
ON THE DIRICHLET PROBLEM OF MIXED TYPE FOR LOWER HYBRID WAVES

IN AXISYMMETRIC COLD PLASMAS

DANIELA LUPO, DARIO D. MONTICELLI, AND KEVIN R. PAYNE

Abstract. For a class of linear second order partial differential equations of mixed elliptic-hyperbolic type,

which includes a well known model for analyzing possible heating in axisymmetric cold plasmas, we give

results on weak well-posedness of the Dirichlet problem and show that such solutions are characterized by a

variational principle. The weak solutions are shown to be saddle points of natural functionals suggested by

the divergence form of the PDEs. Moreover, the natural domains of the functionals are the weighted Sobolev

spaces to which the solutions belong. In addition, all critical levels will be characterized in terms of global

extrema of the functionals restricted to suitable infinite dimensional linear subspaces. These subspaces are

defined in terms of a robust spectral theory with weights which is associated to the linear operator and is

developed herein. Similar characterizations for the weighted eigenvalue problem and nonlinear variants will

also be given. Finally, topological methods are employed to obtain existence results for nonlinear problems

including perturbations in the gradient which are then applied to the well-posedness of the linear problem

with lower order terms.

1. Introduction

The Dirichlet problem of mixed elliptic-hyperbolic type

(1.1)

{ (
(x− y2)ux

)
x

+ uyy = f in Ω,

u = φ on ∂Ω,

where f and φ are given and Ω ⊂ R2 has nontrivial intersection with the sets {±(x − y2) > 0} has been

proposed by Weitzner [28] (see also [27]) as a natural model for studying the possibility of heating in cold

plasmas. In this model, one studies linear 3-D propagation of applied high frequency waves in a plasma,

thought of as a dielectric medium populated by electrons and one or more species of ions, which carry electric

charge and current, whose mass and momentum are conserved and where Maxwell’s equations involving the

dielectric tensor close the system. Under axisymmetry, the cold plasma model can be written in cylindrical

coordinates (r, θ, z) as a coupled system of second order PDEs for the angular components (Eθ, Bθ) = (v, u)

of the electric and magnetic fields (which then determine the other field components through a first order

system of PDEs). The equation for Eθ is elliptic and is first order in Bθ, while the equation for Bθ can

change type from elliptic to hyperbolic (and is also first order in Eθ). This type change typically occurs in

outer (low density) regions of the plasma and can be expressed in terms of relations between the applied

frequency ω and the plasma and cyclotron frequencies of the electrons and ions. The question posed by

Weitzner in [28] is the possible energy absorption by the plasma at applied frequencies on the order of the

plasma frequency of an ionic species, called lower hybrid waves. The possible locations of heating occur at

points P of tangency between the lower hybrid type change surface and a level surface of the magnetic flux
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function of the equilibrium magnetic field. In the axisymmetric setting, this situation is described by the

tangency of two curves in the (r, z) plane. Moreover, the type of degeneracy should be of Keldysh (and

not Tricomi) type. This means that the second order differential operator at P should admit a coordinate

system (ξ, η) in which the top order part looks like

(1.2) ξD2
ξ +D2

η (as opposed to D2
ξ + ξD2

η) .

The PDE in (1.1) is a local model of this situation in which u = Bθ and (x, y) is a local coordinate system

that straightens the level lines of the magnetic flux ψ to be x = constant.

While imposing the boundary condition u = φ on all of the boundary would seem physically natural, the

presence of hyperbolicity should make the problem over-determined for classical solutions. This was first

shown by Morawetz, Stevens and Weitzner [20] for the problem (1.1) minus the lower order term ux/2 and

for suitable domains Ω. The over-determinedness is proven by a suitable uniqueness theorem which shows

that regular solutions are uniquely determined by their values on a proper subset of ∂Ω and exploits the

technique developed by Morawetz [17] for equations of Tricomi type. On the other hand, Otway [21] has

shown that the problem (1.1) with φ = 0 is weakly well-posed under suitable restrictions on Ω and f . This

is accomplished by a global energy estimate technique which was developed by Morawetz and the authors

(cf. [12] and [13]) for equations of Tricomi type. In order to perform this energy estimate technique, Ω will

need to be star-shaped with respect to a suitable Lipschitz vector field which has a sink at a point on the

boundary of Ω, where this boundary point is precisely the point of possible plasma heating in the model

equation (1.1).

Motivated by the relevance of the Dirichlet problem (1.1) to the question of plasma heating, we will address

several basic mathematical issues and interpret their relevance in the context of the application. First, we

will clarify and extend the solvability result of Otway by proving the well-posedness for weak solutions to

the Dirichlet problem

(1.3)

{
Lu := − (K(x, y)ux)x − uyy = f in Ω,

u = 0 on ∂Ω,

with Ω a bounded domain on which K changes sign and is of the form

(1.4) K(x, y) = x− σ(y),

where σ satisfies

(1.5) σ ∈ C1(R, [0,+∞)), σ(0) = σ′(0) = 0 and σ is not constant on any interval I ⊂ R

and there exists m ≥ 1, C0 > 0 and δ0 > 0 such that

(1.6) σ(y) ≤ C0|y|m if |y| < δ0,

and

(1.7) mσ(y) ≥ yσ′(y).

We notice that conditions (1.5) - (1.7) allow for the Weitzner model σ(y) = y2. The zero locus of K is given

by the curve Σ described by x = σ(y) and lies in the half plane where x ≥ 0. One has Σ tangent to the

y axis in the origin, the equation is of Keldysh type there, and the third condition in (1.5) ensures that

the equation can be of Keldysh type only at isolated points (away from which it will be of Tricomi type).

This condition will also be used in the spectral theory we develop for L (see Theorem 3.6). Condition (1.6)

allows for any order of degeneration compatible with the tangency of Σ and the y-axis in the origin. The

conditions (1.6)-(1.7) will be used in a multiplier argument to obtain the necessary global energy estimates

which ensure the weak well-posedness of the Dirichlet problem (see Theorem 3.3).
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Next, we will extend the result to allow for Dirichlet data φ which are the boundary traces of a natural

subspace of the weighted Sobolev space in which the weak solutions live. This will be accomplished by the

standard trick of representing the solution as the sum u = u0 +φ where u0 solves an analogous problem with

zero boundary data. While this means that one can reduce the problem to one with homogeneous boundary

data, the extension is relevant since the admissible local neighborhood Ω carries geometric restrictions and

hence in general its boundary will not coincide with a level set of u = Bθ.

We will then establish a spectral theory with weights for the problem which in turn will yield a varia-

tional characterization of the weak solutions, along the same lines of what the authors have accomplished for

Tricomi type equations in [13] and [15]. The solutions are saddle points of a naturally associated functional

suggested by the divergence form of the differential operator div (K(x, y)Dx, Dy) and the solution space is

the weighted Sobolev space corresponding to the natural domain of definition of the functional. This char-

acterization proves that the problem is mathematically natural, despite the daunting difficulties presented

by its overdetermined character with respect to classical solutions. A basic issue raised by Weitzner is what

kinds of boundary conditions can yield well posed problems. For those models with a variational structure,

the imposition of the Dirichlet condition on the entire boundary is essential for the variational characteriza-

tion. Moreover, such a characterization also opens the possibility of a direct variational approach to prove

the existence of solutions in those model situations in which the energy methods we employ fail to produce a

proof of existence. Such a direct approach would most probably rely on suitably adapted minimax methods

for strongly indefinite functionals (see Rabinowitz [25]).

The variational characterization takes the following form: if Ω and K are suitable and if f ∈ L2(Ω) then

there exists a (unique) weak solution u ∈ H1
0 (Ω;K) to the Dirichlet problem (1.3) if and only if u is a critical

point of the functional

J(u) =
1

2

∫
Ω

(
K(x, y)u2

x + u2
y

)
dxdy −

∫
Ω

fu dxdy

naturally associated to the equation. In addition, any critical point must be unique and is a saddle point,

where the unique critical level will be described in terms of global extrema of the functional restricted to

appropriate infinite dimensional subspaces. The notion of suitability of Ω and K as well as the definitions

of the weighted Sobolev space H1
0 (Ω;K) and weak solutions will be recalled in Sections 2 and 3, along with

other basic notions. By the solvability result to be presented herein (which generalizes that of Otway [21]),

one knows that such a weak solution does indeed exist, provided that f belongs to the subspace L2(Ω; |K|−1)

of L2(Ω).

As already noted, this variational characterization depends strongly on an appropriate spectral theory

with weights, which concerns the following weighted eigenvalue problem associated to L:

(1.8)

{
− (K(x, y)ux)x − uyy = λWu in Ω,

u = 0 on ∂Ω,

where W is any non-negative weight function satisfying 0 < W ≤ CW |K| a.e. in Ω for some constant

CW . Armed with the aforementioned solvability theory, the spectral theory depends on two ingredients.

In order to get started, one exploits the compactness of the solution operator (acting on the appropriate

weighted version of L2(Ω)). This compactness depends on a suitable compact embedding result (see Lemma

3.7), which operates in a more general context and may prove to be of independent interest. The second

ingredient involves the strongly indefinite nature of the quadratic form associated to the divergence form

operator L. This indefinite nature strongly influences the spectral theory in which one has a doubly infinite

sequence of eigenvalues (tending to ±∞).

A variational characterization of the problem (1.8) will also be given here as will variational characteri-

zations of weak solutions of nonlinear Dirichlet problems of the form
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(1.9)

{
− (K(x, y)ux)x − uyy = Wg(x, y, u) + f(x, y) in Ω,

u = 0 on ∂Ω,

where g : Ω×R→ R is a Carathéodory function, which is Lipschitz in u uniformly with respect to (x, y) ∈ Ω,

and f ∈ L2(Ω). We note that for Tricomi type equations, problems of the form (1.9) were studied using

bifurcation, topological and dual variational methods in [13], [14], which is also possible in the present

context. Instead of repeating the entire sequence of possible results, we will give two fixed point approaches

to prove existence. The first approach uses the Leray-Schauder Principle and is applied to the problem

(1.9) with f = 0. The second approach uses the Contraction Mapping Principle and allows for nonlinear

dependence also in the gradient of u; that is

(1.10)

{
− (K(x, y)ux)x − uyy = Wg(x, y, u, ux, uy) in Ω

u = 0 on ∂Ω.

