state-space exploration of discrete-event systems specified in a formal way. The

exponential complexity of this task is a major limitation to the usage of consolidated

analysis techniques and tools. Several techniques for addressing the state space explosion

problem within this context have been studied in the literature. One of these is to use

distributed memory and computation to deal with the state space explosion problem. In this
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section we study and compare two different approaches, relying on distributed and cloud

frameworks, respectively. These approaches were designed and implemented following the

same computational schema, a sort of map & fold. They are applied on symbolic state-

space exploration of real-time systems specified by Time-Basic Petri Nets, by re-adapting a

sequential algorithm implemented as a Java tool. The outcome of several tests performed

on a benchmarking specification are presented, thus showing the convenience of distributed

approaches.

4.3.1 Sequential and Parallel algorithms

The TRG construction has been automated by means of a Java tool called Graphgen,

introduced in section 3.2.6. The corresponding algorithm follows a very simple sequential

schema described by the Algorithm 3.

The remaining list contains the reachable nodes of the graph not yet examined, i.e., the

expansion front of the graph. The graph builder takes one node at a time from the expansion

front and executes two main phases that we call Map and Fold. These operations derive

from a well known programming model in which a Map instance takes as input a sequence

of values and computes a given function for each value. Then, a Fold instance combines in

some way the elements of the sequence using an associative binary operation.

In the TRG builder, the Map generates the successors of a node, the Fold combines them

with the already existing nodes by identifying possible inclusion relationships. Whenever

the Fold phase identifies a relation between a new node a (just computed by the Map) and

an old node a′ (already expanded), different operations must be performed on the adjacent

edges depending on the relation between a and a′.

• If a ⊆ a′, the incoming edges of a are redirected to a′. The outgoing edges are not yet

calculated

• If a ⊃ a′, the incoming edges of a′ are redirected to a and the outgoing edges of a′ are

removed.

At the end of the Fold phase the nodes computed by the Map which are not included in

any old nodes, are placed into the remaining list. The Map phase and the Fold phase are

repeated until the expansion front becomes empty.
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Algorithm 3 Graphgen(a0)

Require: The root state a0.
Ensure: The state space 〈A,E, a0〉 of the model.

1: Stack remaining
2: Set A,E,N
3: t ::= EQUALS | INCLUDES | INCLUDED | NONE

4: Push(remaining, a0)
5: Add(A, a0)
6: while remaining 6= ∅ do
7: s = Pop(remaining)
8: N = ReachableStatesFrom(s)
9: for n ∈ N do

10: Add(E, 〈s, n〉)
11: for o ∈ A do
12: t = IdentifyRelationship(n, o)
13: if t == EQUALS ∨ t == INCLUDED then
14: Replace(E, 〈s, n〉, 〈s, o〉)
15: else if t == INCLUDES then
16: Remove(A, o)
17: Add(A,n)
18: Push(remaining, n)
19: Replace(E, 〈∗, o〉, 〈∗, n〉)
20: Remove(E, 〈o, ∗〉)
21: else if t == NONE then
22: Add(A,n)
23: Push(remaining, n)
24: end if
25: end for
26: end for
27: end while

Note that while discussing the sequential algorithm we never referred explicitly to the

TB net formalism. In fact, by specializing the Map and the Fold concepts we could exploit it

for computing the state space of models expressed by other formalisms.

Since the sequential TRG builder execution takes several hours on a single commodity

hardware machine, even for relatively small examples (e.g. the Gas Burner analysis introduced

in section 3.2), we identified independent computational sequences in order to be able to

deploy the TRG builder algorithm on distributed environments. Considering the Map and

Fold phases as the building blocks of Graphgen, we could combine them in different ways,

obtaining different parallel versions of the sequential algorithm. For example, we can pack

together the two phases into a single block called worker, and then exploit different workers
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to implement a classical worker-based algorithm. Otherwise, if we consider the mappers and

the folders as different stand alone entities, we can conceive a Map-Reduce based algorithm.

These two different ways of organizing parallel computations are described below.

Workers model

This model parallelizes the processing of nodes in the expansion front. A set of independent

computational units (Workers, see Fig. 4.3) locally executes the Map and Fold phases. Each

Worker computes a portion of the final graph by examining a set of similar nodes. The

whole state space is partitioned among the Workers by applying to each reachable state a

the following function

h(a) = Hash(f(a)) mod n (4.3.1)

where n is the number of Workers, and f extracts some features from symbolic states ensuring

that f(a) = f(a′) is a necessary condition for a and a′ to be included into one another.

More precisely, in our implementations f is an easy to compute abstraction of M , called soft

marking. As discussed in section 4.4.3, different definitions of soft marking can be helpful to

achieve better load balancing of the workload among computational units.

The first definition we used disregards the identity of time-stamp symbols. Another

definition will be discussed in Section 4.4.3. Let |M(p)| be the number of tokens in the place

p. The soft marking of a state a is defined as:

f(a) = 〈|M(p1)|, ..., |M(pk)|〉 ∈ Nk (4.3.2)

where p1, ..., pk are the places of the TB net.

Thus, any two nodes possibly related by inclusion are assigned to the same Worker.

Therefore, each Worker is able to locally accomplish the fold operation. Then it sends the

mapped nodes for which it is not responsible to the appropriate peers. Fig. 4.3 shows the

overall architecture of this model: each Worker has its own remaining list, which contains

nodes not yet examined. The expansion front is now the overall union of all local remaining

lists.
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Figure 4.3: Workers model.

Mappers & Folders model

The second model specializes the Workers in Mappers and Folders (see Fig. 4.4). A Mapper

computational unit takes nodes from the expansion front, it maps them to their successors,

and assigns the map outcome to the proper Folders by means of the Hash function (4.3.1),

where n is the number of Folders; they in turn identify possible inclusion relationships, and

build partitions of the whole final graph.

C 0 C 1 C r-1

Folder
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Folder
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Folder 
r-1

partition
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partition
1

partition
r-1

...

...

...

remaining

Mapper 
0

Mapper 
m-1...

TRG

Figure 4.4: Mappers & Folders model.

It is worth noting that with respect to ordinary state-space exploration techniques, both

parallel models incur in additional overheads due to extra communication and synchronization,
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that may greatly affect speed-up. The main overheads are due to the frequent locking of the

data structure recording symbolic nodes (usually implemented by hash tables), and to the

load imbalance deriving from the asymmetric computations of Workers.

A conceptually global symbolic structure (the TRG) is partitioned among several compu-

tational units, according to the rule that each unit stores a set of nodes and the associated

incoming edges. This choice makes easier the distributed management of the TRG: the only

synchronization point occurs when an already expanded node (with outgoing edges) needs to

be erased, as it is absorbed by another (new) one. The required information are not locally

present because outgoing edges are stored in the target nodes, which are (usually) assigned

to other units.

To further minimize the communications between computational units, we perform a

delayed removal of pending edges (outgoing edges of removed nodes) at the end of the global

computation. For instance, the node a0 represented in Fig. 4.5 is included in a1. The

redirection of incoming edges (a2 → a0, a3 → a0) is locally performed because a0 and a1

belong to the same partition. The removal of outgoing edges (a0 → a4, a0 → a5) instead,

cannot be performed locally, being a4 and a5 outside the partition i.

Partition jPartition kPartition i

a0
a4

a5

... ...

a1

a3a2

Figure 4.5: Operations on edges during the Fold phase.

4.3.2 Distributed implementations

In order to be able to scale our application to a large number of computational units

we considered different distributed architectures. In particular we used two consolidated

frameworks: JavaSpaces [58] and Hadoop MapReduce [106]. This way we focused on

the functional aspects of the application, while leaving to the frameworks the management
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of fault tolerance and low-level communication. While the JavaSpaces implementation has

been designed to run on local networks, Map-Reduce has the possibility to be deployed “in

the cloud” to exploit the horizontal scaling : the dynamic allocation or releasing of resources

of the same type. This way, we could exploit a larger number of commodity hardware

machines to run massively parallel computations.

JavaSpaces Tool

JavaSpaces technology is a high-level tool for building distributed applications, and it can

also be used as a coordination tool. It has its roots in the Linda coordination language [63].

Departing from more traditional distributed models that rely on message passing or RMI,

the JavaSpaces model views a distributed application as a collection of processes that use

a persistent storage (one or more spaces) to store objects and to communicate. Processes

coordinate actions by exchanging objects through spaces by means of four primary operations:

• write(): Writes new objects into a space.

• take(): Retrieves objects from a space.

• read(): Makes a copy of objects in a space

• notify(): Notifies a specified object when entries that match the given template are

written into a space.

By using this framework we have implemented the first parallel model presented in

Section 4.3.1 (Fig. 4.3). Each remaining list is represented as a space where Worker

processes exchange states not yet examined. One coordinator process starts the overall

computation by producing the initial state, then it is kept waiting for the termination

of all Workers in order to merge the computed partition into the final TRG. The whole

architecture is presented in Fig. 4.6. Workers iterate Reduce and Map phases until their own

expansion fronts (stored in appropriate spaces) become empty. Worker i takes states from

the expansion front located on its own space, one at a time:

a = take(Spacei)

If the Reduce phase does not identify any inclusion relationships involving a, the set

{a′k}k=1..m of states reachable from a is computed. Workers responsible for their examination
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(and related spaces) are easily identified by means of the static hash function defined in

(4.3.1), thus the correct writes can be performed:

write(a′k, Spaceh(a′k)), k = 1...m

After the computation of each worker is completed, each single partition of the state space is

written into the coordinator’s space. Dashed arrows in Fig. 4.6 represent communications

between computing units. They have a different meaning, depending on their direction:

an arrow from a space s to a computation entity e means that e can perform read/take

operations on s. An arrow from e to s means that e can perform write operations on s.

Coordinator

TRG
Worker n-1Worker 1Worker 0

Map

partition
0

Merge

TRG

Space 
0

Space 
1

Space 
n-1

Reduce Map

partition
1

Reduce Map

partition
n-1

Reduce

Space 
n

...

...

Figure 4.6: Distributed JavaSpaces model.
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Hybrid Iterative Map-Reduce

This is a distributed implementation of the second parallel model presented in Section 4.3.1

(Fig. 4.4). In order to exploit this programming model we represent our data set as pairs

〈f(a), a〉, where a is a node of the symbolic TRG with associated incoming edges, f(a) is

the soft marking defined in (4.3.2).

We actually used an extended version of the original Map-Reduce model introduced

in [46]. With respect to such a model, Map-Reduce jobs are iterated until the expansion

front becomes empty. This is called “Iterative Map-Reduce” [51]. Each iteration maps all

nodes in the expansion front, then it reduces the new nodes by identifying possible inclusion

relationships. Note that the reduce phase requires all the TRG nodes in order to identify each

potential inclusion relationship between them. For this reason, the input of each iteration

is made up by a set of new nodes (the expansion front) and a set of old nodes (the TRG

portion till now computed).

A Map takes a pair 〈f(a), a〉 as input. If it corresponds to an old node it is just passed

to the reduce phase, without being processed. Otherwise, the set {〈f(a′), a′〉} of the states

directly reachable from a is computed, and it is passed to the reduce phase together with

〈f(a), a〉. After the map phase is concluded, an intermediate shuffle phase brings together

pairs with the same soft marking f(a) and it gives each group to a different Reduce. A

Reduce erases the values (states) that are shown to be included in any others, and it produces

in output a set of values forming a partition of the TRG.

The original Map-Reduce model also permits one to define a Combine function that

performs a sort of local reduce on each Map’s output, before the actual, distributed reduce

phase. A Combine runs on the same machine as the related Map and it tries to partially

aggregate intermediate data in order to improve the overall system performance. In our

application we have chosen to discard this optimization because in TB nets context it is very

unlikely that symbolic states generated by the same parent share the soft marking [14]. A

combine phase before the reduce phase could even affect the application performances. By

the way, using other formalisms this observation might be no more valid, and the Combine

phase could reveal helpful.

