
The wave energy flux of high frequency diffracting beams in complex geometrical
optics
Omar Maj, Alberto Mariani, Emanuele Poli, and Daniela Farina 
 
Citation: Physics of Plasmas (1994-present) 20, 042122 (2013); doi: 10.1063/1.4802935 
View online: http://dx.doi.org/10.1063/1.4802935 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/20/4?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Scattering of radio frequency waves by blobs in tokamak plasmasa) 
Phys. Plasmas 20, 056110 (2013); 10.1063/1.4803898 
 
Direct measurement of density oscillation induced by a radio-frequency wave 
Rev. Sci. Instrum. 78, 083502 (2007); 10.1063/1.2769351 
 
Monte Carlo operators for ions interacting with radio frequency waves 
Phys. Plasmas 12, 072524 (2005); 10.1063/1.1951347 
 
Advances in full-wave modeling of radio frequency heated, multidimensional plasmas 
Phys. Plasmas 9, 1873 (2002); 10.1063/1.1455001 
 
High-frequency asymptotics for Maxwell’s equations in anisotropic media Part I: Linear geometric and diffractive
optics 
J. Math. Phys. 42, 1612 (2001); 10.1063/1.1354639 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.149.197.188 On: Fri, 30 Jan 2015 12:51:48

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/16547528/x01/AIP-PT/PoP_ArticleDL_012815/PT_SubscriptionAd_1640x440.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Omar+Maj&option1=author
http://scitation.aip.org/search?value1=Alberto+Mariani&option1=author
http://scitation.aip.org/search?value1=Emanuele+Poli&option1=author
http://scitation.aip.org/search?value1=Daniela+Farina&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4802935
http://scitation.aip.org/content/aip/journal/pop/20/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/5/10.1063/1.4803898?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/78/8/10.1063/1.2769351?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/12/7/10.1063/1.1951347?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/9/5/10.1063/1.1455001?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/42/4/10.1063/1.1354639?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/42/4/10.1063/1.1354639?ver=pdfcov


The wave energy flux of high frequency diffracting beams in complex
geometrical optics

Omar Maj,1,a) Alberto Mariani,2,3 Emanuele Poli,1 and Daniela Farina2

1Max Planck Institute for Plasma Physics, EURATOM Association,
Boltzmannstr. 2, 85748 Garching, Germany
2Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche,
EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano, Italy
3Universit�a degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy

(Received 28 November 2012; accepted 11 April 2013; published online 30 April 2013)

We consider the construction of asymptotic solutions of Maxwell’s equations for a diffracting wave

beam in the high frequency limit and address the description of the wave energy flux transported by

the beam. With this aim, the complex eikonal method is applied. That is a generalization of the

standard geometrical optics method in which the phase function is assumed to be complex valued,

with the non-negative imaginary part accounting for the finite width of the beam cross section. In this

framework, we propose an argument which simplifies significantly the analysis of the transport

equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical

analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by

using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the

complex eikonal theory. The results are compared to those of the paraxial beam tracing code

TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent

calculation of the energy flow. [http://dx.doi.org/10.1063/1.4802935]

I. INTRODUCTION

The description of high-frequency beams in inhomoge-

neous dispersive media is usually dealt with by means of as-

ymptotic methods that greatly simplify the computational

problem. This is the case of electron cyclotron heating and

current drive applications in large magnetic confinement

devices, where the wave-length to plasma-size ratio is

extremely small, thus hampering the direct numerical solu-

tion of the relevant wave equation. One such method is com-

plex geometrical optics. Specifically, the version of the

complex geometrical optics method implemented in the

GRAY code1 has gained interest in the last few years, and,

together with the beam tracing code TORBEAM,2 consti-

tutes a major tool for the design of electron cyclotron heating

and current drive systems.3

The term “complex geometrical optics,” rather than to a

unified theory, refers to a family of closely related methods

for the construction of a uniform asymptotic solution of

wave equations in the high-frequency limit capturing wave

effects such as diffraction. It is a development of high-

frequency diffraction theory,4 and as such it builds on and

extends the standard geometrical optics method. (Among the

vast literature available on standard geometrical optics, one

can refer to the monograph by Kravtsov and Orlov5 for a

physics overview, to the review paper by McDonald6 for

more insights on operators and symbol calculus, and to

Rauch’s lectures7 for mathematically rigorous results with

emphasis on symmetric hyperbolic systems.)

In addition to the variety of complex geometrical optics

flavors, other methods such as the paraxial WKB method

developed by Pereverzev,8,9 the complex WKB method,10

and the theory of Gaussian beams11–13 are deeply related to

the techniques and ideas of complex geometrical optics.14–16

An attempt to a systematic classification of such various

aspects of complex geometrical optics has been made in the

recent monograph by Kravtsov,17 which includes a compre-

hensive list of references and a brief historical account; cf.

also �Cerven�y18 and references therein. Concerning plasma

physics applications, one might distinguish two main

branches.

The first branch is complex ray theory, also known as

ray-based complex geometrical optics, which relies on the

complexification of standard geometrical optics rays (cf. the

review papers by Kravtsov et al.,19 Thomson,20 and

Chapman et al.,21 as well as the numerical implementations

of Egorchenkov and Kravtsov22 and Amodei et al.23 and

references therein). This has been applied to plasma physics

for the description of strong damping,24–26 although complex

rays can be used to describe diffractive beams as well.19,21

The second branch is the complex eikonal theory,27 also

known as eikonal-based complex geometrical optics, which

has been applied to fusion-relevant problems by Mazzucato,28

Nowak and Orefice,29–31 Peeters,32 Timofeev,33 and which

eventually led to the GRAY code.1 Instead of relying on the

complexification of geometrical optics rays, a new set of tra-

jectories in the real space, called extended rays,32 are defined

as a perturbation of standard geometrical optics rays due to

diffraction.

Both forms of the complex geometrical optics share the

same ansatz for the wave field, which is built upon the stand-

ard WKB ansatz of geometrical optics by replacing the real-

valued eikonal with a complex-valued function referred to as

complex eikonal.a)Electronic mail: omaj@ipp.mpg.de
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The imaginary part of the complex eikonal should be

non-negative to avoid a blow-up of the field in the high fre-

quency limit. It was recognized by Pereverzev9 and

Maslov10 that the non-negative imaginary part of the eikonal

implies a localization of the wave field.

In this work, we propose a modified argument for the

derivation of the complex geometrical optics equations, i.e.,

the partial differential equations for the complex eikonal and

the amplitude of the wave field. Besides providing a better

mathematical foundation to the method, this argument allows

us to obtain the wave energy flux straightforwardly from the

amplitude transport equation. Our approach consists in

exploiting the localization of the wave field in order to obtain

a sharper control of the order of terms in the high frequency

asymptotic expansion of the wave equation, as done by

Pereverzev and Maslov in different contexts.

The theory is then illustrated numerically by means of

the GRAY1 and TORBEAM2 codes for the case of electron

cyclotron beams in tokamak plasmas. In particular, a com-

parison between the energy flows computed by GRAY and

TORBEAM is reported.

In those simulations, extended rays are computed with

the standard GRAY code, which has been equipped with

new diagnostics. As for the beam tracing code TORBEAM,

the wave energy flow is computed by a module, which has

been recently added34 as an interface of the code with ray-

based quasi-linear Fokker-Planck solvers.

At last, a generalization of the theory to dispersive,

weakly dissipative media is sketched, showing in particular

the robustness of high-frequency wave asymptotics. Possible

applications encompass electrodynamics, elastodynamics,

linear waves in fluids and plasmas, as well as quantum

mechanics in the semiclassical limit. Our main concern how-

ever is heating and current drive mechanisms in tokamak

plasmas. Therefore, all numerical results refer to electron cy-

clotron wave beams in tokamak geometry, for which a stand-

ard ITER plasma equilibrium is used.

The paper is organized as follows. In Sec. II, we review

the basic results of the standard geometrical optics, and intro-

duce the complex eikonal theory in its standard derivation.

This review material is not new, but it helps us to keep the pa-

per self-contained, defines the notation, and explains basic

ideas in a simple context. The standard approach to the com-

plex eikonal theory is critically outlined in Sec. II B, explaining

in particular the main motivations for this work. The estimates

of Pereverzev and Maslov, which constitute the fundamental

tool employed here, are also reviewed and adapted to our

framework in Sec. II C. Section III is devoted to the derivation

of complex geometrical optics equations and the wave energy

flux, while Sec. IV reports numerical results. The results of

Sec. III are derived for the simple case of spatially non-

dispersive media, i.e., when the response of the medium to the

electromagnetic perturbation is local, and thus Maxwell’s

equations for the electromagnetic fields in the medium amount

to partial differential equations. In the general case of spatially

dispersive media, however, the response of the medium is non-

local. Then, Maxwell’s equations involve pseudodifferential

operators.6 In Sec. V, we show how the theory can be extended

to the case of spatially dispersive media.

II. REVIEW OF STANDARD AND COMPLEX
GEOMETRICAL OPTICS

In this section, we fix the notation and review basic

results and ideas, upon which the complex geometrical optics

method relies.

For sake of simplicity, we consider here spatially non-

dispersive media for which the constitutive relation between

the electric displacement D and the electric field E is local,

namely, D ¼ eE where e is a matrix referred to as the dielec-

tric tensor. In Sec. V, we describe the modifications of the

theory required for the case of spatially dispersive media,

i.e., when e is replaced by a pseudodifferential operator.

A. The wave equation and standard geometrical
optics

Let us start from the equation for the electric field of a

monochromatic electromagnetic wave beam in a stationary

spatially non-dispersive medium, namely,

r� ðr � Eðj; xÞÞ � j2eðj; xÞEðj; xÞ ¼ 0: (1)

Equation (1) is written in the dimensionless form adopted by

Pereverzev,9 where the coordinates x ¼ ðxiÞ, i ¼ 1; 2; 3, are

normalized to the scale L of typical spatial variations of the

medium, and the large parameter

j ¼ xL=c

appears naturally. In addition, r ¼ ð@=@xiÞi and c is the

speed of light in free space. The dependence of the solution

Eðj; xÞ on the parameter j is explicitly indicated, whereas

the additional dependence on the beam frequency x is

implied in both the electric field E and the dielectric tensor e
of the medium.

We are interested in asymptotic solutions of (1) in the

limit j! þ1, which can be constructed by modest compu-

tational means, and yet provide excellent approximations of

the exact wave field for many applications as far as the pa-

rameter j is large. Asymptotic solutions offer an effective al-

ternative to the major computational problem of direct

numerical integration of (1) for very high frequencies in

large three-dimensional domains.

As usual,6,9 the dielectric tensor is assumed to be

smooth and have the asymptotic expansion,

eðj; xÞ ¼ e0ðxÞ þ j�1e1ðxÞ þ Oðj�2Þ; (2)

in the limit j! þ1, with e0 being Hermitian, i.e., e0 ¼ e�0.

Therefore, the medium is weakly dissipative since the wave

energy absorption coefficient35 is related to the anti-

Hermitian part ea ¼ j�1ea
1 þ Oðj�2Þ, and this is vanishingly

small as j! þ1. (Here and throughout the paper, Ah ¼
ðAþ A�Þ=2 and Aa ¼ �iðA� A�Þ=2 denote the Hermitian

and anti-Hermitian part of a matrix A, respectively, with A�

being the Hermitian conjugation, i.e., the transpose of the

complex-conjugate of A.)

Upon testing the wave operator, i.e., the left-hand side

of Eq. (1), with a plane wave eijN�x and separating the

042122-2 Maj et al. Phys. Plasmas 20, 042122 (2013)
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leading order in j, one obtains the matrix-valued smooth

function

D0;ijðx;NÞ ¼ N2dij � NiNj � e0;ijðxÞ; (3)

which is referred to as the dispersion tensor of the me-

dium,6,36 or, mathematically, as the semiclassical principal

symbol37 of the operator (1). This is defined on a domain in

the x-N space, which is referred to as the wave phase space.