This last problem is then reconnected to plasma heating problem by way of an admissibility criterion for

lower order terms in the linear model equations (see Corollary 5.4).

In Section 2, we recall the relevant background and notations, including the precise definitions of the

function spaces in which we will operate. In Section 3, after giving the precise definition of weak solutions,

we treat the questions of linear solvability and spectral theory, which will be reduced to three new technical

results, which will be proven in Sections 6 and 7. In Section 4, we will present the variational characterizations

of weak solutions for the problems (1.3), (1.8) and (1.9). Finally, in Section 5 we will present the nonlinear

existence results via fixed point methods, including that for the problem (1.10).

We conclude this introduction with a few additional remarks about the Dirichlet problem for mixed type

equations and about the cold plasma heating problem. As previously noted, mixed type equations in two

independent variables will take one of the two canonical forms (1.2). Beginning with the work of Frankl’

[10], Tricomi type equations have long been associated with transonic potential flow in nozzles and about

airfoils by way of a hodograph transformation (see also the modern survey of Morawetz [19]). Keldysh type

equations are also known to play an important role in fluid mechanics as developed by Čanić and Keyfitz

for the transonic small disturbance equation [3] and in Riemann problems for 2-D conservation laws [4] (see

[1] and [2] for a discussion of singular and smooth solutions to the relevant associated degenerate elliptic

Dirichlet problem). The study of the model equation (1.1) for wave propagation in plasmas appears to

originate in Piliya and Fedorov [24]. For this model equation and the generalizations considered here, we

have provided a solid mathematical formulation for its further study. More precisely, we have extended the

class of equations to allow for arbitrary orders of degeneracy m ≥ 1, provided an organic spectral theory with

natural weights, and given variational characterizations of solutions. We have allowed for nonhomogenous

boundary data and lower order terms in the equation which are important for the applications. In particular,

the vanishing of the lower order coefficients when K vanishes (see Corollary 5.4) appears to be compatible

with the real lower order terms in the application (see Section 5 of [27]). In addition, we notice that for weak

solutions we recover all of our recent results for Tricomi type equations, notwithstanding the substantial

differences between the two forms in (1.2). Our suspicion is that a fundamental role is played by the fact

that the equation (1.1) and its generalizations display Keldysh type at only isolated points. One should

expect substantial differences when examining higher order regularity of the weak solutions. We hope that

the theory presented here will be supplemented by an adequate regularity theory and that it may prove useful

for obtaining reliable estimates for the energy absorption at points of possible plasma heating (an important

question which remains open as noted recently by Weitzner in Section 4 of [29]). Equations of mixed Tricomi

and Keldysh forms have also been studied recently by Chen [5], although the equations considered there are

not in divergence form and hence do not have a natural variational structure in general.
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2. Notation and preliminary notions

In all that follows, K : R2 → R will be of of the form (1.4) with σ : R→ [0,+∞) satisfying (1.5) and

(2.1) Σ := {(x, y) : x = σ(y)}

will denote the degeration set where K vanishes. We will consider Ω ⊂ R2 a mixed domain; that is, a bounded

domain such that

(2.2) Ω± := {(x, y) ∈ Ω : ±K > 0} 6= ∅.

Notice that the differential operator defined by Lu = −div (Kux, uy) will be of mixed elliptic-hyperbolic type

in Ω and that the type change interface {K = 0} has measure zero. For W a non-negative and measurable

function and M(Ω) the set of Lebesgue measurable functions on Ω, we define the weighted Lebesgue space

(2.3) L2(Ω;W ) := {f ∈M(Ω) : W 1/2f ∈ L2(Ω)},

which will be equipped with its natural norm

||f ||L2(Ω;W ) =

[∫
Ω

Wf2 dxdy

]1/2

.

The weak solutions we treat will belong to the weighted Sobolev space H1
0 (Ω;K) defined as the completion

of C1
0 (Ω) with respect to the norm

||u||H1(Ω;K) :=

[∫
Ω

(
|K|u2

x + u2
y + u2

)
dxdy

]1/2

.

From [16], one knows that C∞0 (Ω) is dense in H1
0 (Ω;K) and that one has a Poincaré inequality: there exists

CP = CP (Ω,K) > 0 such that

(2.4) ||u||2L2(Ω) ≤ C
2
P

∫
Ω

(
|K|u2

x + u2
y

)
dxdy, u ∈ H1

0 (Ω;K),

so that an equivalent norm on H1
0 (Ω;K) is given by

||u||H1
0 (Ω;K) :=

[∫
Ω

(
|K|u2

x + u2
y

)
dxdy

]1/2

.

We remark that elements of H1
0 (Ω;K) may fail to admit a weak gradient in

[
L2(Ω)

]2
and hence some care

must be given to the direct interpretation of the integral expressions for the norms. However, the weak

gradients are well behaved away from the degeneration set Σ given by (2.1) and there is a notion of weak

quasi-gradient which allows one to manipulate easily such integral expressions. See Section 3 of [16] for a

discussion of this technical point. The dual space to H1
0 (Ω;K) will be denoted by H−1(Ω;K) and will be

equipped with its negative norm in the sense of Lax

||w||H−1(Ω;K) := sup
06=ϕ∈H1

0 (Ω;K)

|〈w,ϕ〉|
||ϕ||H1

0 (Ω;K)

.

3. Linear solvability and spectral theory

We begin by noting that B : H1
0 (Ω,K)×H1

0 (Ω,K)→ R defined by

(3.1) B(u, v) =

∫
Ω

(Kuxvx + uyvy) dxdy, ∀u, v ∈ H1
0 (Ω;K)

is a continuous bilinear form associated to L = −div (KDx, Dy). The notion of weak solution for the linear

Dirichlet problem (1.3) with homogeneous boundary data is the following.
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Definition 3.1. For f ∈ L2(Ω), u ∈ H1
0 (Ω;K) is called a weak solution of the Dirichlet problem (1.3) if

(3.2)

∫
Ω

(Kuxvx + uyvy) dxdy =

∫
Ω

fv dxdy, ∀v ∈ H1
0 (Ω;K).

In the case of non homogeneous boundary data φ ∈ H1(Ω;K) will say that u ∈ H1(Ω,K) is a weak solution

of {
Lu := − (K(x, y)ux)x − uyy = f in Ω,

u = φ on ∂Ω,

provided that u−φ ∈ H1
0 (Ω;K) and (3.2) holds. When we add lower order terms to L or consider nonlinear

variants, the obvious analogous notions of weak solution will be used. We note that if the boundary ∂Ω is

reasonable, say Lipschitz, then the boundary condition u = 0 holds in the trace sense (at least away from

the points where K = 0).

Given that L is formally self adjoint, the existence of a unique weak solution u ∈ H1
0 (Ω;K) to the linear

Dirichlet problem (1.3) for each f ∈ L2(Ω; |K|−1) is equivalent to the validity of a suitable apriori estimate

valid on Ω. We encode this estimate in the following definition.

Definition 3.2. We say that Ω is admissibile for K if there exists C > 0 such that

(3.3) ||u||L2(Ω;|K|) ≤ C||Lu||H−1(Ω;K), u ∈ H1
0 (Ω;K).

We recall that L2(Ω; |K|±1) are the weighted Lebesgue spaces (2.3) with weights W = |K|±1. The fact

that (3.3) characterizes the well-posedness was first shown for Tricomi type equations in [12] and used by

Otway [21] for the model equation (1.1). Hence, given K the real work to do is to find classes of domains Ω

for which the estimate (3.3) can be proven. Our first result is the following theorem.

Theorem 3.3. Let K be defined by (1.4) with σ satisfying (1.5), (1.6) and (1.7). Let Ω satisfy

(3.4) Ω \ {(x, y) : x > 0} = (0, 0) = O

and

(3.5) Ω is star-shaped with respect to the flow of the vector field V = (−βx,−y) for some β > m+ 1.

Then one has the admissibility estimate (3.3) and hence for every f ∈ L2(Ω; |K|−1) there exists a unique

weak solution u ∈ H1
0 (Ω,K) to the Dirichlet problem (1.3) in the sense of (3.2).

The proof of this theorem which involves only minor adjustments of known results will be sketched

in Section 6. For nonhomogeneous boundary data, one obtains easily the following result whose proof is

standard.

Corollary 3.4. Let Ω and K be as in Theorem 3.3. Let φ ∈ H1(Ω;K) be such that there exists Fφ ∈
L2(Ω; |K|−1) with

B(φ, v) =

∫
Ω

Fφv dxdy, ∀ v ∈ H1
0 (Ω;K),

where B is the bilinear form (3.1) (which remains bounded on H1(Ω;K)×H1(Ω;K)). Then there exists a

unique u ∈ H1(Ω;K) satisfying (3.2) and u− φ ∈ H1
0 (Ω;K).

We remark that, of course, the admissible data φ are boundary traces of all possible weak solutions to

the PDE with source terms in L2(Ω; |K|−1). The singularity in the weight |K|−1 forces these sources to

vanish in some sense along the degeneracy curve Σ (where K = 0). Examples of admissible φ are constants,

polynomials in K of degree at least three and more generally any φ ∈ C2(Ω) such that∫
Ω

|Lφ|2

|x− σ(x)|
dxdy < +∞.
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For linear equations with lower order terms, solvability results will be obtained as a by-product of considering

nonlinear perturbations of the problem.

We now turn our attention to spectral theory. Taking our cue from what happens for Tricomi type

equations [13], if Ω is admissible for K (i.e., the apriori estimate (3.3) holds), then one has a continuous

solution operator

(3.6) S : L2(Ω; |K|−1)→ H1
0 (Ω;K);

that is, u = S(f) is the unique weak solution of the Dirichlet problem: Lu = f in Ω and u = 0 on ∂Ω. Notice

that S is not an operator on a fixed Hilbert space since H1
0 (Ω;K) 6⊂ L2(Ω; |K|−1). However, composing S

with a suitable multiplication operator yields a bounded linear operator on a larger space L2(Ω;W ) which

contains H1
0 (Ω;K). For this reason, one introduces the following class of weight functions.

Definition 3.5. For Ω a bounded domain and K fixed, define W the class of weight functions controlled by

|K| as the set of all W ∈ L1(Ω) such that there exists a constant CW > 0 for which

(3.7) 0 < W ≤ CW |K| a.e. on Ω.