Since the Map-Reduce model is not the best choice for elaborating a relatively small

input, we introduced the possibility of dynamically changing the computational model,

depending on the size of analyzed data set. Since the expansion front varies considerably

during the TRG construction, it is convenient using a sequential model on a single machine
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as long as it remains below a given threshold T . When the expansion front exceeds T ,

an Iterative Map-Reduce model on a large cluster of machines is employed. We call this

approach, sketched in Fig. 4.7, Hybrid Iterative Map-Reduce (himapred in Table 4.1). A

hysteresis (H) is programmed, in order to react with some delay in front of possible swings

of the expansion front within T .

runMapReduce( )

while ( | N | > 0) {

if ( | N | > threshold )

else

runLocalBuilder( )

sequential builder

} // end while
iteration output

Iterations

Map( )

Reduce( )

Figure 4.7: Hybrid Iterative Map-Reduce model.

Fig. 4.8 shows the expansion front of the Gas Burner analysis over time. The trend

line clearly shows how the execution time of a single Map-Reduce iteration depends on

the TRG size, denoted as |TRG|. Since a Map processes single sates, its execution time

is independent from |TRG| and in many cases it may be neglected. Conversely, a Reduce

works on a partition of the TRG (checking relationships between any pairs of nodes), thus

its complexity is O(|TRG|2). The worst case occurs when all nodes in the TRG have the

same feature f(a): in that case a single Reduce has to process the whole graph. Although

the worst case is very unlikely, a common situation is the presence of large clusters of nodes

that share the same key f(a). This leads to a computational load imbalance among the

reducers often resulting in a significant degradation of performances.
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Figure 4.8: Expansion front over time.

4.3.3 Evaluation

The sequential builder produces a graph with 14563 nodes for the Gas Burner example

(versus 23635 symbolic states generated during computation), and takes about 7.5 hours

on a notebook with a 2.4Ghz Intel Core 2 Duo processor and 4GB of RAM (the operating

system is Ubuntu 10.10 and the JVM is OpenJDK IcedTea6 1.9.5). This section adopts

the Gas Burner example as a well known benchmark.

Testing activities on the JavaSpaces tool have been performed on a local network (33

computers over a 100Mb Ethernet LAN). Preliminary experiments in this setting show

that although performances are much better than the single-thread program on the same

environment (the execution time is reduced by a factor ∼ 7), there is a major bottleneck

preventing further improvements: the state space partitioning among the Workers set is not

uniform. This means that some computation units are much more loaded than others, which

remain idle for most of the time. In order to alleviate this problem, we conceived a different
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Table 4.1: TRG Building Experiments Report

architecture # CPUs tool version compute model T H f exec. time

2.4Ghz Intel Core 2 Duo, 2GB RAM 1×2 cores sequential local (single machine) - - (4.3.2) ∼7.5 hrs
3Ghz Intel Pentium 4, 2GB RAM 33×1 cores JavaSpaces local (distributed) - - (4.3.2) 1h55m40s
3Ghz Intel Pentium 4, 2GB RAM 33×1 cores JavaSpaces local (distributed) - - (4.3.4) 1h2m0s

m2.2xlarge, 13 EC2 [5] 3×4 cores himapred cloud 200 50 (4.3.2) 1h35m33s
m1.xlarge, 8 EC2 [5] 8×4 cores himapred cloud 200 50 (4.3.2) 1h43m19s

m2.2xlarge, 13 EC2 [5] 8×4 cores himapred cloud 200 50 (4.3.2) 1h0m0s
m2.2xlarge, 13 EC2 [5] 8×4 cores himapred cloud 200 50 (4.3.4) 39m33s

partitioning policy that allows for a higher degree of parallelism. We used the function

defined in (4.3.1) with a different f , called discriminant soft marking. Let dm be a function:

dm : P → N2, dm(p) = 〈i, j〉 (4.3.3)

where p is a place of the analyzed TB net, j is the number of anonymous time-stamps in p,

and i is the number of other time-stamps in p. The discriminant soft marking of a is now

defined as:

f(a) = 〈dm(p1), ..., dm(pk)〉 ∈ N2k (4.3.4)

This new definition comes from the observation that, even if two states have the same soft

marking (4.3.2), they cannot be included into one another if the distribution of anonymous

time-stamps in the corresponding markings is different.

Fig. 4.9 shows the state space partitioning among 32 Worker processes using the two

different partitioning policies. The execution time with this new setting is ∼ 14 times faster

of the sequential one in the same environment.

The last Map-Reduce tool has been deployed “in the cloud” by means of the Amazon

Elastic MapReduce web service [5] that employs the Amazon Elastic Compute Cloud (EC2)

infrastructure. Table 4.1 summarizes the outcomes of the Gas Burner analysis carried out

using different distributed frameworks with varying configurations. The results point out the

different factors that contribute to improve the performances of our distributed applications:

the computational model, the number of computational units, the hardware of each cluster

machine, and the partitioning policy. In particular the latter one turns out to be a key factor

for the possibility of conveniently scaling the available computation resources.

Because Amazon EC2 is built on commodity hardware, over time there may be several

different types of physical hardware underlying EC2 instances. However, the amount of
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Figure 4.9: State space partitioning among 32 Workers.

CPU that is allocated to a particular instance is expressed in terms of EC2 Compute

Units: One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor. So, there are evident troubles in managing the consistency

and the predictability of the performance of an EC2 Compute Unit, and there are also

difficulties in understand the overheads introduced by the cloud environment. Thus, is

quite difficult to diagnose performance problem in our MapReduce based implementation.

Anyway, we obtained the minimum execution time by running this implementation in the

cloud over 8 quad-core instances with the capacity of 13 EC2 compute units. But in this

case, the execution time is reduced only by a factor ∼ 5 (the execution time of the sequential

Graphgen tool on the same environment is 2h55m).

4.3.4 Summary

This section presented and discussed two approaches to face the state-space explosion

in discrete-event system analysis, based on exploitation of distributed/cloud computing

frameworks. These approaches have been experienced on a timed, symbolic reachability
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analysis of Time Basic (TB) Petri nets. The proposed implementations extend the sequential

builder of TB nets’ time reachability graph. Standing on a common basic computational

schema (a sort of Map & Fold), our approach is general enough to be made parametric to

different formalisms, by simply specializing the concepts of state, Map, Reduce, and “soft

marking” f . The outcomes of tests performed on a benchmarking RT model clearly show

how distributed implementations can be conveniently used to increase the performances of

the sequential builder. Although the parallel workers model has shown an higher speed-up

with our benchmarking example, the cloud environment can be conveniently used to exploit

a large cluster of machines which we may dnot have at our disposal locally. Moreover, in

the latter case, we don’t need any setup phase of our environment. In fact, concerning the

JavaSpaces based tool, we spent several hours setting up the execution environment, while

the Hadoop MapReduce based tool allowed the execution in a “push button” like mode,

exploiting cloud computing services.

Examples and binaries of the tools described in this section can be found at: http:

//camilli.di.unimi.it/graphgen/distributed_computing.html and http://camilli.

di.unimi.it/graphgen/cloud_computing.html.

4.4 Simplified Building of Reachability Graphs on Large

Clusters

Dealing with complex systems often requires to build of huge reachability graphs, thus

revealing all the challenges associated with big data access and management. Thus we

require high performance data processing tools that would allow scientists to build very large

data structures coming from these analyzed systems. In this section we present MaRDiGraS,

a generic framework aimed at simplifying the construction of very large state transition

systems on large clusters and cloud computing platforms. Through a simple programming

interface, it can be easily customized to different formalisms, for example Petri Nets, by either

adapting legacy tools or implementing brand new distributed reachability graph builders.

The outcome of several tests performed on benchmark specifications are presented.
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Figure 4.10: Class diagram of the MaRDiGraS framework.

4.4.1 MaRDiGraS

MaRDiGraS follows the Hybrid Iterative MapReduce model sketched in Figure 4.7. Compu-

tation starts by considering the initial state of the system under analysis and goes on with a

sequential state-space building phase until the set N of states not yet explored becomes large

enough: in other words there is a configurable threshold (in terms of number of states) below

which a (all-in-RAM) sequential approach is considered more efficient than the distributed

one. Once we go above the threshold, an iterative MapReduce algorithm runs over a cluster

of machines. We carried out several experiments to determine a good setting of the threshold.

Experimental evidences suggest that this parameter is strictly related to the number of new

nodes created at each iteration: this makes us confident in a possible run-time setting of the

threshold.
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The map step (computation of new states) and the reduce step (identification of equiva-

lence/inclusion relationships), iterate until |N | remains above the threshold. Between them,

the default partitioner splits the intermediate key set, ensuring that all possibly related

states belong to the same partition. This is done by using as intermediate keys a function

g such that if two states s1, s2 are related then g(s1) = g(s2). This way the partitioner

delivers all possibly related states to the same reducer. Whenever |N | goes back below

the threshold the output of all reducers is merged in order to proceed with the sequential

algorithm. This operation might cause a memory overflow in some cases, due to the huge size

of the state-space computed until that point (potentially many GB or TB). This is why the

user can choose not to switch to the sequential algorithm anymore, after the first exceeding

of the threshold. Once the set of unexplored states becomes empty, the entire-state space is

supplied as output either in a single file, or distributed over different files.

A simplified class diagram of the MaRDiGraS framework is sketched in figure 4.10.

The code base is made up by two main packages which split logically the framework into

two different parts: the data package and the core package. The data package contains

all entities concerning the data of our framework: the state space, with states and edges,

and the model. These entities must be extended in order to be customized to a specific

formalism: for example, in the case of time PN extensions, one may want to attach specific

meta-data to nodes and edges holding timing properties. The core package contains all

the algorithms of the framework. They implement, together with the user defined building

blocks, the Hybrid Iterative MapReduce model.

The data package contains the Model, the State and the Edge entities.

Model The Model is an interface which should be implemented by the class representing

the model under analysis. It contains two methods which must be implemented in order to

correctly interpret the user input model and to build the root state of the reachability graph.

• void buildFromFile(InputStream in)

the framework invokes this method to get the internal representation of the model

under analysis from the specified file (e.g., XML based representation of the model like

PNML format [99]).

• State buildRoot()

this method results in the root state of the system under analysis, given the internal

representation of the model; it is invoked by the framework, to initialize the computation
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of the entire state space. It returns a State object, which is an abstract class extended

by the actual implementation of the state concept.

State The State is an abstract class which should be extended to instatiate the state

concept in a particular formalism. The user can also add properties to this entity, other

than the standard ones supplied by the framework: an identifier and a list of incoming edges.

The framework largely uses and manipulates these objects during the computation through

a few user-implemented methods.

• List<State> createSuccessors()

This method returns a list of new State objects representing the states directly

reachable from the subject of the call. The framework supplies some relevant information

that could be used within the implementation of this method: a unique identifier,

which the user could assign to newly created states in order to assign them a unique

name; and the representation of the model, needed to compute the successors from the

current state, respectively. MaRDiGraS calls this method during the “map” phase in

order to compute all new reachable states from the unexplored ones.

• Relationship identifyRelationship(State s)

This method evaluates the actual relationship between (abstract) states sharing some

specific features. Possible returned values are: NONE, EQUALS, INCLUDED, INCLUDES.

It is invoked during the “reduce” phase. Depending on the returned value, the

framework discards from the state space those states evaluated included or equal

to other ones, modifying all incoming edges of the remaining state, as explained in

Section 4.3.

• String getFeatures()

This method provides some state features so that the equality of these features must be

a necessary condition for equivalence/inclusion relationships between states. MaRDi-

GraS uses this method to compute the key of each intermediate key-value pair. This

way the default partitioner assigns all possibly related states to the same reducer.

Whenever the equality of computed state features is also a sufficient condition for state

equivalence, one should more conveniently use an optimized version of the reducer

called SimpleReducer.
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Edge The Edge is an abstract class which should be extended to represent the edge concept.

The extending class should implement all the properties that the user want to attach to

edges.

• void addLabel(State source, State target)

MaRDiGraS invokes this method to initialize an edge between two states. During

this stage, we can change the default edge type (EE type), and we can attach additional

information to the edge, in order to supply the label concept.