In view of the definition of j and the normalization of spatial

coordinates x, the conjugate variable N ¼ ðNiÞi has the phys-

ical meaning of the refractive index vector.

In Sec. V, it will be shown that the dispersion tensor (3)

can be naturally generalized to the case of spatially disper-

sive media. All subsequent results in this section remain

valid provided that eðj; xÞ is replaced by eðj; x;NÞ defined in

Sec. V.

The real eigenvalues kj of D0 give the local dispersion

functions of wave modes supported by the medium.6 It is cus-

tomary to assume that the eigenvalues kj are well separated,

namely, there exists a strictly positive constant C > 0 such

that jkiðx;NÞ � kjðx;NÞj � C for i 6¼ j and for ðx;NÞ in the

relevant domain in the wave phase-space.7 This implies that

the dispersion surface of one mode does not get close to that

of the other modes, and linear mode conversion is excluded,6,7

that is, no energy exchange can take place among different

modes. Hence under such hypothesis, each mode is independ-

ent of the others and Maxwell’s Eq. (1) in the limit j! þ1
can be reduced to decoupled scalar equations describing the

various modes.38 The much more difficult case of linear mode

conversion39–42 is beyond the scope of this paper.

Let us denote by Hðx;NÞ the eigenvalue of D0ðx;NÞ rel-

evant to the considered mode, and let eðx;NÞ be the corre-

sponding unit eigenvector. For simplicity, we consider the

case of simple eigenvalues, i.e., the corresponding eigen-

space is assumed to be one-dimensional. The general case

can be dealt with by using spectral projectors.7,43

In geometrical optics, a solution of Eq. (1) is sought in

the form (eikonal ansatz)

Eðj; xÞ ¼ eijSðxÞaðj; xÞ; aðj; xÞ �
Xþ1
j¼0

j�jajðxÞ; (4)

where S(x) is a real-valued smooth function representing the

short-scale oscillations of the field and referred to as the

eikonal, while ajðxÞ are vector-valued complex smooth func-

tions that will be generically referred to as amplitudes. The

asymptotic sum aðj; xÞ of amplitudes is defined in the stand-

ard way.37

Upon substituting (4) into (1) and performing the as-

ymptotic expansion in the limit j! þ1, one finds that

multiple solutions exist, one for each propagation mode sup-

ported by the medium. Under the conditions stated above,

each mode is independent. We consider the one which corre-

sponds to the eigenvalue-eigenvector pair Hðx;NÞ, eðx;NÞ.
Then, a0ðxÞ ¼ AðxÞeðx;rSðxÞÞ, where A(x) is a scalar com-

plex amplitude, and the polarization of the leading order

term in the geometrical optics solution is determined by the

eigenvalue eðx;NÞ for N ¼ rS.

The eikonal S(x) is determined by the standard eikonal

equation

Hðx;rSðxÞÞ ¼ 0: (5a)

Given S(x), the scalar amplitude A(x) is determined by the

amplitude transport equation

VðxÞ � rAðxÞ ¼ ½�c1ðxÞ þ id1ðxÞ �
1

2
r � VðxÞ�AðxÞ; (5b)

where the vector field

VðxÞ ¼ @Hðx;rSðxÞÞ=@N (6)

plays the role of the group velocity,

c1 ¼ e� � ea
1e; (7)

accounts for wave damping, and

d1 ¼ e� � eh
1eþ ie� � H; ef g � i

2

X
i;j

D0;ij e�i ; ej

� �
; (8)

accounts for a lower order shift in the phase, due to the resid-

ual Hermitian part eh
1 (usually zero) plus the effects of polar-

ization transport extensively discussed by Littlejohn and

Flynn38 and Emmrich and Weinstein.43 In both Eqs. (7) and

(8), all phase space functions are evaluated at N ¼ rSðxÞ, ei

are the components of e, and Poisson brackets are defined by

f ; gf g ¼ @f

@Ni

@g

@xi
� @f

@xi

@g

@Ni

with the reversed sign with respect to, e.g., Littlejohn and

Flynn.38 The usual convention for the sum over repeated up-

and down-placed indices is adopted throughout the paper.

Equations (5) are referred to as geometrical optics equa-

tions. We do not digress here on the details of the derivation

as this can be inferred by specializing the complex eikonal

theory described in Sec. III. A direct derivation can be found

in the report by McDonald,6 while Kaufman et al.44 pro-

posed a variational derivation for the symmetric case

(e1 ¼ 0), identifying the Poisson-bracket structure of the

phase-shift (8), cf. also Littlejohn and Flynn.38 A general

and compact derivation with emphasis on geometric struc-

tures is given by Emmrich and Weinstein.43 (These referen-

ces provide a general and modern view to the subject. We do

not attempt here to give a complete historical account of the

vast literature on the development of geometrical optics.)

The geometrical optics estimate of the residual can now

be stated: given a (sufficiently regular) classical solution

S(x) and A(x) of Eqs. (5) in a bounded domain, and setting

a0ðxÞ ¼ AðxÞeðx;rSðxÞÞ, there exists a corrector a1ðxÞ, such

that the geometrical optics solution,

EGOðj; xÞ ¼ eijSðxÞða0ðxÞ þ j�1a1ðxÞÞ; (9)

solves (1) with a residual

jj�2r�r� EGOðj; xÞ � eðj; xÞEGOðj; xÞj 	 Cj�2; (10)
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uniformly for x in the considered domain, C > 0 being a

constant. The leading order term in (1) is Oðj2Þ, hence the

whole equation has been multiplied by j�2. The error esti-

mate (10) just controls the residual in the wave equation, but

it does not say anything about the convergence of the geo-

metrical optics solution to the exact solution. That would

require a finer analysis.7 The corrector a1ðxÞ however is

never evaluated in practice.

The actual construction of the geometrical optics field (9)

requires the solution of geometrical optics Eqs. (5).

Summarizing, the linear vector Eq. (1) has been reduced to

the scalar nonlinear Eq. (5a) complemented by the scalar lin-

ear transport Eq. (5b). The nonlinearity of Eq. (5a) in particu-

lar might seem a disadvantage hardly compensated by the

reduction to a scalar problem. One should notice however that

geometrical optics Eqs. (5) are independent of j, that is, the

geometrical optics approximation allows us to remove the

short scale length of the wave field oscillations from the prob-

lem. The nonlinearity is the price one has to pay for such a tre-

mendous simplification. As a result, a direct numerical

solution of (5) is viable and appropriate numerical methods

have been developed in the framework of Eulerian geometri-

cal optics, cf. the review papers by Benamou,45 the method by

Benamou et al.,46,47 and the review by Runborg.48

In most applications, however the direct numerical solu-

tion of geometrical optics Eqs. (5) is usually not favored.

The ray tracing technique is used instead, being simpler to

implement and computationally faster. This relies on the fact

that Eq. (5a) is a first-order nonlinear partial differential

equation, for which the theory of characteristics applies, cf.

chapter 1 Sec. 15 of Taylor’s treatise.49 Specifically, there is

a deep connection between (5a) and the Hamiltonian system

dxi

ds
¼ @H

@Ni
ðx;NÞ; dNi

ds
¼ � @H

@xi
ðx;NÞ; (11)

where the parameter s plays the role of time. A solution

ðxðsÞ;NðsÞÞ satisfying the local dispersion relation

Hðx;NÞ ¼ 0 is referred to as a bi-characteristic curve of Eq.

(5a), while its projection xðsÞ into the physical space is

called a geometrical optics ray.

The construction of a solution of (5a) using rays is

obtained as follows. Let us assume, as boundary conditions,

that the wave field is prescribed in the form E0ðj; yÞ /
eijS0ðyÞ on a ðd � 1Þ-dimensional smooth surface

R0 ¼ fx; x ¼ x0ðyÞg;

parametrized by the variables y ¼ ðyiÞ, i ¼ 1;…; d � 1,

where d � 2 is the effective dimensionality of the problem

(typically, d¼ 2 or d¼ 3). One can think of R0 as the surface

of either a mirror or an antenna, where the launched wave

field is known.

The gradient of the initial phase S0ðyÞ, together with the

local dispersion relation Hðx0ðyÞ;N0ðyÞÞ ¼ 0, yields the ini-

tial conditions ðx0ðyÞ;N0ðyÞÞ for Hamilton’s Eqs. (11).

Specifically, ryS0 determines the component of N0ðyÞ tan-

gent to R0 at the point x0ðyÞ. Meaningful data must be such

that the lifted surface,

K0 ¼ fðx;NÞ; x ¼ x0ðyÞ; N ¼ N0ðyÞg; (12)

is non-characteristic,49 i.e., the Hamiltonian orbits of the sys-

tem (11) originating from points of K0 are transversal (not

necessarily orthogonal) to K0 itself, so that orbits move away

from the surface, and rNHjK0
6¼ 0. Then, the solution of

Hamilton’s Eqs. (11) can be readily found in the form

ðxðs; yÞ;Nðs; yÞÞ depending on the initial point y on the

launching surface R0. This defines a d-dimensional surface

K ¼ fðx;NÞ; x ¼ xðs; yÞ; N ¼ Nðs; yÞg; (13)

immersed into the 2d-dimensional wave phase space, and

parametrized by coordinates ðs; yÞ. Indeed, K is the flow out

of K0 by the Hamiltonian flow.

As a consequence of the non-characteristic hypothesis

on K0, the relationship x ¼ xðs; yÞ defines a change of coor-

dinates, at least locally near R0. In analogy with fluid dynam-

ics, the new coordinates ðs; yÞ are referred to as Lagrangian

coordinates and the ray tracing technique is also referred to

as Lagrangian geometrical optics,45 as opposed to Eulerian

geometrical optics. Geometrically, Lagrangian coordinates

establish a one-to-one correspondence between a neighbor-

hood of R0 in the physical space and a neighborhood of K0

in the surface K. By exploiting the geometrical properties of

K (specifically K is a Lagrangian manifold49–53), it is possi-

ble to proof49 that, at least near R0, there exists a real func-

tion S(x) such that Nðs; yÞ ¼ rSðxðs; yÞÞ and SjR0
¼ S0ðyÞ. It

follows that S(x) solves Eq. (5a) with the appropriate bound-

ary condition. Despite its rather abstract definition, the con-

struction of S in Lagrangian coordinates is actually

straightforward and can be combined with the construction

of the corresponding amplitude A. Specifically, one has

@S

@s
¼ N � @H

@N
;

@A

@s
¼ �c1 þ id1 �

1

2
r � V

� �
A;

and this is a system of ordinary differential equations that

can be conveniently integrated together with Hamilton’s

Eq. (11) by standard numerical techniques.

This construction however relies on the one-to-one cor-

respondence between physical space and the Lagrangian

manifold K, and this can be established locally only. Away

from the surface R0 geometrical optics rays can cross each

other. Correspondingly, K turns vertical and fold onto itself

so that, over a given point x in the physical space, multiple

branches of K can exist. At such points, the value of S(x) and

A(x) is not uniquely defined.

Figure 1 shows the surface K for simple cases in two

dimensions (d¼ 2). The phase space is four-dimensional,

and yet one can obtain an effective visualization of K by

exploiting the local dispersion relation to eliminate one

dimension. This visualization concept has been recently sug-

gested by Tracy et al.54 Here, the simple case of transverse

electromagnetic waves in an isotropic medium has been con-

sidered, for which the local dispersion relation reads5

Hðx;NÞ ¼ N2 � n2ðxÞ ¼ 0; (14)
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n(x) being the refractive index. In two dimensions, let us

write x ¼ ðx1; x2Þ ¼ ðx; yÞ and N ¼ ðN1;N2Þ ¼ ðNx;NyÞ.
Then, the dispersion manifold can be parametrized by

ðx; y; aÞ, with Nx ¼ nðx; yÞcos a and Ny ¼ nðx; yÞsin a, and

the angle a is used as a third axis in Figure 1. The initial sur-

face is R0 ¼ fðx; yÞ; x ¼ �1g, and the beam is launched to-

ward the positive x-axis. The case of free space nðx; yÞ ¼ 1

is shown in plots (a) and (b), for two different boundary con-

ditions generating cusped singularities: parabolic launching

mirror, ajR0
¼ y, (a) and a quartic launching mirror,

ajR0
¼ �5y3, (b). In the latter case, the Lagrangian surface K

exhibits a rather complicated structure even in free space.