Notice that W ∈ L∞(Ω) for Ω bounded since K ∈ C0(R2). Notice also that W vanishes on the vanishing

set of K if W ∈ C0(Ω). For Ω bounded, simple examples include W = |K|p with p ≥ 1. Composing the

solution operator (3.6) with the multiplication operator MW (defined by MW f := Wf) yields a continuous

linear operator

T := S ◦MW : L2(Ω;W )→ H1
0 (Ω;K)

which is a compact self-adjoint operator on L2(Ω;W ) provided that

(3.8) H1
0 (Ω;K) is compactly embedded in L2(Ω).

The spectrum of T is thus comprised of {0} (which is not an eigenvalue) plus real eigenvalues of finite

multiplicity. Using a standard mini-max procedure, one has a doubly infinite sequence of weighted eigenvalues

{λ±k }k∈N provided that the quadratic form Q : H1
0 (Ω;K)→ R defined by

Q(u) := B(u, u)

is strongly indefinite in the sense that for each n ∈ N there exists an orthogonal set En = {w+
k }nk=1∪{w

−
k }nk=1

in H1
0 (Ω;K) such that

(3.9) lim
t→+∞

Q(tw±k ) = ±∞, k = 1, . . . n.

For a mixed domain Ω and K of the form (1.4) with σ satisfying (1.5), one always has the needed compactness

(3.8) and the strongly indefinite property (3.9) and hence one obtains the following result (analogous to

Theorem 3.6 of [13] for equations of Tricomi type).

Theorem 3.6. Let Ω be a mixed domain which is admissible for K of the form (1.4) with σ satisfying (1.5)

and let W satisfy (3.7). Then H1
0 (Ω;K) admits a basis H = {u±k }k∈N of weak eigenfunctions to the problem

(1.8) corresponding to a doubly infinite sequence of nonzero eigenvalues {λ±k }k∈N (counted with their finite

multiplicity) such that

λ+
k > 0, λ+

k ↗ +∞, λ−k < 0, λ−k ↘ −∞.

Moreover, the basis H consists of functions which are orthogonal in L2(Ω;W ) and which are B-orthogonal

in H1
0 (Ω;K), where B : H1

0 (Ω;K)×H1
0 (Ω;K)→ R is the continuous bilinear defined in (3.1); that is,

B(u+
j , u

+
k ) = 0 = B(u−j , u

−
k ), ∀ j 6= k ∈ N, B(u+

j , u
−
k ) = 0, ∀ j, k ∈ N.
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Notice that we are assuming the admissibility estimate (3.3) which ensures the solvability. By Theorem

3.3, one has this estimate if one also assumes (1.6), (1.7), (3.4) and (3.5). Given the admissibility, it remains

only to verify the compactness and strongly indefinite properties when Ω and σ satisfy (2.2) and (1.5). We

will show that these two properties hold in a much more general context. For future use, we formulate them

as two lemmas.

The compact embedding property (3.8) will be treated in the context of compact embeddings of Sobolev

spaces with matrix weights into Lebesgue spaces. We will denote by Sym+
N (R) the space of real symmetric

N × N matrices such that the associated quadratic form is non-negative definite. Given any measurable

function A : Ω→ Sym+
N (R), we define W 1,p

0 (Ω;A) as the completion of C1
0 (Ω) with respect to the norm

(3.10) ||u||W 1,p
0 (Ω;A) =

[∫
Ω

〈ADu,Du〉p/2 dx
]1/p

=

[∫
Ω

〈A1/2Du,A1/2Du〉p/2 dx
]1/p

.

We note that our weighted space H1
0 (Ω;K) is precisely W 1,2

0 (Ω;A) for the matrix valued function

(3.11) A(x1, x2) =

[
1 0

0 |K(x1, x2)|

]
=

[
1 0

0 |x2 − σ(x1)|

]
,

with (x1, x2) = (y, x). The following compact embedding lemma will be proven in Section 7 by applying

a general result of Danielli [6] for weighted Sobolev spaces associated to weak sub-Riemannian structures

underlying our anisotropic setting. In what follows, for each j ∈ {1, . . . , N}, we will denote by Πj : RN → Rj

the canonical projection onto the first j components.

Lemma 3.7. Let Ω ⊂ RN be a bounded domain and let Ω0 be an open neighborhood of Ω. Given any family

of weights {Λj}Nj=1 ⊂ C1(Ω0, [0,+∞)) satisfying

(3.12) Λj = Λj(x1, . . . , xj), j = 1, . . . , N ;

(3.13) Λ1 > 0 on Ω0;

and for each fixed j = 1, . . . , N and (z1, . . . , zj) ∈ Πj(Ω) such that Λj(z1, . . . , zj) = 0:

(3.14) Sε(z1, . . . , zj) contains no arc of a C1 curve of positive length if ε > 0 is sufficiently small

where

(3.15) Sε(z1, . . . , zj) := {(x1, . . . , xj−1) ∈
j−1∏
k=1

[zk, zk + ε] : Λj(x1, . . . , xj−1, zj) = 0}.

Then one has the following compact embedding results.

a) For each p ∈ [1,∞)

W 1,p
0 (Ω,Λ2) ↪→↪→ Lp(Ω),

where W 1,p
0 (Ω,Λ2) is the completion of C1

0 (Ω) with respect to the norm (3.10) with A = Λ2 and Λ is

the diagonal matrix with entries Λ1, . . .ΛN .

b) If A : Ω→ Sym+
N (R) is measurable and if there exists C > 0 such that

(3.16) C〈Λ2(x)ξ, ξ〉 ≤ 〈A(x)ξ, ξ〉 for a.e. x ∈ Ω and each ξ ∈ RN ,

then for each p ∈ [1,∞)

W 1,p
0 (Ω;A) ↪→↪→ Lp(Ω).

In order to show the strongly indefinite property (3.9) on mixed domains, we will provide a general result

for indefinite quadratic forms which can be applied to second order PDEs of mixed elliptic-hyperbolic type.

We denote by SymN (R) the space of real symmetric N ×N matrices.
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Lemma 3.8. Let Ω be an open subset of RN and let Q : Ω→ SymN (R) be continuous.

a) If there exist Br(x0) ⊂⊂ Ω, ζ ∈ RN with |ζ| = 1 and δ > 0 such that

〈Q(x)ζ, ζ〉 ≥ δ > 0, ∀ x ∈ Br(x0),

then for each n ∈ N there exists a collection of functions {w1, . . . , wn} ⊂ C∞0 (Ω) having mutually

disjoint supports in Br(x0) such that∫
Ω

〈Q(x)Dwj , Dwj〉 dx > 0, j = 1, . . . , n.

b) If there exist Br(x0) ⊂⊂ Ω, ζ ∈ RN with |ζ| = 1 and δ > 0 such that

〈Q(x)ζ, ζ〉 ≤ −δ < 0, ∀ x ∈ Br(x0),

then for each n ∈ N there exists a collection of functions {w1, . . . , wn} ⊂ C∞0 (Ω) having mutually

disjoint supports in Br(x0) such that∫
Ω

〈Q(x)Dwj , Dwj〉 dx < 0, j = 1, . . . , n.

This simple auxiliary result will also be proven in Section 7 and just involves the construction of suitable

bump functions depending on ζ,Br(x0) and δ.

Proof of Theorem 3.6. As mentioned above, the body of the proof is identical to that of Theorem 3.6 of [13]

provided one has the admissibility estimate (3.3), the compact embedding (3.8) and the strongly indefinite

property (3.9) for the mixed domain Ω. Briefly the idea is the following. Given the three ingredients

mentioned above, one combines the strongly indefinite property with the standard mini-max construction

(see Lemma 3.4 of [13]) to give a variational construction of eigenvalues for the compact operator

T := S ◦MW : L2(Ω;W )→ H1
0 (Ω;K) ↪→↪→ L2(Ω;W ).

One obtains a doubly infinite sequence of (nonzero) eigenvalues {µ±k }k∈N for the operator T with correspond-

ing eigenfunctions {u±k }k∈N ⊂ H1
0 (Ω;K). These are the weak eigenfunctions sought for L where λ±k = 1/µ±k .

The proof of these facts is identical to that in the Tricomi type case (see Theorem 3.6 of [13]).

In order to prove the compactness property (3.8), we apply part b) of Lemma 3.7 with the matrix weight

A corresponding to H1
0 (Ω;K) (as given by (3.11)) and select Λ = A2; that is

Λ1(x1) = 1 and Λ2(x1, x2) = K2(x1, x2) = (x2 − σ(x1))2.

Clearly Λ ∈ C1(Ω,Sym+
2 (R)) and one has (3.12) and (3.13) since Λ1 = Λ1(x1) ≡ 1 > 0. One has also (3.14).

Indeed, if 0 = Λ2(z1, z2) = (z2 − σ(z1))2 for some (z1, z2) ∈ Ω, the existence of a small ε > 0 such that

Sε(z1, z2) = {x1 ∈ [z1, z1 + ε] : z2 = σ(x1)}

contains an arc of a C1 curve of positive length would contradict the fact that σ is not constant on any

interval (as required by (1.5)). Finally, the needed lower bound (3.16) is

C
(
ξ2
1 + |K|4ξ2

2

)
≤ ξ2

1 + |K|ξ2
2 ,

which holds for C−1 = supΩ|K|3 + 1.

In order to prove the strongly indefinite property (3.9), we apply Lemma 3.8 with Q given by

Q(x1, x2) =

[
1 0

0 K(x1, x2)

]
=

[
1 0

0 x2 − σ(x1)

]
,

Since Ω is a mixed domain and K is continuous and changes sign, if x0 belongs to the elliptic region Ω+, which

is open, one can choose a ball B+ = Br(x0) lying in Ω+. On that ball, take ζ = (0, 1) and δ = infB+ K > 0.
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Similarly, the hyperbolic region Ω− is also open and choose again ζ = (0, 1) but take −δ = supB− K < 0.

The family {w±1 , . . . , w±n } clearly gives an orthogonal set in H1
0 (Ω;K) and one has the needed limits in

(3.9). �

4. Variational characterizations of solutions

We now describe the variational characterizations for weak solutions to the Dirichlet problem (1.3) and

perturbations of that problem. As mentioned in the introduction, the characterizations presuppose the

validity of the solvability and spectral theory of the previous section. The following definition encodes all

that we need to assume in order to ensure the needed ingredients.