The main components of the core package work together with the user supplied build-

ing blocks to implement the Hybrid Iterative MapReduce schema described above. The

GenericMapper component is in charge of creating new reachable states from unexplored

ones; the GenericReducer and the optimized version SimpleReducer are in charge of iden-

tifying relationships between states; the GenericGraphgen, manages the entire computation,

in particular by deciding when the computational model should be switched from the se-

quential one to the distributed one, and vice versa. The user supplies all the building blocks

by initializing a GenericGraphgen object with the following parameters: the Class which

extends the State, the Class which extends the Edge, and the Class which implements the

Model interface.

SimpleReducer The reduce phase can be performed in two different ways: the standard

reducer works by evaluating the user-supplied identifyRelationship method for each pair

of states potentially related. This is a very expensive task and it must be done whenever

the actual relationship between two states is unknown, because we supplied a necessary

condition, but not sufficient for evaluating the relationship between states. But, if the

implementation of the getFeatures method gives also a sufficient condition for evaluating

state equivalence, the framework already knows that all states sharing a key are equal. In

that case SimpleReducer should be used, which performs the reduce phase much more

efficiently: it simply returns one among the input states, redirecting all incoming edges of

the others into that state.

It is worth noting that no particular knowledge on MapReduce and the Hadoop framework

is required in order to use MaRDiGraS. The user only cares about the functional aspects of

the application, leaving to the framework the management of all other aspects of execution

on big clusters. A tool based on MaRDiGraS will produce a set of binary files containing
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the representation of the state transition system computed from the user’s model. The

input file format is chosen by the user. In fact, the user implements also the buildFromFile

method that is in charge to translate the user supplied file into a Model instance. The output

could be used in turn to extract the knowledge from the analyzed systems: for example to

model-check it or to verify particular structural properties on the graph.

The MaRDiGraS framework can be found at http://camilli.di.unimi.it/mardigras

together with the API description, installation instructions and a working application.

4.4.2 Use Cases

Time Basic PNs As extensively discussed in chapter 3, a classical application area

of state-space exploration is the validation of Real-Time systems, that require intensive

verification before deployment. Time-Basic (TB) nets [66] (introduced in section 2.2) belong

to the category of PNs in which time dependencies are expressed as numerical intervals

associated to each transition, denoting the possible firing instants since enabling. Tokens

atomically produced by a firing are thereby associated to time-stamps in a given domain

(e.g., R+). Transition interval bounds are functions of time-stamps in transition presets

and each transitions may be assigned either a weak or a strong semantics. In order to

exploit MaRDiGraS to compute the associated abstract state transition system (called

TRG) [14], we have extended State, Edge, and Model classes. In particular, TRG states

are defined as pairs 〈M,C〉, where M is an association between places and a multi-set of

symbols denoting time-stamps, C is a predicate formed by linear inequalities involving

such symbols. Labels on edges include the firing transition and the minimum-maximum

firing times. Once created all data structure, the application logic has been supplied to the

framework by implementing the abstract methods described above. The createSuccessors

individuates all transition instances enabled in the current TRG state, and for each of those

computes a new reachable state; identifyRelationship figures out the actual relationship

between given states, according to the following sufficient condition for a ⊆ a′: M = M ′ and

C ∧ ¬C ′ ≡ false. Depending on the actual computed relationship, the framework modifies

the incoming edges’ type (either EE, AA, AE or EA). The getFeatures method just

returns the topological part (M) of a TRG state.

P/T Nets In order to prove the effectiveness of using MaRDiGraSto improve legacy

tools, we adapted an existing P/T nets tool: PIPE [48], an open source Java tool (∼82400
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lines of code) 1. PIPE supports the design and analysis of P/T nets with priorities, and

their stochastic extension (GSPN). In particular a module is in charge of computing the

reachability graph (without any particular smart technique such as decision diagrams, use of

structural information, partial order techniques, etc.). For this reason, in such a situation,

the memory consumption and the execution time become heavy even during the analysis of

relatively small models. In order to exploit the MaRDiGraS framework to overcome these

troubles, we first simply identified all those parts of PIPE representing our needed building

blocks described in section 4.4.1. Then we encapsulated these blocks with proper adapter

classes. To adapt the sequential algorithm of PIPE into a distributed one, we just needed 290

lines of code: a very small number also if compared with the dimension of the effectively used

PIPE modules (∼6500 lines of code). In this particular implementation, States correspond

to reachable markings, Edges are of the type AA and they carry on information about firing

transitions. The createSuccessors method simply identifies all reachable states from a

given one, by making all enabled transitions fire. The getFeatures method just returns a

compact representation of the actual marking of the State, and because the equality of the

marking is a necessary and sufficient condition for equality between states, the application

can exploits the SimpleReducer version.

Well-formed Nets Well-formed Nets (WN) [39] are a power-retaining version of Colored

Petri nets characterized by a structured syntax that permits the construction of a quotient

graph, called Symbolic Reachability Graph (SRG). The SRG relies on the notion of Symbolic

Marking (SM). SMs provide a syntactical equivalence relation on the set of concrete mark-

ings. They are formally expressed using dynamic subclasses instead of colors, representing

parametric partitions of static subclasses in which WN color classes are in turn partitioned.

The SRG is directly built from a given SM, through a symbolic firing rule. By using the

canonical representation of a SM, the equivalence between SMs boils down to the syntactical

identity. In order to exploit the MapReduce based framework for the SRG construction we

first need a SymbolicMarking extension of State, in which createSuccessors (according

to the symbolic firing rule) simply returns the list of successor SMs of the current SM, in

a non-canonical form. Each SRG edge is by construction of kind AA. The getFeatures

method should return the canonical representation of the current SM. In such a case the

reduce phase is similar to the P/T nets case, thus we can exploit the SimpleReducer to

1The source code of PIPE is available at http://pipe2.sourceforge.net/
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Table 4.2: MaRDiGraSExperiments report

model # machines machine-type # states # reducers threshold time (m)

gas-burner 4 m2.2xlarge 14563 16 200 95
gas-burner 8 m2.2xlarge 14563 32 200 39

shared-memory 2 m2.2xlarge 1.831× 106 2 1000 325
shared-memory 4 m2.2xlarge 1.831× 106 4 1000 163
shared-memory 8 m2.2xlarge 1.831× 106 4 1000 100
shared-memory 16 m2.2xlarge 1.831× 106 4 1000 74

simple-lbs 20 m2.2xlarge 4.060× 108 40 1000 530

fold the incoming lists of equivalent SMs. A possible adaptation of modules of GreatSPN

package [38] (written in C), that natively supports the analysis of WN models, is currently

under investigation.

4.4.3 Evaluation

The experiments described in this section are executed using the Amazon Elastic MapReduce

[5] on the Amazon Web Service cloud infrastructure and are partially supported by “AWS in

Education Grant award” [6].

Gas Burner The Gas Burner [14], previously introduced in this thesis, is a benchmark

real-time system model specified with a TB Petri net. We specialized MaRDiGraS to obtain

the same MapReduce based distributed application introduced in section 4.3. We obtained

substantially the same results during the analysis of this example, thus the MaRDiGraS

layer does not introduce additional complexity during computation which negatively affects

performance. The MaRDiGraS based tool, executed on the input model, generates a

graph with 14563 nodes (23635 states are generated during computation) and it takes only

39 minutes, over 8 m2.2xlarge machines. Despite the generated graph is quite small, the

execution time is 80% faster than the sequential approach running on the same environment

(2 hours and 55 minutes). It is worth noting that with this formalism we choose to implement

a getFeature function that returns a necessary but not sufficient condition for the inclusion

relationships between states, thus since we cannot exploit the SimpleReducer, the reduce

phase becomes very expensive. For this reason, we gain substantial benefits by increasing

the number of reducers, as shown in table 4.3.

Shared Memory This model, introduced in section A.2, is taken from the GreatSPN

benchmarks [37, 85]. This P/T net models a system composed of 10 processors competing
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for the access to a shared memory using a unique shared bus. The PIPE tool fails after

more than 20 hours of computation on a m2.2xlarge due to an out of memory error (Garbage

Collector overhead limit exceeded). In such a situation the benefits deriving from using the

adapted tool, as shown in table 4.3, are clear. As we can see, the construction is scalable

even for this relatively small state space.

Simple Load Balancing This P/T net, introduced in section A.4, represents a simple

load balancing system composed of 10 clients, 2 servers, and between these, a load balancer

process. In order to analyze this model, we implemented the building blocks of MaRDiGraS

from scratch, to overcome some inefficiencies introduced by PIPE.

As shown in table 4.3, the reachability graph generated is very large: 4.060×108 states and

3.051×109 arcs for a total size of 120 GB of data. Thus this computation goes clearly beyond

the capacity of a single machine. Fig. 4.11 shows the state space dimension over different

MaRDiGraS iterations. As we can see, it explodes very quickly, but the computation slows

at the end because the number of new states foreach iteration becomes very small. This

condition could be tackled for example by considering different optimizations coming from

the big data community: In particular we are evaluating the possibility of splitting old and

new states into different files, and applying the schimmy pattern [94]. This would allow to

highly decrease the time required by the last iterations.

4.4.4 Related Work

As described in section 4.1, Several works, in the literature, describe tools and techniques

for generating the state space associated to discrete-event systems in a parallel/distributed

fashion [36, 41, 42, 88, 25]. However, most of these works are related to a specific formalism,

and they do not consider new emerging distributed solutions. Moreover, we considered

another important aspect: we wanted to completely remove the costs of deploying our

framework into an end-to-end solution, for this reason we developed our software on top of

the consolidated Hadoop MapReduce framework. Works presented in [93, 51] describe

large-scale graph processing application reformulated in terms of MapReduce programming

model, but unfortunately, this large class of graph algorithms doesn’t fit well with the state

explosion problem in large-scale graph building, which remains rather unexplored. As a

common point, both iterate a number of times, using graph states from the previous iteration

as input to the next one, until some stopping criterion is met. Thus both use an Iterative
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Figure 4.11: Reachability graph computation of the simple-lbs model.

February 13, 2015



4.4. Simplified Building of Reachability Graphs on Large Clusters 92

MapReduce approach [51, 17]. But there are also significant differences: first of all, we have

to deal with large graph building, not with large graph processing. Second, the input of

each iteration is different: in graph processing, it is the internal status of all nodes of the

graph; in graph building, it is a portion of the final graph. As a direct consequence, in the

latter case, the input dimension greatly varies at each iteration making a standard iterative

MapReduce approach ineffective. The input, in graph building, is also partitioned into two

different classes of states: “explored states” and “unexplored states” and Mappers must act

differently depending on the membership class. Moreover, some key points of graph building

algorithms depend on the specific adopted formalisms, thus they must become user defined

parameters.

Concerning the formalism independence aspect, some effort has been already shown

in few other works. [49] introduces a library that supplies some building blocks which

can be combined or replaced at will by users to perform LTL model checking by means

of a transition-based generalized Büchi automata approach. It should be noted that the

state space generation has been left out of the library, as it is expected to be carried out

by third party tools. Thus such a library may be used to build a software tool able to

check LTL formulas on state spaces constructed using the MaRDiGraS framework. [73]

introduces instead a library to solve reachability problems in a distributed fashion. Similarly

to MaRDiGraS it proposes a generic environment dedicated to distribution of any type

of state space construction. Anyway it does not support the verification of reachability

problems upon abstract state space structures having different relationships among classes

of infinite states (introduced in section 2.3). Moreover, the proposed approach does not

exploit big data approaches but were designed to run upon distributed local environment or

multi-core machines. Experiments shows that, using 22 machines equipped with a dual Xeon

hyper-threaded at 2.8GHz processor and 2GB of RAM, more than 40 hours were needed

to construct a state spaces sized with a 107 order of magnitude. As shown in section 4.4.3,

this is far higher with respect to the time required by a MaRDiGraS based software tool

running on a similar environment to deal with larger state spaces.