Plots (c) and (d) show the classical model of reflection from

a linear medium, for which n2ðx; yÞ ¼ ð1� xÞ=2 with a cut-

off at x ¼ 1, where the refractive index vanishes. In the case

of a plane wave (c) with an angle ajR0
¼ a0 ¼ 0:14 (
8�),

the Lagrangian manifold has a simple fold. For a focused

beam (d) with ajR0
¼ a0 � 0:3y3, a fold and a cusp are found

together.

In all cases of Figure 1, the surface K cannot be pro-

jected one-to-one on the configuration space. Particularly,

one can note that there are points x ¼ ðx; yÞ above which

K can be separated into a finite number branches, that

merge in points where K turns vertical in the phase

space. Those are the singular points of K, and their pro-

jection onto the configuration space defines the set of

caustics.

Caustics pose an obstruction to the existence of classical

solutions of the Hamilton-Jacobi Eq. (5a) for the phase. On

caustics, the wave field amplitude blows up, with consequent

loss of uniform approximation. In order to see this, let us

consider the Jacobian matrix Uðs; yÞ of the map

ðs; yÞ 7! xðs; yÞ. Since xðs; yÞ solves an ordinary differential

equation, one can check that, in components,

@Ui
j=@s ¼ ðrVÞikUk

j ;

and for the determinant jUj ¼ det U,

FIG. 1. Visualization of Lagrangian manifolds for two-dimensional models of wave propagation corresponding to the local dispersion relation (14): parabolic

focal point in free space (a), quartic focal point in free-space (b), a fold caustic (c), and a fold combined with a focal point (d). The curves in the x-y plane rep-

resent selected rays, while the curves on the Lagrangian surface represent the corresponding Hamiltonian orbits in the phase space. The third axis is the angle a
defined by ðNx;NyÞ ¼ nðx; yÞðcos a; sin aÞ, which parametrizes the dispersion surface.
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@jUj=@s ¼ ðr � VÞjUj:

These are well known properties of ordinary differential

equations, cf. the first chapter of H€ormander’s lectures.55

Equation (5b) in Lagrangian coordinates reads5

A ¼ jUj�
1
2 ~A;

@ ~A=@s ¼ ½�c1 þ id1� ~A;

�

and the coefficients of the equation for ~A are smooth on the

whole wave phase space. Therefore, the equation for ~Aðs; yÞ
can always be solved by a simple integration along the rays,

and the result accounts for the amplitude damping and phase

shift. The total amplitude A, on the other hand, depends on

the Jacobian determinant jUj, which accounts for the conver-

gence/divergence of the bundle of rays, that is, for the defor-

mation of the volume element along a ray tube. The

determinant jUj vanishes near singular points of K, thus

causing the blow-up of the amplitude near caustics.

At caustics where the geometrical optics amplitude

blows up, the exact solution of Maxwell’s Eq. (1) exhibits a

large (but finite) peak of intensity. In optics, this phenom-

enon is very common and can be easily observed in “real

life.”56 Typical examples are the bright spots on the bottom

of a swimming pool due to the focusing effects of surface

waves, or in a cup of coffee, due to the curvature of the inner

surface of the cup.

From a physical point of view, the validity of geometri-

cal optics has been investigated by Kravtsov and Orlov,5,57

with the result that the geometrical optics solution (9) fails

when wave effects such as diffraction4 become important.

This drawback can be cured by complex geometrical optics,

as explained in Sec. II B.

In addition to its computational advantages, geometrical

optics allows us to extract relevant physical information.

Within the limits of applicability, i.e., when diffraction

effects can be neglected, Eq. (5b) implies that the wave

energy density is transported along geometrical optics rays.

More specifically, Eq. (5b) can be recast in the form5 (after

some algebra and restoring dimensional quantities)

rr � ½vgW� ¼ �cW; (15)

where rr denotes the gradient in physical (dimensional)

coordinates,

vg ¼ �
@H=@k

@H=@x
¼ c

���� @ðxHÞ
@x

����
�1
@H

@N
(16)

is the group velocity,35 and

W ¼ @ðxHÞ
@x

����
���� jAj216p

¼ 1

x
e� � @ðx

2e0Þ
@x

e

� �
jA2j
16p

(17)

is the total wave energy density, comprising the electric,

magnetic, and sloshing energy.35,36 At last,

c ¼
����� @ðxHÞ
@x

�����
�1

2c1 (18)

is the energy absorption coefficient. Here, all derivatives

with respect to the frequency are taken at constant wave vec-

tor k ¼ xN=c, and phase-space functions are evaluated at

N ¼ rS.

The aim of this paper is the precise derivation of an

energy conservation law analogous to (15) in the framework

of complex geometrical optics.

B. Review of complex eikonal theory

Both cusped and folded singularities shown in Figure 1

are common in plasma physics application of high frequency

beams. For example, focused beams are used either in diag-

nostics or heating in order to increase the localization of the

measurement or power deposition, while folds are the essen-

tial components of reflectometry diagnostics.

Complex geometrical optics is a development of stand-

ard geometrical optics in which the eikonal function S(x) in

the ansatz (4) is replaced by a complex valued function

wðxÞ ¼ SðxÞ þ i/ðxÞ. With slight abuse of notation, it is cus-

tomary to denote by S(x) both the geometrical optics eikonal

and the real part of the complex eikonal, although those are

two different functions. The imaginary part / accounts for

the spatial inhomogeneity of the beams on a short scale. This

will be made precise in Sec. II C.

In this section, we review the standard approach to the

complex eikonal theory leading to the concept of extended

rays. We follow the seminal paper by Choudhary and

Felsen27 and consider the Helmholtz equation for the scalar

wave field uðj; xÞ, namely,

½Dþ j2n2ðxÞ�uðj; xÞ ¼ 0;

where D is the Laplacian operator and n(x) is the refractive

index of the medium. The complex geometrical optics ansatz

reads

uðj; xÞ ¼ eijwðxÞaðj; xÞ;

where aðj; xÞ � a0ðxÞ þ j�1a1ðxÞ þ… as in Eq. (4). Upon

substituting the ansatz into the Helmholtz equation, one finds

that the leading order in the limit j! þ1 is determined by

ðrwÞ2 � n2ðxÞ ¼ 0; (19a)

2rw � ra0 þ Dwa0 ¼ 0; (19b)

which are formally identical to geometrical optics Eqs. (5)

for the Hamiltonian (14) and c1 ¼ d1 ¼ 0 as relevant to the

Helmholtz equation. The only important difference is that

wðxÞ is now complex-valued.

One approach to the solution of (19) relies on the con-

cept of complex rays, which consists essentially in using the

theory of characteristics in the complex space.19–21 The

physical meaning of complex rays however is not evident

and a different approach formulated entirely in the physical

space has been developed. We shall focus on the latter.

Let us consider first Eq. (19a), which is referred to as

complex eikonal equation. Separating its real and imaginary
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parts yields the system of nonlinear partial differential

equations

ðrSÞ2 � ðr/Þ2 � n2ðxÞ ¼ 0; (20a)

rS � r/ ¼ 0: (20b)

When r/ is zero, the solution for S is expected to be the same

as the solution of the corresponding eikonal equation

ðrSÞ2 � n2 ¼ 0, for which rays are tangent to the vector field

rSðxÞ, and thus normal to the S ¼ constant surfaces, i.e., the

phase fronts. This is generalized to the caser/ 6¼ 0. Extended

rays are defined as the curves tangent to the vector field rS.

The name “extended rays” was proposed by Peeters.32 As a

consequence the function, / is constant along an extended ray

because of the orthogonality conditionrS � r/ ¼ 0.

Extended rays can still be computed via Hamilton’s

equation, but now the Hamiltonian

H/ðx;NÞ ¼ N2 � n2ðxÞ � ðr/ðxÞÞ2 (21)

depends on the unknown function /, which is reconstructed

in numerical codes from the fact that / is constant along

extended rays.1

By inspection of the Hamiltonian, one can give an inter-

pretation of the dynamics of extended rays as the motion of a

point particle of mass 1=2 in the potential �n2 � ðr/Þ2. The

term �n2 is the usual potential of geometrical optics, while

�ðr/Þ2 depends on neighboring rays. In typical situations,

r/ increases with the distance from the axis of the beam,

hence �ðr/Þ2 has a maximum on the beam axis and rays

tends to be repelled from it. In the presence of focusing (cf.

Figure 1 panels (a) and (b)), this effect becomes large in the

focus and prevents rays to cross the beam axis, thus remov-

ing the singularity at the focal point.

This argument is purely qualitative. There is no a priori
guarantee that, in general, the complex geometrical optics will

not develop a singularity. For instance, in points where

rS ¼ 0, there can be no real valued solution of the system

(20). Moreover, for one dimensional problems, S0 6¼ 0 implies

that / is constant, so that the system (20) reduces to the stand-

ard eikonal equation for S. The introduction of a complex

phase has no effect in one dimension as far as n2 is real-

valued, i.e., no dissipation at the leading order in j is present.

The generalization of Eq. (20) to the case of anisotropic

spatially non-dispersive media, i.e., to the case of Eq. (1),

has been addressed by Mazzucato,28 using the formal

expansion

Hðx;rwÞ ¼ Hðx;rSÞ þ ir/ � rNHðx;rSÞ
� 1

2
r/ � D2

NHðx;rSÞr/þ � � � ;

where Hðx;rwÞ is the geometrical optics Hamiltonian intro-

duced in Sec. II A, analytically continued in the space of

complex momenta, and D2
NHðx;NÞ ¼ ð@2Hðx;NÞ=@Ni@NjÞij

is the Hessian matrix of H with respect to momenta. The

expansion is formally justified by assuming the physical con-

dition jr/j � jrSj. The real and imaginary parts define the

systems

Hðx;rSÞ � 1

2
r/ � D2

NHðx;rSÞr/ ¼ 0;

rNHðx;rSÞ � r/ ¼ 0:

(
(22)

In this more general case, r/ is orthogonal to the vector

field VðxÞ ¼ rNHðx;rSÞ, which is defined as in geometrical

optics, cf. Eq. (6), but with S obtained from the extended ray

dynamics. Specifically, the Hamiltonian for extended rays is

H/ðx;NÞ ¼ Hðx;NÞ � 1

2
r/ðxÞ � D2

NHðx;NÞr/ðxÞ; (23)

and one can see that, in general, / is not constant along

extended rays. This is a complication in the numerical recon-

struction of /.

In the GRAY code,1 the imaginary part / of the phase is

assumed to be constant along extended rays, a choice that

greatly simplifies the derivation of a numerical scheme. This

corresponds to adding a term proportional to jr/j3 to the

second equation of (22), which is heuristically justified by

invoking again the condition jr/j � jrSj.
In Sec. III, we propose a systematic approach, which

provides a mathematically precise way to control the formal

expansion in r/ and applies even when the Hamiltonian

Hðx;NÞ is not analytic in the argument N. In addition, our

approach allows us to address the problem of / being not

exactly constant along extended rays.

On going back to Eq. (20b), we write

a0ðxÞ ¼ AðxÞeihðxÞ;

where A ¼ ja0j and h ¼ arg a0 are real-valued, and we split

the real and imaginary parts of the equation with the result

that

2rS � rA� 2ðr/ � rhÞAþ DSA ¼ 0; (24a)

2rS � rhþ 2ðr/ � rAÞ=Aþ D/ ¼ 0: (24b)

This system of coupled partial differential equations deter-

mines the amplitude A and the phase shift h of the wave

field. In contrast to the geometrical optics transport Eq. (5b),

this cannot be reduced to ordinary differential equations

along rays. Indeed, the variations of A and h in both the

directions rS (tangent to extended rays) and r/ (normal to

extended rays in this case) are involved. The derivation of a

conservation law of the form (15) is also not evident from

the system (24).