Definition 4.1. Let K(x, y) = x − σ(y) where σ satisfies (1.5). We call (Ω, σ) a Dirichlet pair for L =

−div (KDx, Dy) if (2.2), (3.3) and (3.8) hold.

We recall that (3.3) ensures the validity of the solvability Theorem 3.3. The condition (2.2) and the form

of K ensures the strongly indefinite property (3.9) which combined with (3.8) then yields the spectral theory

of Theorem 3.6. We have shown that (Ω, σ) is indeed a Dirichlet pair if one also assumes that (Ω, σ) satisfy

(3.4), (3.5), (1.6) and (1.7).

In all that follows, B will be the bilinear form defined in (3.1) and we will exploit Theorem 3.6 in order

to split the space H1
0 (Ω;K) into B–orthogonal subspaces, which will also be orthogonal with respect to the

L2(Ω;W ) inner product, and we will then consider the restrictions of the functionals and their differentials to

those subspaces. More precisely, by defining H± := span〈u±k : k ∈ N〉 one has H1
0 (Ω;K) = H+⊕H− where

the two subspaces are B-orthogonal, but not orthogonal with respect to the inner product of H1
0 (Ω;K). Let

P± : H1
0 (Ω;K) → H± be the natural projections onto those subspaces. For any f ∈ L2(Ω), define the

functionals

(4.1) J(u) :=
1

2
B(u, u)−

∫
Ω

fu dxdy and J± = J ◦ P±.

It is clear that J , J+, J− are C1 functionals on H1
0 (Ω;K) and that

J ′(u)[h] =

∫
Ω

(Kuxhx + uyhy) dxdy −
∫

Ω

fh dxdy ∀u, h ∈ H1
0 (Ω;K).

Hence weak solutions of the Dirichlet problem (1.3) are precisely the critical point(s) of J . The functional

J is strongly indefinite; that is, there exist infinite dimensional subspaces H± for which J → ±∞ along

all rays in H±. Recall that we have seen that the quadratic part Q(u) = B(u, u) has this property. The

following theorem includes a variational characterization of the unique weak solution of (1.3) of Theorem

3.3 for f ∈ L2(Ω; |K|−1).

Theorem 4.2. Let (Ω, σ) be a Dirichlet pair and f ∈ L2(Ω). Then

a) the following are equivalent:

i) u ∈ H1
0 (Ω;K) is a weak solution of (1.3);

ii) u is a critical point of the functional J defined in (4.1);

iii) u is a critical point of the functionals J+ and J− defined in (4.1);

iv) u is a global extremum of J+ and J− in the sense that

(4.2) J+ (u) = J+
∗ := inf

h∈H
J+(h) and J− (u) = J−∗ := sup

h∈H
J−(h);

b) J is strongly indefinite, it does not have local minima or maxima and it has at most one critical

point, which must be a saddle point.
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c) There is at most one critical level for J , which is finite and given by

(4.3) J? = J? = J+
∗ + J−∗ ,

where

(4.4) J? := inf
v∈H+

sup
w∈H−

J(v + w) and J? := sup
w∈H−

inf
v∈H+

J(v + w),

and J±∗ as defined in (4.2).

d) If f ∈ L2(Ω; |K|−1), then the critical level (4.3) is achieved by u the unique weak solution of (1.3)

which satisfies the properties in part a) of the theorem.

The proof of this theorem is identical to that of Theorem 2.8 of [15] for Tricomi type equation and hence

will be omitted. However, to aid the reader perhaps a few remarks are in order. First, we note that

J+
∗ = inf

v∈H+
J|H+

(v) and J−∗ = sup
w∈H−

J|H− (w),

so that (4.2) is equivalent to

J
(
P+(u)

)
= inf
v∈H+

J|H+
(v) and J

(
P−(u)

)
= sup
w∈H−

J|H− (w).

Second, one makes use of some basic relations between the critical levels J?, J? defined in (4.4) and J+
∗ , J

−
∗

defined in (4.2), where we note that

J+
∗ ∈ [−∞,+∞) and J−∗ ∈ (−∞,+∞].

Those relations are contained in Lemma 3.1 of [15], which we reproduce here without proof.

Lemma 4.3. If (Ω;K) is a Dirichlet pair then

a) J+
∗ > −∞ or J−∗ <∞ ⇒ J? = J? = J+

∗ + J−∗ ;

b) J? = J? ⇒ J+
∗ > −∞ or J−∗ <∞;

c) J? ∈ R ⇔ J? ∈ R ⇔ J+
∗ , J

−
∗ ∈ R.

Consult Section 3 of [15] for details.

Remark 4.4. The condition f ∈ L2(Ω; |K|−1) is obviously not necessary in order to have a weak solution

of (1.3), or equivalently for the critical level of J to be achieved, as the following example shows.

Example 4.5. Let Ω ⊂ R2 be a bounded domain satisfying (2.2) and let Σ = {(x, y) ∈ R2 : x = σ(y)} be

the degeneration set for L = −div ((x − σ(y))Dx, Dy) with σ satisfying (1.5). Fix P = (x0, y0) ∈ Ω with

x0 = σ(y0) and fix r > 0 such that Br(P ) ⊂ Ω. Define the function u on Ω by

u(x, y) := y2η(x, y),

where η ∈ C∞0 (R2) is non-negative, vanishes outside of Br(P ) and satisfies η ≡ 1 in B r
2
(P ). Then u ≥ 0 in

Ω and is a classical (and hence weak) solution of (1.3) with

f ∈ L2(Ω) \ L2(Ω; |K|−1).

Clearly u ∈ C∞0 (Ω) and supp (u) ⊂ Br(P ) so that u ∈ H1
0 (Ω;K) and satisfies the boundary condition in the

classical sense. Moreover, one has

Lu = (x− σ(y))y2ηxx + y2ηyy + 4yηy + 2η + y2ηx := f in Ω.
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Clearly f ∈ C1(Ω) with support in Br(P ) ⊂ Ω so that f ∈ L2(Ω). On the other hand, f /∈ L2(Ω; |K|−1)

with K(x, y) = x− σ(y). Indeed, estimating from below on[
x0 −

r

2
√

2
, x0 +

r

2
√

2

]
×
[
y0 −

r

2
√

2
, y0 +

r

2
√

2

]
⊂ B r

2
(P ) ⊂ Br(P )

where η ≡ 1 one has

||f ||2L2(Ω;|K|−1) ≥
∫ y0+ r

2
√

2

y0− r
2
√

2

∫ x0+ r
2
√

2

x0− r
2
√

2

|f |2

|x− σ(y)|
dxdy =

∫ y0+ r
2
√

2

y0− r
2
√

2

∫ x0+ r
2
√

2

x0− r
2
√

2

4

|x− σ(y)|
dxdy.

Since 1/|x− σ(y)| is not integrable in x ∈ [x0 − r
2
√

2
, x0 + r

2
√

2
] for almost every y ∈ [y0 − r

2
√

2
, y0 + r

2
√

2
], by

Tonelli’s theorem, one concludes that f 6∈ L2(Ω; |K|−1).

We now proceed to state a sequence of similar variational characterizations for weak solutions of various

perturbations of the problem (1.3). These results mirror what was done in [15] for equations of Tricomi type

and their proofs are identical. We begin by adding a non-trivial term of order zero; that is, we consdier

(4.5)

{
−
(
K(x, y)ux

)
x
− uyy − λWu = f in Ω,

u = 0 on ∂Ω,

This problem is clearly related to the weighted eigenvalue problem (1.8). We denote by σ(L) the set of

eigenvalues of L; that is, λ ∈ σ(L) if there exists a nontrivial weak solution u ∈ H1
0 (Ω;K) to the problem

(1.8). We define the subspaces of H1
0 (Ω;K)

(4.6)

{
H−λ = span〈u ∈ H1

0 (Ω;K) : u eigenfunction associated to an eigenvalue µ < λ〉
H+
λ = span〈u ∈ H1

0 (Ω;K) : u eigenfunction associated to an eigenvalue µ > λ〉

and we consider the modified functional Jλ(u) : H1
0 (Ω;K)→ R defined by

Jλ(u) =
1

2
B(u, u)− λ

2

∫
Ω

Wu2 dxdy −
∫

Ω

fu dxdy ∀u ∈ H1
0 (Ω;K).

We denote by P±λ the natural projections of H1
0 (Ω;K) onto the subspaces H±λ and define J±λ := Jλ ◦ P±λ .

The variational characterization for the problem (4.5) is provided by the following theorem.

Theorem 4.6. Let (Ω, σ) be a Dirichlet pair for L and f ∈ L2(Ω). Then

a) if λ /∈ σ(L), the function u ∈ H1
0 (Ω;K) is a weak solution of (4.5) if and only if

(4.7) J+
λ (u) = inf

h∈H
J+
λ (h) and J−λ (u) = sup

h∈H
J−λ (h);

b) if λ ∈ σ(L) with associated eigenspace Eλ, the function u ∈ H1
0 (Ω;K) is a weak solution of (4.5) if

and only if (4.7) and the following condition hold

(4.8)

∫
Ω

fv dx = 0 ∀ v ∈ Eλ.

Remark 4.7. Formulas similar to (4.4) and (4.3) hold also for Jλ. Moreover, if f ∈ L2(Ω;W−1) then

by repeating the argument of Theorem 2.3 of [14] for equations of Tricomi type, one obtains the following

Fredholm alternative:

I) if λ /∈ σ(L), then problem (4.5) admits a unique weak solution, and thus Jλ has a unique critical

point, which is a saddle point;

II) if λ ∈ σ(L) with associated eigenspace Eλ, then problem (4.5) admits weak solutions, and thus Jλ

has infinitely many critical points if and only if (4.8) holds. The critical points u are saddle points

which are degenerate in the sense that J ′′λ (u)[h, h] = 0 for each h ∈ Eλ, where Jλ is clearly a C2

functional.
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As noted in the proof of Theorem 3.6, the eigenvalues of L were characterized variationally through the

inverse operator S = L−1. We are now able to provide a direct variational characterization of the eigenvalues

and weak eigenfunctions in terms of the Rayleigh quotient

(4.9) R(v) :=
B(v, v)∫

Ω
Wv2 dxdy

, v ∈ H1
0 (Ω;K).

We begin with λ±1 .