4.4.5 Summary

This section introduced MaRDiGraS: a generic framework which can easily adapted for

tackling the state explosion problem within the computation of the reachability graph

associated to different formalisms. This framework exploits techniques typically used by the
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big data community and so far poorly explored for this kind of issues. Thanks to its very

simple programming interface, it provides a powerful tool for constructing high-performance

distributed applications without the need to deal with the complex communication and

synchronization issues required for exploiting a computation distributed on large clusters.

Our experiments report that MaRDiGraS can be used effectively to compute state spaces

sized with different orders of magnitude. We believe that this work could be a first step

towards a meeting between two very different, but related communities: the “formal methods”

community and the “big data” community. Exposing this issue to scientists with different

backgrounds could stimulate the development of new interesting and more efficient solutions.

We believe MaRDiGraS, thanks to its very simple programming interface, provides a

powerful tool for constructing distributed applications: indeed it was easy to use it for

implementing a distributed version of an existing sequential tool (PIPE) that was able to

analyze a model beyond the capacity of a single machine. MaRDiGraS is flexible enough

to be used with rather different formal models.

It is worth noting that this framework can be exploited as a basic component of a generic

library for distributed model checking. In particular we developed a software tool which

exploits the MaRDiGraS computed graphs by applying iterative map-reduce algorithms

based on fixed point characterizations of the basic temporal operators of CTL (Computation

Tree Logic). This software tool is described in the next section.

Anyway, several questions remains open and require further investigation: for example,

could a dynamic programming approach help in choosing partitions and/or thresholds? How

the proposed computational model can be optimized when the number of new states gets

very small? Are there classes of formalisms for which this approach cannot be used? And

how can we adapt it to these classes?

4.5 CTL Model Checking Using MapReduce

In this section we continue the exploration of big data approaches to formal verification.

Given a very large state space, we are now interested in extracting the knowledge from

these very large data structures in order to verify specific properties on the analyzed models.

In particular we introduce a framework to ease the adoption of a distributed approach to

verification of Computation Tree Logic (CTL) formulas on very large state spaces. The

approach exploits/integrates the parametric state-space builder MaRDiGras (section 4.4).
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The whole framework adopts MapReduce as core computational model, and can be tailored

to different modeling formalisms. The outcomes of several tests performed on (Petri-nets

based) benchmark specifications are presented, thus showing the convenience of the proposed

approach.

4.5.1 Computation Tree Logic

CTL [44] is a branching-time logic which models time evolution as a tree-like structure where

each moment can evolve in several different possible ways. In CTL each basic temporal

operator (X, F , G) must be immediately preceded by a path quantifier (either A or E). If

AP is the set of atomic propositions, and p ∈ AP , CTL formulas are inductively defined as

follows:

φ ::= p | ¬φ | φ ∨ φ | Aψ | Eψ (state formulas)

ψ ::= Xφ | Fφ | Gφ | φUψ (path formulas)

The universal path operator (A) and the existential path operator (E) express that a

property is valid for all paths and for some paths, respectively. The temporal operators

next (X) and until (U) express that a property is valid in the next state, and until another

property becomes valid, respectively; moreover the operators finally (F ) expresses that a

property becomes eventually valid in a future state and globally (G) expresses that a property

is valid along the entire subsequent path. The interpretation of a CTL formula is defined

over a Kripke structure, (i.e, a state transition system). A Kripke structure is made up by

a finite set of states, a set of transitions (i.e., a relation over the states), and a labelling

function which assigns each state the set of atomic propositions that are true in that state.

Such a model describes the system at any instant corresponding to a state; the transition

relation describes how the system evolves from a state to another in a single time step.

Definition 4.5.1 (Kripke structure) A Kripke structure T is a tuple 〈S, S0, R, L〉, where:

1. S is a finite set of states.

2. S0 is the set of initial states.

3. R ⊆ S × S is a total transition relation, that is: ∀s ∈ S ∃s′ ∈ S s.t. (s, s′) ∈ R
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4. L : S → 2AP labels each state with the set of atomic propositions that hold in that

state.

The totality in the third point imposes the seriality of the transition relation. This means

that the system cannot have deadlock states. In case of deadlocks, this condition can be

always ensured by adding an “error” livelock state (with one outgoing transition directed to

the state itself).

A path σ in T from a state s0 is a infinite sequence of states σ = s0s1s2 . . . where

∀i ≥ 0, (si, si+1) ∈ R.

Definition 4.5.2 (Satisfiability) Given a CTL formula φ and a state transition system T

with s ∈ S, T satisfies φ in the state s (written as T |=s φ) if:

• T |=s p iff p ∈ L(s).

• T |=s ¬φ iff T 6|=s φ.

• T |=s φ ∧ ψ iff (T |=s φ ∧ T |=s ψ).

• T |=s φ ∨ ψ iff (T |=s φ ∨ T |=s ψ).

• T |=s EXφ iff ∃t s.t. R(s, t) ∧ T |=t φ.

• T |=s EGφ iff ∃ a path s0s1s2 . . . s.t.: ∀i ≥ 0, T |=si φ.

• T |=s E[φUψ] iff ∃ a path s0s1s2 . . . s.t.:

∃i ≥ 0, (T |=si ψ) ∧ (T |=sj φ ∀j < i).

We can also write T |= φ which means that T satisfies φ in all the initial states of the

system.

It can be shown that any CTL formula can be written in terms of ¬,∨, EX,EG, and

E[φUψ], for example AXφ is ¬EX¬φ, EFφ is E[True U φ], and so forth. The possible

combinations are only eight: AX,EX,AF,EF,AG,EG,AU,EU .

The semantics of some widely used CTL operators is exemplified in Figure 4.12.

Definition 4.5.3 (Model Checking) Let T be a Kripke structure and let φ be a CTL

formula. The model checking problem is to find all the states s ∈ S such that T |=s φ.
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Figure 4.12: (a) T |=s AFφ; (b) T |=s EFφ; (c) T |=s EGφ; (d) T |=s E[φUψ]

4.5.2 Fixed-Point Algorithms

One of the existing model-checking algorithms is based on fixed-point characterizations of

the basic temporal operators of CTL [43] (similar ideas can be used for model checking

Linear Temporal Logic). Let T = 〈S, S0, R, L〉 be a Kripke structure. The set P(S) of all

subsets of S forms a lattice under the ordering by set inclusion. For convenience, we identify

each state formula with the set of states in which it is true. For example, we identify the

formula false with the empty set of states, and we identify the formula true with S (the set

of all states). Each element of P(S) can be viewed both as a set of states and as a state

formula (a predicate). Formally, given a CTL formula φ we can define:

[[φ]]T := {s ∈ S : T |=s φ}

This way, we can associate set operators to boolean connectors:

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]], [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]], [[¬φ]] = S \ [[φ]]

The set of states identified by the temporal operator EX, can be defined trivially if we

consider the preimage with respect to the relation R.

Given W ∈ P(S):

R−(W ) := {s ∈ S : ∃s′(R(s, s′) ∧ s′ ∈W )}

[[EXφ]]T = R−([[φ]]T ) (4.5.1)

Let’s now consider a function τ : P(S)→ P(S) called predicate transformer.

February 13, 2015



4.5. CTL Model Checking Using MapReduce 97

Definition 4.5.4 (Fixed-Point) We say that a state formula X is the least fixed-point µX

(or respectively the greatest fixed-point νX) of a predicate transformer τ iff (1) X = τ(X),

and (2) for all state formulas X ′, if X ′ = τ(X ′), then X ⊆ X ′ (respectively X ⊇ X ′).

Definition 4.5.5 (Monotonic Predicate Transformer) A predicate transformer τ is

monotonic iff for all X,X ′ ∈ P(S), X ⊆ X ′ implies τ(X) ⊆ τ(X ′).

A monotonic predicate transformer on P(S) always has a least fixed-point and a greatest

fixed-point (by Tarski’s Fixed-Point Theorem [105]). The temporal operators EG and EU

can each be characterized respectively as the greatest and the least fixed-point of two different

monotonic predicate transformers:

[[EGφ]]T = νX([[φ]]T ∩R−(X)) (4.5.2)

[[E[φUψ]]]T = µX([[ψ]]T ∪ ([[φ]]T ∩R−(X))) (4.5.3)

We can calculate the least fixed-point of a monotonic predicate transformer: µX(τ(X))

as follows. We define X0 = ∅ and Xi = τ(Xi+1) for i ≥ 1. We first compute X1, then X2,

then X3, and so forth, until we find a k such that Xk = Xk−1. It can be proved that the Xk

computed in this manner is the least fixed-point of τ . To compute the greatest fixed-point,

we follow a similar procedure but starting by setting X0 as the whole S set. Pseudocode for

this procedure is shown by Algorithm 4.

Algorithm 4 Least Fixed-Point Procedure

1: function Lfp(τ)
2: X := ∅
3: while X 6= τ(X) do
4: X := τ(X)
5: end while
6: return X
7: end function

4.5.3 Distributed Algorithms

This section introduces our distributed approach that enables formal verification to exploit

distributed and cloud computing facilities. The distributed algorithms compute formulas of

type EX, EG, and E[φUψ] since any other CTL formula can be reformulated in terms of

these three basic operators. Algorithms described in this section were implemented on top
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of the Hadoop MapReduce framework [106]. The proofs of correctness of the algorithms

are reported in appendix B.

Distributed State Space Generation

The idea underlying a distributed algorithm for state space exploration is that of using multiple

computational units to explore different parts of the whole state space in parallel. This task

is typically performed by using Workers-based algorithms [88]: states are partitioned among

workers by means of a static hash function; workers explore successor states and assign them

to the proper computational units. Communication among different machines is usually

implemented through message passing. Since state space partitioning is a known critical

issue, different load balancing techniques and compact state representations [89, 60] were set

up.

Recent studies have also shown the convenience of exploiting big data approaches and

cloud computing facilities to accomplish this task. A framework (called MaRDiGraS) [18]

was recently developed to ease implementing distributed state space builders for different

formalisms. Given a cluster of n machines, a MaRDiGraS-based application generates

n files F1, F2, ..., Fn storing a partition of the whole state space. MaRDiGraS supports

symbolic state representations, thus a single state can actually represent an aggregate. Let

S be the set of reachable states: the set of states emitted by the ith computational unit is

Si = {s ∈ S : Hash(f(s)) = i}, where f : S → DS is a user supplied function such that,

∀s, s′ ∈ S s ⊆ s′ ∨ s ⊃ s′ ⇒ f(s) = f(s′)

I.e., f associates states with specific features (represented by the domain DS) that must

coincide for each pair of states related by inclusion.

What makes developing a distributed model checker on top of MaRDiGraS easy and

convenient is its particular implementation of transition relation (R). Each state in fact

stores locally all incoming transitions as a list of state identifiers (ids). Therefore, given

W ⊆ S, the backward (or predecessor) set R−(W ) can be very efficiently computed. It is

composed by all the states whose ids are in:

⋃
i

⋃
s∈Wi

R−id(s)
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where R−id gives the set of ids associated with predecessors states, and Wi represents the

partition of W processed by the i-th mapper. All the predecessors ids are then emitted in

parallel and sorted during the shuffle phase, along with the associated states.

This is a key point of our distributed approach, because the MapReduce based algorithms

compute the R− function very often during the map phase. The fact that the set of

predecessors is locally available in each state, without the need of communication among

computational units, lowers both network traffic and synchronizations, thus speeding up the

computation.

The fixed-point algorithms work on transition systems preserving the seriality of the

transition relation (Section 4.5.1). Otherwise, the MaRDiGraS framework produces a

complementary output file containing a single “error” livelock state, where the list of incoming

transitions includes the error state and all deadlocks.