We shall show in Sec. III that Eqs. (19) are unnecessa-

rily too restrictive. By making use of a sharper control on the

order of terms in the asymptotic expansion for the wave

equation, we shall show that the terms proportional to r/
can be neglected, thus obtaining a decoupled system of trans-

port equations for the amplitude A and the phase h.

C. Paraxial character of complex eikonal waves

Our main results of Sec. III rely on simple but important

properties of complex eikonal wave fields that were observed

independently by Pereverzev9 and Maslov.10 In this section,
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we review such results, properly reformulated in order to

apply to our framework.

We are interested in asymptotic solutions of Eq. (1) in

the form of a complex eikonal wave field, namely,

ECGOðj; xÞ ¼ eijwðxÞaðj; xÞ; (25a)

where wðxÞ ¼ SðxÞ þ i/ðxÞ, /ðxÞ � 0, is the complex

eikonal,

aðj; xÞ � a0ðxÞ þ j�1a1ðxÞ þ � � � ; (25b)

and the amplitudes ajðxÞ are independent of j and bounded

in x with bounded derivatives. The asymptotic sum aðj; xÞ
has been formally introduced in the standard eikonal ansatz

(4). Here, we need some more information. According to the

standard definition of asymptotic series,37 the sum aðj; xÞ is

not unique. Two asymptotic sums of the same sequence aj

differ for a remainder that is exponentially decreasing in the

limit j! þ1. One possible choice of aðj; xÞ is given by

the sum of the series vð�jjÞj�jajðxÞ where the cut-off func-

tion 0 	 vð�jjÞ 	 1 vanishes identically for �jj 	 1, and �j is

a sequence of positive numbers approaching zero monotoni-

cally. Hence, the sum aðj; xÞ ¼
P

j vð�jjÞj�jajðxÞ has only a

finite number of terms for every j and x. In addition, for

bounded amplitudes jajðxÞj 	 Cj, we have jvð�jjÞj�jajðxÞj
	 �j

jCj, and we can choose the sequence �j so that

�j
jCj 	 1=j2. Since the series of 1=j2 is convergent, the as-

ymptotic sum aðj; xÞ is bounded and we write

jaðj; xÞj 	 C0; for j � j0;

where C0 > 0 and j0 > 0 are constants. The condition

/ðxÞ � 0 on the imaginary part of the eikonal is required by

the boundedness of the wave field for j! þ1.

Ansatz (25) should now be substituted into the wave Eq.

(1). Before proceeding, however, let us make two important

observations, following the idea of Pereverzev9 and

Maslov.10 Both are consequences of the condition /ðxÞ � 0

and imply that the wave field (25a) is paraxial.
The first observation is that the wave field (25a) is expo-

nentially small, in the limit j! þ1 near points x where

/ðxÞ > 0. Indeed, one has jECGOðj; xÞj / e�j/ðxÞ ! 0 for

j! þ1. More precisely, for every integer n > 0,

jnjECGOðj; xÞj 	 C0

n

e/ðxÞ

� 	n

; /ðxÞ > 0; (26)

which is tantamount to exponential decay.

The second observation requires some preparation.

Estimate (26) means that the wave field (25a), in the limit

j! þ1, collapses on the zero-level set of the function

Imw ¼ /, namely,

R ¼ fx; /ðxÞ ¼ 0g: (27)

We restrict our attention to cases in which R is a curve given

parametrically by x ¼ �xðsÞ. In the paraxial WKB theory, this

is called reference ray.9 Let us mention that it is possible to

weaken this assumption and allow R to be a two-dimensional

submanifold satisfying appropriate conditions, but this is

hardly encountered in the applications (for the interested

reader, this generalization is described in an unpublished

note58).

By definition /ð�xðsÞÞ ¼ 0, identically in s and,

0 ¼ d

ds
/ð�xðsÞÞ ¼ d�xðsÞ

ds
� r/ð�xðsÞÞ;

which means that the component of r/ð�xðsÞÞ tangent to the

curve R vanishes identically. The other two components

must vanish as well, otherwise / would change sign across

R, thus violating the condition / � 0. It follows that

r/ð�xðsÞÞ ¼ 0; (28)

identically in s. Then, the Taylor polynomial of / around �x
has terms of second order or higher only. Continuing, one

has

0 ¼ d

ds
r/ð�xðsÞÞ ¼ D2/ð�xðsÞÞ d�xðsÞ

ds
;

where D2/ðxÞ ¼ ð@2/ðxÞ=@xi@xjÞij is the Hessian matrix of

second-order derivatives of /. Therefore, the tangent vector

etðsÞ / d�xðsÞ=ds is an eigenvector of D2/ð�xðsÞÞ correspond-

ing to the null eigenvalue.

In general, the whole matrix D2/ð�xÞ can be zero and, in

that case, the Taylor polynomial of / would have only terms

of fourth order or higher (the third order is again excluded

by the condition / � 0). For definiteness, we shall consider

the case in which, except for the tangent direction / et, the

matrix D2/ð�xÞ is strictly positive definite. Precisely,

w � D2/ð�xðsÞÞw > 0; (29)

for every vector w linearly independent of etðsÞ, i.e., D2/ is pos-

itive definite for vectors transversal to the reference curveR.

The exact Taylor formula for / now reads

/ðxÞ ¼ 1

2
ðx� �xÞ � Qðx; �xÞðx� �xÞ;

where, for jx� �xj small enough, the symmetric matrix

Qðx; �xÞ ¼ 2

ð1

0

D2/ðð1� sÞ�x þ sxÞð1� sÞds

is positive definite for vectors transversal to the reference

curve R. Through diagonalization of the matrix Q, for every

point x in a neighborhood of R, one can find �x on R for

which there exists a d � d matrix Bðx; �xÞ satisfying

ðx� �xÞ � Qðx; �xÞðx� �xÞ ¼ ðx� �xÞ�tBðx; �xÞBðx; �xÞðx� �xÞ;

where tB denotes the transpose of B. With the new function

nðxÞ ¼ Bðx; �xÞðx� �xÞ, the imaginary part of the complex

phase becomes

/ðxÞ ¼ 1

2
nðxÞ2:
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This form of the imaginary part / is valid in a neighborhood

of R only and it is of dubious practical utility, except for

obtaining the following inequality:9

jnðxÞae�j/ðxÞj ¼ jzae�z2=2jj�jaj=2 	 Caj
�jaj=2;

where the multi-index notation has been used: the vector of

integers a ¼ ða1;…; adÞ is the multi-index, with length

jaj ¼ a1 þ � � � þ ad , and na ¼ ðn1Þa1 ;…; ðndÞad . Here, z ¼ffiffiffi
j
p

n and Ca > 0 is a constant depending only on a. Roughly

speaking, every time one multiplies the exponential e�j/ by

any component ni, the order is reduced by a factor 1=
ffiffiffi
j
p

. On

noting that r/ðxÞ ¼ dijðrniðxÞÞnjðxÞ, one has

jðr/Þaeijwj 	 Caj
�jaj=2; (30)

where Ca is a different constant. This is the second conse-

quence of the ansatz (25a).

Differently from estimate (26) however, (30) is not fully

general as it relies on the assumptions that (i) the set (27) is a

curve, and (ii) the matrix D2/ satisfies (29). The latter condi-

tion, in particular, is the reason for which half-integer powers

of 1=j are found. We shall see that this is the appropriate set-

ting for studying focused beams, for which the caustic geom-

etry is similar to the one represented in Figures 1(a) and

1(b). This is the situation of practical interest for electromag-

netic wave beams in fusion plasmas, including focused

beams. However, the assumptions on the topology of the set

R and on the Hessian matrix D2/ are not general enough to

cope with arbitrary caustic singularities. When a folded sin-

gularity is present, like for instance in the cases of Figures

1(c) and 1(d), the asymptotic expansion of the wave field is

obtained in powers of j1=3, cf. Sec. 3.4 of Babič and

Buldyrev,4 and near the cut-off such ordering should be

properly accounted for.

III. COMPLEX GEOMETRICAL OPTICS EQUATIONS,
EXTENDED RAYS, AND WAVE ENERGY TRANSPORT

The estimates reviewed in Sec. II C are now applied to

the derivation of complex geometrical optics equations. Our

approach is characterized by a sharper control of terms in the

asymptotic expansion of the wave equation in the limit

j! þ1. As anticipated above, this will eventually lead to

a simplified form of the amplitude transport equation, which

in turns yields the energy continuity equation.

The first part of the derivation follows the standard one

reviewed in Sec. II B. The complex eikonal ansatz (25) is

substituted into Maxwell’s Eq. (1), and the asymptotic

expansion is performed in the limit j! þ1. Thereafter,

the analysis of the resulting equation is different. In order to

keep the paper self-contained, the whole procedure is

described in details.

A. Complex eikonal theory

The substitution of the ansatz (25a) into Maxwell’s

wave Eq. (1) for the electric field yields

eijw

(
j2D0ðx;rwÞa0ðxÞ

þ j

"
D0ðx;rwÞa1 � i

�
@D0

@Ni
ðx;rwÞ @a0

@xi

þ 1

2

@

@xi

�
@D0

@Ni
ðx;rwÞ

�
a0 � ie1a0

�#)
þ Oð1Þ ¼ 0;

(31)

where Eq. (2) has been accounted for. In writing Eq. (31),

one should note that the dispersion tensor D0, defined in

Eq. (3), is a polynomial in N and it extends to an entire func-

tion of the complex refractive index ~N ¼ N þ iN0. We can,

therefore, evaluate D0 at ~N ¼ rw. The same argument

applies to the derivatives of D0. Explicitly,

D0;ijðx;rwÞ ¼ ðrwÞ2dij �
@w
@xi

@w
@xj
� e0;ijðxÞ; (32a)

@D0;ij

@Nk
ðx;rwÞ ¼ 2

@w
@xl

dlkdij � dk
i

@w
@xj
� @w
@xi

dk
j ; (32b)

@2D0;ij

@Nk@Nl
ðx;rwÞ ¼ 2dkldij � dk

i d
l
j � dl

id
k
j ; (32c)

while

@

@xk

�
@D0;ij

@Nk
ðx;rwÞ

�
¼ @2D0;ij

@xk@Nk
ðx;rwÞ

þ @2w
@xk@xl

@2D0;ij

@Nk@Nl
ðx;rwÞ: (33)

The first term on the right-hand side of (33) is actually zero

for the dispersion tensor (3), and the second-order derivative

with respect to N is constant, cf. Eq. (32c). In the following,

we keep both terms formally general. This will be needed for

spatially dispersive media in Sec. V.

When one neglects the paraxial character of the wave

field discussed in Sec. II C, terms of different order in j are

separated in (31), yielding a hierarchy of equations for w, a0,

and a1. Such equations, although formally similar to the cor-

responding equations of standard geometrical optics,38 are

complicated by the presence of the imaginary part of the

phase. The hierarchy thus obtained, however, is unnecessa-

rily too strong and it can be considerably simplified by taking

into account inequalities (26) and (30).

Inequality (30) in particular implies that terms propor-

tional to Imrw ¼ r/ in Eq. (31) can be better estimated by

half-integer powers of j.

When that is accounted for, Eq. (31) becomes

eijw

(
j2D0ðx;rwÞa0ðxÞ þ j

�
D0ðx;rSÞa1

� i

�
@D0

@Ni
ðx;rSÞ @a0

@xi
þ 1

2

�
@2D0

@xi@Ni
ðx;rSÞ þ @2w

@xi@xj

� @2D0

@Ni@Nj
ðx;rSÞ

�
a0 � ie1a0

��)
þ Oð

ffiffiffi
j
p
Þ ¼ 0: (34)
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Now the imaginary part of the complex phase enters the

OðjÞ-term through the Hessian matrix @2w=@xi@xj only, a

simplification which will be crucial in deriving the wave

energy flux.