Theorem 4.8. Let (Ω, σ) be a Dirichlet pair for L and R(v) defined by (4.9). Then

a) λ+
1 = inf

v∈H+\{0}
R(v) and λ−1 = sup

v∈H−\{0}
R(v);

b) u ∈ H1
0 (Ω;K) is a weak eigenfunction of problem (1.8) associated to λ+

1 if and only if u ∈ H+ and

R(u) = inf
v∈H+\{0}

R(v);

c) u ∈ H1
0 (Ω;K) is a weak eigenfunction of problem (1.8) associated to λ−1 if and only if u ∈ H− and

R(u) = sup
v∈H−\{0}

R(v).

Using the standard inductive device of removing the span of eigenfunctions corresponding to the eigen-

values previously constructed, one obtains sequentially the remaining eigenvalues ordered by increasing

magnitude.

Finally, we turn our attention to variational characterizations for nonlinear perturbations; that is, for

the problem (1.9). We assume that the nonlinearity g = g(x, y, t) : Ω × R → R satisfies the Carathéodory

conditions

(4.10) g is measurable in (x, y) for each t ∈ R and continuous in t for a.e. (x, y) ∈ Ω.

This ensures the continuity of the Nemytski operators associated to g and its primitives in t (see the discussion

in the next section). We will also assume the following condition: there exist m,M ∈ R such that

(4.11) m ≤ g(x, y, t+ r)− g(x, y, t)

r
≤M

for every t ∈ R, r ∈ R \ {0} and a.e. (x, y) ∈ Ω. Condition (4.11) is equivalent to requiring that the

function g(x, y, t) is Lipschitz in t ∈ R, uniformly for a.e. (x, y) ∈ Ω. We consider the associated functional

I : H1
0 (Ω;K)→ R

(4.12) I(u) =
1

2
B(u, u)−

∫
Ω

WG(x, y, u) + f(x, y)u dxdy ∀u ∈ H1
0 (Ω;K)

where G(x, y, t) =
∫ t

0
g(x, y, s) ds. We will consider the subspaces H−m and H+

M as defined in (4.6) with λ = m

and λ = M respectively. Notice that H−m ⊕H+
M ( H1

0 (Ω;K) if σ(L) ∩ [m,M ] 6= ∅. We define

Λm := max{λ ∈ σ(L) |λ < m}, ΛM := min{λ ∈ σ(L) |λ > M}.

The variational characterization for the nonlinear Dirichlet problem (1.9) is the following result.

Theorem 4.9. Let (Ω,K) be a Dirichlet pair for L, g a nonlinearity satisfying (4.10) - (4.11) and f ∈ L2(Ω).

Then I ∈ C1(H1
0 (Ω;K),R) and

a) u ∈ H1
0 (Ω;K) is a weak solution of (1.9) if and only if u is a critical point of the functional I defined

by (4.12);

b) for every u, h ∈ H1
0 (Ω;K) one has

1

2
B(h, h)− M

2
‖h‖2L2(Ω;W ) ≤ I(u+ h)− I(u)− I ′(u)[h] ≤ 1

2
B(h, h)− m

2
‖h‖2L2(Ω;W );
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c) if u ∈ H1
0 (Ω;K) is a weak solution of (1.9), then

I(u+ h) ≤ I(u) +
Λm −m

2
‖h‖2L2(Ω;W ) for all h ∈ H−m,

I(u+ h) ≥ I(u) +
ΛM −M

2
‖h‖2L2(Ω;W ) for all h ∈ H+

M .

In particular, u is a saddle point for I and

(4.13) I(u) = max
h∈H−m

I(u+ h) = min
h∈H+

M

I(u+ h);

d) if σ(L) ∩ [m,M ] = ∅, then u ∈ H1
0 (Ω;K) is a solution of (1.9) if and only if (4.13) holds.

Remark 4.10. Existence of weak solutions for nonlinear Dirichlet problems of the form (1.9) were considered

in [14] for Tricomi type equations, but often without the requirement that g(x, y, t) be Lipschitz in t ∈ R.

One could develop an analogous existence theory here, impose this additional Lipschitz requirement and

then apply Theorem 4.9 to give a variational characterization of such solutions. That is, one can obtain

examples where the critical points in Theorem 4.9 actually exist.

5. Existence results for nonlinear problems

In this section, we put the linear solvability and spectral theory to work in order to treat the question

of existence of weak solutions to semilinear Dirichlet problems of the form (1.9) with f = 0 and (1.10). We

assume throughout that K has the form (1.4); that is, K(x, y) = x− σ(y) with σ satisfying (1.5). Moreover

we will assume that (Ω, σ) is a Dirichlet pair for L = −div (KDx, Dy) as defined in Defintion 4.1 so that

we indeed have solvability and spectral theory of Section 3 for weights W belonging to the weight class W
of Definition 3.7. This will allow us to set up a fixed point argument for the nonlinear problems by first

inverting the differential operator L.

We begin by considering the problem

(5.1)

{
Lu := −(K(x, y)ux)x − uyy = Wg(x, y, u) in Ω

u = 0 on ∂Ω

where g : Ω× R→ R is a Carathéodory function satisfying (4.10) and the following growth bound:

(5.2) |g(x, y, z)| ≤ a(x, y) + b(x, y)|z|p for each z ∈ R and a.e. (x, y) ∈ Ω,

with a ∈ L2(Ω;W ) and b ∈ L2/(1−p)(Ω;W ) if p ∈ [0, 1) and b ∈ L∞(Ω) if p = 1. One has a well defined and

continuous Nemytski operator

g# : L2(Ω;W ) → L2(Ω;W )

u 7→ g(·, u(·))
which maps bounded sets to bounded sets with the estimate

||g#(u)||2L2(Ω;W ) ≤ 2
(
||a||2L2(Ω;W ) + ||b||2L2/(1−p)(Ω,W )||u||

2p
L2(Ω;W )

)
, p ∈ [0, 1].

These claims on g# are standard (see e.g. Vainberg [26]) where it is enough to note that the weighted spaces

Lp(Ω;W ) can be regarded as standard Lp spaces with respect to the measure µ(E) :=
∫
E
W dxdy which is

absolutely continuous with respect to the Lebesgue measure. We will find weak solutions to (5.1) by solving

a fixed point problem which characterizes the solutions in the following sense.

Lemma 5.1. Let (Ω, σ) be a Dirichlet pair for L and let W ∈ W. Let g satisfy (4.10) and (5.2). Then the

nonlinear map Φ : L2(Ω;W )→ L2(Ω;W ) defined by

(5.3) Φ = S ◦MW ◦ g#
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is compact and any fixed point u ∈ L2(Ω;W ) of Φ belongs to H1
0 (Ω;K) and is a weak solution of the Dirichlet

problem (5.1). Conversely, any weak solution u ∈ H1
0 (Ω;K) ⊂ L2(Ω;W ) of (5.1) is a fixed point of Φ.

Proof. That Φ is well defined and compact follows from the considerations above. If u ∈ L2(Ω;W ) is a fixed

point of Φ, then u = S(h) for h = MW g#u ∈ L2(Ω; |K|−1) and hence u ∈ H1
0 (Ω;K) and is a weak solution

of (5.1). �

Our first result uses the Leray-Schuader Principle for sublinear g.

Theorem 5.2. Let Ω, L, and W be as in Lemma 5.1. Let g satisfy (4.10) and (5.2) with p ∈ [0, 1). Then

there exists a weak solution u ∈ H1
0 (Ω;K) to the Dirichlet problem (5.1).

Proof. The proof is identical to that of Theorem 4.2 of [14] for Tricomi type equations. We recall only the

main points of the argument. Lemma 5.1 reduces the question to the existence of a fixed point for Φ.

By the Leray-Schauder Principle, it is enough to show the following a priori bound: there exists a constant

C > 0 such that

(5.4) u = tΦ(u), t ∈ (0, 1)⇒ ||u||L2(Ω;W ) ≤ C.

The case p = 0 is obvious. Using t ∈ (0, 1), the boundedness of T = S ◦MW on L2(Ω;W ) and the hypotheses

on a, b and W one proves the existence of constants C1, C2 and C3 such that

(5.5) ||u||L2(Ω;W ) ≤ ||T ||op

[
C1 + C2||u||pL2(Ω;W ) + C3||u||2pL2(Ω;W )

]1/2
.

If (5.4) were to fail, then there would be a sequence {un}n∈N satisfying un = tnΦ(un) with tn ∈ (0, 1) and

||un||L2(Ω;W ) → +∞. This contradicts (5.5) for p ∈ (0, 1). �

Our next result uses the Contraction Mapping Principle for at most linear g which can be applied to

equations of the form (1.10), in which the derivatives ux and uy appear and where as usual W is a weight

function controlled by |K|, see (3.7). The hypotheses on g = g(x, y, z, s, t) are the following three conditions.

The function g : Ω× R3 → R satisfies the Carathéodory condition

(5.6) g is measurable in (x, y) for each (z, s, t) ∈ R3 and continuous in (z, s, t) for a.e. (x, y) ∈ Ω.

One has the natural growth bound: for each (z, s, t) ∈ R3 and almost every (x, y) ∈ Ω one has

(5.7) |g(x, y, z, s, t)| ≤ a(x, y) + b(x, y)|z|β + c(x, y)|s|γ + d(x, y)|t|δ.

with given constants

(5.8) β, γ, δ ∈ [0, 1]

and given non-negative functions

(5.9) a ∈ L2(Ω;W ), W
1
2 b ∈ L

2
1−β (Ω), W

1−γ
2 c ∈ L

2
1−γ (Ω), W

1
2 d ∈ L

2
1−δ (Ω)

with the convention that when β = 1, γ = 1 or δ = 1 then the corresponding function is essentially bounded

on Ω. Finally, one has the Lipschitz estimate in (z, s, t): for a.e. (x, y) ∈ Ω

(W (x, y))
1
2 |g(x, y, z1, s1, t1)− g(x, y, z0, s0, t0)| ≤

[
α2

0(z1 − z0)2

+α2
1

(
|K(x, y)|(s1 − s0)2 + (t1 − t0)2

)]1/2
(5.10)

with given constants α0, α1 ∈ R satisfying

(5.11)
(
α2

0C
2
P + α2

1

)1/2
< min{|λ−1 |, |λ

+
1 |},

where λ±1 are the positive/negative eigenvalues of minimum modulus of L described in Theorem 3.6 and CP

is the Poincaré constant in (2.4).
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Theorem 5.3. Let (Ω, σ) be a Dirichlet pair for L and g a nonlinearity satisfying (5.6), (5.7), (5.8), (5.9),

(5.10) and (5.11). Then there exists a unique weak solution u ∈ H1
0 (Ω;K) to the semilinear Dirichlet problem

(1.10).