EX Formulas

The computation of [[EXφ]]T relies on the assumption that the set of states satisfying φ has

already been computed: φ can be either a formula locally evaluable or a complex sub-formula

previously evaluated. This task can be performed in a single MapReduce job where the

predecessor states of [[φ]]T are evaluated in parallel. The input is composed of two separated

sets of files. One storing all the states belonging to S \ [[φ]]T , the other storing all the states

belonging to [[φ]]T . This way the mappers can evaluate and emit in parallel the identifiers

of the states belonging to R−([[φ]]T ): as shown in Algorithm 5 (lines 2-4), the Map function

associates the identifiers of these states with a particular “empty” value ⊥ (line 4). In

addition, each mapper emits its input (line 7). After the shuffle phase, all the values with the

same identifier are brought together so that the Reduce function can emit the final output

by just checking for the occurrence of the empty value in the input list (lines 10-11). The

Hadoop MapReduce framework transparently handles the emitIntermediate function in

order to produce all the intermediate key-value pairs forming shuffler’s input. The Reduce

function instead uses the emit routine to produce the final output in the form of binary files

of the Hadoop Distributed filesystem [106]. Each reducer produces its own output

file that can be either retrieved by the user or re-processed by the framework in order to

evaluate a more complex formula.
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Algorithm 5 MapReduce-based EX[φ] evaluation

1: function Map(k, s)
2: if s ∈ [[φ]]T then
3: for e ∈ R−(s) do
4: emitIntermediate(e,⊥)
5: end for
6: end if
7: emitIntermediate(k, s)
8: end function
9: function Reduce(k, list(states))

10: if (⊥∈ list) ∧ (s 6=⊥∈ list) then
11: emit(k, s)
12: end if
13: end function

EG Formulas

The operator [[EGφ]]T is likewise computed. The evaluation of the final result is just a

bit more complex than in the previous case. Our approach is based on the greatest fixed-

point characterization of the monotonic predicate transformer (4.5.2). Thus an iterative

MapReduce algorithm is used, where at each iteration the predicate transformer is computed

on the output of the previous iteration, until a fixed-point is reached. Algorithm 6 shows the

Map and the Reduce functions employed during job iterations. The input of each MapReduce

job is made up by a set of files containing [[φ]]T and another set of files X representing the

current evaluation of the formula. Since at the beginning X = S and R−(S) = S, and we

know the result of the first evaluation of the predicate transformer (4.5.2), we directly start

iterating by setting X = [[φ]]T . As shown in Algorithm 6, the map phase emits in parallel all

the predecessor states of X (lines 2-4) and all the states belonging to [[φ]]T (lines 7-8). This

way, the reduce phase can verify and emit in parallel all the predecessor states belonging to

[[φ]]T (lines 12-13). The iteration goes on until either we reach the empty set or the number

of output key-value pairs of two consecutive jobs is equal.

E[φUψ] Formulas

The approach to compute [[E[φUψ]]]T is similar to the previous one(s). It is based on the

least fixed-point characterization of the monotonic predicate transformer (4.5.3). As usual,

we assume that the states corresponding to φ and ψ have been pre-computed. The iterative

fixed-point algorithm uses the Map and the Reduce functions presented in Algorithm 7.

The input of each iteration is made up by a set of files storing the current evaluation of the
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Algorithm 6 MapReduce-based EG[φ] evaluation

1: function Map(k, s)
2: if s ∈ X then
3: for e ∈ R−(s) do
4: emitIntermediate(e,⊥)
5: end for
6: end if
7: if s ∈ [[φ]]T then
8: emitIntermediate(k, s)
9: end if

10: end function
11: function Reduce(k, list(states))
12: if (⊥∈ list) ∧ (s 6=⊥∈ list) then
13: emit(k, s)
14: end if
15: end function

formula (X) and another set storing [[ψ]]T . Since at the beginning X = ∅, and the predicate

transformer (4.5.3) results in [[ψ]]T , iteration is initialized by setting X = [[ψ]]T . The map

phase computes in parallel all predecessor states of X (lines 2-4) and forwards [[φ]]T ∪ [[ψ]]T

to reducers (lines 7-8). The reduce phase emits in parallel all predecessor states satisfying

[[φ]]T and all states satisfying [[ψ]]T (lines 12-14).

As an optimization, the map phase actually computes R−(Xi \Xi−1) because it can be

easily shown that R−(Xi−1) ⊆ R−(Xi). In fact, all the states belonging to Xi−1 belong also

to Xi, being the predicate transformer in 4.5.2, monotonic increasing.

Algorithm 7 MapReduce-based E[φUψ] evaluation

1: function Map(k, s)
2: if s ∈ X then
3: for e ∈ R−(s) do
4: emitIntermediate(e,⊥)
5: end for
6: end if
7: if s ∈ [[φ]]T ∨ s ∈ [[ψ]]T then
8: emitIntermediate(k, s)
9: end if

10: end function
11: function Reduce(k, list(states))
12: if (s 6=⊥∈ lis) then
13: if (⊥∈ list ∧ s ∈ [[φ]]T ) ∨ (s ∈ [[ψ]]T ) then
14: emit(k, s)
15: end if
16: end if
17: end function
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4.5.4 Model-checking of Abstract Transition Systems

We have till now implicitly assumed that CTL formulas are checked on ordinary Kripke

structures: let us shortly discuss about how and whether we can handle abstract structures.

Let Ts : 〈S, s0, R〉 be an ordinary state-transition system. We call 〈A, a0,Γ〉 an abstract

representation of Ts if A is finite and each state a ∈ A symbolically represents a (possibly

infinite) aggregate of ordinary states sharing some features: more precisely, if s0 ∈ a0

(normally a0 = {s0}),
⋃
a∈A a ⊇ S, and the abstract transition relation Γ satisfies condition

∃∃ (or EE, introduced in section 2.3).

The first part of condition EE avoids two abstract states from being connected, if no

corresponding ordinary states are. The second part ensures that each ordinary transition

path has an abstract representative.

If the abstract states form a partition of S we speak of quotient graph. Instead, if they

globally represent a superset of ordinary reachable states we speak of coverage graph.

If we are interested in properties other than state reachability, however, we should put

stronger requirements on abstract transitions (edges) 〈a, a′〉 ∈ Γ:

∃∀ (EA) ⇐⇒ ∀s′ ∈ a′,∃s ∈ a, 〈s, s′〉 ∈ R

∀∃ (AE) ⇐⇒ ∀s ∈ a,∃s′ ∈ a′, 〈s, s′〉 ∈ R

∀∀ (AA) ⇐⇒ (∀s ∈ a,∃s′ ∈ a′, 〈s, s′〉 ∈ R) ∧ (∀s′ ∈ a′,∃s ∈ a, 〈s, s′〉 ∈ R)

The default MaRDiGraS version tries to achieve the maximum state aggregation by

checking for inclusion relationships between generated abstract states, inferring conditions

on edges during the building phase itself. For instance, if a is an already expanded node and

a′ is a newly generated one such that a′ ⊃ a, then incoming edges of a (previously inferred)

of kind ?A are redirected to a′, and relabelled as ?E. Conversely, if we check that a′ ⊂ a, a

new edge 〈a′′, a〉 of kind ?E is added to the graph, a′′ being the predecessor of a.

Resulting final graphs may thus have edges differently labelled as EE, EA, AE, or AA.

As we will explain, it is possible to configure the MaRDiGraS algorithm so that all abstract

edges fulfill a condition other than the default one (EE). By the way this may affect the

achieved state aggregation, and introduces a computation overhead, strictly dependent on

the adopted formalism, due to the need of checking for even partial overlapping relationships

between abstract states, not just inclusions.
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Let K : 〈A,A0,Γ, L〉 be a Kripke structure corresponding to an abstract state-transition

system generated by MaRDiGraS. Two extra conditions are necessary so that the map-

reduce approach to CTL model checking continues working.

• labelling L, which associates abstract states with (atomic) formulas holding in them,

must be such that φ ∈ L(a) ⇔ ∀s ∈ a, φs, where φs is the interpretation of formula

φ in ordinary (concrete) state s. This very intuitive requirement just points out that

formulas defined on symbolic states may involve variable symbols in turn. An example

will be given next.

• Abstract edges must be of kind AE (by the way AA⇒ AE). This requirement has two,

related, motivations. First, it extends the seriality constraint to the transition relation

of the underlying ordinary state-transition system. Not surprisingly, it also ensures that

the map-reduce algorithms to compute basic temporal operator EX, EG, and E[φUψ]

remain valid: in fact each round (given a pre-computed set of states corresponding to a

sub-formula) just relies on exactly determining the inverse image Γ−1 of Y ⊆ A. Under

the assumption above Γ−1(Y ) ≡
⋃
a∈Y,s∈aR

−1(s), i.e., the abstract set of predecessors

actually corresponds to the concrete set of predecessors. An abstract state space which

natively meets condition AA, and that could be easily reproduced in a distributed

version using MaRDiGraS, is the the Symbolic Reachability Graph of Symmetric

Nets [79], a particular quotient graph which outlines/exploits behavioural system

symmetries.

Since in general, modelling formalisms, especially when they include time specifications,

don’t guarantee by default property AE on their abstract contractions, and final users are

likely to be interested in checking arbitrary state formulas, one must be able to configure the

MaRDiGraS generic builder so that both requirements above are met in generated graphs.

Just to give an idea of what splitting an abstract state means, let us consider the state-

transition graph associated with Time-Basic Petri nets [14], whose nodes are pairs 〈M,C〉,

where M (marking) is the topological description of a system state, formally defined by

a finite set of places, each associated with a multi-set of symbols denoting time-stamps;

C is a set of linear inequalities involving such symbols, e.g., T2 − T0 ≤ 1.5 ∧ T0 ≤ T1. A

concrete state corresponds to any assignment of {Ti} with values in R+ which makes C

true. Assuming for simplicity that time-stumps’ subscripts refer to the holding places (i.e.,

using a Petri nets, parlance, the model is 1-safe), a formula which is valid in that state is
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T2 − T1 ≤ 1.5. But if we consider the formula φ : T1 ≤ T2, we argue that it is not implied

by C. If we want to check this formula, we need to split 〈M,C〉 in 〈M,C ∧ T1 ≤ T2〉 and

〈M,C ∧ T1 > T2〉.

A quite different, yet helpful, approach that we are evaluating consists of refining a

previously generated abstract state space, so that it become CTL model-checkable. Such an

approach would have some resemblance with [23], where a technique for time Petri nets is

proposed, based on applying consolidated partition refinement techniques on a (preliminarily

built) compact contraction of the ordinary state-space. In our case this task is complicated

by the fact that we have to deal with a distributed abstract representation of the state space.

4.5.5 Complexity

A formal representation of the MapReduce protocol has been introduced in [82], from the

complexity theory perspective. In particular a R rounds MR machine is defined as an

alternating list of mappers and reducers (µ1, ρ1, . . . , µR, ρR), whose execution follows these

steps:

1. Letting Ur−1 be the list of key-value pairs processed from the last round (or the input

pairs when r = 1), the map phase applies µr in parallel to each key-value pair of Ur−1

to produce the multi-set Vr =
⋃
〈k,v〉∈Ur−1

µr(k, v).

2. The shuffle phase sorts and gathers intermediate values by key, producing a set of

intermediate key-list of values pairs 〈k, V kr = {v1, v2, . . . }〉.

3. The reduce phase applies ρr in parallel foreach V kr . The output UR is
⋃
k ρr(k, V

k
r ).

we say that a R rounds MR machine accepts the input 〈x〉 if in the final round UR = ∅.

Moreover, MR decides a language L if it accepts 〈x〉 if and only if x ∈ L. A language L is

in MRC[f(n), g(n)] if there are a constant 0 < c < 1, two O(nc)-space and O(g(n))-time

Turing machines M,M ′, and R = O(f(n)), such that ∀x ∈ {0, 1}n the following holds.

1. Given µr = M , ρr = M ′, the machine MR = (µ1, ρ1, . . . , µR, ρR) accepts x iff x ∈ L.

2. Each µr outputs O(nc) distinct keys.

Function f(n) represents the number of times global synchronization has to be performed,

g(n) represents the computing time spent by each processing unit (mapper/reducer), finally
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space bounds ensure that the size of data on each processing unit is smaller than the full

input.

Denoting the classMRC[poly(n), poly(n)] with PMRC, it can be proven that PMRC ⊆

P [82]. In fact, a polynomial time Turing machine can trivially simulate a MR machine.