The asymptotic expansion (34) of the wave equation is

solved within an Oð
ffiffiffi
j
p
Þ residual, which corresponds to an

error of Oðj�3=2Þ as the leading terms in the wave equation

are quadratic in j.

We can now exploit the linear independence of mono-

mials jn and separate the coefficients of j2 and j. In view of

estimate (30) however, a remainder of appropriate order in

r/ can be allowed in the equations thus obtained.

Specifically,

D0ðx;rwÞa0 ¼ q0ðx;r/Þ; (35a)

D0ðx;rSÞa1 � i

�
@D0

@Ni
ðx;rSÞ @a0

@xi
þ 1

2

�
@2D0

@xi@Ni
ðx;rSÞ

þ @2w
@xi@xj

@2D0

@Ni@Nj
ðx;rSÞ

�
a0�ie1a0

�
¼ q1ðx;r/Þ;

(35b)

where the remainders q0 and q1 must be at least cubic and

linear in r/, respectively. Let us remark that this is not a

perturbative argument in r/: In general, the remainders are

by no means small, except in a narrow strip around the zero-

level set (27), where the beam is localized.

Since the remainders q0 and q1 are arbitrary, any term

of order jr/j3 and jr/j can be added to (35a) and (35b),

respectively, without changing the order of the residual in

the wave equation.

If we can find the solution of such equations for w, a0,

and a1, then the coefficient of j2 in the asymptotic form (34)

of the wave equation can be substituted by the cubic remain-

der q0, and, analogously, the coefficient of j can be replaced

by q1. Equation (30), in conclusion, shows that the result is

of Oð
ffiffiffi
j
p
Þ, which is the desired residual.

1. Solution of equation (35a)

The matrix D0ðx;rwÞ is no longer Hermitian, even

though D0ðx;NÞ is Hermitian for a real valued refractive

index N. Nonetheless, D0ðx;rwÞ is much simpler than a

generic complex matrix, as it is the analytical continuation

of a Hermitian matrix.

For the specific case of the dispersion tensor (3), one

can check, e.g., by means of (32), that the identity,

D0ðx; ~NÞ ¼ ~D0ðx; ~NÞ;

holds true with ~N ¼ N þ iN0 and

~D0ðx; ~NÞ ¼ D0ðx;NÞ þ i
@D0ðx;NÞ
@Nk

N
0

k

� 1

2

@2D0ðx; pÞ
@Nk@Nl

N
0

kN
0

l :

This defines a convenient complex extension of D0ðx;NÞ up

to second-order terms in the imaginary part N0. Such an

apparently cumbersome way of rewriting D0ðx; ~NÞ allows us

to exploit the properties of the Hermitian matrix D0ðx;NÞ.
Besides, the form ~D0ðx; ~NÞ is naturally encountered for the

case of spatially dispersive media treated in Sec. V.

Consistently, given an eigenvector ejðx;NÞ of the

Hermitian matrix D0ðx;NÞ corresponding to the eigenvalue

kjðx;NÞ, we define the complex extension of ej by an analo-

gous expression,

~ejðx; ~NÞ ¼ ejðx;NÞ

þ i
@ejðx;NÞ
@Nk

N
0

k �
1

2

@2ejðx;NÞ
@Nk@Nl

N
0

kN
0

l ; (36)

as well as the complex extension of its dual,

~f jðx; ~NÞ ¼ e�j ðx;NÞ

þ i
@e�j ðx;NÞ
@Nk

N
0

k �
1

2

@2e�j ðx;NÞ
@Nk@Nl

N
0

kN
0

l ; (37)

and the complex extension of the corresponding eigenvalue,

~kjðx; ~NÞ ¼ kjðx;NÞ

þ i
@kjðx;NÞ
@Nk

N
0

k �
1

2

@2kjðx;NÞ
@Nk@Nl

N
0

kN
0

l; (38)

where again ~N ¼ N þ iN0. (A mathematically complete pre-

sentation of this argument can be found in the unpublished

note58 quoted above.)

Upon taking into account the eigenvalue equation

D0ej ¼ kjej, together with its derivatives with respect to N,

one gets the identity

~D0ðx; ~NÞ~ejðx; ~NÞ � ~kjðx; ~NÞ~ejðx; ~NÞ ¼ OðjN0j3Þ; (39)

which shows that ~ejðx; ~NÞ is an eigenvector of ~D0ðx; ~NÞ with

eigenvalue ~kjðx; ~NÞ, apart from an OðjN0j3Þ remainder.

Identity (39) implies that Eq. (35a) is solved by a com-

plex eikonal wðxÞ and an amplitude a0ðxÞ such that

~Hðx;rwÞ ¼ r0ðx;r/Þ; (40a)

a0ðxÞ ¼ AðxÞ~eðx;rwÞ; (40b)

where ~Hðx; ~NÞ is the complex extension of the specific

eigenvalue Hðx;NÞ relevant to the considered wave mode,

r0ðx;r/Þ is an arbitrary cubic remainder, ~eðx; ~NÞ is the

complex extension of the corresponding eigenvector, and

A(x) is an arbitrary complex scalar amplitude.

Given the wave mode, solution (40a) is indeed the only

possible solution of (35a). In order to see that, let us recall

that the eigenvectors of a Hermitian matrix are complete,

i.e., they span the whole space. This is expressed by the

identity

I ¼
X

j

ejðx;NÞe�j ðx;NÞ; (41)

which holds true for every ðx;NÞ in the wave phase space.

Here, I is the identity matrix. By taking into account (41)
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and its derivatives with respect to N, one can check that the

completeness relation holds for complex extended quantities

as well, but with a usual cubic remainder, namely,

I �
X

j

~ejðx; ~NÞ~f jðx; ~NÞ ¼ OðjN0j3Þ: (42)

In the same way, one can extend the orthogonality of eigen-

vectors, namely, e�i ðx;NÞ � ejðx;NÞ ¼ dij, which reads

~f i � ~ej � dij ¼ OðjN0j3Þ: (43)

Then, a generic amplitude vector can be written in the form

a0ðxÞ ¼
X

j

~ejðx;rwÞð~f jðx;rwÞ � a0ðxÞÞ þ Oðjr/j3Þ;

¼
X

j

AjðxÞ~ejðx;rwÞ þ Oðjr/j3Þ;

and Eq. (35a) amounts toX
j

~kjðx;rwÞAjðxÞ~ejðx;rwÞ þ Oðjr/j3Þ ¼ q0ðx;r/Þ:

One can now apply ~f i on the left and use the orthogonality

(43), thus splitting the vector Eq. (35a) into three scalar

equations,

~kiðx;rwÞAiðxÞ þ Oðjr/j3Þ ¼ ~f iðx;rwÞ � q0ðx;r/Þ;

for i ¼ 1; 2; 3. The amplitude Ai can be different from zero

only if ~kiðx;rwÞ ¼ Oðjr/j3Þ. On the other hand, only one

out of the three eigenvalues can fulfill this condition for a

given complex phase w, otherwise the hypothesis of separa-

bility of eigenvalues kj stated in Sec. II A would be violated

in points ðx;rSðxÞÞ, S ¼ Rew, for x ¼ �xðsÞ, i.e., on the refer-

ence curve (27). It follows that, given a specific wave mode

corresponding to a specific eigenvalue H, Eq. (40a) gives the

only solution for that mode.

Equation (40a) depends on the arbitrary cubic remainder

r0, and therefore it does not determine uniquely the complex

eikonal w. Such a loss of uniqueness is a natural conse-

quence of fixed-order asymptotics. Since we require that the

wave equation is solved up to a fixed order (Oð
ffiffiffi
j
p
Þ in this

case), we cannot distinguish between two different complex

phases that produce the same leading order terms in the

wave equation.

With the natural choice r0ðx;r/Þ ¼ 0, Eq. (40a)

reduces to the system (22) obtained by Mazzucato and dis-

cussed in Sec. II B. Hence, we have recovered the standard

equations for extended rays, but without the need for the

condition jr/j � jrSj.
As already discussed in Sec. II B, in the standard

extended ray theory, one identifies two vector fields. The first

field is

VðxÞ ¼ @H

@N
ðx;rSðxÞÞ; (44)

along which / is constant. This is formally the same as the

vector field (6) defined in geometrical optics, but the analogy

is purely formal. Indeed, the function S here is coupled to /
and therefore differs from the corresponding quantity in the

standard geometrical optics. This coupling between S and /
introduces wave effects. The second vector field is

V/ðxÞ ¼
@H/

@N
ðx;rSðxÞÞ

¼ VðxÞ � 1

2

@/
@xk

@/
@xl

@3H

@N@Nk@Nl
ðx;rSÞ; (45)

which is tangent to extended rays. Here, H/ is the

Hamiltonian of extended rays defined in Eq. (23).

A special case of particular interest is that of Hamiltonians

depending quadratically on momenta. Since the third deriva-

tives @3H=@Ni@Nj@Nk vanish identically, one has VðxÞ ¼
V/ðxÞ and / is constant along extended rays. As an example,

this is the case for isotropic spatially non-dispersive media.

In general, r/ is small near the zero-level set R where

the field is localized and the two vector fields are close one

to the other, although differences can be present away from

R. For an efficient numerical implementation of extended

ray equations, the conservation of / along rays is a major

simplification, and thus V is approximated by V/ in the

GRAY code,1 cf. Sec. II B.

We propose here to exploit the freedom in selecting the

remainder r0 in order to improve the geometrical properties

of extended rays. Specifically, we can set

r0ðx;r/Þ ¼ i

2

@3Hðx;rSÞ
@Ni@Nj@Nk

@/
@xi

@/
@xj

@/
@xk

;

which is cubic in r/ as required. Then, after the separation

of the real and imaginary parts, Eq. (40a) takes the form

H/ðx;rSÞ ¼ 0;
V/ðxÞ � r/ ¼ 0:

�
(46)

In this form, extended rays are still determined by the

Hamiltonian (23) but now / is exactly conserved by

the extended ray flow. This provides a rigorous justification of

the algorithm used in GRAY, which actually solves system (46).

2. Solution of equation (35b)

For the leading order Eq. (35a), our approach just allows

us to recover known results in a systematic way. For Eq. (35b),

on the contrary, we find significant simplifications. Removing

the unnecessary high-order terms resulted in a simpler depend-

ence of (35b) on the imaginary part of the phase. Such simplifi-

cations are pivotal in obtaining the wave energy flux.

On the line of the standard geometrical optics theory, let

us first note a necessary condition for the existence of a solu-

tion of (35b).

Upon multiplication on the left by the complex exten-

sion ~f of the dual eigenvector e�, and noting that

~f ðx;rwÞ � D0ðx;rwÞa1ðxÞ

¼ ~Hðx;rwÞ~f ðx;rwÞ � a1ðxÞ þ Oðjr/j3Þ;

Eq. (35b) implies,
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e� �
�
@D0

@Ni

@½A~eðx;rwÞ�
@xi

þ 1

2

�
@2D0

@xi@Ni
þ @2w
@xi@xj

@2D0

@Ni@Nj

�
eA

� ie1eA

�
þOðjr/jÞ ¼ ~f ðx;rwÞ � q1ðx;rwÞ; (47)

where all phase space functions, when not explicitly indi-

cated, are assumed to be evaluated at ðx;rSÞ, and the nota-

tion @½� � ��=@xk denotes the derivative with respect to both

the explicit and implicit dependence on x. Here, the term

involving the derivative of ~e must be dealt with carefully.