Proof. The hypotheses (5.6), (5.7), (5.8) and (5.9) ensure that the Nemytskii operator

(5.12)
g# : H1

0 (Ω;K) → L2(Ω;W )

u 7→ g(·, u(·), ux(·), uy(·))

is well defined and maps bounded sets to bounded sets with the estimate

||g#(u)||2L2(Ω;W ) ≤ 16

[
||a||2L2(Ω;W ) + C2β

P ||W
1
2 b||2

L
2

1−β (Ω)
||u||2β

H1
0 (Ω;K)

+ max

{
CγW ||W

1−γ
2 c||2

L
2

1−γ (Ω)
, ||W 1

2 d||2
L

2
1−δ (Ω)

}(
||ux||2γL2(Ω,|K|) + ||uy||2δL2(Ω)

)]
,(5.13)

where CP is the Poincaré constant and where we recall that 0 < W ≤ CW |K| a.e. in Ω. Since (Ω, σ) is a

Dirichlet pair for L, we have the continuous solution operator S : L2(Ω; |K|−1) → H1
0 (Ω;K) to the linear

problem and hence weak solutions to (1.10) are precisely the fixed points of the nonlinear operator

Ψ : H1
0 (Ω;K)→ H1

0 (Ω;K) defined by Ψ = S ◦MW ◦ g# = T ◦ g#.

The conditions (5.10) and (5.11) show that Ψ is a contraction. Indeed, for u, v ∈ H1
0 (Ω;K) one has

(5.14) ||Ψ(u)−Ψ(v)||2H1
0 (Ω;K) ≤ ||T ||

2
op||g#(u)− g#(v)||2L2(Ω;W )

and using (5.10) one has

(5.15) ||g#(u)− g#(v)||2L2(Ω;W ) ≤
(
α2

0C
2
P + α2

1

)
||u− v||2H1

0 (Ω;K).

Combining (5.14) and (5.15) one has

||Ψ(u)−Ψ(v)||2H1
0 (Ω;K) ≤ ||T ||

2
op

(
α2

0C
2
P + α2

1

)
||u− v||2H1

0 (Ω;K).

Since the operator norm of T depends on the spectral radius of L, the condition (5.11) yields

||T ||op

(
α2

0C
2
P + α2

1

)1/2
=

1

min{|λ−1 |, |λ
+
1 |}

(
α2

0C
2
P + α2

1

)1/2
< 1.

Hence Ψ is a contraction. �

Using this nonlinear perturbation result, we can address the question of solvability of the Dirichlet problem

for linear equations with lower order terms; that is, for equations of the form

Lu = −Wc0u−Wb1ux −Wb2uy +Wf

where the coefficients (c0, b1, b2) and the source term f are functions of (x, y). Applying the above result

with

g(x, y, z, s, t) = −c0(x, y)z − b1(x, y)s− b2(x, y)t+ f(x, y)

one sees that the growth conditions (5.7), (5.8) and (5.9) require β, γ, δ = 1 and hence one needs

f ∈ L2(Ω;W ) and W
1
2 c0, b1,W

1
2 b2 ∈ L∞(Ω).

Since K vanishes on Ω ∩ Σ and 0 < W ≤ CW |K| a.e. on Ω, the coefficients (Wc0,Wb1,Wb2) must also

vanish there as well; in particular, Wc0,Wb2 are dominated by W
1
2 , while Wb1 is controlled by W . Finally,

by the constraint (5.11), these coefficients must be small in a prescribed sense. We record the following

corollary whose proof is now immediate.
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Corollary 5.4. Let (Ω, σ) be a Dirichlet pair for L = −div (KDx, Dy) and let W be a weight controlled by

|K|. For every f ∈ L2(Ω;W ) there exists a unique weak solution u ∈ H1
0 (Ω;K) to the Dirichlet problem

(5.16)

{
− (Kux)x − uyy +Wb1ux +Wb2uy +Wc0u = Wf in Ω,

u = 0 on ∂Ω,

provided that

(5.17) max{CW ||b1||2L∞(Ω), ||W
1
2 b2||2L∞(Ω)}+ C2

P ||W
1
2 c0||2L∞(Ω) <

1

3

[
min{|λ−1 |, |λ

+
1 |}
]2
,

where λ±1 are the positive/negative eigenvalues of minimum modulus of L described in Theorem 3.6 and CP

is the Poincaré constant in (2.4).

We conclude this section with some remarks about the fixed point methods used here.

Remark 5.5. The hypothesis (5.10) - (5.11) used in the nonlinear results (and in the coefficient bounds

(5.17) for the linear problem (5.16) with lower order terms) are stated in terms of the spectral radius

λ1 := min{|λ−1 |, |λ
+
1 |} and the Poincaré constant CP . These values are unknown, but may be estimated. In

particular, since one can prove the Poincaré inequality (2.4) by integrating along segments in the y-direction,

the Poincaré constant can be estimated in terms of the diameter diamy(Ω) of Ω in the y-direction and CP

is an increasing function of diamy(Ω). In addition, the constant C in the admissibility estimate (3.3) gives

an upper bound on the norm of the solution operator S : L2(Ω; |K|−1)→ H1
0 (Ω;K). The reciprocal of this

upper bound gives a lower bound on the sharp value of λ1.

6. Proof of Theorem 3.3

The technique is an integral variant of the classical (a, b, c)-multiplier method of Friedrichs [11] and

Morawetz [17]. This integral variant was first presented by Didenko [7] for Tricomi type equations with the

homogeneous Dirichlet condition placed on a proper subset of the boundary. The method was extended to

Tricomi type equations with the Dirichlet condition imposed everywhere in [12] and then adapted to the PDE

in (1.1) by Otway [21] (see [23] for a survey and comparison of multiplier methods for mixed type equations).

We will follow here the scheme as presented in Appendix A of [13], which covers a small technical gap in the

original proof [12], which was repeated in [21]. See Remark 6.4 after the proof.

Proof of Theorem 3.3. The main idea in the proof is to obtain suitable apriori estimates by estimating from

above and below the integral expression

(6.1) I =

∫
Ω

ψLϕdxdy =

∫
Ω

ψLMψ dxdy

for ϕ ∈ C∞0 (Ω) and ψ a multiplier constructed as the solution to the auxiliary singular Cauchy problem

(6.2)

{
Mψ := aψ + bψx + cψy = ϕ in Ω

ψ = 0 on ∂Ω \O,

where the coefficients (a, b, c) are to be selected so that ψ lives in the desired solution space and that the

integral in (6.1) yields a positive definite quadratic form in ψ. The problem is singular in the sense that the

vector field V = (b, c) will have a sink in O ∈ ∂Ω and the flow of V transports ∂Ω \ O into O. A suitable

choice of multipliers ψ results from selecting

(6.3) (b, c) = (−βx,−y) for some β > m+ 1

and

(6.4) a = a0 + a1x
τ :=

β −m− 1

2
− 1

4Xτ
xτ where X := sup

(x,y)∈Ω

x and τ ∈ (0, 1).
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Notice that V = (b, c) is the vector field used in the star-shaped hypothesis (3.5). We also recall that m ≥ 1

is the parameter appearing in the hypotheses (1.6) and (1.7) concerning the function σ in the expression

K(x, y) = x− σ(y).

Associated to the parameter τ ∈ (0, 1), we make use of the space H1
0 (Ω;K, τ) defined as the completion

of C1
0 (Ω) with respect to the norm

(6.5) ||ψ||H1
0 (Ω;K,τ) =

[∫
Ω

(
|x|τ |K|ψ2

x + ψ2
y

)
dxdy

]1/2

.

Claim 1: For each ϕ ∈ C∞0 (Ω) and each τ ∈ (0, 1) there exists a solution ψ ∈ C∞(Ω) ∩ C0(Ω) to the

problem (6.2). Moreover, ψ ∈ C∞(Ω \ Br(O)) for each small r > 0 and ||ψ||H1
0 (Ω;K,τ) < +∞ for each

τ ∈ (0, 1).

Indeed, the hypothesis (3.5) ensures that all complete characteristic curves γ for the Cauchy problem

(6.2) which start from an endpoint on ∂Ω \ O will remain in Ω until reaching their terminal point in O.

By the hypotheses (3.4), the coefficient a is also smooth on Ω \ O and hence the unique solution ψ will

be C∞(Ω \ Br(O)) for each small r. The compact support of ϕ implies that ψ vanishes in a neighborhood

of each point z ∈ ∂Ω \ O. To complete the regularity claims, one uses the method of characteristics to

obtain an explicit representation formula for ψ where the ODE to be solved along each γ is linear and the

characteristics have the form y = y0(x/x0)1/β with (x0, y0) ∈ ∂Ω \ {O}. The compact support of ϕ yields

two critical values (x±0 , y
±
0 ) for which the associated characteristics

(6.6) γ±0 = {(x, ξ±0 x1/β) : 0 < x < x±0 , ξ±0 = y±0 /(x
±
0 )1/β}

are tangent to the support of ϕ and all characteristics starting from boundary points closer to O along the

boundary will remain outside of the support of ϕ. Moreover there exists x1 > 0 so that ϕ(x, y) vanishes for

each (x, y) ∈ Ω with x > x1. By choosing x1 > 0 smaller if necessary, we may suppose that (1.6) holds for

every y with (x, y) ∈ Rx1
. It suffices to represent ψ in the region

(6.7) Rx1
= {(x, y) ∈ Ω : ξ−0 x

1/β < y < ξ+
0 x

1/β , 0 < x < x1}.

With (b, c) = (−βx,−y) and a = a0 + a1x
τ , the solution ψ in Rx1 can be represented as

(6.8) ψ(x, y) = C1h

((
x

x1

)− 1
β

y

)
x
a0
β e

a1x
τ

βτ with C1 = x
− a0β
1 e−

a1x
τ
1

βτ ,

where h(y) = ψ(x1, y) for y ∈ [y−1 , y
+
1 ] = [ξ−0 x

1/β
1 , ξ+

0 x
1/β
1 ] gives the new initial data on the vertical boundary

segment of Rx1
. It follows that ψ(x, y) → 0 as (x, y) → O so that ψ ∈ C0(Ω) and has zero trace on the

boundary. Using (6.8) one obtains that the norm (6.5) is finite provided that

(6.9) a0 > 0, a1 < 0, τ > 0 and
2a0 +m+ 1

β
+ τ > 1.