It should just perform the intermediate grouping by key manually, and sequentially run

the µr and ρr functions as subroutines. Thus intuitively, the PMRC class represents those

problems in P that can be efficiently solved by a MR machine. In any case, it is unknown

whether P ⊆ PMRC or not. Similarly, the relationship between PMRC and NC [87] has

not yet been established. Only a partial answer has been given to this question by showing

that a large class of problems in NC are in PMRC [82].

Concerning the algorithms for EG and EU , the total number of rounds is bounded by

the number of backward steps performed during the fixed point computation (O(|S|)), even

if we experimentally verified that in most practical cases f(n) << n. The time spent by

each computing unit instead is given by the in-degree of the state-space. In the worst case it

is O(n2): this situation occurs only when the state-space contains global “hubs” of incoming

transitions. Although this case is feasible, especially in the context of free networks [7], it is

very unlikely. In fact, state spaces are very similar to random graphs, which have Poisson

distribution of degrees. The average degree is very small, typically around three, or even

smaller than two, since there are many vertices with degree one [98, 76]. Thus, in the general

case, both the algorithms fall in theMRC[n, 1] class. The EX falls instead in theMRC[1, 1]

class, since a single backward step is required.

All these observations are not surprising at all. Since both µr and ρr are O(1) in

the general case, the overall complexity of a polynomial Turing machine simulating MR in

verifying a composite formula ϕ is given by the number of backward steps foreach sub-formula

in ϕ. This is consistent with the known CTL model checking complexity, O(|S| × |ϕ|) [43],

which corresponds to the time bound of a sequence of MR runs, one foreach sub-formula.

4.5.6 Evaluation

The experiments described in this section were executed using the Amazon Elastic MapReduce

[5] on the Amazon Web Service cloud infrastructure. They were supported by an “AWS

in Education Grant award” [6]. In particular all runs have been performed on clusters of

m2.2xlarge computational units [5] of varying size.
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Table 4.3: Shared memory (∼ 106 states, ∼ 107 transitions) analysis report

property |[[property]]T | # machines time (s)
EX[φ] 2.135× 105 1 70
EX[φ] 2.135× 105 2 67
EX[φ] 2.135× 105 4 50
EX[φ] 2.135× 105 8 38

EG[ψ] 0 1 67
EG[ψ] 0 2 55
EG[ψ] 0 4 58

E[ω Uρ] 1.831× 106 1 1898
E[ω Uρ] 1.831× 106 2 1124
E[ω Uρ] 1.831× 106 4 839
E[ω Uρ] 1.831× 106 8 564
E[ω Uρ] 1.831× 106 16 509

As a proof of concept, we generated three different state spaces of different orders of

magnitude. Then we ran our distributed algorithms to verify three different CTL formulas (on

each state space): EX[φ], EG[ψ] and E[ω Uρ], where φ, ψ, ω and ρ are atomic propositions

evaluable in every single state. Models and formulas used for the experiments are reported in

[85]. The models are three known Petri nets (more precisely, P/T nets) benchmarks, whose

state spaces have been generated by a MaRDiGraS instance.

Shared Memory This model (introduced in A.2) is taken from the GreatSPN benchmarks

[38]. This P/T net models a system composed of 10 processors which compete for the access

to a shared memory by using a unique shared bus. The number of reachable states of this

model is 1.831× 106. Despite the generated state space is relatively small, the benefit gained

from our distributed approach grows as the number of states involved in the verification

grows (as shown by the table 4.3): indeed, the verification of the last formula E[ω Uρ] scales

better than the previous two.

Dekker This model (introduce in A.3) represents a 1-safe P/T net of a variant of the

Dekker’s mutual exclusion algorithm [47] for N = 20 processes. The state space generated by

this model is an order of magnitude higher than the previous example: 1.153× 107 reachable

states. As shown by the table A.2 and by the graph shown in fig. 4.13a, the benefits deriving

from our distributed approach are clearer. In fact, the evaluation of both the three formulas
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Table 4.4: Dekker model ( 107 states, 108 transitions) analysis report

property |[[property]]T | # machines time (s)
EX[φ] 1.153× 107 1 660
EX[φ] 1.153× 107 2 532
EX[φ] 1.153× 107 4 241
EX[φ] 1.153× 107 8 144
EX[φ] 1.153× 107 16 120

EG[ψ] 7.405× 106 1 1567
EG[ψ] 7.405× 106 2 1356
EG[ψ] 7.405× 106 4 517
EG[ψ] 7.405× 106 8 391
EG[ψ] 7.405× 106 16 287

E[ω Uρ] 5.767× 106 1 1357
E[ω Uρ] 5.767× 106 2 1063
E[ω Uρ] 5.767× 106 4 585
E[ω Uρ] 5.767× 106 8 454
E[ω Uρ] 5.767× 106 16 372

gets faster by increasing the number of computational units. The graph shown by fig. 4.13c

(and fig. 4.13d for the next model), plots the function cheat defined as follows:

cheat(n) =
time(parallel version with 1 node)

time(parallel version with n nodes)
(4.5.4)

However, as shown by fig. 4.13e, the efficiency is quite poor. Concerning this model, the

graph tells us the application scales well when using no more than four compute nodes. This

represents the optimal number of worker nodes in terms of efficiency.

Simple Load Balancing The simple load balancing system (introduced in A.4) is com-

posed of 10 clients, 2 servers, and among these, a load balancer process. The reachability

graph generated is very large: 4.060 × 108 states and 3.051 × 109 arcs for a total size of

120 GB of data. As shown by the table 4.5 and by Figure 4.13b, benefits deriving from our

distributed approach are greater with respect to both previous examples. This points out

a clear trend: the more is the complexity of the model, the more is the scalability of our

distributed algorithm. In fact, both the cheat (figure 4.13d) and the efficiency (figure 4.13f)

gained during the analysis of this last example greatly overcome the ones gained during the

analysis of the Dekker model. In particular, we reached a super-linear speedup during the

evaluation of EG[ψ]. The comparison of the results obtained analyzing the two last systems

reveals how the proposed approach behaves better when increasing the amount of data to be
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Table 4.5: Simple load balancing model (∼ 108 states, ∼ 109 transitions) analysis report

property |[[property]]T | # machines time (s)
EX[φ] 1.716× 108 1 2908
EX[φ] 1.716× 108 2 2401
EX[φ] 1.716× 108 4 937
EX[φ] 1.716× 108 8 693
EX[φ] 1.716× 108 16 251

EG[ψ] 4.060× 108 1 21678
EG[ψ] 4.060× 108 2 17147
EG[ψ] 4.060× 108 4 6525
EG[ψ] 4.060× 108 8 2983
EG[ψ] 4.060× 108 16 1226

E[ω Uρ] 7.524× 107 1 1821
E[ω Uρ] 7.524× 107 2 1714
E[ω Uρ] 7.524× 107 4 602
E[ω Uρ] 7.524× 107 8 377
E[ω Uρ] 7.524× 107 16 203

analyzed: the maximum cheat found verifying the Dekker system was just 5.5 against 17.7

verifying the Simple load balancing system. Another worth noting aspect is the efficiency :

our experiments show how we can better exploit a greater number of compute units when

increasing the amount of data. In fact the average efficiency found using 16 machines during

the analysis of the Dekker model was 0.3 against 0.8 during the analysis of the Simple load

balancing model. Concerning the maximum value of the efficiency, it was 0.78 for the Dekker

model against 1.11 for the Simple load balancing model.

4.5.7 Related Work

The MapReduce-based framework for CTL model checking we have presented in this chapter

is quite different from distributed approaches relying on message passing. The only synchro-

nization point among computational units is the shuffle phase, where key-value pairs emitted

by mappers are sorted and moved to reducers. The number of cross-border transitions is not

actually a critical issue. We know that a small number of cross-border transitions usually

means a reduced network traffic due to data exchange. This is partially achieved with the

map phase: the shuffling starts up as soon as data become available from single mappers,

without waiting for the entire map output. Furthermore, there is an experimental evidence

that the time required by shuffling is not dominating w.r.t. the overall computation time.

Thus adding a (dynamic) partitioning phase between MapReduce iterations might not really
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Figure 4.13: Execution time, cheat and efficiency graphs.
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(d) Simple load balancing cheat
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(e) Dekker efficiency
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(f) Simple load balancing efficiency
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be advantageous, or even hurt performances. We plan to deepen this point in order to better

understand how a more sophisticated partitioning could impact on the performances of a

MapReduce-based approach.

A comparison between our framework and some tools representing the state of the

art of Petri nets’ distributed analysis [13, 26, 25] highlights the effectiveness of big data

approaches in formal verification. In fact, it seems that these tools can efficiently manage

state spaces of magnitude up to 107, while there are no experimental evidences about their

successfully usage for greater magnitude orders. Works presented in [73, 74] introduce a

library to distribute existing model checkers and its evaluation with the GreatSPN model

checker [38], respectively. The library, similarly to the MaRDiGraS framework, proposes a

generic environment dedicated to distribution of any type of state space construction and

were designed to create software tools deployable upon distributed local environment or

multi-core machines. Anyway, as far as we know, it has been experimented to solve only

reachability problems that are easier than causal properties (expressed by means of temporal

logic formulas). Concerning the state of the art of sequential Petri nets tools [85] (based

on explicit approaches), such as LoLa (Low Level Petri Net Analyzer) [109], it turns out

they perform very well on small/medium size state spaces, or on models exhibiting specific

features such as symmetry and/or a high degree of concurrency. But carried out experiments,

[85] have shown they are, in many cases, unable to verify CTL formulas on the Dekker and

the Simple load balancing models used in this thesis.

Our main goal and (hopefully) contribution, however, has been to provide users with

a model checking framework (rather than a tool), which can be easily deployed in the

cloud. In fact, departing from the current literature on distributed CTL model checking, we

considered an important, sometimes understated, aspect: we have enabled a “push-button”

operating mode in the context of distributed formal verification to remove, or dramatically

lower, the costs of deploying applications into end-to-end solutions. Think, e.g., of the

intrinsic complexity of grids and high-performance computing clusters. We have provided

a way to run complex scientific applications on Cloud Computing infrastructures, meeting

compute-intensive and data-intensive challenges of formal verification. To our knowledge, a

few other techniques and tools have been introduced, with similar aims. E.g, [22] presents a

MapReduce approach to check specifications expressed in a metric temporal logic over large

execution traces, with aggregation modalities; [77] attempts (in a quite different context, i.e.,
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Swarm Verification) to exploit massively parallel jobs running test randomization techniques

to verify the correctness of mission critical software.

4.5.8 Summary

Cloud computing is an emerging and evolving paradigm where challenges and opportunities

allow for new research directions and applications. Companies such as Amazon, Microsoft,

and Google are putting remarkable efforts in delivering services able to offer hundreds, or

even thousands, commodity computers available to customers, thus enabling users to run

massively parallel jobs. There is an evidence that this trend will continue. Once reached

maturity, it could dramatically change the way software verification tasks are performed. This

section presents a framework for model checking very complex systems, based on iterative

MapReduce algorithms that use a fixed-point characterization of temporal operators of CTL.

Despite model checking software tools are often called “push-button” technologies, managing

the high-performance computing environments required by scientific applications is far from

being considered such, especially if one wants to exploit general purpose cloud computing

facilities. Our framework has been designed for re-enabling a “push-button” operating mode

in the context of distributed formal verification. We have reported some experiments showing

the convenience of using the framework to effectively check CTL formulas on huge state

spaces. In some particular cases a super-linear speedup has been achieved. We believe

that this work could be a further step towards reducing the distance between different, but

related communities: the “formal methods” one and the “big data” one. Exposing this issue

to scientists with different skills could stimulate the development of new interesting and

effective solutions.
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Chapter 5

Conclusion

The thesis focused on two complementary approaches to deal with the state explosion problem

for dynamic, concurrent, and real-time systems.

On the one hand, we explored advanced abstraction techniques in order to deal with

infinite-states systems. These techniques aim at reducing the number of states needed to

be constructed in order to verify certain properties. The algorithms for constructing the

reduced state space take advantage of some details of the property to be verified in order to

avoid the construction of the overall state space, if not needed. In particular we addressed

several different open issues for real-time systems modeled with Time Basic Petri Nets.