From definition (36), one gets

@½A~e�
@xk

¼ @½Ae�
@xk

þ iA
@e

@Nl

@2/
@xk@xl

þ Oðjr/jÞ;

hence

e� � @D0

@Nk

@½A~e�
@xk

¼ e� � @D0

@Nk

@½Ae�
@xk

þ iA

2
e� �

�
@D0

@Nl

@e

@Nk
þ @D0

@Nk

@e

@Nl

	
@2/
@xk@xl

þ Oðjr/jÞ: (48)

The term in round brackets can be computed by making use

of the identity obtained by deriving twice the eigenvalue

equation D0e ¼ He with respect to N, evaluating the result

for N ¼ rS, and recalling that Hðx;rSÞ ¼ Oðjr/j2Þ, in vir-

tue of the real part of Eq. (40a). That reads

e� �
�
@D0

@Nl

@e

@Nk
þ @D0

@Nk

@e

@Nl

	
¼ @2H

@Nl@Nk
� e� � @

2D0

@Nl@Nk
e

þ e� �
�
@H

@Nl

@e

@Nk
þ @H

@Nk

@e

@Nl

	
þ Oðjr/j2Þ:

After substituting the latter identity into (48), we estimate

@H

@Nk

@2/
@xk@xl

¼ � @Vk

@xl

@/
@xk
þ Oðjr/j2Þ ¼ Oðjr/jÞ;

which follows by applying @=@xl to the imaginary part of

Eq. (40a). Then, (48) becomes

e� � @D0

@Nk

@½A~e�
@xk

¼ e� � @D0

@Nk

@½Ae�
@xk

þ iA

2

�
@2H

@Nl@Nk
� e� � @

2D0

@Nl@Nk
e

�
@2/
@xk@xl

þ Oðjr/jÞ:

And Eq. (47) reads

e� � @D0

@Nk

@½Ae�
@xk

þ e� �
�

1

2

@

@xk

�
@D0

@Nk

�
� ie1

�
eA

þ i

2

@2H

@Nl@Nk

@2/
@xl@xk

Aþ Oðjr/jÞ ¼ ~f � q1:

(49)

One can note that the first two terms in Eq. (49) are formally

the same as those in the corresponding equation of standard

geometrical optics, which implies the transport Eq. (5b). The

only difference consists in evaluating all phase space func-

tions at N ¼ rS, with w ¼ Sþ i/ solving (40a). Thus, one

has Hðx;rSÞ ¼ Oðjr/j2Þ as opposite to the exact local dis-

persion relation (5a) of the standard geometrical optics. With

that in mind, we can follow the lines of the standard theory

(cf., for instance Littlejohn and Flynn38 and references

therein), so that

e� � @D0

@Nk

@½Ae�
@xk

þ e� �
�

1

2

@

@xk

�
@D0

@Nk

�
� ie1

�
eA

¼ @H

@Nk

@A

@xk
þ
�

1

2

@

@xk

�
@H

@Nk

�
þ c1 � id1

�
Aþ Oðjr/jÞ;

where, in particular, the identity (obtained by differentiating

the real part of Eq. (40a)),

@H

@xk
þ @2S

@xk@xl

@H

@Nl
¼ Oðjr/jÞ;

has been accounted for. Thereby, one can see that Eq. (49) is

equivalent to

VðxÞ � rAðxÞ � ½�c1ðxÞ þ iðd1ðxÞ � dGouyðxÞÞ

� 1

2
r � VðxÞ�AðxÞ ¼ r1ðx;r/Þ; (50)

where the vector field V(x) is now given by (44), whereas c1

and d1 are formally given by (7) and (8), respectively. In

complex eikonal theory, an additional phase shift is found,

namely,

dGouyðxÞ ¼
1

2

@2Hðx;rSÞ
@Nk@Nl

@2/
@xk@xl

; (51)

which is the generalization of the classical Gouy shift59 and

it is entirely due to diffraction effects. Again, we find an ar-

bitrary remainder r1ðx;r/Þ, which must be at least linear in

r/.

Equation (50) describes the transport of the amplitude A
that was left unspecified in Eqs. (40). Once Eq. (50) has been

solved for the amplitude A(x), one can show that the alge-

braic equation for a1 has a solution, by means of an argument

analogous to the uniqueness proof for (40), exploiting the

completeness and orthogonality relations (42) and (43). As

usual, such solution is never computed in practice, hence, we

shall not digress on the details.

As for Eq. (40a), the actual calculation of the amplitude

depends on the choice of the remainder r1.

The natural choice r1 ¼ 0 gives the amplitude transport

equation

V � rA ¼ ½�c1 þ iðd1 � dGouyÞ �
1

2
r � V�A; (52)

describing the transport of the amplitude along the field lines

of the vector V(x). This is formally the same as the standard

geometrical optics transport Eq. (5b), the only difference

coming from the function S. In this case, the amplitude is not

transported along extended rays.

Again we can improve the geometric properties of the

transport equation by an appropriate choice of the linear re-

mainder r1. One can check that
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r1 ¼ ðV � V/Þ � rAþ 1

2
r � ðV � V/ÞA

is linear in r/, and it is, therefore, a good choice for the re-

mainder. Correspondingly, Eq. (50) takes the form

V/ � rA ¼ ½�c1 þ iðd1 � dGouyÞ �
1

2
r � V/�A; (53)

which describe the amplitude transport along extended rays.

Both Eqs. (52) and (53) implies the continuity equation

for the approximated wave energy flux, cf. Sec. III B. We

shall see that the energy fluxes obtained from such transport

equations tend to the same limit for j! þ1, but they are

different for finite values of j. In the latter case, we give

quantitative estimates of the difference in Sec. IV.

3. Complex geometrical optics estimate of the
residual

We can now formulate the main result of the foregoing

asymptotic construction as an estimate of the residual in the

wave equation.

Let w ¼ Sþ i/ be a regular solution of Eq. (40a), and let

a0 be given in (40b), with A(x) a regular solution of the com-

plex geometrical optics transport Eq. (50). Then, it is possible

to find a corrector a1 such that the complex eikonal wave (25)

solves the wave Eq. (1) for the electric field within an error,

jj�2r�r� ECGOðj; xÞ � eðj; xÞECGOðj; xÞj 	 Cj�3=2:

(54)

As for the case of error estimate (10), this does not provide

information on the convergence of ECGO to the exact solu-

tion. Moreover, it relies on the existence of regular solutions

for the complex eikonal w and amplitude A. When such solu-

tions break down, estimate (54) fails to be uniform.

On the other hand, the coupling of the real phase S to

the imaginary part / successfully removes caustic singular-

ities, at least, for the case of focalized beams, as shown by

numerical results.1,27–29,60

At last, let us notice that the residual estimate (54) does

not depend on the choice of the remainders ri, i ¼ 0; 1, in

Eqs. (40a) and (50).

B. Wave energy density flux

Let us start from Eq. (52), obtained for the natural

choice of the remainder.

One of the advantages of our approach is that the trans-

port Eq. (50) for the wave amplitude A(x) parallels the corre-

sponding transport equation in the standard geometrical

optics, cf. Eq. (5b).

The only additional term in the complex geometrical

optics transport equation is the Gouy phase shift, and a phase

shift does not affect the transport of jAj2, which reads

r � ½VðxÞjAðxÞj2� ¼ �2c1ðx;rSÞjAðxÞj2: (55)

In complex geometrical optics however, the squared ampli-

tude jAj2 does not account for the whole electric field ampli-

tude as, from (25) and (40),

jECGOðj; xÞj2 ¼ e�2j/jAðxÞj2 þ Oð1=
ffiffiffi
j
p
Þ: (56)

On the other hand, for the natural choice of both remainders

ri, the orthogonality V � r/ ¼ 0 is satisfied, hence

r � ½VðxÞe�2j/jAj2� ¼ e�2j/r � ½VðxÞjAj2�
� 2je�2j/jAj2V � r/

¼ e�2j/r � ½VðxÞjAj2�:

Upon using this into Eq. (55), one finds that, formally, the

standard geometrical optics energy transport Eqs. (15)–(18)

hold true for complex geometrical optics as well, with only

one modification in the definition of the wave energy den-

sity, namely,

W ¼ 1

16p

���� @ðxHÞ
@x

����e�2j/jAj2; (57)

where, we recall, the derivative @=@x should be computed at

constant wave vector k ¼ xN=c. In complex geometrical

optics, however, the coefficients of the transport Eq. (15)

should be evaluated at N ¼ rS, where now S is the solution

of the system (22).

The group velocity, in particular, is

vg ¼ c

���� @ðxHÞ
@x

����
�1

VðxÞ (58)

with V(x) being the vector field defined in (44). One can con-

clude that, with the natural choice of both remainders ri, the

wave energy density flow is approximated by the flow of the

vector field VðxÞ ¼ @Hðx;rSÞ=@N, and this can deviate

from the corresponding geometrical optics quantity, due to

diffraction effects. In general, the vector field V is not tan-

gent to extended rays.

The mismatch between the approximated wave energy

flow and the extended ray flow is removed in the optimized

form of extended ray Eqs. (46) complemented with the trans-

port Eq. (53). One can check that the above calculation holds

true for the optimized formulation as well, yielding the

energy transport equation in the form (15) with the group ve-

locity given by

vg ¼ c

���� @ðxHÞ
@x

����
�1

V/ðxÞ; (59)

which is now directed along extended rays. This result shows

that extended rays computed according to (46) provide an

approximation of the energy flow of the complex geometri-

cal optics solution.

Let us remark that the energy continuity equation with

either (58) or (59) is proven by making used of the condition

V � r/ ¼ 0 and V/ � r/ ¼ 0, respectively. Therefore, the

form (58) of the group velocity is appropriate to the standard

formulation (Eq. (22)), while the form (59) is appropriate to

the optimized formulation (Eq. (46)) and they cannot be

exchanged.

In order to complete our analysis, we shall now show

that, in both formulations, the quantity Wvg converges to the
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same limit for j! þ1, as it should be, despite the vector

field vg is independent on j. Then, we shall see that in both

cases, Wvg approximates the Poynting flux corresponding to

the complex eikonal wave field.

The first claim is readily proven. In the limit j! þ1,

the wave energy density is supported on the reference ray

where both vector fields V(x) and V/ðxÞ are the same. More

precisely, given a complex eikonal w ¼ Sþ i/, computed

by either of the two formulations, let us consider the vector

fields V(x) and V/ðxÞ computed via Eqs. (44) and (45) with

the same complex eikonal w. Then estimate (30) implies that

jðVðxÞ � V/ðxÞÞe�2j/j 	 C=j; (60)

where C > 0 is a generic constant. This shows in particular

that differences between the energy flux and the extended

ray velocity in the standard formulation, Eq. (22), become

small in the high frequency limit.

As for the Poynting flux, let us consider the conserved

flux naturally implied by Eq. (1), namely,

Fðj; xÞ ¼ 2

j
Im½E�ðj; xÞ � ðr � Eðj; xÞÞ�: (61)

Using (1) and (2), one finds

r � F ¼ �2E� � ea
1E;

which shows that F is a conserved flux in a non-dissipative

medium (ea
1 ¼ 0). Indeed, F is the normalized Poynting

flux,61 time-averaged over the period 2p=x of the beam

(using harmonic field Eðt; xÞ ¼ Refe�ixtEðj; xÞg).
For the specific case of a complex eikonal wave (25)

with amplitude given by (40), flux (61) becomes

FCGOðj; xÞ ¼ ½2rS� ðe� � rSÞe� ðe � rSÞe��e�2j/jAj2

þOð1=
ffiffiffi
j
p
Þ; (62)

where the lowest order has been separated by taking into

account estimate (30).

We now need the identity

@H

@Ni
ðx;rSÞ ¼ e�ðx;rSÞ � @D0ðx;rSÞ

@Ni
eðx;rSÞ þ Oðjr/j2Þ;

which follows from the derivative of the eigenvalue equa-

tion D0e ¼ He evaluated at N ¼ rS and multiplied on the

left by e�. The Oðjr/j2Þ remainder stems from the fact that

rS, with S solution to (40a), does not solve exactly the

dispersion equation. One has Hðx;rSÞ ¼ Oðjr/j2Þ and

e�D0 ¼ He� ¼ Oðjr/j2Þ. This holds for any choice of the

remainder r0.