The choices (6.3) and (6.4) ensure the validity of (6.9).

Claim 2: There exists C = C(Ω, σ) such that for each τ ∈ (0, 1) one has

(6.10) ||ϕ||L2(Ω;|K|) ≤ C||Lϕ||H−1(Ω;K,τ), ϕ ∈ C∞0 (Ω)

where || · ||H−1(Ω;K,τ) is the norm on the dual space to H1
0 (Ω;K, τ).

We begin by estimating the integral (6.1) from below. Since the integrand has compact support, for each

small h > 0 one has

I = Ih :=

∫
Ωh

ψLϕdxdy
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where Ωh := Ω∩{(x, y) ∈ Ω : x > h}. The integrand has regularity limited only by the coefficient K (which

is C1) and so one can integrate by parts to find

(6.11) I = Ih =
1

2

∫
Ωh

(
αψ2

x + γψ2
y + δψ2

)
dxdy − 1

2

∫
Γh

[
(Kψ2

x + ψ2
y)b+Kaxψ

2
]
dy := Ah + Bh

where Γh := {(h, y) ∈ Ω} and

(6.12) α = K(2a+ bx − cy)− bKx − cKy = K(2a0 + 2a1x
τ − β + 1) + βx− yσ′(y)

(6.13) γ = 2a− bx + cy = 2a0 + 2a1x
τ + β − 1

(6.14) δ = La = −a1τx
τ−2 [τx+ (1− τ)σ(y)] .

We first find a lower bound on the area integral Ah. Using τ ∈ [0, 1], a1 < 0, x > 0 and σ(y) ≥ 0 in (6.14),

one has

(6.15) δ ≥ 0 on Ω.

Making the choices of a0 and a1 in (6.4), β > m+ 1 in (6.3) and m ≥ 1, one estimates (6.13) by

(6.16) γ > m+ 2a1X
τ = m− 1/2 ≥ 1/2 on Ω.

On Ω+, where K = x− σ(y) > 0, one estimates (6.12) by

(6.17) α = |K| (β −m+ 2a1x
τ ) + βσ(y)− yσ′(y) >

1

2Xτ
|x|τ |K| on Ω+,

where we have used also the condition (1.7) and β > m. Similarly, on Ω−, where K = x− σ(y) < 0, one has

(6.18) α = |K| (−2a1x
τ ) +mσ(y)− yσ′(y) + (β −m)x >

1

2Xτ
|x|τ |K| on Ω−.

Combining (6.15) - (6.18), one has the lower bound

(6.19) Ah ≥
1

4
min

{
1,

1

Xτ

}∫
Ωh

(
|x|τ |K|ψ2

x + ψ2
y

)
dxdy := Cτ

∫
Ωh

(
|x|τ |K|ψ2

x + ψ2
y

)
dxdy.

Next, we will show how to control the boundary integral Bh in the limit as h → 0+. Inserting the

expressions for K, a and b one has

Bh =
1

2

∫
Γh

[
((h− σ(y))ψ2

x + ψ2
y)βh− (h− σ(y))τa1h

τ−1ψ2
]
dy

≥ βh

2

∫
Γh

((h− σ(y))ψ2
x dy +

τhτ−1

8Xτ

∫
Γh

(h− σ(y))ψ2 dy := B1(h) + B2(h).(6.20)

For each h < x1, one can use the representation formula (6.8) for ψ whose support lines in the region (6.7).

The integrals in (6.20) reduce to integrals over Γ̃h := {(h, y) : ξ−0 h
1/β < y < ξ+

0 h
1/β} determined by the

characteristics (6.6). For h sufficiently small one can apply the estimate (1.6) to give |h−σ(y)| ≤ h+C0|y|m

with m ≥ 1 and one easily obtains

(6.21) lim
h→0+

|B2(h)| = 0.

To control the remaining boundary term B1(h), one again exploits (6.8) and (1.6) to show that

(6.22) B1(h) +
1

2
Ah ≥ 0 for each small h > 0,

where it is enough to have (6.22) along a sequence {hn}n∈N with hn → 0+. Indeed, for each h small one can

estimate (6.22) from below by

β

2

∫
Γ̃h

h(h− σ(y))ψ2
x dy + Cτ

∫
Ω̃h

xτ (σ(y)− h)ψ2
x dxdy,
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where Ω̃h := {(x, y) ∈ Ωh ∩Rx1 : |y|m > x/C0} and Rx1 is the region defined as in (6.7). Using (6.8) and

Fubini’s theorem one finds (6.22).

Combining (6.11), (6.19), (6.20), (6.21) and (6.22) one finds

I = Ih ≥
1

8
min

{
1,

1

Xτ

}∫
Ωh

(
|x|τ |K|ψ2

x + ψ2
y

)
dxdy + o(h), as h→ 0+,

and passing to the limit yields the lower bound

(6.23) I ≥ 1

8
min

{
1,

1

Xτ

}
||ψ||2H1

0 (Ω;K,τ).

Estimating from above one has

I ≤ ||ψ||H1
0 (Ω;K,τ) ||Lϕ||H−1(Ω;K,τ),

which when combined with (6.23) yields

(6.24) ||ψ||H1
0 (Ω;K,τ) ≤ 8 max{1, Xτ}||Lϕ||H−1(Ω;K,τ).

Recalling that ϕ = Mψ, one estimates to find the existence of a constant CM = CM (Ω, σ) > 0 such that

||ϕ||L2(Ω;|K|) = ||Mψ||L2(Ω;|K|) ≤ CM ||ψ||H1
0 (Ω;K,τ),

which combined with (6.24) yields (6.10) with C(Ω, σ) = 8CM max{1, X} independent of τ .

Claim 3: For each f ∈ L2(Ω; |K|−1) there exists a unique weak solution u ∈ H1
0 (Ω;K) of the Dirichlet

problem (1.3) in the sense of Definition 3.1.

Using the estimate (6.10) and standard functional analysis, for each τ ∈ (0, 1), there exists uτ ∈
H1

0 (Ω;K, τ) such that

||uτ ||H1
0 (Ω;K,τ) ≤ C(Ω, σ)||f ||L2(Ω;|K|−1)

and

(6.25)

∫
Ω

uτLϕdxdy = (f, ϕ)L2(Ω), ϕ ∈ C∞0 (Ω),

where C(Ω, σ) is the constant of (6.10).

One then considers the sequence {u1/n} of these distributional solutions with τn = 1/n. There is mono-

tonicity in τ of the family of norms (6.5); that is: for each pair τ, τ ′ with 0 ≤ τ < τ ′ ≤ 1 one has

||w||H1
0 (Ω;K,τ ′) ≤ (1 +X)1/2||w||H1

0 (Ω;K,τ), w ∈ H1
0 (Ω;K, τ).

Using this monotonicity property, Lemma A.3 of [13] shows how to extract a subsequence which converges

weakly in L2(Ω) to a limit u in H1
0 (Ω;K) which satisfies the estimate

(6.26) ||u||H1
0 (Ω;K) ≤ (1 +X)1/2C(Ω, σ)||f ||L2(Ω;|K|−1),

Moreover, u is a distributional solution in the sense (6.25).

The distributional solution satisfying (6.26) can then be shown to be a weak solution in the sense of

Definition 3.1. One merely repeats the argument of Lemma A.4 of [13] in which one considers a sequence

{un}n∈N ⊂ C∞0 (Ω) which converges in the H1
0 (Ω;K) norm to the distributional solution u. The uniqueness

then follows as well by applying Lemma A.5 of [13]. �

Remark 6.4. In [21], which treated the case σ(y) = y2, the additional term 1
4Xτ x

τ in (6.4) is not present

just as it was absent in the original proof [12] for the Tricomi type case. Without this additional term, the

solution ψ of (6.2) will lie in C∞(Ω)∩C0(Ω), but it just fails to lie in H1
0 (Ω;K), which corresponds to τ = 0.

The proof of Lemma 2.1 of [21] (as well as the proof of Proposition 4.1 of [22]) repeats the erroneous claim

made in Step 1 of the proof of Lemma 3.3 in [12]. The correction in the Tricomi type case was made in
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Lemma A.1 of [13] in which the new term 1
4Xτ x

τ improves the regularity of ψ (while maintaining the needed

positivity in (6.1) for the lower estimate) and the constant β−m−1
2 is calibrated in an optimal way.

7. Proof of Lemmas 3.7 and 3.8

In preparation for the proof of the compact embedding Lemma 3.7, we recall the following preliminaries

taken from Danielli [6]. In all that follows Ω0 and Ω will be bounded open subsets of RN such that Ω ⊂ Ω0

and A : Ω0 → Sym+
N (R).

Definition 7.1. One says that A defines a weak sub-Riemannian structure on Ω0 if for every z0 ∈ Ω0 there

exist a neighborhood W of z0, a vector η0 ∈ RN , two positive numbers ρ, t0 and a map

Φ : [0, t0]×W ×Bρ(η0)→ Ω0

of class C1 such that

(7.1) t 7→ Φ(t, z, η) = x(t; z, η) is an A-subunit curve with x(0; z, η) = z for all z ∈W, η ∈ Bρ(η0)

(7.2) η 7→ Φ(t, z, η) is injective on Bρ(η0)

(7.3)

∣∣∣∣det

(
∂Φ

∂η
(t, z, η)

)∣∣∣∣ > 0 for all t ∈ (0, t0], z ∈W, η ∈ Bρ(η0).

We also recall that x : [0, t0]→ Ω0 is an A-subunit curve if it is absolutely continuous and satisfies

|〈x′(t), ξ〉|2 ≤ 〈A(x(t))ξ, ξ〉 for a.e. t ∈ (0, t0) and every ξ ∈ Rn ,

where 〈·, ·〉 is the standard inner product on RN . Finally, recalling that W 1,p
0 (Ω;A) is the completion of

C1
0 (Ω) with respect to the norm (3.10), Proposition 3.1 of [6] states that: if A : Ω0 → Sym+

N (R) defines a

weak sub-Riemannian structure on Ω0, then the embedding of W 1,p
0 (Ω;A) into Lp(Ω) is compact.