On the other hand, we introduced distributed approaches which exploits techniques

typically used by the big data community to enable verification of very complex systems

using big data approaches and cloud computing facilities. Despite many years of work in the

area of multi-core and distributed model checking, still few works introduce algorithms that

can scale effortlessly to the use of thousands of loosely connected computers in a network, so

existing technology does not yet allow us to take full advantage of the vast array of compute

power of a “cloud” environment. Cloud computing is an emerging and evolving paradigm

where challenges and opportunities allow for new research directions and applications. There

is an evidence that this trend will continue, in fact several companies are putting remarkable

efforts in delivering services able to offer hundreds, or even thousands, commodity computers

available to customers, thus enabling users to run massively parallel jobs. This revolution is

already started in different scientific fields, achieving remarkable breakthroughs through new

kinds of experiments that would have been impossible only few years ago.
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5.1 Contributions

The major contributions lie in two different branches of formal methods in software engineering.

Both contributions aim at coping with the state explosion problem, but using two different

complementary approaches. The first main contribution consists in the introduction of

algorithms and related tools able to deal with infinite-states real-time systems. The second

main contribution focuses on the connection between formal methods in software engineering

and big data approaches.

Advanced State Space Methods The reachability analysis technique for TB net models

(section 3.2) overtakes the existing available analysis technique for TBasic nets because it

allows the building of a sort of symbolic time-coverage reachability graph keeping interesting

timing properties of the nets. In particular the introduction of the concept of time anonymous

timestamps, enables a major factorization of symbolic states and allows, in many cases, to

building a finite representation of the underling infinite state space.

An extension of this technique that further exploits the time anonymous concept, in

order to deal with topologically unbounded nets, exploits the concept of a coverage of TA

tokens, i.e., a sort of TAω (section 3.3). Such a coverability analysis technique is able to

construct coverability trees/graphs for unbounded TB net models. The termination of the

algorithm is guaranteed as long as, within the input model, tokens growing without limit can

be anonymized. This means that we are able to manage models that do not exhibit Zeno

behavior and do not express actions depending on “infinite” past events. This is actually a

reasonable limitation because, generally, real-world examples do not exhibit such a behavior.

Other coverability analysis techniques for such a formalism, have not been proposed yet,

as far as we know.

Big Data Approaches to Formal Verification Work presented in section 4.3 discusses

two approaches to face the state-space explosion in discrete-event system analysis. These

approaches try to combine abstraction techniques and parallel algorithms to exploit dis-

tributed/cloud computing frameworks. These approaches have been experienced on the

timed, symbolic reachability analysis of TB nets. The outcomes of tests, performed on a

benchmarking real-time system model, clearly show how the combination of these techniques

can be conveniently used to deal with real world examples. Moreover it has been shown how

distributed versions of the state space builder increase performances of the sequential one.
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Although the parallel workers model has shown a higher speed-up with our benchmarking

example, the cloud environment can be conveniently used to exploit a big cluster of machines

with recent hardware which we might not have at disposal locally. Moreover, in the latter

case, we do not need any setup phase of our environment.

Section 4.4 introduced MaRDiGraS: a generic framework which can easily adapted for

tackling the state explosion problem during the computation of reachability graphs of systems

modeled by different formalisms. This framework exploits techniques typically used by the

big data community and so far poorly explored for this kind of problems. Thanks to its very

simple programming interface, it provides a powerful tool for constructing high-performance

distributed applications without the need to deal with the complex communication and

synchronization issues required for distributing a computation on large clusters. Indeed,

it was easy to use it for implementing a distributed version of an existing sequential tool

that was able to analyze a model beyond the capacity of a single machine. Our experiments

report that MaRDiGraS can be used effectively to compute state spaces sized with different

orders of magnitude. We believe that this work could be a first step towards a meeting

between two very different, but related communities: the “formal methods” community and

the “big data” community.

Section 4.5 introduced a framework for model checking very complex systems, using

iterative MapReduce algorithms based on the fixed-point characterization of temporal

operators of CTL. Despite model checking software tools are often called “push-button”

technologies, managing the high-performance computing environments required by scientific

applications is far from being considered such, especially if one wants to exploit general

purpose cloud computing facilities. We reported some experiments showing the convenience

of using the framework to effectively check CTL formulas on huge state spaces. In some

particular cases a super-linear speedup has been achieved. Departing from the current

literature on distributed CTL model checking, we considered an important, sometimes

understated, aspect: we enabled a “push-button” operating mode in the context of distributed

formal verification to remove, or dramatically lower, the costs of deploying applications into

end-to-end solutions. Think, e.g., of the intrinsic complexity of grids and high-performance

computing clusters. We have provided a way to run complex scientific applications on

Cloud Computing infrastructures, meeting compute-intensive and data-intensive challenges

of formal verification.
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5.2 Open Issues

Concerning the reachability analysis of TB nets, the evaluation component is still very simple:

it permits to examine the input graph looking for interesting properties on topological

definition of markings. Therefore, its integration with some existing model checking engines

is currently under investigation. For instance, we might be interested in checking whenever

some state-based formula φ is satisfied within a time interval [d,D[, with d ∈ R+ and

D ∈ (R+ ∪∞) starting from the initial symbolic state. Anyway, only conservative bounds

can be established by combining the information on edges. In the case they are not enough

to exclude incorrect timing behaviors, it is possible to carry out a more accurate analysis by

rebuilding a portion of the graph, retracing some critical paths and reintroducing absolute

time references This task is also complicated in the presence of paths containing EE edges.

This means that there exist some edges leading to a subset of the target state from a subset

of the ordinary states represented by the source node. In this case there is the possibility

that the path actually is not feasible.

Concerning the distributed technique, adopted by the MaRDiGraS framework, several

questions remain open and require further research: The optimal threshold and partitioning

should be automatically chosen by the framework rather than by the user. Furthermore,

the proposed computational model should be optimized when the number of not expanded

states gets very small, as illustrated in section 4.4. Finally, a study on how the framework

can be adapted to deal with other classes of formalisms, should be performed.

Regarding the distributed CTL framework, the problem of integrating distributed verifi-

cation algorithms in the presence of an abstract state space (section 2.3), is still open. In

fact, CTL model checking requires all the edges to be AA. Therefore, the framework supports

the verification of models that can reach a finite number of concrete states. While the general

case, where the presence of EE edges makes the task more complicated, has not yet been

addressed.

5.3 Future Work

Regarding reachability problems for TB nets, our ultimate goal is to allow the verification of

timed reachability properties, for instance properties expressed in TCTL logic [59]. Therefore,

we are currently investigate the feasibility of integrating the reachability graph construction

with some existing model checking engines.
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The cloud computing ecosystem, along with platforms and services, is an emerging and

evolving area. Therefore, it is quite natural that in the near future new mechanisms for

sorting, analyzing, and storing data will emerge beside the MapReduce model. For instance,

Google Cloud Dataflow [45] was recently announced. Cloud Dataflow is described as a

successor of MapReduce, to implement advanced, multi-step processing pipelines to extract

deep insight from datasets of any size, free from the burden of deploying clusters, tuning

configuration parameters, and optimizing resource usage. We plan to explore also such a

new advances in the Big data area, to leverage them also in the context of distributed formal

verification.
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Appendix A

Petri Nets Models

A.1 The Gas Burner

The gas burner example has been used as a representative of a real small system. [100]

presents the complete and formal description of the example. Here, we only report the

informal description given there. A gas burner is a safety-critical system as an accident

may occur if an excessive amount of unburned gas leaks to the environment. Small gas

leaks ignition cannot be avoided during ignition. A burning flame may also be blown out

causing some gas to leak before the failure is detected. The gas burner is control led by a

thermostat and the gas is ignited by an ignition transformer. The control law of the gas

burner is composed by the following phases:

• Idle: Awaits heat request; no gas and ignition. It enters the Purge phase on heat

request.

• Purge: Pauses for 30 seconds. and then Ignite1 is entered.

• Ignite1: Starts ignition and gas supply; enters the Ignite2 phase after 1 second.

• Ignite2: Monitors the flame and enters the Burn phase if flame is sensed within 1

second.

• Burn: Ignition is switched off, but gas is still supplied. The Burn phase is stable until

heat request goes off. The Idle phase is then entered and the gas is turned off.
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A simple error recovery procedure of returning to IDLE is used. If a flame is not sensed

within 2 sec. in Ignite2 (ignite failure), or if the flame disappears during the Burn phase

(flame failure), then the Idle phase is entered and the gas is turned off. The 30 sec Purge

pause ensures a sufficient distance between periods with leaking gas.

Figure A.4 presents the TB net specication of the gas burner. The states of the controller

of the gas burner are modeled by places:

• IDLE PHASE, representing the controller waiting for activation (the phase represented

in the initial marking);

• IDLE PHASE bis, it is equivalent to place IDLE PHASE; it is used only to keep the

time the phase is entered;

• PURGE PHASE, entered as soon as the execution cycle is started (transition HrOn,

representing the request of heat). It guarantees the starting of a new phase at least 30

seconds after the idle phase is entered;

• IGNITE PHASE B, (Ignite phase begin) entered when the command to start ignition

is issued (transition IgnOn);

• IGNITE PHASE S, (Ignite phase stable) entered when the command to open the gas

valve is issued (transition GasOn). In this phase the controller checks if the flame has

been lighted;

• BURN PHASE B, (Burn phase begin) the flame is detected, and the normal functioning

is started (transition FlameOn)

• BURN PHASE S, (Burn phase stable) entered when the command to stop ignition is

issued (transition IgnOff). The gas burner is fully activated;

• STOP PHASE I, (Stop phase init) entered when the heating request is

finished (transition HrOff);

• STOP PHASE F, (Stop phase final) entered when the command to close the gas valve

is issued (transition GasOff); when the flame is off, the controller entered the idle phase

(transition F lameOff);

• IGNIT FAIL PHASE, entered if a failure occurs in the ignite phase stable (transition

GasOff2); once the exception has been handled the system returns to the idle phase

(transition IgnOff2);
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• FLAME FAIL PHASE, entered if a failure is detected in the burn phase stable (transi-

tion FlameOff2); once the exception has been handled the system returns to the idle

phase (transition GasOff3);

The system can either require heat or not, by marked places HeatReq and NoHeatReq,

respectively. The transitions of the embedding system are represented by transitions

switchHROff and switchHROn. The gas valve can be closed or open, represented by places

NoGas, Gas (and Gas bis) , respectively. The gas actuator is represented by transitions

CloseValve and OpenValve, and places ValvActCloseReq and ValvActOpenReq. Place Ignition

and NoIgnition represent the ignition active and not active, respectively. The ignition

actuator is represented by transitions IgnLightOff and IgnLightOn, and places IgnActOffReq

and IgnActOnReq. Places Flame, NoFlame (and NoFlame bis) represent the state of the

flame. The flame is turned on if there are ignition and gas (transition FlameLightOn); it

is turned off if no gas is supplied (transition FlameLightOff ) or due to a failure, e.g. wind

(transition FlameLightOff2 ). The gas concentration is measured by the number of tokens

in place Concentration. New tokens are produced regularly in place Concentration when

the gas is supplied with flame off (transition Inc Conc). Transition Dec Conc extracts from

place Concentration token older than 30 seconds.

A.2 The Shared Memory

This model is taken from the GreatSPN benchmarks [37, 85, 40]. It models a system

composed of P processors, each one with a local memory. Each processor can access its local

memory using a dedicated local bus and the other memories using a unique shared bus. The

processor accessing a remote memory have priority on those accessing their own memory. It

is assumed that external access request causes preemption of the owner processor eventually

accessing its local memory.

The model is depicted by Figure A.1. For the sake of clarity, the model is described by a

Colored net [81]. Table A.1 shows the size of the model, accordingly to the parameter P .

The size values refer to derived P/T net model instances.
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Table A.1: Size of the Shared memory derived P/T net model instances.