When D0 is given by (3), cf. also Eq. (32b), the complex

geometrical optics flux (62) takes the form

FCGOðj; xÞ ¼ VðxÞe�2j/ðxÞjAðxÞj2

þOð1=
ffiffiffi
j
p
Þ: (63)

In physical units, the corresponding Poynting vector reads

c

16p
FCGOðj; xÞ ¼ vgðxÞWðxÞ þ Oð1=

ffiffiffi
j
p
Þ; (64)

with vg given by (58). In Eq. (64), however, we notice that

the order of the error term is larger than the order of the dif-

ference ðV � V/Þe�2j/. Therefore, Eq. (64) holds true for vg

given by (59) as well.

Concluding, both formulations give an approximation of

the wave energy flux of the same order in the limit

j! þ1. The optimized formulation used in GRAY has the

computational advantage that extended rays represent the

approximated energy flow.

IV. NUMERICAL RESULTS

In this section, a few numerical tests are reported in

order to illustrate the theoretical results.

First, we shall provide an estimate of the difference

between the directions of the fields V and V/ defined in Eqs.

(44) and (45), respectively. In this case, both fields are com-

puted by the GRAY code,1 which employs the optimized

form (46) of extended ray equations, cf. Sec. II B. With this

aim, a new diagnostics has been implemented in GRAY for

the calculation of the vector field V along the extended rays.

We have seen in Sec. III B that the difference V � V/

weighted with the exponential e�2j/ vanishes for j! þ1.

This formal result just means that the two vector fields are

close to each other near the reference ray R where the field

is localized. This comparison allows us to estimate their dif-

ference for realistic values of physical parameters.

Then, we shall provide a comparison between extended

rays obtained by GRAY and the field lines of the vector V, as

computed using the function S from the paraxial WKB code

TORBEAM.2 It is known from previous studies9,15,32,33 that

complex geometrical optics Eqs. (22) and the paraxial WKB

method should give the same results within the paraxial

approximation. On the other hand, GRAY solves Eqs. (46).

Hence, this test provides a qualitative and quantitative esti-

mate on the differences between the energy flows approxi-

mated by the standard and optimized forms of extended ray

equations discussed in Sec. III. In addition, this numerical

experiment provides a benchmark case of a new module

recently added to TORBEAM, which computes the field lines

of V with the aim of both representing the wave energy flow

of a beam and allowing a direct coupling of TORBEAM to

other ray-based codes, like quasi-linear Fokker-Planck solv-

ers.34 All considered cases refer to electron cyclotron beams

in a standard ITER plasma equilibrium.62

A. Comparison of velocity fields in GRAY

The complex geometrical optics code GRAY solve Eqs.

(46) with the Hamiltonian

Hðx;NÞ ¼ N2 � n2ðx;NkÞ;

where n2ðx;NkÞ is obtained from the Altar-Appleton-Hartree

dispersion relation for high-frequency waves in cold magne-

tized plasmas.36 Here, Nk ¼ bðxÞ � N is the real parallel re-

fractive index, with b(x) the unit vector of the local

equilibrium magnetic field. For convenience, let us introduce

the imaginary part N0 ¼ r/ of the refractive index.

The complex extension gives the effective Hamiltonian,

cf. Eq. (23),
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H/ðx;NÞ ¼ N2 � n2ðx;NkÞ � jr/ðxÞj2

þ 1

2

@2n2ðx;NkÞ
@N2
k

ðbðxÞ � r/ðxÞÞ2: (65)

At each grid point x ¼ ðx; y; zÞ along extended rays,

both the vector V/ðxÞ, tangent to the ray, and the vector V(x)

are evaluated. We can use the arc-length as a parametrization

of the field lines of these two fields, so that only the unit vec-

tors vðxÞ ¼ VðxÞ=jVðxÞj and v/ðxÞ ¼ V/ðxÞ=jV/ðxÞj are rele-

vant. As an estimate of the difference, we propose the angle

# defined by

cos# ¼ vðxÞ � v/ðxÞ: (66)

Figures 2–5 show the results for four cases of electron

cyclotron beams, launched from the equatorial plane in

FIG. 2. Angular deviation 1� cos# of extended rays, cf. Eq. (66), as com-

puted by the GRAY code. Panel (a) shows the initial positions of extended

rays, projected on the y-z plane. The gray level of each point encodes the

maximum deviation observed along the corresponding ray, and the approxi-

mate direction of the equilibrium magnetic field is indicated by an arrow.

Panel (b) shows the profile of the deviation for the “worst ray,” compared to

both the real and imaginary parts of the parallel refractive index, as well as

to the two beam widths (defined as the widths of the elliptical e�2-intensity

contour in the beam cross-section). In this case, the equivalent focal length

in free space is zf ¼ 200 cm and the equivalent width at the waist in free

space is w0 ¼ 2 cm. The poloidal and toroidal injection angles are a ¼ 0�

and b ¼ 0�, respectively. The discontinuity in the parallel refractive index is

due to the way the equilibrium magnetic field has been extended outside the

numerical grid, in the vacuum region (we set b ¼ e/ outside the grid, e/

being the unit vector in the toroidal direction). The Cartesian components of

the refractive index are actually continuous. The initial positions of rays are

given on a plane orthogonal to the injection direction, thus their projections

on the x-y plane depend on the angle b.

FIG. 3. The same as in Figure 2, but for zf ¼ 200 cm, w0 ¼ 2 cm, a ¼ 0�,
and b ¼ 20�.

FIG. 4. The same as in Figure 2, but for zf ¼200cm, w0¼2cm, a¼0�, and

b¼40�.
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ITER (the exact launching position of the reference ray is

the same in all cases: x ¼ 930 cm, y ¼ 0 cm, and

z ¼ 70 cm). In Figures 2–4, the beam has a mild focalization

similar to ITER operational parameters, i.e., the equivalent

focal length in free space is zf ¼ 200 cm with an equivalent

waist w0 ¼ 2 cm, and the beams are launched at the poloidal

angle a ¼ 0� and different toroidal angles, namely, b ¼ 0�

(Figure 2), b ¼ 20� (Figure 3), and b ¼ 40� (Figure 4). In

Figure 5, the results for a beam with high focalization are

displayed. In this case, the equivalent focal length in free

space is zf ¼ 150 cm, with the equivalent waist w0 ¼ 0:5 cm,

poloidal injection angle a ¼ 0�, and toroidal injection angle

b ¼ 0�. Such a highly focused beam largely exceeds ITER

parameters, but it has been considered as an example in

which the effects of diffraction are emphasized.

Panels (a) of Figures 2–5 show the initial positions of

extended rays projected in the y-z plane. One can see that rays

are launched from a polar grid of points. The electric field am-

plitude is a Gaussian with the maximum at the center of the

ray bundle (the reference ray), and points at the same radial

position lie on the same amplitude level contour. For this test,

a large number of rays are considered, so that the beam is cov-

ered up to the e�4-level of its amplitude, a much larger beam

section than usually needed. Each point is represented in a

gray scale, which encodes the maximum value of the angular

deviation 1� cos#, with # given in (66), observed along the

ray issued from that point. The approximate direction of the

local magnetic field in the low-field side projected onto the

y-z plane is indicated by an arrow (this is approximated by the

value of the numerical equilibrium magnetic field at the near-

est grid node to the launching point, specifically, at major ra-

dius coordinate R ¼ 850:0 cm and vertical coordinate

z ¼ 70:3125 cm of the numerical grid). The distribution of

angular deviations allows us to appreciate geometric effects.

In all considered cases, rays for which the angular deviation

attains its maximum are those aligned to the magnetic field.

This can be understood by inspection of the effective

Hamiltonian (65). The difference between the vector fields V
and V/ is proportional to the product NkðN

0

kÞ
2

of the real par-

allel refractive index and the square of the imaginary parallel

refractive index N
0

k ¼ bðxÞ � r/ðxÞ. The factor Nk is obtained

on noting that for the Altar-Appleton-Hartree dispersion rela-

tion, the third-order derivative of n2, cf. Eq. (45), is propor-

tional to Nk, while the factor ðN 0

kÞ
2

comes from the complex

extension. It follows that rays with a large NkðN
0

kÞ
2

show

larger deviations.

For each case of Figures 2–5, we have selected the

“worst ray,” i.e., the ray for which the maximum angular

deviation is observed, and the corresponding profile of 1�
cos# is plotted (panels (b)) as a function of the arc-length s
along the central ray, which is used as a common parameter

for all rays. The profiles of both the real and imaginary parts

of the parallel refractive index, as well as the profiles of the

two beam widths are also reported for a comparison.

The beam widths in particular are computed according to the

standard definition for Gaussian beams,60 for which the in-

tensity contours in the beam cross-section are ellipses. The

widths are then defined as the length of the semi-axis of the

e�2-intensity contour.

One can see that the maximum deviation occurs, as

expected, near the waist of the beam, where diffraction

effects are more important, and, thus, the imaginary part of

the refractive index increases. For the cases of exactly per-

pendicular injection (toroidal angle b ¼ 0�), a double-peak

structure of the deviation profile is observed. The local mini-

mum is found where Nk is zero, which implies that the differ-

ence between V and V/ must vanish. In passing, let us

mention that the slight discontinuity in the profiles of both

the real and imaginary parallel refractive indices is due to

the way the equilibrium magnetic field has been extended

outside the numerical grid. There, the propagation happens

in free space, and the precise value of the magnetic field is

not important. We have set b ¼ e/ for the calculation of par-

allel refractive indices outside the grid, where e/ is the unit

vector in the toroidal direction. This choice does not match

continuously to the numerical equilibrium at the boundary of

the grid. The Cartesian components of the refractive index

are actually continuous.

The overall conclusion from Figures 2–4 is that, under

ITER-relevant conditions, the angular deviation of the two

vector fields V and V/ in the region of space spanned by the

rays is small, i.e., of the order comparable to
ffiffiffiffiffiffiffiffiffiffi
�mach
p

where

�mach is the machine precision. Similar results are found for

the highly focused beam of Figure 3, for which diffraction

effects are stronger.

The good agreement of velocity fields as computed by

GRAY confirms the theoretical estimate of the difference

(60) for finite values of j. This result alone however does

FIG. 5. The same as in Figure 2, but for zf ¼ 150 cm, w0 ¼ 0:5 cm, a ¼ 0�,
and b ¼ 0�.
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not allow us to draw any conclusion on the approximation of

the energy flow. In fact, the GRAY code uses the optimized

form (46) of extended ray equations, hence the vector V
computed here does not correspond exactly to the energy

flow computed according to (58). Moreover, the integral

lines of two vector fields might exhibit differences even

when the vector fields themselves are very similar.

In Sec. IV B, we shall give a more quantitative estimate

of the difference between the approximations of the wave

energy flow.

B. Extended rays versus paraxial WKB energy flux

Equation (40a), Taylor-expanded around the curve R,

yields the matrix Riccati equation for the Hessian of the phase

of the paraxial WKB method.9 This shows that the paraxial

WKB solution for both the real part S(x) and the imaginary

part /ðxÞ of the complex eikonal is a good approximation of

the corresponding quantities computed directly via the stand-

ard extended ray Eqs. (22). This argument is referred to as

Gaussian limit of complex geometrical optics.32,33 In this

limit, the paraxial WKB calculation of flow of V yields a good

approximation of the energy flow obtained in the standard

extended ray theory from the group velocity (58). On the other

hand, the GRAY code solves the optimized form (46).

Extended rays thus obtained represent the energy flow corre-

sponding to the group velocity (59). We shall now compare

those two equivalent approximations of the wave energy flow.