Remark 7.2. Danielli uses the map Φ to define a suitable family of local displacements (indexed by the

parameter t) which replace Euclidian translations in the standard mollifying procedure used to prove the com-

pactness property in the classical case (where A(x) is the identity matrix and the Sobolev space W 1,p
0 (Ω;A)

reduces to W 1,p
0 (Ω)). Proposition 3.1 of [6] is then a corollary of a more general result (Theorem 2.8 of

[6]). The term weak in Definition 7.1 refers to condition (7.3) which weakens what was introduced by

Franchi-Lanconelli [9] as a sub-Riemmanian structure. See also Remark 2.4 of Franchi [8].

Proof of Lemma 3.7. Given A of the form A(x) = diag[Λ2
1(x), . . . ,Λ2

N (x)] with {Λj}Nj=1 satisfying (3.12),

(3.13) and (3.14), it suffices to show that for each z0 ∈ Ω0 the needed map Φ exists. Since A is the square of

diag[Λ1, . . . ,ΛN ] with each Λj non-negative and C1(Ω0), Remark 2.7 of [9] shows that Φ satisfying (7.1) can

be constructed as the time t flow of a suitable Cauchy problem. More precisely, fixing z ∈ Ω0 and η ∈ RN

with |η| ≤ 1, an A-subunit curve x = x(t; z, η) satisfying x(0; z, η) = z is given by the unique solution of

(7.4)

{
x′(t) = A1/2(x(t))η

x(0) = z

Indeed, as argued in [9], for each ξ ∈ RN one has

|〈x′(t), ξ〉|2 =
∣∣∣〈η,A1/2(x(t))ξ〉

∣∣∣2 ≤ |A1/2(x(t))ξ|2|η|2 ≤ |A1/2(x(t))ξ|2 = 〈A(x(t))ξ, ξ〉.

The system (7.4) is autonomous and F defined by F (x, η) = A1/2(x)η belongs to C1(Ω0 × RN ,RN ). Hence

one has C1 dependence locally in (t, z, η) and one defines the values of Φ by Φ(t, z, η) = x(t; z, η), which by

construction will take values in the bounded open set Ω0 and will be an A-subunit curve if one maintains
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|η| ≤ 1. One needs only to show that a suitable neighborhood [0, t0]×W × Bρ(η0) exists so that (7.2) and

(7.3) hold.

For each z0 ∈ Ω0, we will select η0 = 1/(2
√
N)(1, . . . , 1) so that |η0| = 1/2 < 1 and pick ρ < 1/(4

√
N)

so that Bρ(η0) ⊂ B1(0). We will see below that this choice of Bρ(η0) means that the A-subunit curves

will have components which are increasing functions of t. We complete the definition of Φ by choosing a

small pluri-rectangle W containing z0 and a small value t0 for which the solutions of (7.4) starting from

W with parameter η ∈ Bρ(η0) will remain in Ω0 for each t ∈ [0, t0]. This can clearly be accomplished by

a compactness argument and we will have Φ which satisfies (7.1). For the properties (7.2) and (7.3), the

following claim plays a key role.

Claim 1: For each fixed z ∈ Ω0 and η ∈ Bρ(η0), the unique solution of the system (7.4) satisfies

(7.5) xj = xj(t; z1, . . . , zj , η1, . . . , ηj) > zj for each j = 1 . . . , N and each t ∈ (0, t0].

The proof is by induction on j. Indeed, using (3.12) with j = 1, one has

x1(t) = z1 + η1

∫ t

0

Λ1(x1(s)) ds > z1 for each s ∈ (0, t0]

since η1 > 0 and Λ1 > 0 by (3.13). Assuming (7.5) for each index less than or equal to j − 1, consider the

index j. Using the structure condition (3.12), the positivity of ηj and the non-negativity of Λj one has

(7.6) xj(t) = zj + ηj

∫ t

0

Λj(x1(s), . . . , xj−1(s), xj(s)) ds ≥ zj for each s ∈ [0, t0].

If there were t̄ ∈ (0, t0] such that xj(t̄) = zj , then by (7.6) one would have

(7.7) Λj(x1(s), . . . , xj−1(s), zj) = 0 for every s ∈ [0, t̄].

For s = 0 one has

Λj(z1, . . . , zj−1, zj) = 0

and using the induction hypothesis one has xk(s) > zk for each s ∈ (0, t̄] and for each k = 1, . . . , j − 1. The

components xk(s) are C1 functions of s ∈ [0, t̄] and hence (7.7) implies that there would exist ε > 0 such

that Sε(z1, . . . , zj−1, zj) as defined by (3.15) would contain an arc of a C1 curve of positive length, which

contradicts the condition (3.14). This completes the claim.

Claim 2: For each η ∈ Bρ(η0) and for each j ∈ {1, . . . , N}, one has

(7.8)
∂xj
∂ηj

(t; z, η) > 0 for each t ∈ (0, t0], z ∈W .

Indeed, again taking inspiration from Remark 2.7 of [9], we use the structure condition (3.12) to write

xj(t; pj) = zj +

∫ t

0

ηjΛj(x1(s; p1), . . . , xj(s; pj)) ds

where we have denoted by pj := (z1, . . . , zj , η1, . . . , ηj). Hence uj :=
∂xj
∂ηj

satisfies

uj(t; pj) =

∫ t

0

[
Λj(x1(s; p1), . . . , xj(s; pj)) + ηj

∂Λj
∂xj

(s; pj)uj(s; pj)

]
ds and uj(0; pj) = 0,

which is to say that uj(t, pj) solves the Cauchy problem{
u′j(t; pj) = Λj(x1(t; p1), . . . , xj(t; pj)) + ηj

∂Λj
∂xj

(t; pj)uj(t; pj)

uj(0; pj) = 0

Hence

uj(t; pj) = exp

(
ηj

∫ t

0

∂Λj
∂xj

(s; pj) ds

)∫ t

0

exp

(
−ηj

∫ τ

0

∂Λj
∂xj

(s; pj) ds

)
Λj(x1(τ ; p1), . . . , xj(τ ; pj)) dτ ≥ 0.
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If there were to exist a t̄ such that uj(t̄) = 0, then Λj(x1(t; p1), . . . , xj(t; pj)) = 0 for every t ∈ [0, t̄]. However,

the relation (7.6) would then imply that xj(t; z1, . . . , zj , η1, . . . , ηj) = zj for each t ∈ [0, t̄], which contradicts

(7.5). This establishes Claim 2.

The remaining properties now follow easily. Since xj is independent of ηk for k > j, the Jacobian

determinant condition (7.3) is satisfied since∣∣∣∣det

(
∂Φ

∂η
(t; z, η)

)∣∣∣∣ =

∣∣∣∣det

(
∂x

∂η
(t; z, η)

)∣∣∣∣ =

∣∣∣∣∣∣
N∏
j=1

∂xj
∂ηj

(t; z, η)

∣∣∣∣∣∣ > 0,

where the positivity comes from (7.8). This condition also insures the injectivity condition (7.2). The

argument is by contradiction. Suppose that for some (z∗, t∗) ∈W × [0, t0] one has

x(t∗; z∗, η) = x(t∗; z∗, η̃) for η, η̃ ∈ Bρ(η0) with η 6= η̃.

Then for j = 1, one has x1(t∗; z∗1 , η1) = x1(t∗; z∗1 , η̃1) and hence there would be η∗1 between η1 and η̃1 such that
∂x1

∂η1
(t∗; z∗1 , η

∗
1) = 0, in contradiction with (7.8). Hence η1 = η̃1. for j = 2, then one has x2(t∗; z∗1 , z

∗
2 , η1, η2) =

x2(t∗; z∗1 , z
∗
2 , η1, η̃2). The same argument shows that η2 = η̃2, and so on. Hence η = η̃, a contradiction. �

Proof of Lemma 3.8. With Ω, Q,Br(x0), ζ and δ as in the statement of the Lemma, we pick a cutoff function

ψ ∈ C∞0 (R) such that

ψ is even, supp (ψ) ⊂
[
−1

2
,

1

2

]
and 0 ≤ ψ ≤ 1.

For α ≥ 1 and Bt(x1) ⊂⊂ Br(x0) we define the function ϕ = ϕt,x1(x) by

ϕ(x) := ψ

(
α2 − 1

t2
|〈x− x1, ζ〉|2 +

1

t2
|x− x1|2

)
:= ψ(s(x)).

Clearly ϕ ∈ C∞0 (Ω) and supp(ϕ) ⊂⊂ Bt(x1) ⊂⊂ Br(x0). Direct calculation yields∫
Ω

〈Dϕ,QDϕ〉 dx =
4

t4

∫
Ω

[ψ′(s(x))]2
[
(α2 − 1)2〈x− x1, ζ〉2〈Q(x)ζ, ζ〉

+ 2(α2 − 1)〈x− x1, ζ〉〈Q(x)ζ, (x− x1)〉+ 〈Q(x)(x− x1), x− x1〉
]
dx.

In the case a), where 〈Q(x)ζ, ζ〉 ≥ δ > 0, for x ∈ Br(x0) one finds

(7.9)

∫
Ω

〈Dϕ,QDϕ〉 dx ≥ 4δ

t4
C1(α2 − 1)2 − 4r2

t4
C2

(
2|α2 − 1|+ 1

)
,

with

(7.10) C1 =

∫
Ω

[ψ′(s(x))]2|〈x− x1, ζ〉|2 dx > 0 and C2 =

∫
Ω

[ψ′(s(x))]2||Q(x)||2 > 0.

Selecting α ≥ 1 sufficiently large shows that the integral in (7.9) has a positive lower bound. In order to

construct the desired collection {w1, . . . wn}, one merely picks a finite sequence of mutually disjoint balls

Bt1(x1), . . . , Btn(xn) all contained in Br(x0) and repeats the construction above to select wi = ϕti,xi .

Similarly, in the case b), where 〈Q(x)ζ, ζ〉 ≤ −δ < 0, for x ∈ Br(x0) one finds

(7.11)

∫
Ω

〈Dϕ,QDϕ〉 dx ≤ −4δ

t4
C1(α2 − 1)2 +

4r2

t4
C2

(
2|α2 − 1|+ 1

)
,

with C1 and C2 given again by (7.10). Again selecting α ≥ 1 large shows that the integral in (7.11) has a

negative upper bound. The desired collection {w1, . . . wn} is then constructed as before. �
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[8] Franchi, B. (1984). Propriétés des courbes intégrales de champs de vecteurs et estimations ponctuelles
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