Parameter # places # transitions # arcs reachable markings

P = 5 41 55 200 1863
P = 10 131 210 800 1.831× 106

P = 20 100 440 3240 4.451× 1011

P = 50 2651 5050 20000 5.870× 1026

P = 100 10301 20100 80000 1.701× 1051

P = 200 40601 80200 320000 3.524× 1099

OwnMemAcc P

Ext_Bus

Active P
<P,all>

Begin_Own_Acc 

Req_Ext_Acc

Begin_Ext_Acc

Queue P

Ext_Mem_Acc
PxP

Memory P
<P,all>

End_Own_Acc [m=x] 

End_Ext_Acc

<x>

<x><x>
<x>

<x> <x> <x,m> <x,y>

<m> <y>

<m>

<m>

<x>

[x≠m]

<x>

Class
P is 1 . . . 5;
Domain
PxP is〈P, P 〉;
Var
x,y,m in P;

Figure A.1: The Shared memory Colored net model.
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p0/1 p0/2flag=0/1 flag=0/2

exit/1 withdraw/1 try/1 try/2 withdraw/2 exit/2

p3/1 p1/1
p1/2 p3/2

flag=1/1 flag=1/2

enter/1 enter/2

Figure A.2: The Dekker P/T model with parameter N = 2.

Table A.2: Size of the Dekker P/T net model.

Parameter # places # transitions # arcs reachable markings

N 5N N2 + 2N O(N2)
N = 10 50 120 820 6144
N = 15 75 255 1830 278528
N = 20 100 440 3240 1.153× 107

N = 50 250 2600 20100 ?
N = 100 500 10200 80200 ?
N = 200 1000 40400 320400 ?

A.3 The Dekker

This model is a Place-Transition net representing a variant of the Dekkers mutual exclusion

algorithm [47] for N > 2 processes. Dekker’s algorithm is the first known correct solution to

the mutual exclusion problem in concurrent programming. It allows two threads to share a

single-use resource without conflict, using only shared memory for communication. Dekker’s

algorithm guarantees mutual exclusion, freedom from deadlock, and freedom from starvation.

The net models each process with three states, p0, p1, and p3. p0 is the initial state. From

there, the process tries to enter the critical section and raises its flag, reaching p1. In p1, if

at least one of the other process has a high flag, it withdraws its intent and goes back to p0.

In p1, it enters the critical section if all other process flag is zero. From p3, the process can

only exit the critical section.

The P/T net model is depicted by Figure A.2. Table A.2 shows the size of the model,

accordingly to the parameter N .
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Figure A.3: The Simple load balancing Colored net model.

A.4 The Simple Load Balancing

This P/T net models is taken from the Helena tool distribution [53]. It models a simple

load balancing system made up by a set of N clients, two servers, and between these, a load

balancer process so called lb process.

The role of clients is to send requests to servers (transition client send), wait for an

answer and get it (transition client receive). Requests are sent to the lb process so that this

one routes it to the appropriate server. Once the request is sent, the client waits for the

answer. When the answer arrives, the client comes back to the idle state (place client idle).

We denote with c, the number of clients. Clients are numbered from 1 to c.

The servers waits for requests (i.e., tokens in place server request) from clients sent via

the lb process. When a server processes a request, it send a reply to the client (transition

server process). The server then notifies the lb process (transition server notify) in order to

rebalance requests among servers. Once the load balancer has acknowledged this notification,

the server can go back to the idle state (transition server send). We denote the number of

servers with s. Servers are numbered from 1 to s.

The lb process is the most complex component. It can perform two kinds of task. The

first one is to redirect each client request to the least loaded server. The latter one, when a

server accepts a request from a client the load balancer has to rebalance the pending requests.

If these are already balanced, the load balancer has nothing to perform and can come back

to its idle state (transition lb no balance). If the loads are not balanced, the load balancer
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Table A.3: Size of the Simple load balancing P/T net model.

Parameter # places # transitions # arcs reachable markings

N = 2 32 45 252 832
N = 5 59 180 1158 116176
N = 10 104 605 4148 4.060× 108

N = 15 149 1280 8988 1.374× 1012

N = 20 194 2205 15678 4.583× 1015

takes a pending request of the most loaded server and redirects it to the least loaded server

(transition lb balance). The load balancer has to maintain for each server the number of

requests sent to this server.

The model is depicted by Figure A.1. As in the previous section, for the sake of clarity,

the model is described by a Colored net. Table A.3 shows the size of the model, accordingly

to the parameter N .
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Figure 4. TB net for the gas burner control system.

Initial marking: IDLE PHASE{T0}, IDLE PHASE bis{T0}, NoIgnition{T0},
NoHeatReq{T0}, NoGas{T0}, NoF lame{T0}, NO FLAME bis{T0}

Initial constraint: 0 ≤ T0 ≤ 10

Time-Functions:
HrOn [IDLE PHASE + 0.01,max({IDLE PHASE + 0.01, HeatReq + 0.1})]
HrOff [BURN PHASE S + 0.01,

max({BURN PHASE S + 0.01, NoHeatReq + 0.1})]
IgnOn [max({PURGE PHASE + 0.01, IDLE PHASE bis+ 30}),

max({PURGE PHASE + 0.01, IDLE PHASE bis+ 30})]
CloseValve [V alActCloseReq + 0.2, V alActCloseReq + 0.2]
OpenValve [V alActOpenReq + 0.2, V alActOpenReq + 0.2]
FlameOff [STOP PHASE F + 0.01,

max({STOP PHASE F + 0.01, NoF lame+ 0.1})]
FlameOff2 [BURN PHASE S + 0.01,

max({BURN PHASE S + 0.01, NoF lame+ 0.1})]
FlameOn [IGNITE PHASE S + 0.01,

max({BURN PHASE S + 0.01, NoF lame+ 0.1})]
IgnLightOn [IgnActOnReq + 0.2, IgnActOnReq + 0.2]
IgnLightOff [IgnActOffReq + 0.2, IgnActOffReq + 0.2]
FlameLightOn [max({Gas, Ignition}) + 0.5,max({Gas, Ignition}) + 0.5]
FlameLightOff [enab,NoGas+ 0.1]
FlameLightOff2 [enab, enab+ 100]
GasOn [enab+ 0.01, enab+ 0.1]
GasOff [enab+ 0.01, enab+ 0.1]
GasOff2 [enab+ 2, enab+ 2]
GasOff3 [enab+ 0.01, enab+ 0.1]
IgnOff [enab+ 0.01, enab+ 0.1]
IgnOff2 [enab+ 0.01, enab+ 0.1]
SwitchHROn [enab, enab+ 10]
switchHROff [enab+ 120, enab+ 120]
Inc Conc [enab+ 0.1, enab+ 0.1]
Dec Conc [enab+ 30, enab+ 30]

Figure A.4: The Gas burner Time Basic Petri Net model.
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Appendix B

Proofs

This chapter repots proofs of correctness of all the algorithms introduced in section 4.5.

Broadly speaking, we prove that algorithms 5, 6, 7 are correct and compute EXφ, EGφ,

E[φUψ], rispectively.

In the following proof of correctness, we refer to the semantics of the MapReduce

programming model introduced in section 4.5.5.

B.1 Correctness of the EXφ Algorithm

The algorithm in Figure 5 (Alg5 hereafter), employed to compute the EXφ formula, consists

of a single MapReduce round. In order to prove its correctness we just need to show that

Alg5 computes R−([[φ]]T ) (equation 4.5.1).

Proof : The Map function emits each input key-value pair (where key is a unique state

identifier, and value is the state itself), and the result of the application of the inverse image

R−id to the input values matching φ, associated with the empty value.

V1 =
⋃

〈k,v〉∈U0

µ1(k, v) =
⋃
v∈S
〈kv, v〉 ∪

⋃
k∈R−id([[φ]]T )

〈k,⊥〉 (B.1.1)
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B.2. Correctness of the EGφ Algorithm 141

After the shuffle, apart from repetitions, each V k1 contains both values ⊥ and v, v 6=⊥, if

and only if v is a predecessor of a state in which φ is valid. Hence the set of values of the

output of Reduce function, which is formally given by

U1 =
⋃
k∈V1

ρ1(k, V k1 ) =
⋃

k∈V1,v∈V k
1 :⊥∈V k

1 ∧v 6=⊥

〈k, v〉 (B.1.2)

actually corresponds to R−([[φ]]T ). 2

B.2 Correctness of the EGφ Algorithm

The algorithm in Figure 6 (Alg6 hereafter), which computes the EGφ formula, is used in

an iterative MapReduce run, where the output of the ith iteration represents the input of

the i+ 1th iteration. In order to prove its correctness we need to show that the execution

of a single round on input X computes the same result as an application of the monotonic

predicate transformer 4.5.2 (from now on simply G) on X, and that both Alg6 and the

fix-point evaluation stop at the same iteration.

Let ∗Alg6(S) denote an iterative map-reduce run which starts from X = S. Formally,

∗Alg6(S) = νX(G(S)) = νX([[φ]]T ∩R−(S)) = [[EGφ]]T .

Proof : The proof follows the schema below:

1) Proof that Alg6(X) = G(X)

2) Proof that ∗Alg6(S) and νX(G(S)) stop at the same iteration.

By the way, 1) ∧ 2) =⇒ ∗Alg6(S) = νX(G(S))

In order to prove point 1) we follow the same steps as in the previous proof: we evaluate

the output of Alg6(X), then we verify that it equals [[φ]]T ∩R−(X).

The Map function emits each input pair 〈k, v〉 such that φ is satisfied in state v. In

addition it emits all the keys belonging to R−id(v), associated with the empty value.

Vr =
⋃

〈k,v〉∈Ur−1

µr(k, v) =
⋃

v∈[[φ]]T

〈kv, v〉 ∪
⋃

k∈R−id(X)

〈k,⊥〉 (B.2.3)
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B.3. Correctness of the E[φUψ] Algorithm 142

After the shuffle, the intermediate lists V kr contain both ⊥ and v, v 6=⊥, if and only if v

is a state in which φ is satisfied and has a successor in X. The output of Reduce function is:

Ur =
⋃
k∈Vr

ρr(k, V
k
r ) =

⋃
k∈Vr,v∈V k

r :⊥∈V k
r ∧v 6=⊥

〈k, v〉 (B.2.4)

As a consequence, the values contained in Ur are exactly the same as those obtained by

applying the predicate transformer G on X.

In order to prove point 2), we have to show that the condition of termination adopted by

∗Alg6 (the outputs of two consecutive iterations must have the same size) coincides with the

condition of termination of the fix-point evaluation, G(Xi) = G(Xi+1). For this aim, it is

sufficient to prove that

|G(Xi)| = |G(Xi+1)| =⇒ G(Xi) = G(Xi+1)

We proceed by contradiction, assuming that G(Xi) 6= G(Xi+1). Hence it should be

G(Xi+1) = [[φ]]T ∩R−(Xi) = (G(Xi) \A) ∪B, with A ∩B = ∅, A ⊆ G(Xi), B ∩G(Xi) = ∅.

Roughly speaking, that means the only way to obtain the set G(Xi+1) from G(Xi) would be

removing some states and adding new ones. The predicate transformer G being monotonic

decreasing, this would imply B = ∅ and A 6= ∅, i.e., |G(Xi)| 6= |G(Xi+1)|. 2

B.3 Correctness of the E[φUψ] Algorithm

Also the algorithm in Figure 7 (Alg7), employed to compute the E[φUψ] formula, is used in

an iterative MapReduce run. In order to prove its correctness we need once again to show

that the execution of a single round of Alg7 on input X computes the same output as an

application of the monotonic predicate transformer 4.5.3 (L hereafter) on input X, and that

both ∗Alg7(∅) and the fix-point 4.5.3 stop at the same iteration. Formally,

∗Alg7(∅) = [[E[φUψ]]T = µX(L(∅)) = µX([[ψ]]T ∪ ([[φ]]T ∩R−(∅)))

The formal proof of correctness of the latter algorithm is omitted for the sake of space,

due to its high similarity with the previous schema (section B.2).
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