This is made possible by a recently added module34 of

the paraxial WKB code TORBEAM, which computes the

field lines of V. Specifically, the new module solves the set

of ordinary differential equations

dx

ds
¼ VðxÞ; (67)

where V(x) is defined by (44), with the real phase S being

here computed in the paraxial WKB framework. The result

is a bundle of curves that represents the energy flow of the

beam in the paraxial WKB method.

Figure 6 shows a qualitative comparison between the

extended rays computed by GRAY and the TORBEAM solu-

tion of Eq. (67) with initial conditions given by the initial

position of GRAY rays. We refer to the latter as TORBEAM

rays, for simplicity. The case considered is the same as that

of Figure 2, with focusing typical for ITER parameters. The

projections of both GRAY and TORBEAM rays into the x-z

poloidal plane (a) and into the y-z plane (b) are shown for

the rays corresponding to the e�2-level of the amplitude

only. The common initial positions of rays are marked by

dots. In the poloidal projection (a), one should notice the

rather long propagation of the beam. The x-axis scale is very

different from that of the z-axis. Nonetheless, the two set of

rays follow each other precisely up to the waist of the beam,

where diffraction effects are stronger. At the waist, the dif-

ferences between the flows start to be significant. Even after

a long propagation length however, the cumulative effects of

such differences are much smaller than the beam width.

This comparison has been repeated for the highly

focused case of Figure 5, and the results are displayed in

Figure 7. The behavior is the same as in Figure 6, but here

the beam width is one order of magnitude larger, while the

beam waist is much smaller due to the strong focusing.

Diffraction effects are stronger and result in larger deviations

of the two set of rays near the waist. Nonetheless, the devia-

tions of the rays are still smaller than the beam width.

Quantitatively, we can compute the distance of the posi-

tions of GRAY and TORBEAM rays issued from the same

point at a given value of the arc-length s. For the mildly

focused case of Figure 6, we choose s ¼ 380 cm and we find

that the distance in the worst case is 0:86 cm. Similarly, for

the highly focused case of Figure 7, we choose s ¼ 390 cm

and we find a distance of 6:91 cm. The three-dimensional tra-

jectories of the corresponding pair of rays are shown in

Figure 8. The distances should be compared with the beam

width, which is 
6 cm for the case of Figure 8(a) and


30 cm for the case of Figure 8(b). Deviations are, therefore,

14.4% and 23.0% of the beam width, respectively.

The beam width is the natural reference parameter

against which the distances are compared. One should notice

however that those numbers refer to the worst pair of rays,

and the three-dimensional positions do not lie on the same

beam cross section. Therefore, these results tend to overesti-

mate the difference between the two approximated energy

flows.

FIG. 6. Visualization of extended rays for the case zf ¼ 200 cm, w0 ¼ 2 cm,

and a ¼ b ¼ 0� of Figure 2. The projection of rays on the x-z plane (a) and

on the y-z plane (b) shows the differences between GRAY rays (dashed, red,

curves) and TORBEAM rays (solid, blue, curves). The central ray is also

shown (thick, black, curve) at the center of the beam.
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The foregoing results give an estimate of the difference

between the two independent approximations of the wave

energy flux obtained from the standard and optimized formu-

lations of extended ray theory, cf. Sec. III B.

In addition, this comparison illustrates how the informa-

tion on extended rays is actually encoded in the paraxial

WKB solution as well, despite the fact that the paraxial

approach describes the wave beam through a set of parame-

ters on a single ray, namely, the reference ray.

V. ACCOUNTING FOR SPATIAL DISPERSION

The theory reported in Sec. III is by no means limited to

the case of Eq. (1). In this section, we show how the generic

case of a spatially dispersive media can be addressed. We

shall see that this approach is actually more general and

applies to a wide range of high frequency wave propagation

problems.

Let us start recalling the definition of spatially dispersive

media. In Eq. (1), the electric displacement D is related to

the electric field E through the constitutive relationship

Dðj; xÞ ¼ eðj; xÞEðj; xÞ. This is a local relation in the sense

that both D and E are evaluated at the same point x. The cold

plasma model36 is an example of a system with a local con-

stitutive relationship. In general, however, the plasma

response to an electromagnetic disturbance is more compli-

cated as non-local effects can set in. The electric displace-

ment Dðj; xÞ in a point x depends on the electric field

Eðj; x0Þ in a different point x0 through an integral operator,

which can be written in the pseudodifferential form6

Dðj; xÞ ¼ j
2p

� �d
ð

eijðx�x0Þ�Ne

�
j;

1

2
ðxþ x0Þ;N

	
Eðj; x0Þdx0dN;

(68)

where eðj; x;NÞ is the dielectric tensor, depending now on

the refractive index N. A medium with such a response is

referred to as a spatially dispersive medium, because the

dielectric tensor is different for waves with different wave

vectors. The results of Sec. III generalize to spatially disper-

sive media as far as condition (2) is fulfilled for eðj; x;NÞ. In

particular, the leading order e0ðx;NÞ should be Hermitian.

For electron cyclotron beams in tokamak physics, spatial

dispersion is found as a consequence of temperature effects in

the response of the plasma35 and might be a concern for high

temperature devices. For present day machines, temperature

effects are neglected up to the region where the beam is

FIG. 7. The same as in Figure 6, but for the highly focused case,

zf ¼ 150 cm, w0 ¼ 0:5cm, and a ¼ b ¼ 0� of Figure 5.

FIG. 8. Three-dimensional trajectories of the pair of GRAY and

TORBEAM rays with the largest difference in position after a fixed arc-

length s. Plot (a) shows the results for the case of Figure 6, with s ¼ 380cm.

The positions reached after the prescribed arc-length are marked on both

rays and correspond to coordinates (in cm) ð550:06; 4:27; 68:48Þ for the

TORBEAM ray and ð550:07; 5:07; 68:79Þ for the GRAY ray, at the distance

of 0:86cm. Plot (b) is for the case of Figure 7 with s ¼ 390cm. The reached

positions correspond to the coordinates ð542:48;�8:97; 44:06Þ for the

TORBEAM ray and ð543:16;�6:65; 37:58Þ for the GRAY ray, at the dis-

tance of 6:91cm.
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absorbed by resonating electrons. There, the non-local

response and thus spatial dispersion must be dealt with, but in

such situation condition (2) is violated, thus turning our dis-

persive generalization of complex geometrical optics into a

mere theoretical exercise. Nonetheless, from the point of view

of the theory of the complex geometrical optics, the issue of

the generalization is interesting. We give here a sketch of the

derivation only.

The basic idea is to take advantage of the pseudodiffer-

ential form the wave equation for a generic dispersive sta-

tionary medium.6 With the constitutive relation (68),

Maxwell’s equations amount to

Dw

�
j; x;� i

j
r
	

Eðj; xÞ ¼
�

j
2p

	dð
eijðx�x0Þ�N

� D

�
j;

1

2
ðxþ x0Þ;N

	
Eðj; x0Þdx0dN ¼ 0; (69)

where

Dijðj; x;NÞ ¼ N2dij � NiNj � eijðj; x;NÞ

is the Weyl symbol6,37 of the semiclassical pseudodifferen-

tial operator Dwðj; x;�ði=jÞrÞ, 1=j being the semiclassical

parameter.

Assuming the equivalent of condition (2), one has

Dðj; x;NÞ ¼ D0ðx;NÞ þ
1

j
D1ðx;NÞ þ � � � ;

where the leading order term (i.e., the semiclassical principal

symbol37) is Hermitian. Like in the non-dispersive case, we

assume that the (real) eigenvalues of D0 are well separated,

as discussed in Sec. II A, so that we do not have to worry

about linear mode conversion.

Let us start deriving a useful asymptotic form of the

wave equation. We consider the electric field in the form

Eðj; xÞ ¼ eijSðxÞwðj; xÞ; (70a)

where the amplitude wðj; xÞ is allowed to have fast varia-

tions, namely,

j@a
x wðj; xÞj 	 Cjrjaj; (70b)

where C is a constant depending only on the multi-index

a ¼ ða1;…; adÞ, and r is a fixed real parameter with

0 	 r < 1. Each derivative increases the order by a factor jr.

The fast variations of the amplitude distinguish the wave

field (70) from the standard (real) eikonal wave (4).

The complex eikonal wave (25) has the form (70), with

wðj; xÞ ¼ e�j/ðxÞaðj; xÞ; (71)

and r ¼ 1=2, provided that the two conditions on the paraxial

field, cf. Sec. II C, are fulfilled. This follows from estimate

(30), which allows us to control the derivative,

jrðe�j/ðxÞaðj;xÞÞj	C0þjC1jr/e�j/ðxÞaðj;xÞj¼Oð
ffiffiffi
j
p
Þ:

The substitution of the field (70) into the wave Eq. (69),

along with lengthy but standard calculations,6 yields

i

j
@D0

@Nk

@w

@xk
þ 1

2j2

@2D0

@Nk@Nl

@2w

@xk@xl

� D0 �
i

2j

�
@

@xk

�
@D0

@Nk

�
þ 2iD1

	� �
wþ Oðj�3=2Þ ¼ 0;

(72)

where the case r ¼ 1=2 has been considered. One can now

substitute the form (71) specific to complex eikonal waves,

with the amplitude given by (25b) and, collecting terms, one

has

eijw

�
~D0ðx;rwÞa0ðxÞ

þ 1

j

�
D0ðx;rSÞa1 � i

�
@D0

@Ni
ðx;rSÞ @a0

@xi

þ 1

2

�
@2D0

@xi@Ni
ðx;rSÞ þ @2w

@xi@xj

@2D0

@Ni@Nj
ðx;rSÞ

�
a0

þiD1a0

��

þ Oðj�3=2Þ ¼ 0; (73)

where w ¼ Sþ i/ and

~D0ðx; ~NÞ ¼ D0ðx;NÞ þ i
@D0ðx;NÞ
@Nk

N
0

k �
1

2

@2D0

@Nk@Nl
N
0

kN
0

l :

Equation (73) (except for an overall factor j2) is formally

the same as Eq. (34), with the only difference that the com-

plex extension ~D0 needs to be considered, with the disper-

sion tensor D0 given by the principal part of the Weyl

symbol in (69). In addition, �e1 is replaced by D1.

Particularly, the complex extension ~D0 is found here natu-

rally in the very same form as that used in the solution of

Eq. (35a) of Sec. III.

With such replacements being implied, we can conclude

that the results on the complex geometrical optics solution

are also valid for dispersive media. Let us also remark that

this approach does not take advantage of the specific form of

the symbol Dðj; x;NÞ. The results are, therefore, valid for a

broader class of wave equations, i.e., semiclassical pseudo-

differential wave equations having a sufficiently regular

symbol with a Hermitian principal part.

VI. CONCLUSIONS

A systematic derivation of the equations of extended ray

tracing with improved error control has been presented. The

main element of novelty in this derivation consists in the use

of two simple but crucial inequalities introduced by

Pereverzev9 and Maslov10 independently in different

contexts.

With respect to the standard derivation, which relies on

formal Taylor expansions, such inequalities yield a sharper

control of the order of terms in the asymptotic expansion of

the wave equation in the high frequency limit.

The leading order term in the asymptotic expansion is

found to be defined apart from an arbitrary remainder. When

that is set to zero, we recover the standard equations of

extended ray tracing already known in literature.28–33
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Alternatively, the choice of the arbitrary remainder allows us

to improve the geometric properties of extended rays, obtain-

ing the form of extended ray equations implemented in the

GRAY1 code.

At the next order, the equation for the transport of the

complex amplitude is obtained. Here, the advantages of the

sharper error control are manifest. The transport equation is

obtained in a much simpler form, from which the wave

energy flux vector can be readily identified. This is the main

physics result of the paper.

The theory is illustrated by a number of numerical

experiments performed with the GRAY1 and TORBEAM2

codes, for electron cyclotron beams in tokamak plasmas. The

numerical results allow us to quantify the effects of the

choice of the arbitrary remainders on the approximation of

the wave energy flux vector and of the corresponding energy

flow.
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